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Abstract

A number of compilers exploit the following strategy: translate a term to continuation-
passing style (CPS) and optimize the resulting term using a sequence of reductions.
Recent work suggests that an alternative strategy is superior: optimize directly in an
extended source calculus. We suggest that the appropriate relation between the source
and target calculi may be captured by a special case of a Galess conneclion known as a
reflection. Previous work has focused on the weaker notion of an eguational correspon-
dence, which is based on equality rather than reduction. We use as our source language
Moggi’s computational lambda calculus A., which is an extension of Plotkin’s call-by-
value calculus A,. We show that Moggi’s monad translation, Plotkin’s CPS translation,
and Girard’s translation to linear logic can all be regarded as reflections from this source
language, and we put forward A; as a model of call-by-value computation that improves
on Ay.

1 Introduction

Like the wheel, continuation-passing style, or CPS§, is such an excellent idea that it was
reinvented many times (Reynolds 1993). It was formalized by Plotkin (1975), and utilized
in compilers for higher-order call-by-value languages written by Steele (1978), Kranz et al.
(1986), Appel (1992), and others.

The front end for all these compilers is similar: translate a term to CPS and optimize.
In symbols,

M*—sspP, (1)

where M is a term of the source language S, P is a term of the target language T (terms
in CPS), * : § — T is the compiling transform (the CPS translation), and —» denotes
reduction in T'.

Recently a number of researchers have suggested an alternative way to build a com-
piler: rather than translate the term to CPS and optimize, perform the optimizations in an
extended source calculus. In symbols,

M —gP*, (2)

where # : T — S is the decompiling transform, and —+g denotes reduction in the (ex-
tended) source calculus.



If equation (1) holds exactly when equation (2) holds, we say that maps * and # form
a Galois connection from S to T'. Galois connections guarantee that for each optimization
in the target language there is some corresponding optimization in the source language.
We might also reasonably require that compiling is the inverse of decompiling, so P#" is
identical to P. A Galois connection satisfying this additional constraint is called a reflection
in § of T. Whenever a reflection exists, there must be a subset of S that is isomorphic to
all of 1'; we call this subset the kernel.

Our claim is that a reflection describes a situation of interest to compiler writers: it
relates the intermediate languages of direct and CPS compilers and enables direct compilers
to work with a representation that is isomorphic to CPS terms. Previous work, such as Sabry
and Felleisen (1993) and Hatcliff and Danvy (1994), has focused on the weaker notion of
equational correspondence, which is based on equality rather than reduction.

We show that three widely-studied translations may be regarded as reflections. Our
source calculus is the computational lambda calculus, A., of Moggi (1988), which extends
the call-by-value calculus A, of Plotkin (1975). Our first translation is into the monadic
meta-language, Any, also of Moggi (1988). Our second translation is the CPS translation,
also of Plotkin (1975). The monad translation may be regarded as a generalization of the
CPS translation, and indeed the latter translation factors through the former. Qur third
translation is into a linear calculus studied by Wadler (1993) and Maraist et al. (1995).

One might hope that the variant CPS translation of Fischer (1972) is also a reflection.
An earlier version of this paper (Sabry and Wadler 1996) claimed this was the case, but
gave no proof. We should have been more cautious. Here we show that it is impossible for
the Fischer CPS translation to be a reflection.

The existence of reflections in A; of the monadic calculus, the linear calculus, and the
CPS calculus, all of which are well-established models of computations, leads us to put
forward A. as a model of call-by-value computation that improves on A,.

The computational lambda calculus A.. Moggi (1988) introduced monads as a general
notion of computation. The monadic meta-language A,,; was designed to express any se-
mantics based on monads, and the computation lambda calculus A, was designed as an
extension of the call-by-value lambda calculus that is sound and complete for any monadic
semantics. So, by design, two terms are equal in A, if and only if their translations are
equal in Ap;.

What is surprising is that little attention was paid to reductions. The original technical
report (Moggi 1988) specified theories of reduction and of equality for A., but only the
equality theory of A. appears in the conference paper (Moggi 1989), and A. rates barely a
line in the journal version (Moggi 1991). None of these contains a reduction theory for Ay,
but this was considered by Hatcliff and Danvy (1994). However, ours is the first work we
know of to relate the reductions of A, and A

Moggi (1988) presents A. as an untyped calculus of reductions, and presents A as a
typed calculus of equalities. Here we uniformly use untyped calculi of reductions. Every-
thing works equally well for typed calculi of reductions, such as those considered by Hatcliff
and Danvy (1994), since our translations preserve types.

Related work. As noted above, a number of researchers have considered ways to reflect
the benefits of CPS within an extended source calculus. Sabry and Felleisen (1993) proposed
such a calculus, and noted that the kernel arising by normalization with regard to the so-
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Figure 1: Summary of results

called A reductions is closely related to the target of the CPS translation. Some practical
ramifications of this were explored by Flanagan, Sabry, Duba, and Felleisen (1993).

Lawall and Danvy (1993) make much of relating forward and inverse translations via two
Galois connections and an isomorphism. Their Galois connections are based on artificial
orders, and as they note their isomorphism does not preserve these orders. Qur choice of
order solves these problems and is more natural: we use the usual reduction relation on
terms.

Administrative reductions play a central role in many CPS translations, from Plotkin’s
work onwards. Recent work explains administrative reductions of the target in terms of
reductions in the source (Sabry and Felleisen 1993, Flanagan et al. 1993, Hatcliff and
Danvy 1994). Each of our translations will incorporate administrative reductions, and
each of our reflections will have a kernel that can be explained as source terms reduced to
administrative normal form.

This article is a revised and extended version of a conference paper with the same title
(Sabry and Wadler 1996). The material on the linear calculus and on the Fischer CPS
translation is new.

