Replay for Concurrent Non-Deterministic
Shared Memory Applications

Mark Russinovich and Bryce Cogswell

CIS-TR-95-18
December 1995

Department of Computer and Information Science
University of Oregon

Replay For Concurrent Non-Deterministic
Shared Memory Applications

Mark Russinovich and Bryce Cogswell
Department of Computer Science
University of Oregon
Eugene, OR 97403
{mer, cogswell} @cs.uoregon.edu

Replay of shared memory program execution is desirable in many domains including cyclic debugging, fault
tolerance and performance monitoring. Past approaches to repeatable execution have focused on the problem of re-
executing the shared memory access patterns in parallel programs. With the proliferation of operating system
supported threads and shared memory for uniprocessor programs, there is a clear need for efficient replay of
concurrent applications. The solutions for parallel systems can be performance prohibitive when applied to the
uniprocessor case. We present an algorithm, called the repeatable scheduling algorithm, combining scheduling and
instruction counts to provide an invariant for efficient, language independent replay of concurrent shared memory
applications. The approach is shown to have trace overheads that are independent of the amount of sharing that takes
place. An implementation for cyclic debugging on Mach 3.0 is evaluated. The algorithm implemented is compared
with optimal event-based tracing and shown to do better with respect 1o the number of events monitored or number of

events logged, in some cases by several orders of magnitude.

Keywords: Non-determinisin, shared memory, repeatable execution, instruction counter

1.0 Introduction

Repeatable execution is a crucial component of cyclic debugging, performance monitoring and fault tolerance based
on journaling. For example, in cyclic debugging bugs are located by repeatedly running an application and then
replaying executions that exhibit erroneous behavior in order to isolate the cause of the problem. In fault tolerance,
programs running on a system that has failed can be recovered by starting them from a saved earlier state and bring-
ing them up to the state that existed at the time of the failure by recreating inputs as well as other external events.

The most difficult types of programs to replay are those that contain non-determinism. Non-determinism is present if
an application given the same inputs can obtain different states and possibly produce different outputs across multiple
executions. Sources of non-determinism include asynchronous interrupts, concurrent or parallel access to shared data,
and dependence on external conditions such as time. In many cases increased performance can be obtained by reduc-
ing the amount of synchronization among processes sharing data, which leads to the introduction of non-deterministic
access patterns. At other times a form of non-determinism, called a race, is inadvertently created through the incor-

rect implementation or omission of synchronization,

A great deal of research has focused on ways to replay program execution, with the majority focusing on replaying

the non-determinisin created through shared memory access in parallel programs. Recently, however, uniprocessor

Replay For Concurrent Non-Deterministic Shared Memory Applications 1

operating system support for shared memory and light-weight threads has become commonplace [4][7][16][15], lead-
ing to a need for efficient mechanisms that enable the replay of concurrent shared memory programs. Existing solu-
tions for replaying shared memory non-determinism are all based on the principle that a shared memory access is an
event, and that an application execution can be recreated by recording and replaying the order of the events executed
by the application. While this approach does enable the design of concurrent systems with repeatable execution, the
overheads incurred are often prohibitive. For example, a concurrent program running on a 20 MIPS processor where
2% of instructions executed are interleaved shared memory accesses, and where each trace record is 10 bytes in size,
will generate trace information at the rate of 2MB/s of execution. Tracing, and even monitoring, each shared memory
access can also degrade performance significantly. Further, since the amount of tracing done depends on the applica-
tion's sharing characteristics, the overheads obtained can make the approaches practical for only a restricted class of

programs.

Another disadvantage of event-based approaches is that the system must be aware of every memory access that is
potentially shared. In most cases, this means one of three things: that the shared accesses are well defined at the lan-
guage or operating system level; that the trace process is further augmented to detect sharing dynamically; or that all
memory accesses must be considered shared accesses. Each case has drawbacks that can narrow the range of applica-
tions to which the approach can be effectively applied.

In this paper we present an algorithm called repeatable scheduling for recording and replaying the execution of
shared memory applications that has several major advantages over existing approaches. The technique is based on
the fact that repeatable execution can be obtained by recreating the scheduled behavior of an application at instruction
level granularity. This is accomplished through the use of an instruction counter [1][11] and a mechanism that makes

the application’s schedule visible to the replay system.

