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Abstract

We present a novel proof of the soundness and completeness of axiomatizations of call-by-
value control operators with respect to the continuation semantics. Our proof is much
simpler than the two previously known proofs and our resulting axioms extend previous
systems to allow reasoning about all monadic effects.
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1 Control Operators

For the convenience of programmers, programming languages such as Scheme and SML
extend a pure call-by-value language with a variety of control operators, e.g., A (abort} and
callec (2, 12]. The semantics of these control operators can be specified in two main ways:
using axioms that extend the A,-calculus {6, 25], or by translation to continuation-passing
style (CPS). Connecting these two specifications is important for at least two reasons:

1. Compiling: A relationship between the two semantics reveals the role of the CPS
transformation in compilers, and clarifies the connection between direct and CPS
compilers [10, 21, 22].

2. Logic: Given the Curry-Howard isomorphism, the relationship between the two se-
mantic specifications yields a relationship between classical and intuitionistic proofs
(cf. [11, 17, 18)).

Two recent papers developed proof techniques to establish the soundness and complete-
ness of the control axioms with respect to the continuation semantics. The first proof [21]
relies on a rather complicated CPS translation and its inverse, and the second [13] on
non-elementary categorical notions. In this note, we present a much simpler proof.

In addition to simplifying the proof, we extend the previous results by axiomatizing
the semantics of a control delimiter or prompt # (3, 4, 5, 7, 23]. The importance of this
extension is due to the fact that the combination of A, calicc, and # can express all other
computational effects, e.g., state, exceptions, etc [§].

The remainder of this note is organized as follows. The next section introduces a simple
call-by-value language with control operators and its semantics. Section 3 discusses the
main insight that led to the new proof, which is presented in detail in the next section.
Section 5 concludes.

2 A Simple Call-by-Value Language

We consider a prototypical call-by-value language A, with control operators. The set of
terms includes variables drawn from a set Vars, procedures, applications, the two control
operators A and callce, and the control delimiter #:

M = VI (M M)|(AM)| (callecc z.M) (A-Terms)
Vo= z|(QzM)|(# M) (Values)

Informally, A permits the programmer to ignore the rest of a computation and return the
value of a subexpression as the result of the entire program. The construct captures, among
other computational patterns, the common idiom of an “error exit.” The operator callcc
provides the programmer with a procedural abstraction of the rest of the computation. The
prompt # delimits the control actions that occur during the evaluation of its subexpression.
Unlike the standard variants our delimiter is “lazy” as its subexpression is not evaluated
until needed.!

YThe laziness of # is due to the use of full By in the CPS language.



The language has the following context-sensitive properties. In both the expressions
{Az.M) and (callcc x.M) the variable = is bound in M. We distinguish a subset K of Vars:
variables in K (ranged over by the meta-variables k, £/, ...) can only be bound by callcc and
cannot be bound by A. A variable that is not bound is free; the set of free variables in a
term M is FV(M). Like Barendregt [1:ch 2,3], we identify terms modulo bound variables
and we assume that free and bound variables do not interfere in definitions or theorems.
The term M|[z/N] is the result of the capture-free substitution of all free occurrences of z
in M by N. A contezt C is a term with a “hole,” [ ], in the place of one subterm. The
operation of filling the context C' with a term M yields the term C[A], possibly capturing
some free variables of M in the process. An evaluation contert E is a special kind of context
defined as follows:

Exz=[]1|(E M)|(V E)|(AE)

2.1 CPS Semantics

We specify the semantics of A; in two phases. First we translate A.-terms using the standard
CPS transformation [9, 16, 24]. The resulting language £, has no occurrences of A, callee,
or # and its semantics is axiomatized by the rules of the call-by-name A-calculus [19].

