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ABSTRACT

This paper describes the design and implementation of a high-level visualization programming system
called Viz. Viz was created out of a need to support rapid visualization prototyping in an environment that
could be extended by abstractions in the application problem domain. Viz provides this in a programming
environment built on a high-level, interactive language (Scheme) that embeds a 3D graphics library (Open
Inventor), and that utilizes a data reactive model of visualization operation to capture mechanisms that have
been found to be important in visualization design {e.g., constraints, controlled data flow, dynamic analysis,
animation). The strength of Viz is in its ability to create non-trivial visualizations rapidly and to construct
libraries of 3D graphics functionality easily. Although our original focus was on parallel program and perfor-
mance data visualization, Viz applies beyond these areas. We show several examples that highlight Viz func-
tionality and the visualization design process it supports.

1. Introduction

Visualization, as a process for creating meaningful visual representations of data, increases
continually in sophistication with respect to techniques and methodologies as well as with respect
to the diversity of the problem domains of its application. This has as much to do with what many
believe to be the fundamental role of visualization in problem solving (the ability to improve data
understanding) as it does with a greater insight into the underlying mechanisms of visualization
operation (perception, cognition, data models, etc.). In recent years, however, the requirements
placed on visualization technology--as a result of greater application needs and pressure to incor-
porate new visualization results--are outpacing the capabilities of existing tools. Indeed, the grand
challenge problems facing visualization software stated over four years ago [22] remain problems
today; if anything, they have increased in complexity. Not only are these challenges broad and
interdisciplinary by nature, but proposed solutions are difficult to measure objectively [5,18].
Often the development of visualization technology must occur at the confluence of leading-edge
research in several fields (e.g., computer graphics, virtnal reality, human-computer interaction,
databases, expert systems) without a clear determinant that the tool produced can be effectively
applied to meet users’ application needs. What, then, are the primary factors that should drive
visualization software design?

Without over-generalizing, there are three dominant concerns with present visualization tech-
nology:

1. the need to better integrate analysis and visualization through more “knowledgeable”

data mapping;

2. the need to better apply user preferences, human perception, and problem requirements

in visualization design, development, and use; and

3. the need to have a visualization system evolve/extend to include new techniques, data

models, and application requirements.



Each of these concerns fundamentally involves issues of improving visualization meaning (i.e.,
semantics) and, consequently, places the burden on visnalization technology to somehow support
semantics in its design. Because visualization problems vary, the priority and type of semantic
support in tools must vary as well; a truly generic tool is not possible. This would suggest an
approach to visualization software design that attempts to find effective, flexible mechanisms for
including semantics into a visualization system. Similarly, each of the above mentioned concerns
relates to aspects of the visualization process: data mapping, user/domain representation, and sys-
tem operation. It is still premature to describe all the components of a visualization system and
how they interoperate. Rather, visualization software based on “reference models” [2] or “abstract
architectures” [22] may better allow process issues to be studied and supported.

We believe that the concerns stated above can best be addressed through a programming sys-
tem approach to building visualization software. In this paper, we propose a visualization pro-
gramming system called Viz. Viz was created out of a need to support rapid visualization
prototyping in an environment that could be extended by creating programming abstractions tied
to the application problem domain; our original application domain was parailel program and per-
formance data visualization [7,8,9,10]. Viz provides this support in a programming environment
built on an interpreted, high-level language with object extensions; it uses Scheme [12] aug-
mented with a variation of the Common Lisp Object System [20]; Viz also provides an embedded
3D graphics library (Open Inventor [23]) for high-end graphics creation. In this environment, the
developer can implement domain-specific analysis and visualization abstractions through proce-
dural abstraction and object inheritance. A visualization process model called data reactivity is
used to build mechanisms that have proved to be important in visualization design and operation
(e.g., constraints, controlled data flow, dynamic analysis, animation). The strength of Viz is in its
ability to create nontrivial visualizations rapidly and to construct libraries of 3D graphics func-
tionality easily. However, the ability to extend the Viz system with problem-specific programming
abstractions, data models, and system interfaces allows it to be applied to areas beyond parallel
program and performance visualization.

In this paper, we describe the Viz programming system. We begin in Section 2 with a discus-
sion of the underlying data reactive model on which Viz is based. In Section 3, we present the Viz
design and implementation. Section 4 provides several examples of Viz use that point out specific
Viz features. Section 5 describes related work. Section 6 offers concluding remarks and thoughts
on future directions.