The first advantage of our approach over the beset event-based techniques is that trace generation rates can be
reduced by several orders of magnitude. Because trace information is created only at scheduling points the amount of
data generated and the frequency of such points is generally dependent only on the time-slice of the scheduler. Typi-
cal time-slices are on the order of 1-2ms, so for the 20 MIPS computer example mentioned earlier, and in general any
computer, trace generation rates are fixed and on the order of 1-2KB/s. The second advantage of the approach is that
it is language independent. No information about shared memory accesses or memory layout is necessary, so the pro-
gram does not have to be instrumented at the access level and no run-time overhead is incurred for shared accesses.
Finally, programs are instrumented with a software instruction counter, a technique that requires minimal analysis of

program structure, making it simpler to implement than many existing event-based analysis techniques.

The remainder of this paper is organized as follows: In Section 2.0 we present related work in the area of repeatable
execution. Section 3.0 discusses our approach, known as Repeatable Scheduling, and in Section 4.0 a replay system
aimed at cyclic debugging that has been implemented using our approach is described. Section 5.0 provides a quanti-
tative comparison of repeatable scheduling with the most efficient event-based algorithm. We summarize and con-

clude in Section 6.0.

Replay For Concurrent Non-Deterministic Shared Memory Applications 2

2.0 Related Work

All past approaches to replaying shared memeory applications have focused on recording how processes interact. The
most straight-forward way of recording an execution is to save the value of every shared read operation [14]. The
obvious draw-back of this approach is that if sharing is common, trace log size will rapidly explode. In order to mini-

mize the amount of data saved, most approaches save the order of shared accesses, rather than the content,

Approaches that save order can be divided into two groups: those that assume coarse-grained sharing through syn-
chronization or objects, and those that monitor every shared memory access. An object oriented treatment of shared
memory is seen in [3], [5], [8], and [9]. While this scheme can lead to substantial reductions in trace size and over-
head, it requires that the objects be implemented correctly so that they do not introduce race conditions. In some cases
the object based systems can be made to treat each shared memory access individuaily as shared objects, but this can
lead to high overheads since they are not designed for fine-grained operation.

Recording the order of data synchronization is the strategy seen in {17]. A drawback of this technique is that it is not

applicable in the debugging domain since applications must be free of races for successful replay to be guaranteed.

An approach that is designed for the monitoring of every shared memory access is [12]. The method optimizes the
amount of ordering information saved by dynamically performing a transitive reduction on the shared memory access
patterns so that the recorded ordering is optimal. This is shown to reduce trace overheads by one to two orders of
magnitude over approaches such as [8]. One potential issue is the amount of run-time space overhead incurred by the
algorithm since a dependency vector must be maintained for each shared memory location. This can easily raise the

memory requirements of an application by an order of magnitude if there are large amounts of shared data,

There are several shortcomings common to all of these approaches. Object based systems require support either at the
language or system level. Applications written without using the designated object model cannot be re-executed
under these systems. In addition, the fact that object encapsulation is assumed to be race-free can make these systems
inapplicable in the debugging domain. The approaches that monitor every shared memory access require that the
shared memory accesses be visible to the system and distinguishable from accesses to private data. In some systems
shared data is explicitly defined through language or system constructs, but often data sharing is not obvious and can
be defined at run-time. For example, many current operating systems support multithreaded execution. Applications
written for this model of computation have threads of control that share their entire address space, requiring monitor-
ing of the complete address space even though only a few locations may actually be shared. Static analysis of these
applications alone is not sufficient to differentiate shared from non-shared data since pointer dereferences resolved at
run-time can determine the difference. None of the existing solutions for replay can be effectively applied for practi-

cal replay of such applications.

3.0 Repeatable Scheduling

While most existing solutions to shared memory replay are designed for parallel systems, our work concentrates on
uniprocessor concurrent execution. In a concurrent system running on a uniprocessor only one process or thread of
control will be executing at any given point in time. Non-determinism arises in applications that share memory

because the interleaving of accesses to the shared data by different processes or threads may be different across exe-

Replay For Concurrent Non-Deterministic Shared Memory Applications 3

cutions of the application given identical inputs. The key to efficient repeatable execution of such applications is the
realization that the interleaving is controlled by the system scheduler. To precisely repeat the execution of a non-
deterministic shared-memory application the coarse-grained interleaving characteristics can be recreated by repeating
the same schedule, ensuring that context switches occur at exactly the same instructions during replay as during the

original execution.