Definition 2.1 {Call-by-Value CPS Transformation) Let m,n be variables in Vars
that do not occur in the argument to P:

P:Ae = L,
Ple] = M.ko
Plra.M] = M.k(Az.P[M])
Pl# M] = k(Lo (PIM] (z.Iz))
PIMN] = M P[M] (Am.P[N] (An.((m n) k)))
PIAM] = Me.P[M] (s.I,z)
Plealicc z.M] = Ak.((Az.P[M]k) (Ay. Ak ky))

It is straightforward to check that the CPS transformation maps source terms to CPS terms
in L.

Definition 2.2 (CPS Terms £,, Axioms X,) Let K'Vars be a set of variables disjoint
from the set Vars. The mela-variables k,&',... ranges over the new variables:

T = (ARP)Y| (W W) (Lp-Terms)
Pu= (KW)|(TK)| (L W) {Answers)
K == k| (Az.P) (Continuations)
W o= z|(Ae.T)| (Iy P) (Values)



The semantics of the CPS language is aziomatized by the following instances of the call-by-
name 3 and 1 azioms:

(Aa.T) W) = Tla/W] )
((Az.P) W) = Plz/W] (82)
(Ak.P) K) = P[k/K] (8s)
(AeTE) =T k¢ FV(T) (m)
(Az.Kz) = K z § FV(K) (m2)
(Az.Wz) = W z g FV(W) (1)
(I, (I P) = P (idp)
(I (p W) = W (idw)

The definition reveals a few properties of CPS terms. First every CPS term T expects a
continuation argument k. Continuations K map values to answers. A value W can be
injected into the set of answers using the (identity) procedure I, and an answer can be
injected into the set of values using the (identity) procedure 7.

Our goal is to find A.-axioms that prove the same identities as the axioms X,. More
precisely, we want to find a set of axioms V such that for A.-terms M and N:

VEM =N ifandonlyif X,FP[M]=P[N].

2.2 Direct Semantics

Ior the sake of presentation, we immediately introduce the axioms V, check their soundness,
and then prove their completeness in the next two sections. In practice, the axioms are
discovered during the proof of completeness.

Definition 2.3 (The Axioms V)
(Az.M) V) = M[z/V] (Bu)
(Az.Vz) = V z g FV(V) (1)
((Az.E[e]) M) = E[M] z & FV(E) (Ba)

Elcallcc x. M) = callce y.E{M[z/(Ma.(y Ela]))]] v,ag FV(E,M) (Crp)

callce z.zM = callcc z.M (Ceurr)
callcecz. M = M z & FV(M) (Celim)
El(k M) = (k M) ke (Ca)
Ej(A M) = (A M) {Abort)
(#V) =V (#v)

(# (A M) = (# M) (#.4)

(A (# M) = (A M) (# elim)



The axioms have the following intuitive explanation. The first three axioms are equiva-
lent to Moggi’s computational A-calculus [14]. The axiom Cpp characterizes the capture of
continuations via callcc [6]. The axiom Ceyrr shows that the current continuation is always
implicitly applied. The axiom C ., is a garbage-collection rule: continuations captured
but not used can be collected. The axioms C 4 and Abort show that continuations and A
abort their context upon invocation. The last three axioms show that a prompt disappears
when its subexpression reduces to a value, and that control actions are indeed delimited
by #.

The axioms for callcc and A are well-known [6, 25], and have been shown sound and
complete with respect to the CPS semantics using two independent proofs [13, 21].2 The
axioms for # are less known; the axiom # .j;,,, appears to be original.

Proposition 2.1 (Soundness) Let M,N € A;, VF M = N implies X, + P[M] =
PIN].-

3 Propagation of Continuations

The salient aspect of CPS terms is that they explicitly propagate the continuation from
one computation to the next. In fact, traditional CPS terms are hardwired to propagate
the continuation in one specific way via procedure calls. Thus, not only is the CPS term
T = (Ak.P) parameterized over a continuation &, but it also expects this continuation to
be passed as an argument, i.e., via a procedure call (T K).