2. Data Reactivity

2.1. Model

As a programming system, Viz must embody constructs and operational aspects that are funda-
mental to visualization creation and use. There are three important components of a visualization
system that we believe must be supported in Viz: operations that describe mappings between data
and graphics [2], constructs to specify and control dynamic behaviors (both synchronous and
asynchronous) [21], and mechanisms to create high-level visualization objects that contain data
mapping abstractions and dynamic behavior; these components are similar to those found in But-
ler’s abstract visualization machine architecture [22]. Viz founds these components on an under-
lying reference model called data reactivity. Data reactivity serves as a model for how
visualization objects are encapsulated (data and graphics) and interconnected (behavioral relation-
ships). Data reactivity also supports an execution model based on functional evaluation. Data



reactive objects holding evaluation functions are connected by data and control links to form a
directed, acyclic execution graph with primitive input and output nodes at the fringes. With this
foundational model, we believe the Viz system provides a robust programming environment for
visualization development. Below, we describe the data reactive model in more detail.

Figure 1 is a diagram of a simple data reactive graph that defines a cube object for a bar graph
visualization; the cube is translated in the y-direction by half its height, placing its base at y=0.
There is one input node (an accessor) called height; this accessor maintains the height of the
cube. Initially the height is 5 units. The output of the height node is connected to the inputs of
two other nodes: to a primitive output node (a field) holding the height value for the cube object;
and to the input of an interior node (an engine) that divides its input by 2. The output of the iatter
is connected to the y input of an engine that produces a transformation vector, the output of which
is connected to a field in a transformation object. Finally, the transformation and the cube are
grouped together in a scene graph.
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Figure 1. ‘The data reactive network for a bar in a bar graph.

In the most typical mode of computation, the evaluation function in an engine is executed only
on demand, when the value of a field which depends on the engine’s output is demanded and any
of the engine’s input values have changed. If the value of the field is not demanded, no functions
are executed regardless of whether input values have changed. The concrete upshot of this is that
if a particular graphical object does not need to be rendered because it is outside the viewing frus-
tum, then the object’s fields will not be accessed by the renderer, and engines producing values for
the fields will not be executed. Evaluation models will be covered in more detail below.

The graph in Figure 1 was created by the following Viz program:

{define height (accessor-node 5.0))
{define translation-engine
{compose-vec3f :x 0.0
:y (eval-engine :input height
cexpr (lambda (y) (/ y 2.0)))
:z 0.0))
(define my-scene
(group {transformation :translation translation-engine)
(cube :height height} )}
(Program 1)



The procedure compose-vec3f creates an engine which produces a vec3 £, a vector of
length 3 suitable for use in a transformation operation, and eval-engine creates a simple one-
input, one-output engine that computes the given function. The group procedure creates a scene
graph; in the above program the arguments to group are a transformation node and a cube node.
The data and control links are created implicitly.

2.2. Components

The components of the data reactive model are input nodes, output nodes, internal nodes, and
connections.

Input nodes are called accessors. They are containers for values; any Scheme value may be
stored in an accessor. The value stored in an accessor can be changed with the set-value! pro-
cedure and retrieved with the get-value procedure.

Output nodes are called fields; these are objects which will produce a value when asked to do
s0. Fields are used by Open Inventor to store attributes of graphical objects (see Section 3). A
chain of engines can therefore terminate in a field “inside” a graphical object, and as explained
below, this feature makes it possible to effect changes to a scene by storing new values in acces-
SOrS.

The internal nodes are collectively called engines. An engine has one or more inputs, one out-
put {(which can be connected to several nodes}, internal state, and an evaluation function which
maps the inputs and the state to the output and a new state.

The data reactive model can have a number of different evaluation models; as a matter of
implementation, Viz defines two: lazy and eager. The overall structures of the models are similar,
so we discuss lazy evaluation first and then point out how eager evaluation differs.

In the lazy model, the values requested from fields force recomputation as necessary based on
changes to accessors. When a new value is stored in an accessor, a control signal is sent to every
node to which the accessor’s output is connected. The control signal causes the receiver to be
aware of the change in the accessor. The signal is then propagated to the dependents of the
receiver, and so on, until all transitive dependents of the accessor node have been notified. No
recomputation takes place at this time.! If a field has received notification of any changes to
accessors on which its value depends at the time the value is requested, a new value will be
requested from the engine or accessor from which the field receives its value. If that source node
is an engine, the engine will recompute its value after first retrieving new input values from its
source nodes, causing a cascading recomputation of all engines between the field and all acces-
sors on which the field’s value depends. The function in an engine is only recomputed once if its
inputs have changed, even if its value is demanded from multiple dependents.