This section first presents the assumptions made throughout this work, and then describes the basic approach to
repeatable scheduling. Throughout this section and the rest of the paper we refer to executions of an application that
are meant to exactly repeat some other execution as repeat executions or replay executions. The execution that is

being used as the basis for the repetition is known as the original execution.

3.1 System Model

This work assumes that applications consist of one or more processes or threads. There are no restrictions on the
amount of address space shared among threads or processes of the application and this can vary between specific
threads or processes of the application. Further, memory sharing can be local between two or more processes or
threads in the application, or global across all the processes and threads in the applications. There are no assumptions
regarding the visibility or ordering of shared memory accesses. Since synchronization of shared memory accesses is
not assumed, non-determinism based on shared memory access ordering or the arrival of asynchronous events can be
present in the application.

Applications run under the control of a replay system, which is in charge of both recording and playing back an appli-
cation’s behavior. It is assumed that the replay system can be notified of context-switches within the application
before a newly scheduled process or thread is allowed to execute. It is also assumed that there is a way for the replay
system to control the scheduling of processes and threads, Basic support for this assumption is provided on most sys-
tems with sleep and wakeup system calls.

Finally, we address issues involving replaying shared memory access only. Issues regarding the recreation of an
external environment required for replay, such as input, the state of other applications or hardware for example, are
outside the scope of this work.

3.2 How the Repeatable Scheduling Algorithm Works

The idea behind the repeatable scheduling algorithm is partly based on past work in repeatable execution that focuses
on replaying asynchronous events [5]{11]. In the previous work, the model is that of a single process where non-
determinism is present in the form of asynchronous interrupts. Such interrupts can be delivered to a process at any
instruction, and correct replay of a process that has received asynchronous events requires that such events be
replayed at the same instructions in each repeated execution. This can be accomplished by wsing an instruction
counter, as in [I1], to record how many instructions have executed between events and then controlling how many

instructions are executed in a replay before an event must be recreated.

An instruction counter implemented in software is a memory location or dedicated register that is initialized to its
maximum value at the start of original execution. The counter is incremented each time the application makes a back-

ward control transfer. Thus, for any instruction in the execution sequence there is a unique counter value and instruc-

Replay For Concurrent Non-Deterministic Shared Memory Applications 4

tion pointer that can be used to identify the precise location in the sequence of asynchronous events. When an
asynchronous event occurs the replay system saves the instruction count and the instruction pointer of the thread or
process being interrupted. During replay execution, the counter is initialized to the negative of the value stored in the
log, and when the counter increments to zero a routine is called which places a breakpoeint on the instruction associ-
ated with that count. When the process or thread hits the breakpoint the asynchronous event is replayed. The next pair

of counter and pointer is then read to determine when to replay the next event,

In our algorithm we allow for non-determinism to be introduced through shared memory accesses. On a uniprocessor
the ordering of shared memory accesses is ultimately determined by how the processes or threads of an application
are scheduled. We therefore have extended the notion of an asynchronous event in [11] to include process or thread
preemptions performed by the scheduler. In the original execution an instruction count is saved at each preemption
point in the application, recording the exact place in the execution where the pre-emption occurs, and the identifier of
the process or thread that it preempted. In a replay execution, the saved preemption information is read and used to

force preemptions at the same places in the execution.

Consider the example shown in Figure 1(A). An application that is to be replayed consists of three threads which are
scheduled as shown. At each of the pictured preemption points the instruction count, instruction pointer and the iden-
tifier of the thread being preempted are saved to a log. In the replay, shown in Figure 1(B), the replay system starts the
re-execution by putting threads 2 and 3 to sleep, but letting thread 1 run until it has executed the same number of
instructions as it did in the original execution before the first preemption point. When that preemption point is
reached, the replay system is notified and puts thread 1 to sleep. The replay scheduler then makes the same scheduling
decision as in the original run so it again wakes up thread 2. A similar procedure is followed at the second preempticn

point.

