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Dealing properly with sharing is important for expressing some of the common compiler optimizations as source-
to-source transformations, such as common subexpressions elimination, lifting of free expressions and removal
of invariants from a loop. Term graph rewriting is a computational model to accommodate these concerns. In
this paper we are interested in defining a term model for term graph rewriting systems, which allows us to prove
total correctness of those optimizations. We introduce the notion of Béhm tree, and show that for orthogonal
term graph rewriting systems, Bohm tree equivalence defines a congruence. Total correctness then follows in a
straightforward way from showing that if a program M contains less sharing than a program N, then bath M
and N have the same Béhm tree.

Using B6hm trees we also show that orthogonal term graph rewriting systems are a correct implementation
of orthogonal term rewriting systems. This boils down to showing that the behavior of a term graph can be
deduced from its finite approximations, that is, graph rewriting is a continuous operation. Our approach differs
from that of other researchers which is based on infinite rewriting.

1. Introduction

Dealing properly with sharing is important in a framework for reasoning about the implementation of
functional languages and the correctness of certain compiler optimizations, such as common subexpressions
elimination, lifting of free expressions and removal of invariants from a loop. All these optimizations can
be characterized as merely increasing the sharing of sub-computations in a program. If we want to express
these optimizations as source-to-source transformations, we need a calculus which can distinguish between,
for example, the following two programs:

M=(Q0+1)+(1+1) N=s{z=1+1, inz*z}

(A note on syntax: N consists of a collection of unordered bindings, and a main expression written following
the keyword in.) Graph rewriting is a computational model to accommodate these concerns. Moreover, due to
its implicit parallelism it is also suitable as an intermediate language for compilation on parallel machines. In
fact, we have successfully described the operational semantics and the compilation of the implicitly parallel
language Id [28] using two different graph rewriting systems, called Kid (Kernel Id) and P-TAC (Parallel
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Three Address Code) [2, 3, 4], where P-TAC describes sharing in a first-order system, while Kid includes
A-abstraction.

Term graph rewriting has been described in the literature in terms of either category theory notions
[12, 13, 14, 15, 22, 27, 30] or more implementation oriented concepts [9, 11, 29, 32]. The first describes graph
rewriting steps as single or double push-outs. The second uses notions like pointers, redirection, indirections.
Both approaches, though of indisputable merit, fall short in providing a clear, mathematically manageable
framework for term graph rewriting. We provide, instead, an equational treatment of term graph rewriting
{5, 6, 8], based on the observation that a natural way of linearly representing a graph is by associating a
unique name to each node, and then writing down the interconnections through a set of recursion equations.
The advantage of this approach, as discussed in [8], is that one can use the intuitions of Equational Logic in
manipulating these equations. Qur treatment of term graph rewriting is very general in that cyclic graphs
are admitted; most of the literature on graph rewriting is still concerned with directed acyclic graphs only
[31].

This paper develops a semantics for orthogonal (cyclic) term graph rewriting, which can be used to show
total correctness of the above mentioned compiler optimizations, and to prove that term graph rewriting is a
correct implementation of term rewriting. The correctness of graph rewriting with respect to term rewriting
is also explored in {11], where the relation is based on the notion of normal form, which leads to some
undesirable conclusions when cyclic term graphs are admitted, namely that graph rewriting is unsound. We
believe that the notion of normal form is inadequate for such a comparison. This point was already stressed
by Wadsworth in his analysis of the relation between the syntactic and the semantic aspects of the A-calculus
[34, 35]. Other researchers [17, 23, 24] have based the relation on rewriting of infinite terms. Instead, our
approach is based on showing that the behavior of a graph can be deduced from its finite approximations.
In other words, we show that graph rewriting is a continuous operation.