Outline. The remainder of this paper is structured as follows. Section 2 summarizes
our results. Section 3 introduces Galois connections and reflections, and explains why they
embody a property every compiler writer seeks. Section 4 reviews the traditional translation
of A, into Ay and reviews why it fails to be a reflection. Section 5 shows that there is a
reflection between A, and a variant Ay of Apy. Section 6 factors this reflection through an
intermediate calculus A.. corresponding to the isomorphic image of A, in A.. Section 7
extends the results to a translation into linear logic, and Section 8 deals with translations
into CPS. Section 9 observes that the variant CPS translation due to Fischer cannot be a
reflection. Section 10 describes related work. Section 11 concludes.

2 Summary

If you like to see a summary in advance, read this section now; if you like to see a summary
on completion, save it until the end. Depending on your preference, you may thereby read
this section once, twice, or never.

Figure 1 illustrates a road-map of the terrain we cover. First we consider the traditional



monad translation from A, into A,;. This translation is not a reflection; but expanding A,
into A, shrinking A into Ay, and fine-tuning the translation, finally yields a reflection
in A, of Apre. The existence of a reflection guarantees that there is a kernel A.. of A, that
is isomorphic to Ap. Calculus A, has seven reduction rules, and A.. arises by normalizing
with respect to two of these rules, (let.1) and (let.2).

Second we consider the translation from A, to a linear calculus Ap,. The translation
has essentially the same properties as the previous monad translation with one exception.
The calculus Ajp. is not a restriction of Aj, but includes additional (7)-like reductions
which were absent from the original linear calculus. As before making the translation into
a reflection requires expanding A, into A, and guarantees that Aj,. is isomorphic to the
kernel computational calculus A...

Finally we consider the traditional CPS translation from A, back into A,. Again, this
translation is not a reflection; but expanding (source) A, into A., shrinking (target) A,
into A.ps, and fine-tuning the translation yields a reflection in A, of A.y,. Again, the
existence of a reflection guarantees that there is a kernel Ac.. of A; that is isomorphic to
Acps. Calculus Ac.. arises by normalizing A.. with regard to one further reduction rule,
(assoc). Furthermore, the CPS translation factors through both the monad translation and
the linear translation; and so there is also a kernel Ajpjw. 0f At and a kernel Afnew 0 Afins
that is also isomorphic to Ap,.

3 Galois Connections and Reflections

Let’s review the standard results about Galois connections and reflections (Mac Lane 1971,
Davey and Priestley 1990). The standard results need to be adapted slightly, as reduction
is a preorder (it is reflexive and transitive) but not a partial order (it is not anti-symmetric).

We write — for a single-step of reduction; — for the reflexive and transitive closure
of reduction; = for the reflexive, transitive, and symmetric closure of reduction; and = for
syntactic identity up to renaming.

Assume a source calculus § with reduction relation —s s, a target calculus T with
reduction relation —» 7. Reductions are directed in such a way that they naturally cor-
respond to evaluation steps or optimizations. Let the maps * : § - T and ¢ : T — §
correspond to compiling and decompiling, respectively. Finally, let M, N range over terms
of §, and P,Q range over terms of T',

Definition 3.1 Maps # and # form a Galois connection from § to T whenever
M—»5P* if and only if M*—» 7 P.
There is an alternative characterization of a Galois connection.

Proposition 3.1 Maps + and # form a Galois connection from S to T if and only if the
following four conditions hold.

()  M—wgM™*,

(i) P#**ewnpP,

(i) M—sgN implies M*—»N*,
(iv) P—7Q implies P* —: sQ¥.
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Figure 2: Motivating reflections

If the same four conditions hold with —=g and —7 replaced by =g and =7, then one
has an equational correspondence, as defined by Sabry and Felleisen (1993). Hence, every
Galois connection implies an equational correspondence, though not conversely.

Our motivation for studying reflections is diagrammed in Figure 2. Consider a source
term M compiling to a target term M™*, and consider an optimization M*—sp P in the
target. A Galois connection guarantees the existence of a corresponding optimization
M —»gP* in the source. Recompiling this yields a reduction M*—»7P#* in the tar-
get. If this optimisation is to be at least as good as the original optimisation, we require
that P—»pP**, But by Proposition 3.1, for any Galois connection we have P#*—supP.

We therefore reasonably insist on having not just a Galois connection, but a reflection.

Definition 3.2 Maps * and # form a reflection in § of T if they form a Galois connection.
and P = P™*,

For a reflection, # is necessarily injective.
Galois connections and reflections compose.

Proposition 3.2 Let ) and #, form a Galois connection (reflection) from § to T, and
%9 and #q form a Galois connection (reflection) from T to U. Then +1%9 and #q#, form a
Galois connection (reflection) from S to U.

Every reflection factors into an inclusion and an order isomorphism. Write §*# for the
subset of S containing just those terms of the form M*#, and write Id : §*# — § for the
trivial inclusion function. A reflection * and # in 5 of T is an inclusion if # is the identity
(and hence § D T'), and is an order isomorphism if * and # are inverses (and hence § = T').

Proposition 3.3 Let + and # form a reflection in § of T'.
1. Translations +# and Id form an inclusion in § of 5%,

2. Translations * and # form an order isomorphism befween S*¥ and T'.



Figure 3: A reflection and its kernel isomorphism

The composition of the inclusion and the isomorphism is the original reflection.

The proposition is illustrated in Figure 3, which shows calculi § and T, and the images S*,
T#, 5** and T#* of these calculi under maps * and #. The kernel 5** of § is isomorphic
to T. -
The summary illustrated in Iigure 1 demonstrates repeated use of this proposition.
Each reflection is factored into an inclusion (shown vertically) and an order isomorphism
(shown horizontally).