Consider the network shown in Figure 1 and Program 1. If we change the height accessor by
storing a new value in it

{set-value! height 7.0}
we get the situation in Figure 2(a); the value stored in the accessor has changed and each node
depending on the value stored has received a change notification message (denoted by the aster-
isk), but the values stored in the engines and the fields in the network have not changed. When the
scene is about to be rendered, both the height field in the cube object and the translate field

1. Note that a change to a mutable value stored in an accessor is not detected; the change must be to the
accessor itself.



in the transformation object are flagged as out-of-date, and recomputation of the engine output
values therefore has to take place. The resulting network is shown in Figure 2(b).

In the eager evaluation model, an engine’s value is recomputed as a side effect of the engine
receiving a change notification message from one of its inputs, before the change notification
message is sent to the engine’s dependents. If an engine has multiple inputs, it will receive change
messages from its source nodes independently, and it may perform a recomputation before all its
inputs have been recomputed, thus using some old values. This is in contrast to a topological eval-
uation order where all inputs are recomputed before the engine receives any change notifications.

It is possible to mix the lazy and eager evaluation models in a graph; this may not strike one as
very useful but it makes it possible to connect larger data reactive components built from graphs
which internally use either evaluation mechanism.
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Figure 2. Lazy value propagation in the data reactive network: (a) after set-value! but
before recomputation; (b) after recomputation.

2.3. Programming

The lazy evaluation model of data reactivity is similar to lazy evaluation as used in some func-
tional programming languages [1,16] and has many of the same advantages: values are computed
only when needed, long or unbounded data streams are easily accommodated, and filtering and
pipelining are natural parts of the model. By using the eager evaluation model throughout, data
reactive systems can emulate some data-flow systems.

A data reactive engine has state and can, for example, contain dynamic analysis functions that
trigger the engine’s output when thresholds are reached or unexpected or anomalous data are seen.
In addition, asynchronous input sources are also accommodated in the data reactive model. An
example is a network connections which delivers data at irregular intervals; by having the network
deliver new values into an accessor node, the data reactive network can propagate the values to
the consumer easily, transforming it along the way if necessary.

3. Viz

Viz is a programmable framework that supports both the visualization design process and the
development of visualization tools. To address the concerns identified in Section 1, Viz provides
an environment in which application semantics can be incorporated into the visualization design



and creation process. The data reactivity model, described in the previous section, is key in
accomplishing this.

Data reactivity manifests itself in Viz in two orthogonal ways: as a programming model, and as
an implementation model for Viz itself. When programming in Viz, data reactivity acts as an
abstraction of the data and computations that are used to create visualizations. With respect to the
implementation of Viz, data reactivity essentially forms the interface between a high-level, inter-
active programming language and a 3D graphics library, the two major components of the Viz
framework. The details of each aspect of data reactivity will be discussed separately. This section
will focus on how Viz is implemented. Section 4 will demonstrate how data reactivity is used in
building visualizations.

Figure 3 depicts the layered architecture of the components that make up Viz. The bottom three
layers in the figure show the interlocking connections between the primary Viz components: Open
Inventor and Scheme. The data reactivity layer connecting them represents the tight binding (i.e.,
interface) between these components. To accomplish this binding, Scheme and Open Inventor
have both been extended in certain ways. Collectively, these extensions effect the data reactive
nature of Viz. The following subsections will first discuss the components and then explain how
their extensions combine to create data reactivity.

Application
Utility

Re-asti.vity'q [> Viz
Open Inventor

e

Figure 3. Viz implements data reactivity through extensions to language and graphics compo-
nents. A utility layer supports the creation of user applications.