The paper is organized as follows: In Section 2, we introduce the reader to term graph rewriting in terms
of systems of recursion equations. In Section 3, we introduce a function Print which given a term graph g
returns the stable information associated with g. The information gathered by reducing g is then collected
in a set called Print*(g). Print*(g) represents the answer or Bhm tree [10] computed by g. We take the
answer as our criterion for equating terms, and we show that this equality is a congruence for a subclass of
term graph rewriting systems, namely those without overlapping and non-left-linear rules (i.e., orthogonal
term graph rewriting systems). Finally, using the notion of B6hm tree, in Section 4, we show that orthogonal
term graph rewriting systems are a correct implementation of orthogonal term rewriting systems (same
conditions apply: non-overlapping and left-linear rules only). The notion of B6hm tree allows us to consider
cyclic graphs, differently from {11]. Using term graph rewriting we also show the classical fact of completeness
of inside-out reduction for orthogonal term rewriting systems (TRSs). This result is needed to provide a term
model for TRSs. We conclude the paper with our thoughts on future work.

2. Graphs as systems of recursion equations

Given the TRS rule F(z) — G(z, z), the term F(+(2,3)) can be rewritten to G(+(2,3), +(2,3)). That is,
the term +(2, 3) is substituted for each occurrence of the variable = on the right-hand side of the above rule,
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and is thus, duplicated. A graph rewriting system avoids this duplication of work by substituting a pointer
to +(2,3) for each reference to variable z, as depicted below:

K‘"’

[N ]
Rt

We represent the term F(+(2,3)) as:
{Il = F(Iz),ﬂ’.‘f_) = +(.’B3,.’L‘4),1‘3 = 2,2.'4 = 3, in .T]} P

In applying the above rule, the name z;, and not the expression +(2, 3), will be substituted for each occur-
rence of z, leading to the term:

{z1 = G(x2, 22}, z2 = +(Z3,24),23 = 2,24 =3, inz} .

Thus, term graphs are simply a set of recursion equations. Similar notations appear in the literature 16, 18].
Eg., {z : F(z,y), ¥ : G(x)} in the language DACTL [18]. However, we insist on an equational notation,
not just for the sake of style, but because we want to express term graph operations in terms of equational
transformations [8].

DEFINITION 2.1. (TERM GRAPH) Let T be a first-order signature. A term graph defined over T is defined
inductively as follows:
(i) a variable T is a term graph;
(1) F¥(y1,---,¥x) is @ term graph if yy,- -+, yx are variables and F* € &;
(iii) {z1 = e1,+++,Tn = €y, in z} is a term graph if
(iii.1) for all 4,1 < i < n, z; is a variable and e; is a term graph. The variables z; are bound, other
variables occurring in the system are free;
(iii.2) z is a variable;
(iii.3) for alli,7,1 <i<j<n,z # 2,

Clause (iii.3) prevents multiple definitions of a variable. Furthermore, we make the assumption that all free
and bound variables are distinct from each other. The order of the equations in a term graph does not matter.
For technical convenience we assume that if the main term g is of the form F¥(y;,---,4:) or is a variable,

say y1, then g has a name associated to it, that is, g = {z = g,in z}, with z distinct from »;,1 <i < k.

DEFINITION 2.2. (RQOT) Given @ term graph g = {z, = e, ,Tn = €y, inz}, T is said to be the root of
g, and is written as root(g).

In giving a term graph we will sometimes omit the root, in such a case, the first recursion variable is assumed
to be the root. For example, we sometimes write

{.’;‘:1 = F(IQ)-T?):-I? = 2) in .’El}
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{71 = F(z2,22), 22 = 2} .

In the above term we will say that z; is referenced twice and z; once (i.e., as the root). Notation: we denote
by g | =, with = a bound variable of g, the system rooted at z. E.g., let g be {z, = F(z),z = G(g), in 11},
then g | z is {z = G(y) in z}. We automatically perform the removal of the equation z, = F(x) (garbage
collection)f.