The main insight of this note is that we could replace the two terms (Ak.P) and (T K)
that are responsible for the propagation of the continuation via procedure calls by the “black
boxes” (get k.P) and (send K T'). The details of the implementation of the black boxes are
irrelevant as long as their external behavior satisfies the same equations that are satisfied
by the CPS implementation:

(send K (get k.P)) = P[k/K] (83)
(get k(send £ T)) = T k¢ FV(T) (m)

To formalize this idea, we define opaque CPS terms that hide the details of Aow the
continuation propagates and the specific injections between values and answers.

Definition 3.1 (Opaque CPS Transformation) Let m,n be variables in Vars that do

?In our previous analysis [20], we also included the following three axioms:

E[((Az-M) N)] = ((A=.E[M]) N) z € FV(E) (Brige)
callec y.((Az. M) N} = {(Az.callcc y. M) N) y € FV(N) (Crai)
(# (callce z. M)} = (# M[z/(ra.(A a))]) (#catice)

In a private message, Filinski pointed out that the first axiom is provable from (f.) and (fa). Using the
new proof technique in this paper, we have discovered that the second and third identities are also provable
from the other axioms.



not occur in the argument to C:

C:A, = L,
Clz] = get k.kz
ClAz.M] = get k.k(Xz.C[M])
Cl# M] = get k.k(injw (send (Az.injp z) C[M]))
C[MN] = get k.(send (Am.(send (An.(send k (m n))) C[N])) C[M])
C[AM] = get k.send (Az.injp =) C[M]
Clcallecc z.M] = get k.((Az.send & C[M]) (Ay.get &'.ky))

The set of opaque terms and their semantics are exactly like for regular CPS terms
except that we no longer know about (nor care) how the continuation is passed and how
values and answers are injected into each other.

Definition 3.2 (Opaque CPS Terms £,, Axioms X,) We use four black bozes get,
send, injp, and injw. Let KVars be a sel of variables disjoint from the set Vars. The
meta-variables k, k', ... ranges over the new variables:

T == (get k.P)| (W W) (Lo-Terms)
P ou= (K W) | (send K T) | (injp W) {(Answers)
K = k| (Az.P) {Continuations)
W u= z | (Az.T) | (injw P) (Values)

The azioms X, consist of (B1), (B2), (n2), (73) in Definition 2.2 and the following opaque
versions of the remaining azioms:

(send K (get k.P)) = P[k/K] (B3)
(get k(send £ T)) = T kg FV(T) (m)
(injp (injw P)) = P (idp)
(injw (injp W)) = W (idw)

4 Continuation-Grabbing Style

As far as the external behavior of CPS terms is concerned, it is possible to implement the
black boxes as follows:
def

(get £.P) € (callee £.P) send K T) ¥ (K T)
de def

(inip W) L (4 w) Gnjw P) %€ (4 P)

Intuitively the idea is simply a change of perspective in the direction of the flow of the
continuation. Instead of passively waiting for the continuation as an argument, each pro-
cedure instead grabs the continuation using callce. This implementation of the black boxes
yields a transformation similar to CPS that we call the continuation-grabbing style (CGS)
transformation.



Definition 4.1 (Call-by-Value CGS Transformation) Let m,n be variables in Vars
that do not occur in the argument 1o G :

G:A, = L,
Glz] = -callce k.kz
GlAz. M) = callec k(k (Az.G[M]))
Gl# M] = callee bk (# ((Az.(A 2)) G[M])
GIMNY = callec k.((Am.((An.(k (m n))) GIN])) GIMT])
GlA M] = callec k.((Mz.(A 7)) G[M])

Glealleec z.M] callee k.((Az.(k GIMY])) (Ay.callce &' .ky))

The remarkable property of the CGS transformation is that although it is a specific
implementation of the opaque CPS transformation, it is the identity function on source
terms.

Proposition 4.1 Let M be a source term in A, then V+ M = G[M].