The two requirements that make a replay system possible are that the application’s schedule is visible to the replay

system and that an instruction counter is provided to measure the progress of the application.

4.0 Application to Debugging

The debugging of concurrent and parallel programs can be especially difficult because of non-determinism in shared
memory access, both intentional and inadvertent. We have implemented a replay system for concurrent Mach 3.0 [16]
applications that require repeatable execution for debugging purposes. Mach provides both explicit shared memory
with virtual memory control primitives and implicit shared memory through the use of multithreading, making exist-
ing event-based replay techniques unsuitable,

4.1 Mach 3.0 Replay System Design

To make our implementation as general and portable as possible we have made it part of a new “debug” version of the
Mach system library. The steps necessary to make an application ready for repeatable execution are shown in Figure
2. The application is first passed through a preprocessor that instruments the assembly language output of the com-
piler with a software instruction counter. The application is then linked with the debug library (which is also instru-

mented) in lieu of the standard library. After the program is run, it can then be forced to repeat non-deterministic

Replay For Concurrent Non-Deterministic Shared Memory Applications 5

Thread 1 anmmmmme
Thread 2 U||n|mmnmnmnmmmnu

Thread 3

[] pre-emptlive context switch

{A) Original Exccution

Thread] Y

Thread 2 MM

Thread 3 L],,,,,,,,,,,,,,,,,,,.,,,“,
Replay Sys. @ @ @

@ Replay system wakes up thread 1, ensures threads 2 and 3 are sleeping
® Replay system puts thread 1 to sleep, wakes up thread 2
@ Replay system puts thread 2 to sleep, wakes up thread 3
(B) Replay Execution
Figure 1. Example of repeatable scheduling

behavior by specifying a command line flag with the log file of the original run. By running the application under an

existing debugger, such as GNU’s gdb for Mach 3.0, bugs can be isolated and identified.

Application

Replay Scheduler

Debug System Library

% Repeatable Application .

Figure 2. Steps in preparing an application for repeatable execution

Replay For Concurrent Non-Deterministic Shared Memory Applications 6

4.2 The Preprocessing Stage: Implementing The Instruction Counter

Applications being readied for repeatable execution are first compiled with the GNU gee compiler, which allows one
to specify that a particular register be left unused in the assembly output. The assembly language output of such a
compilation is fed to the replay preprocessor that performs the software instruction counter instrumentation, using the
dedicated register as the instruction count. Backward branches and calls are located, with code such as the following

pseudocode fragment added at each occurrence:

increment count register;
if(count register == 0) call overflow();

The preprocesscr also replaces the application’s main () function with a wrapper in the debug library that is used to
initialize the replay system. This function also allows for command line flags to be passed to the replay system and is

further described below. The preprocessor implemented as an Awk script [1] is about 100 lines long.

4.3 The Debug Library: Scheduling the Application

Once the application has been instrumented, it must be linked with instrumented versions of the system libraries such
as libc.a. Normally, Mach programs are linked with the 1ibmach. a library, but when repeatable execution is
desired the application is instead linked with the replay version of the Mach library called 1ibreplay. a. This ver-
sion of the Mach library is instrumented and monitors or recreates the scheduling of applications. The decision to
implement the scheduler as a library limits the replay to single applications, but is the most portable approach to mak-

ing an application’s schedule visible to the replay system.

When an application begins executing it consists of one Mach thread running in one task (a task is essentially an
address space - one thread running in a task is equivalent to a Unix process), If the command line flags indicate that
the run is an original execution the replay system prepares itself for logging, but remains dormant until the applica-
tion becomes multi-threaded through the creation of another thread. At that time the replay system spawns a schedul-
ing thread that runs at a higher priority than the application threads and begins controlling the scheduling of the
application.

The replay system scheduler keeps track of the threads that exist throughout the application’s execution. At any point
in time the scheduler allows only one thread to be active and therefore runnable by the Mach scheduler. When threads
are preempted, the scheduler records the thread’s identifier, instruction count value and instruction pointer before
waking up the next thread.