Analogous to the notion of a-equivalence in A-calculus [10], term graphs whose difference may be regarded
as merely syntactic noise, are equated. For example, we will consider as equivalent the following terms:

{z=8, { z=8,
z={y=uz, ¥ =,
w = +(z,y), w = +(z, ),
in w}, inw} .
in z}

This suggests that all the equations of the form z = y, with = and y distinct variables, can be removed after
having substituted all the occurrences of x by ¥, and the nesting of recursion equations can be flattened.
Moreover, circular equations of the kind x = z are rewritten to z = ®, where ® is a new constant called
‘black hole’. As shown in [6, 8] this guarantees the confluence of term graph rewriting without overlapping
rules. A term is said to be in canonical form if all the substitutions, the rewriting of circular equations, the
flattening, and the removal of garbage have been performed. Before introducing the rules to compute the
canonical form of a term, we need some notation. E, F' range over sets of equations, E[y/z] denotes the set
of equations obtained by replacing each free occurrence of = in E by y, and z[y/z] is y if z = z, z otherwise.

Each term graph rewriting systems comes equipped with the following rules:

Redundant names:

{z=v,E,inz} — {Ely/z], inzly/z]} z#y
Black hole:

{z=2z,E, inz} — {r=9e,E, inz}
Flattening:

{r={E,inz},F,inw} — {z=zEF, inw}

Garbage collection:

{E,Finz} — {E, inz} if the bound variables of F' do not occur free in E

and are distinct from =

It is an easy exercise to check that the above rules are strongly normalizing (i.e., each reduction terminates),
and they are confluent (i.e., let R be the above set of rules. If g —» g g1 and g —» g g2 then 3g3, 91 —» R g3
and g2 —» p g3. If g does not contain any redex then g is said to be in normal form.). We thus define the
canonical form of a term graph g as follows:

(i) compute the normal form of g, say g,, with respect to the Flattening rule;

t As discussed in |7] disallowing garbage collection makes term graph rewriting suitable to describe a notion of state.
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(il) compute the normal form of g, say go, with respect to the Redundant names and the Black hole rules;
(iii) compute the normal form of go with respect to the Garbage collection rule.

Two terms g and & are then said to be a-equivalent (=, ) if their canonical forms are the same up to renaming
of bound variables and commutativity of the equations. Herein term graphs are assumed to be in canonical
form.

Term graph rewriting rules have also an equational format, differently from [11, 29, 32), in which rules are
expressed in terms of multi-rooted graphs. For example, the TRS rule

T: F(G(y)) — 0
is expressed as
{z=F(z1),21 = G(y)} — {x =0} .

Only the equation matching the first equation in the left-hand side of the above rule will be rewritten, thus

capturing the fact that in term graph rewriting only the pointers to the root of the redex get redirected.

DEFINITION 2.3. (TERM GRAPH RULE) Let ! and v be term graphs with the same root. Then:l — 7 is a
term greph rule.

As is customary in TRSs two conditions are imposed on the rules. Namely, the left-hand side { is not a
variable, and the free variables occurring in the right-hand side r are a subset of the variables occurring in
the left-hand side 1.

DEFINITION 2.4. (SUBSTITUTION) A substitution o is a function from variables to variables. We extend o
to system of recursion eguations as follows:

(i) a(F(z1,--+,2n)) =Fo(m1),- -, 0(zn));

(i) o({m =1, ---, 20 = en}) = {o(z1) = o(e1), -+, 0(zn) = 0(en)} .

We will also write g7 instead of o(g).

DEFINITION 2.5. (REDEX) Let 7 : I — v, = a bound variable occurring in g. Then (1,x,0) is o redez if
17 C g and root(l°) = z. If x is the root of g then g itself is said to be a redex.

Thus, detection of a redex boils down to matching parts of a system of recursion equations.

Notation: g[z «~ e] is the term obtained by replacing the term bound to z by e. If z does not occur bound
in g then g[z « €] is . We assume that the bound variables of e do not occur either free or bound in g. We
will also make use of the notation g[F « e}, where F is a set of variables, indicating that all terms bound
to each x in F are replaced by e.

Consider the following rule  and term g, respectively:

7:{z=G6(y1,21),21 = F(y2)} — {z =y} g={ a=Fy),
72 = G(21,21),

in z2} .
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(T, 22,0) is a redex, where ¢ is T = 22,31 = 21,21 = 21,52 = y. Reduction consists of replacing the term
bound to zz by an instance of the right-hand side of 7, that is, g — g[z; « ¥) = v

DEFINITION 2.6. (REDUCTION) Let (1,x,0) be a reder occurring in g. Let 7 : 1 — r, then ¢ — gz «
(r?)'], with (r°) denoting the renaming of all bound variables (using fresh variables) of r°. —» denotes the
transitive reflezive closure of —.

