Distributed Array Query and
Visualization for High
Performance Fortran

Steven T. Hackstadt and Allen D. Malony

CIS-TR-96-02
February 1996

Department of Computer and Information Science
University of Oregon

Distributed Array Query and Visualization
for High Performance Fortran

Steven T. Hackstadt and Allen D. Malony

Department of Computer and Information Science
University of Oregon, Eugene, OR 97403
Phone: 541.346.4408 / Fax: 541.346.5373

{ hacks,malony} @cs.uoregon.edu

Abstract

This paper describes the design and implementation of the Distributed Array Query and
Visualization (DAQV) system for High Performance Fortran, a project sponsored by the
Parallel Tools Consortium. DAQV’s implementation leverages the HPF language, com-
piler, and runtime system to address the general problem of providing high-level access to
distributed data structures. DAQV supports a framework in which visualization and analy-
sis clients connect to a distributed array server {i.e., the HPF application with DAQV con-
trol) for program-level access to array values. Implementing key components of DAQV in
HPEF itself has led to a robust and portable solution in which clients do not need to know
how the data is distributed.

1 Introduction

In recent years, parallel processing has evolved from a rather esoteric technology for achieving high-performance comput-
ing on high-end, expensive machines to a more mainstream and wider-spread technology for delivering parallel computing
capability (not necessarily for high-performance) across a range of machine platforms. In part, this evolution has been the
result of more powerful microprocessors offering performance levels where speedups from modest paralielism provide accept-
able computational capability; for example, 200 Mflops performance on current generation four processor servers is not unre-
alistic. This evolution has also been a result of improved syslems infrastructure for composing parallel computing
environments; for example, PVYM and MPI allow networks of workstations to act as virtual parallel machines. The impact of
such hardware and systems infrastructure (in general, the filtering down of parallel systems technology to workstations envi-
ronaments) is to make paralle] computing more available.

Unfortunately, availability does not imply ease of use. Hence, there has been an increased emphasis on parallel program-
ming environments, including parallel language systems and tools for performance analysis, debugging, and visualization.
Research work in these areas has had its share of successes and failures. We would argue that there are two reasons for this.
First, parallel programming tools are often designed without the needs of the users in mind [5]. Tools can be complex and hard
to understand because of the complexities of the parailel system or, sometimes, in spite of it. That is, although a tool may be
solving a difficult parallel analysis problem, its utility will ultimately depend on how well it can be applied by the user to a spe-
cific problem. The second reason comes from a perspective of parallel computing’s role in the scientist’s problem solving envi-
ronment. In the past, computation’s dominance in time and cost requirements has, we suggest, allowed tool designers to adopt
a parallel system centered view. However, the scientist’s environment has always been more heterogeneous, combining data
gathering (static and dynamic), data analysis {manual and computational), data management (Jarge and complex, real time and
archival), and data visualization (still and animated, composed and real-time). Many parallel tools, though, focus only on the
analysis of the parallel computation (e.g., for performance and debugging). The point is that as parallel computing technology
changes (e.g., faster processors), so might the nature of the problem solving bottlenecks (e.g., from computationally intensive
lo data management or visualization intensive). Tool technology must be able to follow the changing focus and target the pre-
vailing needs.

It is our contention, then, that parallel systems are evolving to operate as components of a larger heterogeneous enviren-
ment supporting scientific problem solving, and that tools should then be designed with the broader requirements of the envi-
ronment in mind. This implies that issues such as tool integration, distributed operation, and portability must be dealt with up-
front, promoting designs based on open interfaces, client/servers models, standard data formats, and commonly accepted APIs.

CiS-TR-96-02 / February 1996

This can be easier said than done. In particular, tools that must function as part of the parallel computation {e.g., parallel
debugging tools) are non-trivial to implement; requiring distributed operation and environment-wide integration in addition
does not facilitate matters. However, one advantage of taking a heterogeneous (rather than centrist) view towards tool design is
that technologies accommodating that view can be leveraged in tool implementation (e.g., MPI for data communication). This
affords the possibility of high-level problem-solving tools built upon common environment support that abstracts system-spe-
cific details.

In this paper, we describe a tool (more appropriately, a framework) for distributed array query and visualization (DAQV)
in HPF programs. One of the unique features of DAQV is that it was designed with the philosophy discussed above. The tool
was originally offered as a project effort to be sponsored by the Parallel Tools (PTOOLS) Consortium, and as such, its pro-
posed functionality was subject to critical reviews by general consortium members, especially users. For example, the decision
to target HPF was a by-product of the evaluation process. The motivating concerns for DAQV forced a unique design and
implementation strategy to provide the high-level heterogeneous operations of DAQV as we envision it. The result is a tool
that is portable with HPF (both across system architectures and compilers), that can interoperate with other tools via an open
interface, and that can be extended by users as their arvay query and visualization needs require. The next section discusses the
motivation behind the DAQV project. We then present related work and contrasts it with DAQV’s functionality and implemen-
tation approach. Then, after discussing DAQV’s design, functionality, and implementation, we give examples of its applica-
tion. We end with a discussion of future work.

2 Motivation

During the execution of a parallel program it is often necessary, for various reasons, for the user 1o inspect the values of
parallel data structures that are decomposed across the processing nodes of a parallel machine. For correctness debugging in a
sequential environment, the ability to observe program variables to determine coding errors is a common user requirement;
debugging with parallel data objects is no different. Similarly, for interacting with parallel applications (e.g., for computalional
steering), it may be necessary to access and analyze distributed data at runtime. Also, performance data is typically collected in
a distributed manner on each processing node, requiring some mechanism to retrieve the information if it is important for the
user to do so during execution.

Any tool that addresses a particular user need (whether it be debugging, performance analysis, or application interaction)
where distributed data access capabilities are required has either to implement these capabilities itself or rely on some other
(open) infrastructure to provide them. In the former case, there are two problems. First, too] implementations tend to become
specific to low-level system details, The user-level functionality of the tool may be good, but platform dependencies may
severely hinder its portability. Second, the tool implements only what is necessary for its purposes and abstractions of distrib-
uted data access tend not to be developed. This has the effects of limiting tcol extension, restricting the ability of other tools to
leverage the distributed data access support, and leading to inconsistent functionality across tools. The common anecdote from
users that “print” is the only good tool is indicative of these two problems: tools for parallel sysiems are ofien complex, not
integrated, and vary widely across machines. “Print” is the only thing that they can rely on.