For a Galois connection, one normally has two additional results, that M* = M**#* and
P# = pP#*# These proofs depend on anti-symmetry, and hence do not apply here. (As a
counter-example to anti-symmetry, we have Y1 — I(YI) — Y I but Y I # I(YI), where
I is the identity and VY is the fixpoint combinator. Note that anti-symmetry can only fail
for terms with no normal form.) In any event, both equivalences do follow from the stronger
property of being a reflection.

4 Monads: The Problem

Let’s review the traditional translation from the call-by-value calculus into the monad cal-
culus, and see why it fails to be a reflection.

Plotkin’s call-by-value calculus A, is summarized in Figure 4. We let z, y, z range over
variables, L, M, N range over terms, and V, W range over values. A term is either a value or
an application, and a value is either a variable or an abstraction. The call-by-value nature
of the calculus is expressed by limiting the argument to a value in (8.v), and by limiting
the function to a value in (7.v). An important aspect of each calculus we deal with is that
it is confluent.

Proposition 4.1 The reductions of A, are confluent.
Moggi’s monadic meta-language A,y is summarized in Figure 5. This calculus dis-

tinguishes values from computations. Functions may accept and return either values or
computations, and are defined by the call-by-name rules (#) and (7). Two terms relate



terms LMN u= V|LM
values VW u= z|Az. N

(B.v) (Az. N}V — Nlz:=V]
(n-v) Az.(Vz) — V, ifz ¢ fu(V)

Iigure 4: The call-by-value calculus, A,

teems L MN u= z|Az.M|MN|[M]|letz<=Min N
(3) (Az. NIM —+ Nz :=M]
(n) Az. (Mz) — M, ifz ¢ fo(M)
(B.1et) letz < [M]in N — Niz = M]
(n.let) let 2 <= M in [z] — M if z ¢ fo(M)

(assoc) lety<=(letx<«<LinM)inN — letz<Lin{lety< M inN)

Figure 5: The monadic calculus, A,

*:)‘u—*/\ml

v = [vh

(LM)" = letz<«< L inlety< M"inazy
(z)! = =z

(Az.N)! = Az.N"

Figure 6: Translation of A, into A,

values to computations: the term [M] denotes the computation that does nothing save
return the value M; and the term let z <= L in N denotes the computation that performs
computation L, binds z to the resulting value, and then performs computation N. The
interaction of these terms is described by the three rules (4.let), (7.let), and (assoc).

Proposition 4.2 The reductions of A, are conflueni.

The translation # from A, to A is described in Figure 6. Translation * on terms uses an
auxiliary translation { on values. The two translations are related by a substitution lemma,
N*[z := V1] = (N[z:= V])", which is easily checked by induction over the structure of
terms.

The translation * is sound in that M —» , N implies M*—s ,;N*. This is easily checked
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by looking at the translation of (8.v),

((Az. N)V)" = lety < [Az.N*] inlet z <= [V1] inyz
—(f.1et) (z\ﬂJ. N‘)VT
—(8) N*[a'.' = VT]
= (N[z:=V]),

and similarly for (7.v).
However, the translation is not complete even in the weak sense required by equational
correspondence: M™ =,; N* does not imply M =, N. For example, it is easy to check that

((Az.zM)LY = (LMY
while if L is not a value then the equivalence does not hold in the call-by-value calculus.

Proposition 4.3 The translation * : A, — Anp is sound, but does not generate an equa-
tional correspondence.

5 Monads: The Solution

To refine the translation * : A, — A4y into a reflection requires three steps: first, grow A,
into A.; second, shrink A, into Ay, third, fine tune the translation *,

Step one grows A, into A;, which is summarized in Figure 7. The new calculus was
carefully designed by Moggi to model directly the effect of translation into Ap;. This is
achieved by adding to A, a term let £ = M in N which mimics the term let z < M in N
of Ant; by adding to A, reductions corresponding to each reduction of A,;; and by adding to
A two more reductions, (let.1) and (let.2), which mimic the effect of the translation from
Ay into Ay, Let P,Q range over non-values. Rules (let.1) and (let.2) are restricted to act
on non-values, since values yield a reduction in the opposite direction via (8.let).

You may wonder: Is the new form (let z = M in N) necessary, or could it be rep-
resented by (Az. N)M instead? The latter is possible, but then the rules (8.let), (7.let),
(assoc), (let.1), and (let.2) all become more difficult to read. Further, we prefer for historical
reasons to stick to Moggi’s formulation.

You may also wonder: Do the rules ({et.1) and (/et.2) point in the right direction? They
do: the direction is dictated by the desire that reduction be confluent. For example, revers-
ing (let.1),wehave P = (let y=(letz =L in M) in yN)reduces to ((let z = L in M)N).
We also have:

P —(pasocyletz=Lin(Qet y=M inyN) —(rep sy let z = Lin MN

which shows that confluence fails if (let.1) is reversed. The system as given is confluent, as
was shown by Moggi (1988).

Proposition 5.1 The reductions of A, are confluent.

Step two shrinks Ay into Agpw, which is summarized in Figure 8. The grammar is the
smallest one that contains all terms in the image of the translation * : A, — Apy of the
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terms LMN 2= V|P
values v, W = z|Az. N
non-values P, = LM|letz=MinN
(8.v) (Az. N)V — Nz :=V]
(11.v) Az. (Vz) — ¥, ifz ¢ fo(V)
(B.1et) letz=Vin N — N[z :=V]
(57.8et) letz=Minz — ifx & fu(M)
(assoc) lety=(letzr=LinM)inN — letm—Lm(lety M in N)
(let.1) PM — letzx=PinzM
(let.2) Ve — lety=QinVy
Figure 7: The computational calculus, A,
terms L MN = [V1|P
values V\W = z|Az.N
non-values P, Q = VW |letz< Min N
(8.v) (Az. N)V —+ N[z:=V]
(n.v) Az.(Vz) — V, ifz ¢ fu(V)
(B.let) letz < [V]in N —+ N[z:=V]
(n.let) let z < M in [x] — M, if z & fu(M)
(assac) lety<=(letz<¢<LinM)in N — letz < Lin(lety< M in N)

Figure 8: The simplified monadic calculus, Anpj.