To replay an execution the user must specify a replay log on the application’s command line. The replay scheduler
reads pre-emption records from the log and instead of preempting based on time-slices, it uses the instruction counter
to determine when to force preemptions. Because the scheduler is deterministic, it performs the same scheduling
decisions as it did in the original run of the application, meaning that no information need be logged during context-
switches that occur due to blocking (since the succeeding thread will be the same during both the original run and

replay). This ensures that the only scheduling decisions that must be logged are those due to time-slice preemptions.

Replay For Concurrent Non-Deterministic Shared Memory Applications 7

4.4 Mach 3.0 Replay System Performance

The replay system is implemented on Mach 3.0/UX (UNIX 4.3 BSD) running on a $0MHz Pentivm processor with
16MB of memory. Three synthetic workloads are used to demonstrate the best and worst-case performance of the
replay system. All three are multithreaded single task applications written using the Mach C-Threads library.

The first application is a simple counting program where multiple threads increment a shared counter until it reaches
a specified value. There is no synchronization in the increment loop so the order the threads perform the increment is
non-deterministic. Therefore the scheduler’s time-slicing policy will determine the order and frequency threads take
turns at incrementing the counter. This application demonstrates the overheads incurred by the instruction counter in

small loops and the overhead of monitoring and logging pre-emptions.

The second application is a variant of the first with added synchronization. The shared increment operation takes
place in rounds, where each thread takes a turn at incrementing the counter and then waits until all the other threads
have incremented the counter once before incrementing it again. Increments within each round occur in a non-deter-
ministic order, and because blocking context-switches will occur on virtually every increment of the counter, this

demonstrates the replay system's overhead for performing scheduling decisions at non-pre-emptive context-switches.

The final application is a standard multi-threaded matrix multiply algorithm. A specified number of threads are cre-
ated and assigned blocks of the matrices to multiply independently. This application contains no synchronization and
will exhibit the same context-switching behavior as the first application. However, the number of shared variables
accessed depends on the sizes of the matrices being multiplied. This application demonstrates that for repeatable

scheduling, overheads are independent of the amount of data sharing performed by an application.

The SPLASH-2 (Stanford Parallel Applications for Shared-Memory) benchmark suite is used to quantify the
expected behavior in real applications [18]. All SPLASH executions use 8 threads. Results for both the synthetic
workloads and the SPLASH benchmarks are given in Table 1. The Native column contains execution time using the
standard Mach and C-Threads libraries under the control of the Mach system scheduler. The Instrumented column
shows execution time when applications are instrumented and run using the repeatable scheduling scheduler, and the
Replay column gives time for subsequent replayed executions. The final column is the size of the trace logs generated
for the instrumented executions.

The table demonstrates that performance degradation due to instrumentation and scheduling is around 10-15%. In
two instances, synchronous count and Cholesky, the performance with instrumentation is superior to the native system
because the imposed scheduler uses a different, occasionally superior, scheduling algorithm than the native scheduler.
In those cases two measurements are shown for native execution: time for a run with a single thread and for a run
with the same number of threads as was used for the instrumented execution. Trace size generation rates are fairly
constant at about 1KB per second across all the applications measured. This result is significant in light of the fact
that it is independent of the amount of shared accesses in the application. For example, LU-contiguous executes 93
million shared reads and 44 million shared write, all of which require atomic monitoring by event-based replay algo-

rithms. Under repeatable scheduling only 14KB of trace is generated with an execution overhead of about 15 percent.

Replay For Concurrent Non-Deterministic Shared Memory Applications 8

Instrumented Replay
Native Execution Execution Trace
Application Execution Time Ovrhd Time Ovrhd Size
) (s) (s)
count 847]| 9.16| 8.1%| 944| 115%|[KB |
Synthetic ['gune count 0.24/6.42 3.32 na 3.58 na 3KB
Workloads "1 a¢rix multiply 2759 || 30.05 89% || 3135 13.6% 26KB
— | Radix 494 s522| S57%|| 537 8% 6KB
LU - contiguous 1058 || 1233 165% | 1220 153% 14KB
Splash LU - non-contiguous 1608 || 17.52 9.0% | 1779 106% 20KB
Kernels ["ppr 1.65 182 103% 185 12.1% KB
Cholesky 1.66/1648 || 2.63 naf| 266 na 2KB