The case of relying on some other infrastructure for distributed data access suffers because no such infrastructure cur-
rently exists. One might think that “print” provides suitable functionality. But the problem is really the level of the tool’s inter-
face to the infrastructure; “print” would require significant scaffolding to give it a high-level interface to an external tool. In a
similar vein, many parallel debuggers are not aiways aware of how the parallel data structures are distributed. Whereas they
provide low-level mechanisms to get the data, the higher-level semantics about what the data is (i.e., the type and characleris-
tics of the distributed data object) are generally not utilized in the infrastructure and are not apparent in its external interfoce.
However, it is exacily these semantics that are helpful in developing open frameworks and portable tools.

The DAQYV project highlights the dilemma between the two alternatives above that often face tool designers, Begun as a
project sponsored by the Parallel Tools Consortium (PTOOLS) [21], DAQV set out to address the user requirement of being
able to access and visualize distributed array dala coming from a parallel program. Initially, it placed more emphasis on the
environment for array interaction (query specifications, array operations, visualization types, etc.) than the underlying infra-
structure for interfacing with the running program. However, based on feedback from the PFOOLS community [22], it quickly
became clear that DAQV's mission was too broad and that it should be more focussed. The most interesting feedback was
from users who helped refine the focus of the project to creating a robust and well-defined infrastructure rather than a multi-
tude of user interface features (as tool designers might do). Users made it clear that the most important contribution that the
project could make was to provide a technology that lets them *get the data™ (a high-level “print” capability) and use other
tools to “work with the data,” The goal then should be to develop interfaces for both (1) low-level extraction of data from the
program, and (2) the higher-level request/delivery of data to an external client (e.g., for visualization). To this end, users also
acknowledged the importance of HPF as the primary execution target for the DAQV project.

The result is the DAQYV tool as described in this paper. We present this background because we feel that the PTOOLS
project evaluation process was instrumental in forcing the design to seriously consider user’s needs. This gave DAQV its

2

CIS-TR-96-02 / February 1996

focus, but how DAQV is integrated with the HPF language is what makes it unique. This will be discussed at length. One final
comment is that DAQV is characteristic not of a tool necessarily, but of a framework or meta-tool. It provides the intended
capabilities in a compenent form that can be utilized in other tools that may want to do something with the data that DAQV
provides; a visualizalion tool is but one example. The DAQV framework truly intends to support higher-level semantics of the
data, allowing extensions both in tool functionality (via new connected tool modules) and data access capabilities,

3 Related Work

We view the DAQV work as a confluence of research ideas that have come from the fields of paralle] programming lan-
guages, parallel tools, scientific visualization, and distributed computing over the last five years. Indeed, in some sense, DAQV
is an amalgamation of these ideas in a form that is tempered by strong user requirements and is targeted to the HPF language
domain, Below, we review the related research from four perspectives of DAQYV: language-level parallel tools, distributed data
visualization, client-server tool models, and program interaction frameworks.

There has been a strong advocation in the last few years for parallel tools to be more integrated in parallel language sys-
tems and to support the language semantics in their operation. Because a language sysitem abstracts the parallel execution
model to hide low-level system operation, it is important for users of program analysis, debugging, and performance tools to
be able to work with program objects at the language level as they seek to understand program structure, behavior, and perfor-
mance. For instance, the research work integrating Pablo with the Fortran D compiler [1] and Tau with the pC++ compiler [2]
demonstraies the importance of providing a high-level semantic context. This is also clearly seen in the Prism [28]environment
for the Connection Machine systems which is, perhaps, the best example of the ease of use that can come from an integrated
tool system. DAQYV clearly follows in this spirit as it bases its entire functionality and operation on the data distribution seman-
tics of the HPF language model. But DAQV goes one step further and actually uses the language system itself for part of its
implementation. This was also a feature of Breezy, a forerunner of DAQV that provided high-level program interaction for the
pC++ system [3].

One of the key programming abstractions found in parallel language systems is data parallelism -- the parallel operation
on data that has been distributed across the processing nodes of a machine. Because distribution of parallel data is an important
factor in the performance behavior of a program, viewing the data and performance information in relation to the distribution
aids the user in tuning endeavors. The GDDT tool [17] provides a static depiction of how parallel array data gets allocated on
processors under different distribution methods. In the DAVis tool [14], distribution visualization is combined with dynamic
data visualization to understand the effects of decomposition on algorithm operation. Kimelman et al. show how a variety of
runtime information can be correlated to data distribution to better visualize the execution of HPF programs [15). Similarly,
DAQYV could provide distribution information to clients for augmenting views of data structure and operation. But there is
another use of distribution information, and that is to reconstruct the partitioned data into its logical shape. The IVD tool [13]
uses a data distribution specification provided by the user to reconstruct a distributed data array that has been saved in parti-
tioned form. In DAQV'’s case, this reconstruction is done, in essence, by the compiled HPF code using the implicit distribution
information passed to the array access function.

The increasing importance of portability and extendability in parallel tools has evoked designs following client/server
models. The Panorama debugger [20] demonstrates how the concept of interoperating modules can lead to increased function-
ality and generality in debugging systems. The p2d2 debugger [4] extends this concepl considerably in proposing a full client/
server debugging framework with comprehensive abstractions of operating system, language, library interfaces, and protocols
for distributed object interaction. DAQYV is clearly adopting the client/server approach for similar reasons, but in contrast to
these two particular tools, the functionality is at a higher level which actually affords the possibility of layering DAQV on top
of systems like Panorama and p2d2.

The final perspective is one of dynamic program interaction. There has been a growing interest in runtime visualization of
parallel program and computational steering. Implementing such support raises interesting systems implementation issues as
well as user issues. On the one hand, runtime visualization for a particular application domain might be able to utilize domain
knowledge to implement a syslem meeting certain performance constraints. The pV3 system [8] is a good example. However,
such specialized implementations may be limited when considering the general runtime visualization problem. DAQV, in
many respects, is a direct decendant of the Vista research [26] since it embodies many of the same design goals: client/server
operation, automated data access support, runtime operation, structured interaction. The improvement DAQYV offers is in lan-
guage-level implementation to increase portability. We believe that this will also improve DAQV's ability for computational
steering. Although Vista was extended for interactive steering in the VASE tool [7], the steering operations were still very
much dependent on the target implementation. Supporting steering at the application language level is a more robust, general
solution and is something we intend to investigate in DAQV.