*: A = Amie

V-

(PMY

(vQy

(vwy

(let = M in N)"

(=)'
((z. M)!

vl

let z <= P* in (zM)"
let y <= @ in (Vy)"
viwt

letz <= M"in N”

z
Az. M*

21 Admle — Ac

ﬂ_\ﬂ_\ﬂé\ﬂ_\
E S
#
n o e e m

z
Az, M#*

Ve

v

letz=M#in N#*

Figure 9: Reflection in A, of A,y

previous section, and that is closed under the reductions of Ag;.

The new grammar differs



from the old in two key ways: applications M N in A, are restricted to the form VW in
Amis, and computations [M] in A, are restricted to the form [V] in A

The reduction rules are restricted accordingly. Since all applications have the form
VW, rules (#) and () and rules (3.v) and (7.v) have the same effect on the calculus. This
provides an analogue of Plotkin’s indifference property, which states that call-by-value and
call-by-name evaluation yield the same result for terms in CPS.

Proposition 5.2 The grammar of A is closed under the reductions of Apny. That is, if
M — N in Ay and M is in Ap., then N is also in Ay, and M — N in A, ..

The proof is an easy case analysis. It follows as a corollary from Proposition 4.2 that the
reductions of A, are confluent.

Step three adapts the translation * : A, — Ay to the new calculi. The straightforward
choice is to leave the translation as is, adding a line for let.

v = [V

(LM)* = Tetz « L*
inlet y & M*
in zy

(let z = M in N)® let z < M*in N*

Here { is as in Figure 6. The meaning of the overbars will be explained shortly.

Alas, this translation is not even sound in our stronger sense: it preserves the equalities
of A; but not reductions. The key problem is with rule (let.2), which requires (f3.let)
reductions in both directions. '

(V) = let z < [V1] inlet y « Q" inzy
— gl lety <« Q" in Viy
“—pglq lety < Q*inleta’ « [V1] inlet ¢y « [y] inz'y
= (lety=Q in Vy)*

The solution is to consider the (f3.let) reductions as part of the translation. The two
overlined occurrences of let introduced in the translation of applications are regarded as
administrative occurrences. A second stage is added to the translation where all adminis-
trative (f.let) redexes (that is, ones where the relevant let is overlined) are reduced.

This somewhat awkward description as a two-stage translation with administrative re-
dexes may be replaced by the equivalent translation given in the first half of Figure 9.
This was derived by a simple case analysis on applications, with according simplification.
The obvious homomorphism, shown in the second half of the figure, serves as the inverse
translation. It is now straightforward to verify that these constitute a reflection.

Proposition 5.3 Translations + and # form a reflection in A, of Apt..

To prove this we verify separately each of the four parts of Proposition 3.1. Parts (i) and
(i) are verified by induction over the structure of terms, and parts (iii) and (iv) are verified
by induction over the structure of reductions.
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6 Monads: The Factorization

Proposition 3.3 guarantees that there must be an isomorphic image of Ay within A.. It
consists of exactly those terms of the form M*#*. We name this calculus A.., and it is
summarized in Figure 10. The grammar is identical to A., except general applications M N
are replaced by value applications VW, much as in the move from Ay to Apj..

terms LMN
values Vv,w
non-values PQ

V|P
z|Az. N
VW |letza=Min N

Reductions (8.v}), (n.v), (8.let), (n.let), (assoc), as in Figure 7

Figure 10: The kernel computational calculus, A..

*1 0 Ae = Aca #1 7 Aew = A
v = vt the trivial inclusion
(PM)” = letz=P*in(zM)
(ve)” = lety=@Q"in(Vy)
(vw)" = viwt
(letz=MinN)" = letr=M"in N"*
zt = z
(Az. M) = Az.M"
Figure 11: Inclusion in A, of A..
*2 0 Aow — Amis #2321 Amb — Ac.
v = [vh] same as # from Figure 9
(vw)* = Vit
(letz=M inN)" = letz &< M*inN*
zt = =z
(Az. M) = Az M*

Figure 12: Isomorphism of A., and A,

The terms of A.. can be characterized as the terms of A; in (/et.1) and (let.2) normal
form. Once a term has been normalized with respect to these two rules, they are never
required again — that is, none of the other rules will introduce a (let.1) or (let.2) redex.

As guaranteed by Proposition 3.3, the reflection * : A, = Ay, factors into an inclusion
*1 : Ac = A and an order isomorphism #*2 : A;. — Api, given in Figures 11 and 12. The
proposition even shows how to compute these: #; is +#, #, is the identity, *; is a restriction
of +, and #, is #. What is a pleasant bonus, not guaranteed by the proposition, is that
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*1 has a simple interpretation: it reduces a term of A; to (let.1) and (let.2) normal form,
hence yielding a term of A...

7 Linear Calculus

A linear lambda calculus similar to that studied by Wadler (1993) and Maraist et al. (1995)
is summarized in Figure 13. The calculus contains two sorts of variables: a,b, ¢ range over
linear variables which are used exactly once in a term, while z,y, z range over classical
variables which may appear any number of times. Introduction and elimination of linear
implication —o corresponds, respectively, to abstraction over linear variables Aa. N and
application LM. Introduction and elimination of the modality ! corresponds to the term
forms !M and let !r = L in N. There are two important side conditions on the grammar:
each linear variable is used exactly once, and no linear variable appears free in a term of
the form !M.

terms L M,N == a|z|Ada.N|LM|!M|let!lz=Lin N
(8.—0) (Aa. N)M —+ Nla:= M]
(BhH let lz =!M in N — N[z := M]
(1—o) (letlz =L in MN —+ let!lz=Lin(MN)
( !

letly=(letle=LinM)in N — let!z=_L in(let!ly=M in N)

Figure 13: The linear calculus, Ag,

* 1Ay = Ann

v = vt

(LMY = (let!lr=M"inz)N"
zt = z

(Az. N)t = MAa.letlz=cin N

Figure 14: Translation of A, into Ay,

The four reduction rules on terms of this calculus correspond to operations on proofs in
linear logic. The rules (#—o) and (3!) correspond to simplification of proofs, while the rules
(!—o) and (!) correspond to commuting conversions. See Maraist et al. (1995) for details.