3.1. Open Inventor

Beneath the data reactivity layer is Open Inventor [23], a 3D graphics library that provides sup-
port for object oriented graphics creation and manipulation via a C++ class hierarchy. Open
Inventor models a 3D scene in a structure called a scene graph {23]. A scene graph is a tree of
nodes representing graphical objects, graphical properties, materials, transformations, cameras,
lights, and so on. Of particular interest are the parameters of nodes, called fields. In the bar graph
example of Section 2, a cube is realized as a graphical object node in an Open Inventor scene
graph. One field of the cube node is its height. Similarly, a sphere node has a radius field. Open



Inventor uses engines to animate parts of a scene or to constrain one part of a scene to another;
engines are also described in Section 2.

3.2. Scheme

On the upper side of the data reactivity layer is Scheme [12], a high-level, dynamically typed,
interactive language. Scheme’s memory management capabilities makes it particularly appropri-
ate for managing the dynamic data structures--such as scene graphs--used in visualization.
Scheme also provides a powerful abstraction mechanism with its lexical closures. Since Open
Inventor has an object-oriented interface, we found it desirable--with respect to both code reuse
and expressive power--to extend that interface into Scheme by using an object-oriented interface
on the Scheme side. We have used the STk Scheme system and its object system STklos [6]; STk-
los is based on the Commeon Lisp Object System (CLOS) [20].

3.3. The Component Extensions - Data Reactivity

Implementing data reactivity required us to extend Scheme and Open Inventor in certain ways.
The binding between Open Inventor and Scheme is achieved by shadowing Open Inventor classes
and objects as STklos classes and objects on the Scheme side. Every Open Inventor object is shad-
owed by a corresponding STklos object, and changes made to an STklos object effects appropri-
ate changes in the corresponding Open Inventor object. However, STklos objects maintain no
state. Rather, an STklos object that mirrors an Open Inventor object invokes member functions in
the latter to get or set the instance variables of the Open Inventor object. Low-level routines to
access the Open Inventor library were implemented in C-++ and are called from Scheme. Based on
its ability to shadow Open Inventor objects in Scheme, Viz maintains a shadow of the Open Inven-
tor scene graph.

On the Open Inventor side, a new type of node, called an accessor node, was derived from the
Open Inventor class SoNode. An accessor node has a single field that can contain a Scheme value
and that can be connected to any other Open Inventor field. Accessor nodes, like engines, reside
outside the scene graph. Since accessor nodes contain Scheme values which may not be directly
compatible with Open Inventor, Viz inserts type converters, special engines that convert between
Scheme and Open Inventor data types, along connections from accessor nodes to other nodes. For
example, a Scheme vector of length 3 can be converted to an Open Inventor vec3 £. Accessor
nodes have a shadow representation on the Scheme side.

Another key extension to Open Inventor is a new type of engine called an eval-engine. Eval-
engines are Open Inventor engines whose inputs are Scheme values and whose evaluation func-
tions are Scheme procedures. The procedure in an eval-engine can be defined and redefined at
run-time, giving the Viz programmer considerable flexibility. Eval-engines are also shadowed by
STklos objects.

These ideas--shadowing, accessor nodes, eval-engines--come together in two structures: a data
reactive network of accessor nodes and engines, and a scene graph of the Open Inventor objects
described earlier. The two structures are connected wherever the output of an accessor node or an
engine connects to a field of an Open Inventor object, as illustrated in Figure 1.

3.4. Utility Layer

The utility layer, written in Scheme, provides a set of basic objects and procedures that sim-
plify common tasks such as the composition and animation of graphical objects. For example,
users can specify the starting and ending positions for an object, and animation support in the util-



ity layer will automatically compute the appropriate interpelation for a smooth transition between
the two (see Section 4.3). The utility layer is intended to be the starting point for building user
visualizations and application-specific visualization environments.

4. Examples

In this section we give several examples that demonstrate certain features of Viz and how one
might program using Viz.

4.1. Bar Graph

A bar graph is a collection of individual bars aligned along an axis, where the height of each
bar is proportional to some data value. In Section 2, we introduced the beginnings of a bar graph
visualization by showing how an individual bar is constructed and its height value changed to
effect a change in the graphics. A bar graph can be created in Viz as the composition of individual
bars using the make-bar-graph function defined below. (The make-bar function referenced
in Program 2 is similar to the code in Program 1.)