TABLE 1. Performance of Mach 3.0 Replay System

5.0 Comparison with Optimal Event-Based Replay

We present in this section a comparison of the repeatable scheduling algorithm to the optimal parallel trace algorithm
of [12]. Though the optimal trace algorithm supports replay on true parallel machines as well as sequential, to this
date it is also the optimal approach for replay of concurrent systems. The optimal trace algorithm, while requiring
more complex run-time monitoring of shared accesses than other event-based replay methods, dynamically detects
race conditions in order to generate the minimal amount of trace information. Race-condition detection is performed
by maintaining dependency vectors for each shared memory location that indicate the order of thread read and write
accesses to the location. The comparison is made not on raw performance, but rather on the criteria of number of trace

records generated, and the number of events monitored during execution.

Both algorithms require approximately the same amount of information in a trace record so comparing the number of
records will indicate relative trace log size. The repeatable scheduling algorithm requires that scheduling take place at
system calls that can block, so we treat such calls as monitored events. In the optimal trace algorithm, all shared
memory accesses are monitored to determine minimal sequencing information. To make the comparison as favorable
as possible for the optimal trace algorithm, we assume that monitoring is performed only on the actual data being
shared by the algorithm implemented in each test program rather than the entire address space of the threads as is
actually the case. Further, we do not model the optimal trace algorithm’s run-time space overhead that results from
the fact that dependency vectors must be maintained for each shared memory location. The dependency vector over-
head can raise the memory requirements of an application like matrix multiply by an order of magnitude. The same
test programs presented in the previous section are again used here, The results of the comparison are shown in Table
2.

For the count programs the number of threads is set at 10 and the iterations set at one million. Execution requires 1
second on a system with 100ms time-slices, so there are 10 preemptive context switches during the run. Since there is
no synchronization in this version of the count program both algorithms will generate trace information only at pre-
emption points, at which time the thread accessing the counter changes. However, each access to the counter must be

monitored by the optimal trace algorithm, which in practice will lead to substantial performance degradation.

Replay For Concurrent Non-Deterministic Shared Memory Applications 9

Optimal Trace Repeatable Scheduling
Application Events Events Events Events
Monitored Logged Monitored Logged
Ccount || 10° | 10 | 10 10
sync. count 108 10° 10° 10
matrix multiply 12.8x10% 6x10° 6x10° 6x10°

TABLE 2. Comparison of Optimal Trace and Repeatable Scheduling

The comparison for the synchronized count program is shown next. Because non-preemptive context switches occur
after every counter increment, the repeatable scheduling algorithm will monitor the same number of events as the
optimal trace algorithm (note that this does not include the lock, which is another shared variable that must also be
monitored by the optimal trace algorithm); however, the repeatable scheduling algorithm will only generate trace
information at pre-emptive context-switches, while the optimal trace algorithm must save a record after every incre-

ment.

Finally, a comparison of the matrix multiple program is shown at the bottom of the table. In the execution modelled,
two 400 by 400 arrays are multiplied together. This takes about a minute on a 90MHz Pentium, resulting in about
6000 pre-emptive context switches. Since there is no synchronization, the repeatable scheduling algorithm does not
monitor any events, but the optimal trace algorithm must menitor every shared variable access, resulting in a high
number of monitored events.

6.0 Summary

We have presented an algorithm called repeatable scheduling for repeatable execution of concurrent non-determinis-
tic shared-memory applications. The algorithm has several major advantages over existing replay algorithms. First,
unlike existing event-based techniques, there is no need to differentiate shared memory accesses from non-shared
accesses. The trace log generation rate is fixed, small, and is independent of the amount of sharing or synchronization
present in the application being replayed. The number of monitored events is also independent of the number of
shared memory accesses. Finally, the algorithm is simple to implement and has minimal impact on application mem-

ory requirements.

We have implemented the algorithm in the context of a debugging replay system for multi-threaded Mach 3.0 appli-
cations and shown that the repeatable scheduling technique is an efficient way to debug non-deterministic concurrent
programs. In addition, comparisons of repeatable scheduling with the optimal trace event-based replay algorithm
indicate that repeatable scheduling does significantly better in either number of events monitored or the number of

events logged for asynchronous as well as synchronous applications.