Informally, evaluation of the term let !z = I in NV proceeds by first evaluating L to a
term of the form !M and then substituting M for z in N. Thus we may view the term
!M as suspending evaluation and the term let !z = L in N as forcing the corresponding
evaluation. The requirement that no linear variable appears free in !M ensures that the
substitution of M for z does not violate the requirement that each linear variable is used
exactly once.

The translation from A, to A, of Maraist et al. (1995) is described in Figure 14, This
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translation maps (§.v) reductions to reductions in the linear calculus:

((Az. NV = (et !z =}(Aa.let !z = @ in N*) in 2) (V1)
— g (Aa.let!z =a in N*) (IV1)
—#(go) lotlz =1Vt in N*
(8 N*[.'E = V‘t]
= N[z :=V]

However this naive linear translation fails to be a reflection for much the same reasons
that the naivemonad translation failed, as described in Section 4. As in A,,;, we can prove
in Ay, that

((Az.xM)LY =p (LMY

terms L M,N
values v
non — values PQ

vV |P
z|Ae.letlz=ain M
V(lV)lletlea =M in N

(8.—) (Aa.let !z =ain M) (IV) — latle=Vin M

(n.—o) Aa.let !z = a in V(!z) — V, ifz¢ (V)

(8.Y) letlz =V in N — N[z:=V]

(n.h) letlz =M in Iz — M, ifz¢ fo(M)

(I letly=(letlz=LinM)in N — 1letlz=Lin(let!ly=M in N)

Figure 15: The extended linear calculus, Ay,

* 1A = Anne

v = 1wt

(PM) = letle = P*in(zM)

(ve)y = letly=@Q" in (V(!y))"

(VW) = Vigwt)

(let z =M in N)’ = letlr=M"in N*

zt = z

(Az. M) = JAy.let!z =yin M*
#1Aline — A

le* = =z

((Aa.letlzx =ain M)* = Az M*

V(w))* = Ve

(let !z = M in N)* let z = M#* in N*

Figure 16: Reflection in A, of Ajy,.
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which is not provable in the call-by-value calculus if L is not a value. Analogous to
Section 5, the solution to this problem is to extend the source calculus from A, to A, to
contract the target calculus from Ay, to Aj,., and to fine-tune the corresponding translation.
The new target Ay,. is shown in Figure 15, and the new translation is shown in Figure 16.

Maraist et al. (1995) is concerned with a similar problem, finding translations that
are both sound and complete, and adopts a similar solution, expanding the source calculus
from vAL to LET. One significant difference is that the source calculus in Maraist et al.
contains no (7.v) rule, and hence the target calculus Ay, contains no analogous rules. We
have remedied this problem by adding the rules (.—o) and (7.!) to Ag,.. Hence, although
the reductions (8.-0), (8.!), and (!!) of Ayy. are restrictions of the corresponding reductions
in Ain, the other two reductions of Ay,. are unrelated to Ajy,.

The new reduction rule (7.!) is exactly what one would expect, but the rule (7.—0) is
slightly disturbing. The rule one might expect is

(Ae.Ma) — M, ifaé¢ fu(M)

but (n.—o) is not derivable from this rule, even in combination with the other rules. Nonethe-
less, (7.—o) appears sound for the usual models of linear logic, and including it in Ayy. seems
to pose no problem. The utility of (7.—0) suggests that finding a complete set of reduction
rules for a linear calculus is a question of interest for the future.

Modulo this small hiccup, everything proceeds smoothly and by analogy with the de-
velopment for monads. The calculus Aj,. of Figure 15 is sensible.

Proposition 7.1 The calculus Ajn. is confluent and closed under reduction.

The transformation # into the linear calculus and its erasure #, shown in Figure 16,
form a reflection.

Proposition 7.2 Translations «+ and # form a reflection in A, of Ajins.

We have as a corolary, from Proposition 3.3, that the kernel .. is isomorphic to Ajp..
The isomorphism is spelled out by the maps #; and #, between A., and Aj,, shown in
Figure 17. The confluence of Aj,., asserted above, follows immediately from the existence
of this isomorphism.

*9 1 l\cn —* /\Iint #2: Alm- e Acu
Ve = W'  same as # from Figure 16
(vw)’ = vigwt
(letz=MinN)* = letlz=M"in N*
Al = =z
(Az. M)! = Aa.let!lz=ain M*

Figure 17: Isomorphism of A.. and Ajy.
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8 Continuations

The development for continuations is paralleled by the development for monads and the
linear calculus. Just as A, maps into Ay via the traditional call-by-value monad translation,
so does A, map into A, via the traditional call-by-value CPS translation:

V= = M. kvt

(LMY = Xk L*(Az. M*(Ay. zyk))
a:f = T

(Az. M) = Az N*

A remarkable property of this translation is that one may always choose k to be exactly the
same name, without fear of name clash. Again, this translation is sound but not complete.

To refine the translation * : A, — A, into a reflection also requires three steps: first,
grow the source A, into A.; second, shrink the target A, into A.,,; third, fine tune the
translation *. Step one was already accomplished as part of the monad development. Steps
two and three are best considered in reverse order, as the calculus of step two should be the
image of the modified translation of step three.