{define (make-bar-graph data-vect spacing)
(let* {((heights (vector-map accessor-node data-vect})
{bar-graph (vector-map {(lambda (nocde)
{group
{(transformation :translation spacing)
{make-bar node)))
heights) )}
{values
(separator bar-graph)
heights)))

{Program 2)

This function first wraps the incoming data elements (data-vect) in separate accessor
nodes, all of which are stored in the heights vector. It then makes and aligns a single graphical
bar for each accessor in heights, creating a vector of scene graphs (bar-graph). Finally, a
single scene graph is created by the call to separator, and that scene graph and the vector of
accessor nodes are both returned. The accessor nodes for the heights of the bars can now be
changed, and the graphical representation of the bar graph will change accordingly. The top figure
in Image | shows a bar graph, while the bottorn figure shows another level of composition, where
bar graphs are composed into a 2D grid of bars.

4.2, Surface Plot

Viz can be used to extend the set of graphical objects provided by the Open Inventor 3D graph-
ics library without having to extend Open Inventor itself by coding new C++ classes. In contrast
to how the bar graph visualization is created, we developed a new “primitive” graphic object, a
surface plot, in Viz to present mesh data. Open Inventor does not have a primitive surface plot, but
instead has a generic graphic facility for creating triangle strip sets {i.e., collections of polygons).
The Viz surface plot object creates a characteristic indexed triangle strip set for displaying sur-
faces that can be accessed through a single accessor node containing all of the mesh values. This
accessor node can be used to control the surface plot fields in a manner similar to basic Open
Inventor graphic objects. Image 2 shows three surface plot visualizations that come from a High



Performance Fortran program simulating a vibrating membrane. The main point here is to realize
that Viz can accommodate different granularities of accessors and can be used to create new
graphic objects.

4.3. Rubix Cube

A visualization of the Rubix Cube was conceived at an early stage in Viz’'s development as a
motivating example for providing control over parts of a visunalization that depends on changing
state in a dynamic simulation. Representing the Rubix Cube data state and creating the graphics
for that state are trivial problems. The data consists of a vector of 27 pairs, each representing a
cube and the direction it is facing. The graphics are simply 27 small cubes, each with 6 differently
colored faces, arranged in a 3x3x3 cube. The difficulty in visualizing a Rubix Cube is in the
dynamic mapping for repositioning and animating the individual cubes. When a move is per-
formed, the cubes are repositioned to their next state through an animation. This occurs in two
phases. In the first phase, eval-engines are used to determine the next position and orientation of
each cube, as reflected in the accessor structures. The second phase is to create the animation as a
coordinated movement of the nine cubes affected by the move. This is accomplished with an
engine that creates a sequence of intermediate cube positions by changing the angle of rotation
about a common center point and axis for the selected cube set. Image 3 shows the cube in an
intermediate position as the left face is rotated. Implementing this behavior by programming
Open Inventor directly would be significantly more difficult.

4.4. VizMan

Our last example is used to show how Viz can be used to build up visualization abstractions.
We chose to create a visualization of a running man, VizMan, built from articulated joints. A joint
function was developed which generated an engine for each human joint based on parameters for
its field of motion. The joints were then connected together in a body abstraction (see the code
segment in Program 3) by creating a motion hierarchy in a scene graph. The body could then be
set in motion by connecting all of the engine inputs to a single clock value. As the clock increases,
the head, arms, legs, torso, ankles, and body move. VizMan in stride is shown in Image 4.

{define {(body)

{separator

; vertical oscillation

(transform :translation

{compose-vec3f :x 0 :y (vertical-oscillation) :z 0))

; lean forward a bit

{({transform :rotation {(compose-rotation :axis #(1 0 0) :angle 0.2))
; upper torso

head neck (shoulder-girdle} chest

; right and left arm

{separator (rshoulder) ruparm (relbow) rlowarm (rwrist) rhand)
{separator (lshoulder) luparm (lelbow) llowarm {lwrist) lhand)

; lower torsoc

(pelvic-girdle) pelvis

; right and left leg

(separator (rhip)} rthigh (rknee) rshin ({(rankle} rfoot)

(separator (lhip) lthigh (lknee) lshin {(lankle) lfoot)))

(Program 3)



5. Related Work

Viz can be regarded as a confluence of ideas that have arisen in the context of research work in
high-level, interactive languages, object-oriented graphics, graphical animation systems, and visu-
alization programming and application environments. Below, we relate Viz to work from these
areas.