CIS-TR-96-02 / February 1996
4 Design

DAQYV attempis to address the general problem of providing high-level access to parallel, distributed arrays for the pur-
pose of visualization and analysis. By this definition, DAQV is somewhat different from many of the systems and tools dis-
cussed in the previous section. DAQV attemplts is to “expose” the distributed data structures of a parallel program to external
tools -- but to do so in a way that does not require external tools to have any knowledge about data decompositions, symbol
tables, or the number of processors invelved. The goal, then, is to provide access at a meaningfu! and portable level, a level at
which the user is able to interpret program data and at which external tools need only know logical structures. To this end,
DAQYV has three primary design characteristics:

* A logical, global view of parallel, distributed data
* A simple,many-to-one client/server model
* Portability from HPF and compiler-independence

4.1 Global View of Data

In a language such as High Performance Fortran (HPF), the programmer views distributed arrays at a global level, which
means the programmer may perform operations on whole arrays and refer to array elements with respect to the entire array, as
opposed to some local piece on a particular processor. In other words, HPF supports a global name space [16]. A programmer
cannot completely disregard the issue of data distribution and expect the best performance. Distribution directives allow the
programmer to use their knowledge about the application and advise the compiler on the best way to distribute data. However,
concern for data distribution does not affect how the programmer references the data. HPF syntax insulates the user from ever
dealing with an array in a distributed manner. Thus, HPF supports a logical, global view of data. For this reason, DAQV sup-
ports a similar perspective when interacting with the user (through external tools). The implementation of this design require-
ment will be discussed in Section 6.

4.2 Client/Server Model

DAQV is a software infrastructure that enables runtime visvalization and analysis of distributed arrays. It is not a stand-
alone application or tool that performs these tasks itself; rather, it interoperates with either external tools built specifically for
use with DAQYV, or existing tools that have been relargeted or extended 1o interact with DAQV. The goal in this design is to
leverage existing visualization and analysis tools. The feedback we received from the PTOOLS user group during design dis-
cussions was clear: they did not need another fancy, self-contained visualization tool. They just wanted improved facilities for
guerying and extracting distributed arrays such that their existing tools could be easily used with this system. To this end, we
logically view the entire HPF program (not individual processes or processors) as a distributed array server to which these
exlernal client tools connect and then interact with the program and its data. At issue, though, is how to make HPF’s single-
program, multiple-data (SPMD) program execution [16] appear as a single, coherent distributed array server, and how to sim-
plify as much as possible the requirements placed on DAQYV clients. These issues will be discussed in more delail in Seclion 6.

4.3 Portability

Another goal in the design of DAQV was to minimize the degree to which DAQYV is dependent on a particular HPF com-
piler. By targeting HPF in the first place, machine portability is inherent to the extent that a given HPF compiler is. However,
portability across HPF compilers is also important. DAQV primarily accomplishes this in three ways: key components of
DAQV are implemented in HPF; compiler and runtime systems are utilized; compiler-dependent code is minimized and iso-
lated.

The first two items in the list above will be discussed in more detail in Section 6.3. Compiler-dependent code is limited to
two areas: the yield point procedural interface (see Section 6.1} and the array access argument-passing interface (sec Section
6.3). The amount of code that is compiler-specific is small, so isolating it is very easy. In summary, the design of DAQV has
been motivated by a range of factors, including input from the PTOOLS user group, the need to support semantic-based access
to distributed arrays, and a desire to maximize DAQV’s portability.

5 Functionality

This section will attempt to describe, in general terms, the functionality of DAQV. In many ways, DAQV targets two dif-
ferent groups of people: tool users and tool developers. It does this by supporting two different operational models, called push
and pull. These two models differ in the degree of interactivity available with the HPF program at runtime. After presenting
some common terminology used in discussing DAQYV, this section will describe these models and how they differ from one
another.

CIS-TR-96-02 / February 1996
5.1 Terminology
distributed array server: an executing HPF program that was compiled with the DAQV library.
data client: an external tool, connected to the distributed array server, that visualizes (or otherwise analyzes) data,

control client; an external tool (interface), connected to the distributed array server, that allows the user to (1) control the exe-
cution of the HPF program (under the control of the distributed array server), (2) associate data clients with specific
arrays, and (3) send array data values to data clients.

yield point: a point in a HPF program at which execution control is transferred to the control client via the distributed array
server.

registering an array: the process by which the distributed array server gels information about an array so values can be col-
lected and sent to a data client at a later time.

pushing an array: the act of sending data from the distributed array server to a data client when the decision to do so is made
from within the HPF program (the distributed array server) itself.

pulling an array: the act of sending data from the distributed array server to a data client when the decision to do so is made by
the control client (e.g., via the user).

5.2 The Push Model

The push model forms the basis of DAQV and constitutes the simplest and least intrusive way to access distributed arrays
from an external tool, or data client. The push model is implemented by inserting simple DAQV subroutine calls into the HPF
source code, These calls allow the programmer to (I} indicate the DAQV model (i.c., push or pull) to be used in the program,
(2) register distributed arrays with DAQYV, (3) set parameters for communicating with a data client, (4) make DAQV connect
with a data client, and (5) send the data values of a distributed array to the data client.

The functionality of the push model is the practical solution to the feedback from the PTOOLS user group. That is, with
minimal additions to the HPF source code, users can exiract the data values of distributed arrays and visualize them with other
tools, never having to worry about array reconstruction. The push model can be used to spot check the state of an array or to
create animations of data values over the iterations of a loop. Multiple arrays can be pushed out of the program to multiple data
clients. More details about how the push model is used will be presented in Section 7.

5.3 The Pull Model

The push model is adequate if the programmer knows exactly which arrays they wish to visualize and when they want to
view them. However, to support a more exploratory and flexible approach to array visualization, DAQV implements the pull
model which supports controlling program execution and selecting arrays for visualization through an external interface. An
example of such an interface that uses a debugger metaphor will be presented in Section 7.

The pull model allows the programmer to repeatedly run an HPF cede for a period of time and then extract data values
from the distributed arrays of interest. Two types of clients are used in the pull model. Data clients process data values from
arrays just as they did in the push model. In fact, any data client that works in the push model also works in the pull model
because the pull model is layered on top of the push model. In addition, though, the pull model requires a controf client to
direct program execution and to configure and initiate array transfers to data clients.

Thus, the primary conceptual difference between the push and pull models is where the decision to extract an array origi-
nates. The names “push” and “pull” are meant to reflect this difference in perspective. In the push model, the HPF program
“pushes” data out, while in the pull model, an external client reaches in and “pulls” data out. However, the implementation of
these very different conceptual models is built upon a common infrastructure supported by DAQV., This will be a large part of
the discussion in the next section.

6 Implementation

Our poal with DAQV is to facilitate simple and useful conceptual models for distribuled array collection and extraction,
and to implement those models a high-level, portable manner. The first of these goals (the design and functionality of the push
and pull models) has already been discussed in the previous sections. This section explains how we have met the implementa-
tion goals. It also discusses the software mechanisms we have developed for DAQYV in three areas: procedural interface, client/
server interface, and underlying mechanisms. As a reference for this section, Figure 1 shows the path of execution and control
exhibited by HPF programs using DAQV. The execution paths are presented with respect to the procedural interface supported
by DAQV.