To refine the translation * : A, — A,, it is suitably extended for 1et, and has some
reductions labeled as administrative,

| % = Ak.kVE

(LM)* = Ak L*(Qz. M*(Qy. zyk))
(letz= Min Ny = Xk M*(Az. N*k)

zt = z

(Az. N) = Az. N*

The translation now takes place in three stages. Stage one applies the translation proper.
Stage two reduces any administrative (4.v) redexes — that is, ones where the relevant X is
overlined. Stage three strips the leading ‘Ak’, which always appears and so is redundant.

This three-stage translation may be replaced by the equivalent translation given in the
first half of Figure 19. The old translation relates to the new as follows: M=°ld = Ak prnew,
where k is the distinguished continuation variable. The auxiliary translation M: K closely
resembles a translation introduced by Plotkin (1975) to capture the effect of administrative
reductions.

Step two shrinks the target A, into A.p,, which is summarized in Figure 18. The grammar
is the smallest one that is in the image of the refined translation *. An additional class of
non-terminals, K, is added to the grammar, ranging over continuations. This class contains
the distinguished free variable k, and contains those lambda expressions which may be
substituted for &.

Examination reveals that each of the rules (§.v) and (7.v) arises in exactly two situa-
tions, yielding four rules in the target A.,, corresponding to four of the seven rules in the
source A.. It is easily verified that the grammar is indeed closed under reduction. Every
application has a value as an argument, so call-by-value and call-by-name reductions have
the same effect on the language, which explains Plotkin’s indifference property.
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terms LMN = KV|VWK
values VW = z|Az. k.M
continuations K = k|iz. M

(8.v) (Az. M. M)VK — M[z:=V]k:=K]
(n.v) Az. Ak Vzk — V,  ifzéfu(V)
(8.1et) (Az. MYV — Mz :=V]

(n.let)  Az.Kz — K, ifz¢ (k)

Figure 18: Continuation-passing style calculus A,

* 1A — Acps

M* = M:k
VK = Kvt
(PM): K = P:(Az.((zM): K))
(VQ): K = Q:(Ay.((Vy): K))
(VW): K = VIWK
(Qetz=MinN): K = M:(dz.(N:K))
zt =z
(Az. M)t = Az Mk M*
#: Acps — A
(KV)* = K'[VY)
(VWK)* = K'[Viwh
2. = z
(Az. Ak M) = dz.M*
K = []
(Az. N = letz=[]in N*

Figure 19: Reflection in A, of A,

Proposition 8.1 The grammar of A.,, is closed under the reductions of A,. That is, if
M — N in A, and M is in Aoy, then N is also in Ay, and M — N in A,,.

The proof is an easy case analysis; it follows as a corollary that the reductions of A.,, are
confluent. Further, the same result holds if the call-by-value calculus A, is replaced by the
call-by-name calculus A,.

The inverse translation # of Figure 19 is now easily derived. It has three parts, one
for each component of the target grammar. A term M in A, maps to a term M* in A.;
a value V in A;,, maps to a value V'in A.; and a continuation K in Acps maps to an
evaluation context X® in A.. An evaluation context C is a term with a hole [ ], and if C is
an evaluation context then C[M] denotes the result of replacing the hole in C by the term
M. The filling operation is straightforward since the holds of our evaluation contexts are
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never in the scope of a bound variable.
We can now verify that the maps of Figure 19 constitute a reflection.

Proposition 8.2 Translations + and # form a reflection in A, of Ap,.

As before, we prove each of the four parts of Proposition 3.1 separately. To prove part
(i),
M — M

requires we strengthen the inductive hypothesis to
K'[M] —» (M : K)*.

Each proof is now straightforward, given the following two lemmas, which are equally
straightforward.

Lemma 8.3 Let M,V be in A, and K be in Ay, then (M : K)[z := V] = (M[z :=
V]): K.

Lemma 8.4 Let M,V, K be in A,,, then:
K'M*[z:= VY]] — (M[z:= V][k:= K])*.

This completes the parallel development of the reflection; there is also a parallel devel-
opment of the factorization. Proposition 3.3 guarantees that there must be an isomorphic
image of A.,, within A.,. We name this calculus A..., and it is summarized in Figure 20.
Just as the grammar of A.,, has three components — terms, values, and continuations —
so the grammar of A... has three components — terms, values, and contexts. Observe that,
despite the introduction of contexts, each term still possesses a unique decomposition in
terms of the syntax. (For instance, the term zy corresponds to K[VW], where K is [], V
is z,and W is y.)

The terms of A... can be characterized as the terms of A, in (let.1), (let.2), and (assoc)
normal form. As in the previous development, once a term has been normalized, no fur-
ther reductions ever introduce a (let.1) or (let.2) redex. Alas, the same cannot be said of
(assoc). The reduction (f.v) may indeed introduce a further (assoc) redex, as shown by
the counterexample,

let z = ((Ay.let 2 =abinc) d) ine
— letz=(letz=abinc)ine.

To gain insight into the problem, consider the corresponding CPS reduction,

((My. Ak (@ b (Az. kc))) d (Az. ke))
— (a b Az Az ke)c)).

The image of this in A... is

let z = ((Ay.let z=abinc) d) ine
— letz=gabinletz =cine.
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terms LMN
values V,W
contexts K

K[V]| K[VW]
z|Az. M
[Jl1etz=[]in M

[T

(B.v) K[(Az. M)V] — Mz:=V]: K
(n.v) Az. (Vz) — V,ifz ¢ fu(V)
(Blet) letz=VinM — Mz:=V]

(n.lel) letz=[]in K[z] — K,ifz ¢ fu(K)

V:K

(VW): K
(letz=VinM): K
(letz=VWin M): K

K[V]

K[VW]

letz=V in(M: K)
letz=VWin(M:K)

nene nem

Figure 20: The kernel computational calculus A.,.