The grammar for CGS terms is naturally obtained from the grammar for opaque CPS
terms.

Definition 4.2 (CGS Terms £,;) Let KVars be a set of variables disjoint from the set

Vars. The meta-variables k, k', ... ranges over the new variables:
T = (callecc k.P) | (W W) (L4-Terms)
Pu= (KW)|(KT)|(AW) (Answers)
K u= k| (Az.P) (Continuations)
W = z | (Az.T)| (# P) (Values)

It remains to show that each of the CGS version of the axioms X, (which we call X,)
is provable using the axioms V.

Definition 4.3 (Equations X,;) The equations X, consist of (f1), (B2), (m), (m3) in Def-
inition 2.2 and:

(callce K (callcc k.P)) = P[k/K] (83)
(callec k. (kT = T k¢ FV(T) (m)

(AF# P) =P (idp)
(FAW)) =W (idw)

Although the equations X; do not hold between arbitrary source terms, they hold be-
tween CGS terms.

Lemma 4.2 For every equation P=Q in X,, V- P=(Q.

Proof. The equations (51), (#2), (12) and (73) are instances of 8, and 5, and hence are
provable. The equation (7;) is provable using Ceurr and C . The equation (idw) is



provable using # 4 and #,. Tor the remaining two equations (83) and (idp), we calculate
as follows:

(K (callce k.P)) = callee ¥ (K P[k/(Az.k' (K z))]) by Cppy
= callec k' (K Plk/(Az.(K z))]) by Lemma 4.3
= callec K'.(K P[k/K]) by 1y
= callcc ¥'.P[k{K) by Lemma 4.3
= Plk/K] by Colim
Similarly:
(A# P)) = (AP) by # elim
= P by Lemma 4.3

Lemma 4.3 For any CGS term in the syntactic category P, V + E[P] = P.
Proof. The proof is by induction on the structure of the term P and proceeds by cases:
o P=(K W),or P=(K T). Then, we have two cases:

— K =k, then the result holds by the axiom C 4.
— K = (Az.P'"), then P = ((Az.P’) X) where X is either W or T and:

E[P] = E[((Az.P") X)]

= ((Az.E[P) X) by ﬁliﬂ
= ((Az.P) X) by the inductive hypothesis
=P

¢ P = (A W), then the result hold by the axiom Abort.

By pasting together the previous results we get our desired proof of completeness.
Theorem 4.4 Let M and N be source terms in A.:
Xp F P[M] =P[N] implies VFM=N

Proof. Assume X, + P[M] = P[N], then the opaque CPS axioms prove the equation
between opaque CPS terms, i.e., X, F C[M] = C[N]. It follows that X, F G[M] = G[N].
The result follows by Lemma 4.2 and Proposition 4.1.

5 Other Monadic Effects

With the axiomatization of the control operators callce, A, and #, we can reason about
any monadic effect whose definition can be expressed in a purely functional language, e.g.,
exceptions, state, lists, parsers, continuations (!), etc.

Given a monad with unit operation 5 and extension operation bind, computational
effects can be expressed in two ways:



1. write programs in “effect-passing style” [26], or

2. extend the source language with the operations reflect and reify to gain access to the
monad (8, 15].

The disadvantage of the first approach is that it requires a global transformation which ob-
scures the original program. Its advantage is that the semantics of the translated programs
is axiomatized by the simple axioms 87 of the A-calculus. The disadvantage of the second
approach is that there is no known axiomatization of the operations reflect and reify for
every monad.

Recently Filinski [8] shows how to represent the operations reflect and reify for every
monad as follows:

(reflect M) %8 callce k.(A (bind M (Ma.dt (k a)))
. d
(resfy M) €' 4 (3 a1)
In other words, given our axioms for callee, A, and #, we can reason about the pair of
operations reflect and reify of any monad. Moreover, our reasoning system is as powerful
as the one obtained by applying the global program transformation and using G7 on the
translated terms.
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