CIS-TR-96-02 / February 1996

Push Model
HPF Program DAQV
HPF C
mode(PUSH) | [T+
ru
re is;ter() 3 . -.“)
ar— T
conﬁg_push() 5(_ |t) .b') q‘i
) ' 4 | [w
push'() 8 ' ?D :a'-:'
4 SH a
12 3
_) THE

(1-2) Set DAQV mode to PUSH.

(3-4) Register a distributed array that will be
pushed out of the program later.

(5) Set communication parameters for a registered
array.

(6) User starts up dala clients for each configurad
array; dala clients make socket conneclion.

(7) HPF program resumes after client connects.

(8) Push transfers control to DAQV to handle data
transfer.

(9) The appropriate HPF array access function is
invoked.

(10) Data is buffered and sent to the data client.

(11) The data client acknowledges receipt of all
data,

{12) All processes are informed of acknowledge-
ment.

(13) Control transfers back to HPF program.

Pull Model
HPF Program DAQV
HPF C
i aQ
mod.c(PULL) I #-33 2 g
: ’ - =
regisler() 4 . 0 o)
) "—r"'—l—DS =
: . ol Y8
enal?lc _pull) 6 : .)7 / /
: : ' 10
yield() STT— "D / / o
: t / B
B 12|®
T2
13 VE
Insei B
- B
Event [/
Sharing ?
= 10
12 | g——
11
Array -
A
ccess \13
(1) Set DAQV mode to PULL.

(2) Control client connects to DAQYV.

(3) HPF program resumes after control client
connects.

(4-5) Register a distributed array that will be
pulled out of the program later.

(6-7) Activate subsequent yield points.

(8) HPF program yields control to DAQV and
enters event processing loop.

(9} Control client is notified that HPF program
has yielded,

(10} Control client responds with events,

{11} Control client may request that a particular
array be pulled; array access function is
invoked; data is buffered and sent.

(12) The data client acknowledges receipt of all
data.

(13) The control client allows the HPF program
to continue; control transfers back to the
HPF program.

Figure 1. The flow of execution control in DAQV changes between the HPF program, the parts of DAQV
implemented in C, and the parts of DAQV implemented in HPFE. The diagrams and accompany-
ing text trace the execution flow through the push and pull models with respect to DAQV's proce-

dural interface

CIS-TR-96-02 / February 1996
6.1 Procedural Interface

DAQV'’s core requirement is to support interaction with HPF programs. In part, this interaction is similar to what might be
provided by a HPF debugger. One would want the ability to set breakpoints in the program where distributed array data can be
accessed in some manner. However, a HPF debugger may not provide an interface for distributed array query based on HPF
semantics, relying instead on low-level support for gathering array data on different processing nodes. This system depen-
dency defeats DAQV's goal of portability, making it too reliant on the target compiler or machine. Instead, we chose 1o imple-
ment key components of DAQV as HPF subroutines, allowing array access and other functions to leverage the HPF compiler
and runtime system automatically. In this respect, we view DAQV as a HPF language-level tool design and implementation.

The high-level operation of DAQV demands a different method for interacting with the HPF program than what a HPF
debugger can provide, Our solution is to implement DAQYV as a library that is linked with the HPF object file, creating a proce-
dural interface between the HPF program and the distributed array server component. A small set of subroutines, shown in
Figure 2, is there to handle initialization, registration of arrays, configuration of data clients, and data extraction. Figure 2
describes each routine with ils name, the arguments required, the DAQV model {push or pull) under which the routine is used,
and a brief description of the routine.

e [e = —— eSS s >4

Type Subrontine | Arguments Model DeBcﬂphon.
l-_—_-"—_ == --: e . aaa it i g i a4
| daqv_mode mode both Sets the DAQV operational model (push, pull, or
off) to be used by this program
Setup || daqv_register array_id®, name, both Gives DAQV a handle on a distributed array for
' symbol, type, rank, later access
dim1, dim2, ...

| daqv_config_push | array_id, port, size | push® | Establishes communication parameters between

i DAQY and a data client for a registered array
] .

Access | daqv_push array_id push Causes DAQV to send the values of a registered
array to the appropriate data client
——————————————~=
daqv_yield® pull Causes HPF program to yield execution control to
DAQV
Control dagv_pull_enable | port pull Aclivales yield points; control client will be noti-

fied at next yield point

| daqv_pull_disable pull Deactivates yield points; the control client will not
be notified at subsequent yield points

a. The argument array_id, an array ID number used by DAQYV, is modified by daqv_register().

b. In the pull model, data client configuration is intended to take place via the control client. However, calling
daqv_config_push{) in the pull model will still accomptlish the desired results,

¢. daqv_yield() creates a manual yield point; DAQV uses compiler-specific tracing routines, if available, for more robust
{c.g., line- or function-level) yield point instrumentation,

Figure 2. The procedural interface between HPF and DAQV is a small set of subroutines that the user, a
preprocessor, or a compiler inserts into the HPF source code.

Currently, the DAQV interface subroutines are inserted manually by the programmer. If the compiler supports it, DAQV
routines could be inserted automatically. For example, PGI's HPF compiler, pghpf, automatically inserts line- and/or function-
level tracing routines into the HPF source code [24). By linking in DAQYV in place of the default tracing routines, DAQYV uses
these as yield points.

DAQYV assumes that the HPF implementation exhlbns a SPMD execution model with several separate but identical pro-
cesses each operating on small pieces of larger arrays. ! Because DAQVisa Ilbmry, it must respect the execution semantics of
the HPF program. However, because DAQYV supports a client/server interface it is not possible for all HPF processes to behave
exactly the same when the distributed array server is executing -- in particular, one process must be identified as the DAQV

1. Some modifications to DAQV would be necessary for a multi-threaded HPF implementation.

7

CIS-TR-96-02 / February 1996

manager process and play the role of the communication server. In general, any operation dealing with communication or data
buffering is executed only by the DAQV manager. DAQV provides a process identification macro to determine who is the
manager.

6.1.1 Setting the Mode

The daqv_mode() call to DAQV establishes the DAQV operational model: push or pull. It also can be used to enable and
disable DAQYV operation. In the future, we will allow the user 1o provide the mode type as a program command line argument.

6.1.2 Registering Arrays

To access distributed arrays, DAQV could have been developed to work with a HPF runtime system. However, this
approach jeopardizes DAQV portability across HPF compilers because runtime systems are not necessarily compatible,
Instead, DAQV must implement array access in a standard, portable manner. We decided to use the HPF language itself for this
purpose. Most of DAQYV is written in C, but it uses HPF routines to access distributed data. Why? Because the HPF compiler
can be employed to perform all of the low-level runtime operations to get the data, probably more efficiently and correctly than
what we could develop. Furthermore, this soluticn is standard between HPF compilers.