*1 1 Ae — Acae #1 5 Aces — Ac
M* = M:[] the trivial inclusion
VK = K[V)
(PM): K = P:(Qetz=[]in((zM):K))
(V) X = Q:(Qety=[]in((Vy): K))
(VW): K = K[ViWi
(letz=MinN): K = M:(letz=[]in(N:K))
=t = z
(Az. M) = Az.M*

Figure 21: Inclusion in A, of A...

*20 Agaw — /\cps #2 1 /\cps — Acas
(K" = Kyt same as # from Figure 19
(K[VW]) = Viwigt
z! =
(Az. M)} = Az Ak M!

k
Az, N*

[
(let z =[] in N)}

m

Figure 22: Isomorphism of Ac.. and Ay,

where the right hand side is in (assoc)-normal form. The CPS language achieves this
normalization using the meta-operation of substitution which traverses the CPS term to
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locate k and replace it by the continuation thus effectively “pushing” the continuation deep
inside the term.

In order to properly match the behavior of CPS, we therefore add a corresponding
meta-operation to Ac.., M : K shown in Figure 20. Using the new meta-operation we can
extend the problematic source reduction f.v with a built-in (assoc)-normalization action
that mirrors the action of 3.v on CPS terms.

(An alternative to adding meta-notation for substitution may be to move to calculi that
use explicit substitution, but we have not explored this possibility.)

There is one pitfall to avoid: since reductions apply to any subterm, one may be tempted
to apply rule (5.v) to the subterm ((Ay. let z = ab in c) d) in the counterexample by taking
K to be [] rather than let z =[] ine. But it is natural to insist that the reduction rule
(8.v) is only applied when K is determined according to the unique decomposition afforded
by the grammar of A..., and this steps neatly around the pitfall.

Again, as guaranteed by Proposition 3.3, the reflection * : A. — A, factors into an
inclusion #; : A = A... and an order isomorphism #2 : Agux — Acps, given in Figures 21
and 22. Again, these can be computed directly from the proposition, and again there is a
bonus: #; has a simple interpretation as reducing a term of A, to its (let.1), (let.2), and
(assoc) normal form.

In addition, the CPS translation factors through the monad translation. One may
translate A, into Ag,, as follows.

[vie = Akkvt

(V) = MViwtk
(letz <= M in N)* = Xk.M*(Az.N*k)
zt =

(Az. N = Az.N*

Regarding this as a two-stage translation with administrative reductions yields a reflection.
As before, the reflection factors through a calculus Ap.., corresponding to the subset of
Aml. consisting of terms in (assoc) normal form. The three calculi A .vxy Amias, and Agp, are
isomorphic.

In a similar way, the isomorphism between A.. and Ajy, of Figure 17 can be adapated to
an isomorphism between A... and a kernel of the linear calculus Ajp.s in (1) normal form.
Figure 1 diagrams the situation.

9 The Fischer translation

The CPS translation of Fischer (1972) differs from the CPS translation of Plotkig (1975) in
that it swaps the order of function argument and continuation, allowing additional admin-
istrative reductions to be performed. Here is the Fischer translation, for comparison with
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the the Plotkin translation in Section 8.

| % = Ak.kVE

(LMY = ¥k L*(Qz. M*(Qy. zky))
zt = z

(Az. N) = Xk Az Nk

For example, the term (Az.z)y yields (Az. Ak. kz)yk under the Plotkin translation, and
yields (Az. kz)y under the Fischer translation, where in each case one reduces all adminis-
trative (f.v) redexes and strips the leading ‘Ak’.

An earlier version of this paper claimed that the Fischer CPS translation could be made
a reflection, but gave no proof. Here we withdraw that claim. We show that the Fischer
translation cannot be a reflection, and nor can it be a Galois connection with the source
calculus A.. However, it may be a Galois connection with a different source calculus.

The Fischer translation cannot be a reflection. Thanks to administrative reduction,
no term in the image of the Fischer translation will contain a ‘Ak’ redex; but in order to
be closed under reduction, the target language must contain such redexes. For example,
take M = (Af. fz)(Ay.y), so that M* = (Af. fkz)(\k. Ay. ky). Then M* — P, where
P = (Ak. Ay. ky)kz. But there is no source term with Fischer translation P, and so we
cannot have P#* = P. Note that this argument is independent of the reductions in the
source language.

Further, the Fischer translation cannot be a Galois connection when the source calculus
is A.. For example, take M = f((Az.z)y) and N = (Az. fz)y. Both terms have the
same Fischer translation, namely M* = N* = P = (Az. fkz)y. Since we have a Galois
connection, we require that M —=M** = P* and N—N** = P* in A, and so fy is the
only possible choice for P¥. For a Galois connection we also require that P#*—s P, but
this fails since P** = fky f—»(Mz. fhz)y= P.

We saw in Section 4 that a naivetranslation with no administrative reductions fails
to be a reflection. Here we see that the Fischer translation has too many administrative
reductions to be a reflection. Just as Goldilock’s porridge must be neither too hot nor too
cold, administrative reductions must be neither too many nor too few.

Nonetheless, it may be possible to find a Galois connection based on the Fischer trans-
lation with a different choice of source calculus. We leave this as an open question.

10 Related Work

Plotkin (1975), among other contributions, formalizes the call-by-value CPS translation and
shows that it preserves but does not reflect equalities: if M = N in A, then M* = N*in A,,
but not conversely. Here and throughout, we write * for the variant of the CPS translation
under consideration, and hope this will lead to no confusion.