Future work includes performance enhancements to the repeatable scheduling implementation as well as its applica-
tion in the fault-tolerance domain. Exploration into the use of repeatable scheduling for debugging parallel applica-
tions on a uniprocessor is also being considered. Because varying the time-slices in the scheduling algorithm provides
the ability to control the amount of non-determinism present in an execution, repeatable scheduling may provide an
efficient way to debug parallel programs with control over the non-determinism versus performance and trace size
trade-off.

Replay For Concurrent Non-Deteeministic Shared Memory Applications 10

7.0 References

[1]1 A. Aho, B. Kernighan and P. Weinberger, “The AWK Programming Language,” Addison-Wesley, Reading, MA,
1988.

[2] T. A. Cargill and B. N, Locanthi, “Cheap Hardware Support for Software Debugging and Profiling,” in Proc.
Symp. on Architectural Support for Prog. Lang. and Operating Syst., Palo Alto, CA, Oct. 1987, pp. 82-83.

[31 R. H. Carver and K. C. Tai, “Reproducible Testing of Concurrent Programs Based on Shared Variables,” in Proc,
6th Int. Conf. on Distributed Computing Systems, Boston, MA., May 1986, pp. 428-432.

[4] H. Custer, “Inside Windows NT,” Microsoft Press, Redmond, WA, 1993,

[5] P. Dodd and C. Ravishankar, “Monitoring and Debugging Distributed Real-Time Programs,” Software Practice
and Experience, Vol. 22(10), Oct. 1992, pp. 863-877.

{6] M. Johnson, “Some Requirements for Architectural Support of Software Debugging,” in Proc. of the Symp. on
Architectural Support for Prog. Lang. and Operating Syst., Palo Alto, CA, Mar. 1982, pp. 140-148.

[7] A. King, “Inside Windows 95,” Microsoft Press, Redmond, WA, 1994.

{8]) T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging Parallel Programs with Instant Replay.” IEEE Trans. on
Computers, Apr. 1987, pp. 471-482.

[9]1 C. Lin and R. LeBlanc, “Event-Based Debugging of Object/Action Programs,” in Proc, of the ACM SIGPLAN/
SIGOPS Workshop on Parallel and Distributed Debugging, 1988, pp. 23-34,

[10] C. E. McDowell and D. P. Helbold, “Debugging Concurrent Programs,” ACM Computing Surveys, Dec. 1989,
pp. 593-622.

[11] J. M. Mellor-Crummey and T. J. LeBlanc, “A Software Instruction Counter,” in Proc. Symp. on Architectural
Support for Prog. Lang. and Operating Syst., Palo Alto, CA, Apr. 1989, pp. 78-86.

[12] R. Netzer, “Optimal Tracing and Replay for Debugging Shared-Memory Parallel Programs,” in Proc. ACM/ONR
Workshop on Parallel and Distributed Debugging, May 1993, pp. 1-11.

[13] R. Netzer and B. Miller, “On the Complexity of Event Ordering for Shared-Memory Parallel Program Execu-
tions,” in Proc. Int. Conf. on Parallel Processing, 1990, pp. 93-97.

[14]1 D. Pan and M. Linton, “Supporting Reverse Execution of Parallel Programs,” in Proc. SIGPLAN/SIGOPS Work-
shop on Paralle! and Distributed Debugging, May 1988, pp. 124-129,

[15] M. L. Powell, et. al., “SunQOS Multithreaded Architecture,” Sun Microsystems White Paper, Sun Microsystems,
Cupertino, CA, June 1995,

[16] R. Rashid, et. al., “Mach: A Foundation for Open Systems,” in Proc. 2nd Workshop on Workstations and Operat-
ing Syst., Sept. 1989, pp. 27-29.

(17] K. C. Tai, R. H. Carver, and E. E. Obaid, “Debugging Concurrent Ada Programs by Deterministic Execution,”
IEEE Trans. on Software Engineering, Jan. 1991, pp. 45-63.

{18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” in Proc. of the 22nd International Symposium on Computer Architecture, June
1995, pp. 24-36.

Replay For Concurrent Non-Deterministic Shared Memory Applications 11