The only problem limiting the portability of this technique is that each compiler has its own “calling context” for func-
tions and subroutines. A compiler is at liberty to modify arguments or change the number of arguments in a subroutine call
during compilation. The purpose of the daqv_register() routine is to let DAQV determine -- at runtime -- exactly what argu-
ments are required to invoke an appropriate HPF array access function al a later time. Daqv_register() reads the arguments
passed into it and stores them in an internal data structure. When the array values are to be extracted, DAQV reconstructs the
calling context (from the stored parameters) for the appropriate HPF array access function. If the registered argument values
for a distributed array become inconsistent for some reason during execution (e.g., perhaps from a redistribution of the array),
the array need only be re-registered.

The arguments to daqv_register() have several purposes. Array access functions take an array symbol (which, in HPF, is
likely to be a pointer to a structure that describes the array and its distribution) and the sizes of each dimension of the array as
arguments. Array type and rank are used by DAQV to determine which access function is appropriate for the array, and the
array name is a textual description for the array to be used by data and control clients. The array_id argument is modified by
daqv_register() to indicate the DAQYV array index for the registered aray. Subsequent DAQYV calls use this value to refer to the
registered array.

Registration is one of the few compiler-specific parts of DAQV. The only knowledge necessary is the compiler’s calling
convention, or more concretely, what transformations the compiler applies to function and subroutine arguments. However,
DAQY does not need to know what the transformations actually represent, so this information can easily be provided by a ven-
dor without threat of exposing proprietary information. DAQV simply figures out the appropriate argument values by reading
them off the argument list that comes into daqv_register(}, stores them in an internal structure, and then recreates therm when it
wants to invoke an HPF routine. While currently inserted manually, DAQYV registration calls could easily be handled by either
a preprocessor or the compiler itself.

6.1.3 Configuring Pushes

Distributed arrays are associated with an external data client to which data values are communicated when the armray is
pushed or pulled out of the program. The daqv_config_push() routine accomplishes this task, Each array ID comesponds to a
single data client configuration. (Note that a single array can be registered multiple times under different IDs to send the same
array to multiple data clients.) In the pull model, data client configuration takes place as part of the interactive control (event)
protocol. In the push model, the communication parameters must be established at compile time via davg_config_push(). In
either case, configuration determines a port number for the TCP socket connection to the client and the buffer size for carrying
out the communication. A socket connection from a data client to the DAQV manager HPF process is required before
daqv_config_push() transfers control back to the HPF program.

6.2 Client/Server Interface

Conceptually, the client/server interface supported by DAQYV exists between the entire HPF program (i.e., all SPMD pro-
cesses representing the HPF program) and external data and control clients. From an implementation viewpoint, however, only
the DAQV manager process operates as the communications server; the other HPF “worker” processes cooperate with the
manager to effect DAQV operations. DAQYV uses a bidirectional event protocol between the HPF server and the data clients, in
both the push and pull models. In the push model, data clients respond to array data transmissions with a confirmation that sig-
nals DAQYV to let the HPF code continue executing (i.e., the data client’s reception of the data is synchronous with program
execution). The pull model uses a more sophisticated event protocol to interact with the control client. Events that come into
DAQYV are received only by the manager HPF process; some mechanism for informing the other HPF processes about events is

8

CIS-TR-96-02 / February 1996

needed. Section 6.3 will discuss in detail how event sharing is accomplished between the manager and worker processes.
Below, we briefly describe the data and event protocols used by DAQV.

6.2.1 Clients Requirements

DAQV is an open framework that is intended to work with a variety of different data clients. Efforts have been made to
allow existing visualization and analysis tools to be easily ported for use with DAQV. A data client has very few requirements.
First, the current implementation uses only sockets for communication. A client must be able to respond over the socket with a
simple text-based confirmation event afier receiving data. Second, a client must be able to parse one of the formats supported
by a DAQV formatting library. Currently, we have tested two data clients, both ported with from other projects (see Section 7).
Work on several new clients is ongoing, ranging from clients that simply write data values to files or display them in a table, to
clients that are modules in a data fiow visualization system like IRIS Explorer.

Control clients, on the other hand, require somewhat more sophistication. They have the same requiremenis as the push
model, but in addition, they must handle control events. A C-library has been developed for supporting event processing, and
support for other languages (e.g., Tcl/Tk) will be forthcoming. Furthermore, a control client usuvally interacts with the user. As
part of our work, we have created command-line and graphical control client interfaces (see Section 7). More importantly,
though, we see the DAQV pull model and the specification of control events (see below) as establishing a framework for other
tool developers. In particular, it provides a simple interface that can be incorporaled into other control clients to gain high-level
access to distributed data in a flexible and well-defined manner.

6.2.2 Event Protocol

DAQV's event protocol consists of a small set of textual, list-based events that are primarily used to interact with control
clients; see Figure 3. The PROG_YIELD event is sent from the server to the control client whenever the HPF program encoun-
ters a daqv_yicld(). The event contains information about where the program is stopped (e.g., line number, function name) as
well as a list of registered arrays and their descriptions. After sending this event, the distributed array server waits for a reply,
which may be any of the client-to-server events listed in Figure 3. When the server receives a CONTINUE event, execution
control is transferred back to the HPF program. But before sending the CONTINUE event, the control client can issue several
other events: CONFIG_PULL instructs DAQV how to set the dala client communicalion parameters for a particular array;
PULL instructs DAGV to send data from a specified array to the appropriate data client; GET_REG_ARRAYS requests a list
of registered arrays from the server. The META_DATA event is sent to data clients prior to actual array values.

6.2.3 Data Protocol

The data protocol used by DAQV is made up of two components: a META_DATA event which is part of the event proto-
col and a raw data event which is in some “standard” data format (e.g., HDF or netCDF). The META_DATA event conlains
information about the array values that are soon to follow. In particular, it contains the ID of the array being sent, the textual
name of the array, its rank and dimensions, the data format that the raw values are in, and information about how the data val-
ues being sent relate to the whole array. The last two of these items require further explanation.

6.2.3.1 Formatting Libraries

DAQV abstracts away from a particular data format by calling data formatting functions that are selectable during client
configuration. Support for a particular format can be included in DAQV if a formatting library is created. Currently, DAQV
supports a straightforward text format that lists array values in row-major order. Work is under way for support of additional
formats,

6.2.3.2 Data Contexts

The DAQYV design makes it possible to extend the set of array access functions to provide additional operations such as
reductions, comparisons, or user-defined calculations before communicating the data to a client. Because of this, we felt that it
was necessary to include in the data protocol some means for conveying knowledge about how the data values a client will
receive relate to the original array. In some cases, sending out raw data is not enough. Even augmenting values with rank and
size information might not be sufficient, especially when complex operations (e.g., a row reduction) may reduce the rank and
size of an array before it is sent. Although such operations impose context on the data values that are sent out of DAQYV, that
context is inevitably lost to the client unless this information can be passed along. The META_DATA event is there for this
purpose. By including this event, DAQYV is enhancing the framework it hopes to provide for supporting high-level, semantic
access to distributed data.