Renaming is necessary to avoid collision with the variables in a system. We will sometimes use the notation
g — h to indicate the reduction of a redex rooted at z.
T

DEFINITION 2.7. (TERM GRAPH REWRITING SYSTEM) A term graph rewriting system is a structure (A(Z), R),
where A(X) is the set of term graphs defined over signature T, and R is a set of term graph rules.

DEFINITION 2.8. (LEFT-LINEAR RULE) A rule 7 : | — 1 is said to be left-linear iff for all variables z
occurring in l, x is referenced at most once in 1.
For example, the following rules:
7: {g=Fz)} —{z=0}and »;: {z=F(y,y)} — {z =0}
are non-left-linear rules. In particular, rule 7, is non-left-linear because z is referenced twice, z is referenced

in the root and in the right-hand side of the equation z = F(z).

DEFINITION 2.9. (COMPATIBLE TERMS) Let g,,9; be term graphs. g1 and g; are called compatible (written
as g1 1 g2) if there exists a term graph gs, substitutions o, and oq, such that

(1) g1' € g3 and g3° C g3;

(ii) root(gy*) = root(gs?) = root(gs).

DEFINITION 2.10. (OVERLAPPING) Let 7y : I} — 71,72 : o — r9. We say that 7, overlaps with 7 iff there
erists a bound variable = tn I, such that

(hlz)Tl

If 7y = 19, then it must be the case that z is distinet from the root of 1.
THEOREM 2.11. A term graph rewriting system without overlapping rules is confluent up to renaming.
Proor. See [6, 8]. O

DEFINITION 2.12. (ORTHOGONAL) A term (graph) rewriting system is said to be orthogonal if all the rules
are left-linear and non-overlapping.

Hereafter, we will only consider orthogonal term (graph) rewriting systems.
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3. Béhm Model for Orthogonal term graph rewriting systems

We want to define the printable value of a term graph g as the stable part of g, that is, that part that will
never change during reduction. The printable value corresponds to the notions of instant semantics {36] and
direct approximation [26, 33] introduced for the A-calculus. As for the A-calculus, all redexes must first be
substituted by a new constant 2, which stands for no information. However, this is not enough to guarantee
the monotonicity of the information content with respect to reduction. The problem is due to the upward
creation of redexes; that is, even though a term A is not a redex, it can become so when some redexes under
it are performed. To cope with this phenomenon in the A-calculus, both Wadsworth [33] and Lévy [26] have
introduced the notion of w-rule, which states ! P — . Huet and Lévy have applied the same concept
to orthogonal TRSs [21], and in [6] we have extended the work to term graph rewriting systems without
overlapping rules. According to [6], the stable part of a term graph is computed by replacing its redexes and
“potential redexes” by {2, where a term is 2 “potential redex” if it can become a redex by either replacing 0
with some other term or by increasing its sharing. For example, with respect to the rules:

{z=F(z1),z1 =0} — {z=1}
{z =G(»)} — {z=0}

the stable part of g = {z; = F(z2), z2 = G(y), in 21} is computed as follows: the redex rooted at z, is
replaced by Q, obtaining ¢ = {z; = F(z2), z2 =, in z,}. g1 becomes a redex by replacing 2 with the
constant 0, thus the stable part of g is ). While, with respect to the above rules, gy = {z = F(x),in z} is
considered to be stable. Thus, in [6] sharing is part of our observations. Subsequently, we are not able to
equate the following term graphs:

g ={ z = cons(z1,x2), %1 = F(z), 22 = cons(z3, 24}, 23 = F(z), z4 = nil, in =}
h={ z = cons(zy,x2), 1 = F(z),x; = cons(zy,24),z4 = nil, in 2}

Term graphs ¢ and h may be drawn as follows:

9:;0": h: cgs
S &

z nil F4 nil
z

However, if the internal representation of a list is ignored then both g and h represent the same list, i.e.,
F(z) : F(z) : nil. Analogously, consider the following two term graphs g; and h;:

o1 = {z = cons(zy,z),z; =1, inz} hi = {z =F(z,),z1 =1, inx}
and the rule
{z =F(y)} — {z = cons(y, z1),21 = F(y)} .