Perhaps the most directly related works from the standpoint of graphics programming are
SGI's Open Inventor [23] and Russell’s Ivy [19]). Viz clearly benefits from Open Inventor’s
object-oriented graphics model and functionality: primarily, scene graphs, basic graphic objects
and primitives, and engines. Viz serves to extend these features into a Scheme environment to
facilitate graphics programming. But Viz also attempts to address certain operational shortcom-
ings of Open Inventor. A good example is animation. Engines are used in Open Inventor to imple-
ment animation by changing the state of property and shape nodes, but programming engines and
chaining them together can be complicated. Viz makes engine creation easy by allowing engine
functionality to be specified in Scheme (via eval-engines), by connecting engine outputs to fields
in Scheme (via data reactivity), and then by generating the Open Inventor engines that support the
specified functionality. As a result, quite complex engine-based animations, such as VizMan, can
be more easily programmed than in Open Inventor. The other clear contrast of Viz to Open Inven-
tor is Viz's interactive environment. It has been remarked that visualization development requires
many design iterations and that interactive systems can better support rapid prototyping [14]. This
is certainly true in the case of Viz.

Ivy is a Scheme interface to Open Inventor developed mainly to simplify Open Inventor pro-
gramming. In this respect, Ivy provides some of the same benefits as Viz: an interactive environ-
ment for incremental construction of Open Inventor programs; the use of Scheme procedures in
engines; and mechanisms for using Scheme procedures as Open Inventor callbacks. However,
many of these mechanisms are at fairly low semantic levels. In contrast to Viz, Ivy provides little
in the way of *“value added” components. It does not provide engines that perform type conver-
sion, nor does it have the facility for accessor nodes. Finally, there is no notion of a visualization
model, such as data reactivity, built into Ivy.

Several research efforts have provided interactive facilities for 3D graphics programming and
visualization, particularly for creating animations. One of these is Alice [4] which is a 3D graphi-
cal library embedded into the Python language. Another is Oblig-3D [14]. Alice has many func-
tional similarities to Oblig-3D, which we will discuss below. The Actor/Scriptor Animation
System {(ASAS) [17] was one of the earliest to use an interactive language approach, in this case,
based on the Actor paradigm and Lisp. Other examples of systems with interactive languages are
SuperGlue [11] and IRIS Explorer [15].

Much of the philosophy, goals, and functionality embodied in Viz are also found in the work
by Najork and Brown on Oblig-3D [14]. Oblig-3D is a language system for rapidly prototyping
3D animations, mainly algorithm animations. It combines a 3D graphics animation library,
Anim3D [13], with the object-oriented, interpreted language Obliq [3], and with modules to con-
struct 3D animations. Obliq is a powerful language that allows Oblig-3D to use one-way con-
straints as a mechanism for connecting graphical parameters, and to provide for hierarchical
grouping of graphical objects. Obliq-3D supports asynchronous and synchronous behaviors; Viz
captures these as engines. Viz provides perhaps more control over propagation than Oblig-3D, but
Oblig-3D’s animation support is more robust. Oblig-3D will also more naturally support distrib-
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uted visualization, as Obliq is a distributed language. Viz will have to implement interfaces to dis-
tributed systems to provide this capability.

6. Conclusion and Future Work

Viz is a visualization programming environment that supports rapid visualization prototyping.
It utilizes a Scheme language system with object extensions to realize interactive execution and
provides sophisticated 3D graphics through an API to Open Inventor. Fundamentally, Viz is based
on a data reactive model of visualization operation; data reactivity captures important concepts in
support of data mapping, reactive data and control behaviors, dynamic graphical updating, and
interaction. The data reactive model is implemented as low-level extensions of Open Inventor
functionality and high-level programming abstractions that facilitate a programmer’s ability to
rapidly develop visualization prototypes. Viz has been shown to significantly reduce the amount
of code needed to create Open Inventor graphics {(often by a factor of two or greater). Viz can be
easily extended with APIs to other libraries or toolkits; for instance, we intend to build a Viz mod-
ule for inclusion in IRIS Explorer.

Presently, Viz is a research system that has been used to construct demonstrations that test its
capabilities. Clearly, our main concern in the near term is to deploy Viz in application scenarios
where specific visualizations are needed. For instance, we have been collaborating with geologists
on a seismic tomography project that uses Viz to create visualizations like those in Image 5. These
displays show seafloor earth models and the tomographic imaging ray paths used to refine these
models. We are also actively defining new abstraction layers to support, for instance, interaction
and animation abstractions. In the longer term, we will be extending Viz to operate in distributed
environments.
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