CIS-TR-96-02 / February 1996

‘Event Sub-evenb Type Description.
PROG_YIELD server-to-client | Informs control client that program has yielded con-
trol
CONTINUE UNTIL_LINE | client-to-server | Instruct DAQV to let the HPF program continue to

the first yield point past a specified line

FOR_STEPS client-to-server | Instruct DAQV to let the HPF program to skip a
specified number of yield points

CONFIG_PULL client-to-server | Set dala client communication parameters for a
specified array

PULL ALL client-to-server | Instruct DAQV to send data values from a specified
array to the appropriate data client

ELEMENT client-to-server | Instruct DAQV to send a single data value from a

specified array to the appropriate data client

GET_REG_ARRAYS client-to-server | Request a list of registered arrays from DAQV

STATUS client-to-server | Send current status and request status from other

server-to-client

META_DATA client-to-server | Describe raw data values to follow

Figure 3. The DAQV event protocol extends functionality for program control, communication configura-
tion, and array extraction to clients.

6.3 Underlying Mechanisms

We have finally reached a point where a detailed discussion of two critical yet subtle components of DAQV is possible.
The majority of the high-level concepts, functionality, and even implementation of DAQYV that have been presented thus far,
rely on two “mechanisms” implemented in DAQV. These two mechanisms, array access and event sharing, play a critical role
in DAQV's operation. Furthermore, they are the components that are implemented in HPF 1o leverage its high-level language
system for array access. This represents an innovative approach to the problem and deserves explanation.

6.3.1 Array Access Functions

DAQV provides a library of array access functions in HPF that have been written for different array types and rank. The
current library is extendible to allow for new array structures and operations. Figure 4 show an example of an access function
for a two-dimensional array of integers.

SUBROUTINE DAQV_PUSH_2D_INT{A, M1, 6 M2)
INTEGER M1, M2, I, J
INTEGER A{1l:M1,1:M2)
CHPF$ INHERIT A
INTEGER ITMP (NUMBER_OF_PROCESSORS(})
CHPF$ DISTRIBUTE ITMP{CYCLIC)
DO I =1,M1
DO J = 1,M2
ITMP(1l) = A(I,J)
CALL DAQV_BUFFER_INT {ITMP)
END DO
END DO
END SUBROUTINE DAQV_PUSH_2D_TINT

Figure 4. An array access function written in HPF for two-dimensional arrays of integers.

10

CIS-TR-96-02 / February 1996

The decision to extract an array can come from two places: the HPF program in push mode (via daqv_push()) or the con-
trol client (via a PULL event). Both of these actions ultimately result in the same internal DAQV code being invoked. Cur-
rently, DAQV determines the appropriate access function to use based on array rank and element type, though we plan to
extend the control client event protocol to allow runtime selection of array access functions. It then creates the calling context
for the access routine and invokes it. Most access functions are general in that they handle any array of a given rank and type.
Its dimensions are passed in as arguments, and the subroutine inherits the distribution for the incoming array. Efficiencies can
be built into the access function. In the example above, the array ITMP is used to reduce a data broadcast to a point-lo-point
communication on cach iteration. This had significant performance improvements in accumulating the array data in the man-
ager for communication to the client.

6.3.2 Event Sharing and Implicit Synchronization

While DAQV presents the appearance of a unified distributed array server to external clients, the manager process is really
the one performing the communication. From a SPMD control point of view, this raises an interesting question: what are the
other worker processes doing during this time? An example should clarify this.

Consider the pull model, and suppose each HPF process has encountered a daqv_yield() call. Each process separately
transfers control to the DAQV portion of its executable. The manager process immediately notifies the control client that the
HPF program has yiclded to DAQV and then waits for a reply. Meanwhile, the other processes determine that they are indeed
workers and enter into an event sharing loop (to be explained). Eventually, the manager receives a request from the control cli-
ent, say, to pull an array. However, since all HPF processes must participate in the call to the array access function, the other
processes must be notified of this request and make the “same call” as the manager to the access function (as required by
SPMD execution semantics). This is done with a manager/worker control mechanism called event sharing.

Worker processes call the daqv_event_share() routine shown in Figure 5 to get the event information from the manager.
This allows them to update their DAQV event state to be consistent with the manager’s and to function the same as the man-
ager does based on the events it receives. As seen, DAQV implements this routine using the HPF language.

SUBROUTINE DAQV_EVENT_SHARE {CMD_SUM)

INTEGER CMD_SUM

INTEGER CMD{NUMBER_OF_PROCESSORS())
CHPF$ DISTRIBUTE CMD(CYCLIC)

DO I=1,NUMBER_OF_PROCESSORS ()

CMD(I) = CMD_SUM

END DO

CMD_SUM = SUM(CMD)

END SUBROUTINE DAQV_EVENT_ SHARE

Figure 5. A simple routine written in HPF for event sharing among HPF processes.

Each worker process enters this routine with the value of CMD_SUM set to zero (note that CMD_SUM is passed by ref-
erence); the manager process, however, calls the routine with an integer value (representing an event code, parameter, or other
information) that is to be shared with the other processes. The routine distributes one element of the CMD array to each pro-
cess (workers and manager) on each processor. Each process initializes its element of the array to the value with which it
entered the procedure. The global sum reduction is performed, and the resuit is assigned back to CMD_SUM (as a procedure
side-effect). Because only the manager's initial CMD_SUM value is non-zero, the new value of CMD_SUM -- in every pro-
cess — at the end of the reduction is this value, as we want. Now each process can return to the DAQV code to perform together
whatever operation is required based on the value of CMD_SUM.

This is how event sharing is implemented in DAQV to remain consistent with HPF execution semantics. It is probably not
the abvious solution when first faced with the problem of sharing information among several processes, but in the context of
DAQYV, it is both an elegant and portable solution.

7 Application: Laplace Heat Equation

To illustrate what the current implementation of DAQYV is capable of, we will consider a HPF program that implements a
finite difference method for solving the Laplace Heat Equation iteratively [9]). The code continues until a steady state is
reached to within some tolerance, DAQV is used in push mode to visualize the heat flow through the two-dimensional surface
at each iteration of the main loop.