According to [6], the information associated to h, is contained in the information associated to g;, but not
vice versa. Thus, g; and h; are not equated, even though intuitively it can be said that both ¢y and h;
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represent the infinite list of one'’s. g has a finite representation of it, in other words, the infinite list of
one’s is represented through a cycle. (This representation issue is similar to the representation issue for real
numbers, where the number with decimal expansion .999999- - - is the same as 1).

In this paper, we are interested in developing a semantics that equates g to h and g; to h;. Thus we go
one step further by eliminating sharing from our observations, that is, we compute the stable part of each
ezpension associated to a term graph. For example, with respect to the rule;

{z =F(z1),z1 =0} — {z =0}

we will say that term graph g = {x = F(z), in £} does not have any information because none of the
expansions, i.e., {2, F(Q2), F(F(2)),---}, are stable with respect to the TRS rule F(0) — 0. Analogously,
the information associated to the term graph ¢ = {z = +(3, %),y = +(z, z), in z} is also Q.

3.1. PRINTABLE VALUE OF A TERM

To obtain the printable value of a term, we replace all its redexes by 2 and then compute the stable part of
each expansion of the term. The expansions are first-order terms (i.e., TRS terms) defined over a signature
containing the constant 0.

DEFINITION 3.1. (Tq) The set Ta(Z) of TRS terms defined over signature LU Q is:
Tq o= | Variable | F*(Tq, -+, Tq)

where F™ i5 in L.
On Tq, we define the following prefix ordering:

DEFINITION 3.2. (PREFIX ORDER ON T) (Tq,<t) is a partial order, where <t is defined as follows:
(i) @<t M,VMeTq;

(ii) z <t z, V z € Variable;

(iii) F*(My, - -, Ma) S F*(Nyy -+ N}, if M S N 18 S

M<GNfM< Nand M#N.

DEFINITION 3.3. Given a term graph g, we denote by gq the term obteined after substituting all its redexes
by Q.

In order to determine the expansions of a term graph g, we associate to g a set of TRS rules, called R.p(g).

EXAMPLE 3.4.
(i) Given the following term graph g:
{ = = cons{z,y),
y = cons(z, z),
inx} .
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Rexp(g) consists of the following two TRS rules:

X(z) = cons(z, Y (z))
Y{(z) — cons(z, X (2))
The first two expansions of g are:
=y
g' = cons(z, ), which is obtained by first rewriting X(z) (which corresponds to the root of g) to

cons(z,Y(z)), and then substituting the redex ¥'(z) by .
(ii) Consider the term graph g:

{z=F(z,z)inz} .
R.:p(g) consists of the TRS rule:
X —FX,X).

We rewrite X to F(X, X}, concluding that g* is F(Q,(2), we then proceed by rewriting simultaneously
both the occurrences of X, obtaining F(F(X, X}, F(X, X)). Thus we will say that g* is F(F(£, 1), F(£2, Q)).

DEFINITION 3.5. (EXPANSION RULES) Given atermgraphg = {zy=ey, --,Z, = en, inz}, let {y1, v}
be the set of free variables of g. Then, R.:p(g) consists of the following rules:

Xl(n,owm) — elXly,- - ml/z, - Xnly, - ve)/2a)

X'ﬂ(y[,'“,'yk) — en[X]-(yh"'!yk)/"rh"'axn('yli'”!yk)/xﬂ]

REMARK 3.6. R.zp(g9) is an orthogonal TRS.

As described in the previous example we rewrite the root of a term graph g according to R..,(g) following
the Gross-Knuth or Kleene reduction strategy [25]. Notation: M E}»“ N denotes n (TRS) reduction steps
according to the Gross-Knuth strategy. In the following definition, Np is computed with respect to the
expansion rules.