Sabry and Felleisen (1993) strengthen Plotkin’s result by making the implication above
reversible. They extend the call-by-value lambda calculus A, with a set of reductions X
such that M* = N*in A, X if and only if M* = N*in A,. As they note, A, X and A, prove
the same equalities; but they do not prove the same reductions.
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Sabry and Felleisen introduce the notion of equational correspondence described in Sec-
tion 3, and they prove that their translation constitutes such a correspondence. In fact, they
prove something stronger, making their translation almost, but not quite, a Galois connec-
tion: their translations satisfies all four conditions of Propaosition 3.1, except that condition
(ii), P**— P, is replaced by the weaker P#* = P. (Compare this to the stronger P** = P
required of a reflection.)

They also single out a subset A of X, and observe that these A reductions correspond
directly to the administrative reductions on CPS terms. Their terms in A normal form
roughly correspond to our kernel calculus A..., of terms in (lef.1), (let.2), and (assoc)
normal form.

However, Sabry and Felleisen use Fischer’s CPS translation, which we have seen can-
not be a reflection. It remains an open question whether there is a variant of Sabry and
Felleisen’s work which yields a (alois connection.

Flanagan, Sabry, Duba, and Felleisen (1993) apply the results of Sabry and Felleisen.
They suggest that CPS translation may not be so beneficial after all: it may be better
to work directly in the source calculus. They show that terms in A normal form behave
similarly to CPS terms, demonstrating this via a sequence of abstract machines. They also
briefly sketch possible applications of the full set of reductions X. But they fail to observe
our central point: that for optimization purposes one wants a result showing correspondence
of reductions rather than correspondence of equations.

Lawall and Danvy (1993) give a factoring of CPS similar to the one described here, and
also refer to Galois connections. They relate four languages: a source language, a kernel
source language, a kernel target language, and a target language. The first two relate via a
Galois connection, the middle two are isomorphic, and the last two again relate via a Galois
connection. The first two parts of their factorization are similar to our inclusion in A, of
Acss, and our order isomorphism from Ac.. to Agp,. Their third step schedules evaluation,
determining for each application whether the function or argument evaluates first. Here we
use a language where the function always evaluates before the argument, and so we need
no counterpart of their third step.

The Galois connections of Lawall and Danvy are based on an artificial ordering induced
directly from the translations. One might argue that they are misusing the notion of
Galois connection, and are instead dealing with the somewhat weaker notion of a pair of
translations * and # satisfying M*#* =7 M* and P#** =g P#_ As they note, their artificial
ordering is unsatisfactory, because their middle isomorphism between the source kernel and
target kernel does not respect this ordering: it is not an order isomorphism, and hence not
a Galois connection. Thus, their factorization cannct be viewed as a composition of Galois
connections. In contrast, we use a natural ordering relation, and our Galois connections do
compose. Whereas their isomorphism violates the ordering of their Galois connection, our
isomorphism arises as a consequence of our Galois connection, as shown by Proposition 3.3.

Hatcliff and Danvy (1994) consider translations analogous to our translations from A,
to Amt, and from A to Agps. They also look at translations from other source languages
into A1, an issue we ignore. They show the translation from A, to Ay is sound; we give the
stronger result that the translation from A, to A,y is a reflection. They also show that the
translation from A, to Agp, is an equational correspondence; again, we give the stronger
result that it is a reflection.
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Maraist, Turner, Odersky, and Wadler (1995) cousider translations into a linear lambda
calculus. That paper extends the call-by-value calculus VAL to the calculus LET, this paper
extends the call-by-value calculus A, to the calculus A.. The earlier paper stressed the
anology of the linear translation with the CPS translation; as can be seen from the work
here, an analogy of the linear translation with the monad translation is even more apposite.

11 Conclusion

This section describes a number of possible extensions of our results, and draws a conclusion
about A; as a model of call-by-value.

Standard reduction. Most lambda calculi possess a notion of standard reduction, charac-
terized by two properties. First, at most one standard reduction applies to a term. Second,
if any sequence of reductions reduces a term to an answer, then the sequence of standard
reductions will also do so. Hence standard reductions capture the behavior of an evaluator.
Plotkin (1975) specified standard reductions for J,, and his results for CPS demonstrate
not only that reductions are preserved, but also that standard reductions are preserved.
(He expresses this in a different but equivalent form by saying that evaluation is preserved.)
Hatcliff and Danvy (1994) give similar results for translation from Moggi’s A into CPS. It
appears straightforward to extend the work here by specifying a suitable notion of standard
reduction for each of the calculi involved, and to show that the given translations are still
reflections if one replaces reductions by standard reductions.

Call-by-value and call-by-need. Maraist, Turner, Odersky, and Wadler (1995) study a
call-by-let calculus that is closely related to A, and that translates into linear logic. By
extending the call-by-let calculus with just one law,

letz=Min N — N, if z ¢ fu(N),

the authors derive a call-by-need calculus (Ariola et al. 1995) that translates into affine
logic. We conjecture that when augmented with the above law, A, also yields a model of
call-by-need.

A reflection on call-by-value. Plotkin’s original paper on A, layed out two key properties
of this calculus: first, it is adequate to describe evaluation, and second, it is inadequate to
prove some equalities that we might reasonably expect to hold between terms. The first was
demonstrated by a correspondence between A, and SECD machine of Landin (1964). The
second was demonstrated by observing that there are terms that are not provably equal in
Ay, but whose translations into CPS are provably equal.

Moggi defined A, as an extension of A, that is sound and complete for all monad models,
and hence proves a reasonably large set of equalities. He picked a confluent calculus to
ease symbolic manipulation, but made no claims that A, was itself a reasonable model of
computation. Sabry and Felleisen showed that A; proves two terms equal exactly when
their CPS translations are equal. This reinforces the claim that A. yields a good theory of
equality, but because they dealt only with equational correspondence, again says nothing
about A, as a model of computation. Our results here relate ), reductions to reductions in
Amt and Agps, both widely accepted as models of computation. We hereby put forward A.
as a model of call-by-value computation that improves on A,.
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