The sequence of images in Figure 6 was generated by a data client called Dandy. Implemented in Tcl/Tk and easily ported
from the pC++ Tau Tools [2] to DAQV, the displays show the progression loward a steady state in the two-dimensional array
representing the surface to which a uniform heat source has been applied. These displays were created using DAQV's push

11

CIS-TR-96-02 / February 1996

model. Under this scheme, when the program is executed and reaches the call to daqv_config_pushy(), the Dandy client con-
nects to the HPF program. At this point, execution resumes and the animation of the data values begins. At each loop iteration,
the new array values are sent to Dandy and displayed. The Dandy interface (not shown in Figure 6) allows the user to pause/
resume the animation and redraw the display. Dandy automatically determines the range of the data values and maps them
onto a fixed colormap. However, if the viewer wishes to fix the color range across several iterations, the automatic scaling fea-
ture can be disabled, allowing minimum and maximum values to be entered into Dandy. This feature can also be used to iden-
tify outliers or to identify values beyond a certain threshold. For example, Figure 6(b) shows values above the specified range
as white. As the algorithm nears convergence (Figure 6(c)), these values move into the data range.

The same application can also be used with DAQV's pull model. Figure 7 shows several windows from a DAQYV session.
A prototype control client interface (lower, in back) supports several DAQV features, A source code browser allows the viewer
to control program execution by simply double-clicking on the line to which the code should run next. Alternately, the user
may use the controls in the upper left portion of the control client to specify a number of yield points (steps) to skip before
reporting back. In the upper right portion of the control client (partially obscured} is a list of arrays in the program that have
been registered with DAQV. In this case, Surface, a 32x32 real-valued array, has been registered twice so that it may be viewed
with two different data clients. The button immediately to the left of each registered array entry allows the user to select a data
client for visualizing that array. The pull configuration dialog (lower right) presents a list of preconfigured tools (specifiable in
a resource file) in a list box, but the user may also provide their own parameters explicitly. Once an array is configured, the Pull
button next to its entry in the registered arrays list is enabled. This button causes an event to be sent that makes DAQV send the
requested array to the appropriate data client. The first registration, Surfacel, has been mapped to the Dandy client in the upper
left part of the screen. Similarly, Surface2 is being sent to a more complex, three-dimensional display built in the Viz visualiza-
tion environment builder [10].

TEQTENENG
et ptadgasl-tadebed fod §a] Budblci tojoded—{-1
] L d-1<0-]

E n
CTARRIDBEUDNEOEEARNZISAEE

B2] e DaRc
Ba 4 == Pl e
LREs] 3

ElEIsR L

e b §ERate fodcbrjd putrie) Fodwiifetuged i i 3

(@ (b} ©

Figure 6. Convergence of the finite method for solving the Laplace Heat Equation can be seen by visualiz-
ing the two-dimensional array representing the heated surface.

ERSDRREOED

8 Future Work

In its current form, DAQV should be regarded as a reference implementation that demonstrates functionality, specifies
components and their system requirements, and defines APIs and transport protocols, In fact, being the primary derivative of a
PTOOLS project, the reference implementation serves as a prototype for vendors to evaluate and potentially adopt; in this
regard, PTOOLS requires the reference implementation to function on two platforms. The DAQV PTOOLS project finishes in
June, By that time, we hope to have tested DAQV on several parallel machine platforms supported by PGI’s HPF compiler,
including the SGI Power Challenge, the Intel Paragon, and a network of workstations. In addition, we hope to have DAQV
working with other HPF compilers; currently, we are discussing this possibility with Applied Parallel Research (APR), DEC,
and IBM. Included with the reference implementation will be a few data clients (e.g., the simple Tel/Tk 2D data viewer shown
above and a module to use with Iris Explorer) and a sample control client.

If the PTOOLS reference platform were to be adopted by a HPF compiler vendor, there are some possible opportunities
for DAQYV improvement. In particular, DAQV lends itself nicely to compiler/preprocessor support for instrumentation. DAQVY
already utilizes to some extent automatic instrumentation in the PGI compiler, but one can easily imagine more sophisticated
front-end support for selecting arrays for access (automatically generating registration, push, and yield code}, enabling and
disabling DAQV operalion (generaling mode, enable, and disable code), and providing information concerning when arrays
are in and out of scope. Another improvement that an HPF compiler vendor could provide is in the generation, possibly auto-

12

CIS-TR-96-02 / February 1996

{ ;%L@@mﬁl o

Available Tools:

surface {2:maxX$ i
M 8tart visualization client actomatically.

i1f (MOD(count,1§f
print *,countfl

end if

count = count +[§f

VVVVVVVVVVYY

A <N
| D
o

Figure7. A DAQV session with a control client, a simple two-dimensional display, and a more sophisti-
cated three-dimensional representation of the 2D array from the Laplace Heat Equation code.

matically, of access functions for distributed arrays. Coding these by hand is not always easy nor does it always lead Lo effi-
cient execution. With their sophisticated program analysis infrastructure, HPF compilers could perhaps provide more support
to the programmer. Finally, we have not discussed DAQV’s ability to provide information about the distribution of arrays, con-
centrating more on the support for array data access instead. However, the HPF standard does provide the ability to get this
information through intrinsic procedures. Our reason for delaying on support for distribution information has (o do with the
efforts being undertaken by the Paralle] Compiler and Runtime Consortium to provide a distributed data descriptor specifica-
tion for HPF [6). Because this specification is intended to be multi-lingual, we hope that the distribution information support
could be abstracted to be a general capability of DAQYV and not a special capability for HPF. Clearly, adherence to the specifi-
cation would need to involve the compiler manufacturer.

Beyond the PTOOLS project deliverables and HPF compiler improvements, there are several interesting research direc-
tions for the DAQV work. One of the most important short-term goals is to evaluate the benefit of DAQV in a significant scien-
tific application. At the University of Oregon, we are developing an HPF-version of a seismic tomography application for

13

CIS-TR-96-02 / February 1996

modeling mid-ocean ridges. Our hope is to eventually build a Problem Specific Programming Environment (PSPE) for this
application to allow a high Ievel of model interactivity so that one can see, for example, a visualization of the ray path calcula-
tions against a three-dimensional image of seismic velocity to better understand the sea floor geology. To provide this visual-
ization at runtime, a framework such as DAQY is required. Basic questions concerning how easily DAQV conforms to the
PSPE requirements and how well DAQV performs will be studied,

The DAQYV framework does allow distributed data to be altered as well as accessed. The ability to extend the event proto-
col and include appropriate access functions makes this capability possible; we intend to do s0. As a result, DAQV could be
applied to application scenarios where changing runtime array data or program control variables is beneficial (e.g., for compu-
tational steering in the seismic tomography application). We believe that the benefit of the high-level, semantic-based query
provided by DAQYV will allow sophisticated client tools to be developed for interaction with the runtime data, In particular, we
are currently working on extending the client-side infrastructure so as to facilitate the binding of distributed array and program
variables, as provided by DAQYV, with interactive 3D visualizations of the array data and program control.

Finally, we believe that the DAQV model (and parts of its implementation perhaps) can be applied in other parallel lan-
guage systems where distributed data is involved. For instance, in the pC+- project, we have implemented early versions of the
DAQYV design [3]. We now intend to retarget the DAQYV reference code to the HPC++ [11] sysiem, More generally, we see no
intellectual difficulties with porting DAQV to SPMD environments where some runtime means (language or library) for
accessing distributed data exists that can be merged with the model. We are currently investigating this in the context of SPMD
parallel array libraries, such as P++, built using PVM or MPI.

9 Acknowledgments

The authors would like to thank the members of the Parallel Tools Consortium for their feedback and assistance in the
design of DAQV. The refining of DAQV's focus and purpose would not have been possible without the help from David Pres-
berg and Craig Lee during Consortium meetings and project breakout sessions. Kurt Windisch, Harold Hersey, and Bernd
Mohr are to thank for their work on the data and control client tools shown in this paper. Finally, the assistance and insight pro-
vided by Portland Group, Inc. was instrumental in creating DAQV.

10 References

[1] V. Adve, et al., An Integrated Compilation and Performance Analysis Environment for Data-Parallel Programs, Super-
computing ‘95, December 1995.

[2] D. Brown, S. Hackstadt, A. Malony, and B, Mohr, Program Analysis Environments for Parallel Language Systems: The
TAU Environment, Proc, of the Workshop on Environments and Tools For Parallel Scientific Computing, Townsend, TN,
May 1994, pp. 162-171.

[3] D. Brown, A. Malony, B. Mohr, Language Based Parallel Program Interaction: The Breezy Approach, Proc. of Interna-
tional High Performance Computing Conference (HiPC'95), New Delhi, India, December 1995.

{4] D. Cheng and R. Hood, A Portable Debugger for Parallel and Distributed Programs, Proc. of IEEE Supercomputing ‘94,
Washington, D.C., November 1994,

[5] C. Cook and C. Pancake, What Users Need in Parallel Tool Suppori: Survey Results and Analysis, Proceedings of the
Scalable High Performance Computing Conference, IEEE Computer Society Press, 1994, pp. 40-47.

[6] 1. Cowie and T. Haupt, Common Runtime Support for HPF: High Performance Fortran Distributed Data Descriptor Spec-
ification, Parallel Compiler Runtime Consortium, April 1995, available at URL:http://aldebaran.npac.syr.edu:1955/.

[7]1 R. Haber, et al.., A Distributed Environment for Runtime Visualization and Application Steering in Computational
Mechanics, University of Illinois at Urbana-Champaigne, CSRD Technical Report 1235, June 1992,

[8] R. Haimes, pV3: A Distributed System for Large-Scale Unsteady CFD Visualization, American Institute of Aeronautics
and Astronautics Paper 94-0321, Reno NV, January 1994,

[9] P. B. Hansen, Studies in Computational Science: Parallel Programming Paradigms. Prentice Hall, Inc., Englewood Cliffs,
NI, 1995.

[10] H. Hersey and A. Malony, Viz, information available at URL:http://www.cs.uoregon.edu/~hersey/viz/, February 1996.

[111HPC++ Working Group, HPC++ Whitepapers and Draft Working Documents, Supercomputing ‘95 Workshop, available
at URL:http://www.extreme.indiana.edw/hpc++/hpc++wp/, February 1996,

14

CIS-TR-96-02 / February 1996

[12] High Performance Fortran Forum, High Performance Fortran Language Specification, Version 1.0, Technical Report
CRPC-TR92225, Center for Research on Paralle] Computation, Rice University, Houston, TX, May 1993.

[13] A, Karp and M. Hao, Ad Hoc Visualization of Distributed Arrays, Hewlett-Packard Technical Report HPL-93-72, Sepltem-
ber 1993.

[14] A. Kempkes, Visualization of Multidimensional Distributed Arrays, Excerpts from Master’s Thesis, Research Center
Juelich, Germany, January 1996.

[15]D. Kimelman, P. Mittal, E. Schonberg, P. Sweeney, K. Wang, D. Zemik, Visualizing the Execution of High Performance
Fortran (HPF) Programs, Proceedings of the 9th International Parallel Processing Symposium (IPPS), IEEE Compuier
Society Press, April 1995, pp. 750-757.

[16]C. Koelbel, D. Loveman, R, Schreiber, G. Steele Jr., and M. Zosel, The High Performance Fortran Handbook, MIT Press,
Cambridge, MA, 1994,

[171R. Koppler, S. Grabner, and J. Volkert, Visualization of Distributed Data Structures for HPF-like Languages, to appear in
Scientific Programming, special issue on implementations of High Performance Fortran, 1995.

[18] A. Malony, J. May, A. Karp, D. Presberg, and V. Schuster, Distributed Array Query and Visualization, Parallel Tools Con-
sortium Working Document, January 1995.

{191J. May and F. Berman, Creating Views for Debugging Parallel Programs, Proceedings of the Scalable High Performance
Computing Conference, Knoxville, TN, May 1994, pp. 830-844,

[20]]. May and F. Berman, Panorama: A Portable, Extensible Parallel Debugger, Proceedings of the ACM/ONR Workshop on
Parallel and Distributed Debugging, May 1993, pp. 96-106.

[21] Parallel Tools (PTOOLS) Consortium, information available online at URL:http://www.llnl.gov/ptools/, February 1996.

[22] Parallel Tools Consortium (PTOOLS) DAQV Working Group, PTOOLS Meeting Summary: Distributed Array Query and
Visualization (DAQV) Project, available online at URL:http:/fwww.cs.uoregon.edw/~-hacks/research/daqv/, May 1995.

[23] The Portland Group, Inc., PGHPF User's Guide, Wilsonville, OR, 1995.
[24] The Portland Group, Inc., PGHPF Profiler User's Guide, Wilsonville, OR, 1995,

[25} A. Tuchman, D. Jablenowski, G. Cybenko, A System for Remote Data Visualization, University of Ilinois at Urbana-
Champaigne, CSRD Technical Report 1067, June 1991.

[26] A. Tuchman, D. Jablonowski, G. Cybenko, Runtime Visualization of Program Data, Proceedings of IEEE Visualization
‘91, 1991, pp. 255-261.

[27]T. Wagner and R. Bergeron, A Model and a System for Data-Parallel Program Visualization, Proceedings of IEEE Visual-
ization ‘95, Atlanta, GA, October 1995, pp. 224-231.

[28] Thinking Machines Corp., Prism, available at URL:http://www.think.com/tmhtml/ProdServ/Products/prism.html, Febru-
ary 1996.