DEFINITION 3.7. (EXPANSION OF A TERM GRAPH) Given a term graph g rooted at z, let {y1,---,ys} be
the set of free variables occurring in g. The k'™ ezpansion of g, written as ¢*, is the term Ng € Tn such that
i e _ k ]

(i) X, m) =" Njor

(i) X{wm,---,w) a{»d‘ N and N is in normal form with respect to R..p(g).

REMARK 3.8. (MONOTONICITY OF EXPANSIONS) Given a term graph g and its two ezpansions g* and gk',
ifk < k' then g* <; g*.

In order to determine if an expansion is stable we associate to a term graph rule a set of TRS rules, called
w-rules as in [26, 33). The aim of a w-rule is to reduce to § potential redexes.
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DEFINITION 3.9. (UNWINDING) Let g be an acyclic term graph rooted at x, with {y,---,yr} the set of its
free variables. Unwind(g) returns the normal form of X(y1,-+,yx) with respect to Rezp(g).

For example, if g is {z = cons(x1, Z2), 71 = F(2), 22 = cons(z3,24), 23 = F(z), 74 = nil, in }, then Unwind(g)
is cons(F(z), cons(F(z), nil)).

DEFINITION 3.10. (w-RULE) Given a TRS rulel — 7, a rule 7' : I' — Q1 is said to be e w-rule of T iff
@ ' l;

(ii) each Q occurring in I' is not mapped to a variable in I;

(ii) I £ Q;

Given the TRS rule F(y) — 0, condition (ii) prevents the generation of the w-rule F(f2) — Q. Note that
{} is a constant in a w-rule not a variable.

DEFINITION 3.11. (w-TRS) Given a term graph rewriting system (A(X), R), we define its corresponding
w-TRS ta be (Tq(Z), Ry), where R, is obtained by generating the w-rules for each rule in {Unwind(l) — Q|
{— r€R}.

If R is the following set of rules:
{z=F(z1),z, =0} — {z=1}
{z =G(y)} — {z=0}
then R, consists of the rule:
F() — 2.

We will often refer to a redex in a w-TRS as a w-redez, and reductions in a w-TRS will be denoted by —».,.
ProposITION 3.12. —,, is strongly normalizing

Proor. Since the length of the reduction is bounded by the number of function symbols occurring in a
term. [J

ProPosITION 3.13. —»,, is confluent.

PROOF. Since a w-TRS is an orthogonal TRS. O

A normal form in a w-TRS will be referred to as a w-normal form.

DEFINITION 3.14. (w-FUNCTION) Given a w-TRS term M, w(M) denotes the w-normal form of M.

PROPOSITION 3.15. (MONOTONICITY OF w WITH RESPECT TO <t) Givenw-TRS terms M and N, if M <t N
then w(M) < w(N).



Relating Graph and Term Rewriting via B6hm Models 11

ProoF. Follows from the fact that each subterm of M that is mapped to a w-redex in N must either be
or a w-redex. O

We thus collect all the stable information contained in term graphs in a set called w-Trees.

DEFINITION 3.16. (w-TREES: SET OF OBSERVATIONS} The set of all observations is

w-Trees = {w(g) | for all term graphs g,k > 0}.
In order to guarantee that infinite chains in w-7rees have a limit, we apply the ideal completion method to
turn w-Trees into a complete partial order [19]. Given a partial order (A, <), a subset D is an ideal iff (i)

D is non-empty; (ii) for all e,b € D, there exists a ¢ € D, such that a < ¢ and b < ¢, (4ii) for all c € D, if
there exists d € A such that d < c then d e D.

DeFINITION 3.17. (BOHM DOMAIN: w-Trees™) The domain of observations, called w-Trees™, is the ideal
completion of w-Trees, that is,

w-Trees™ = {§| S C w-Trees and S is an ideal } .
The elements of w-Trees™ are called Béhm trees [10)].

DEFINITION 3.18. (PRINTABLE VALUE OF A TERM GRAPH) Given a term graph g, the printable value of
g is Print(g) = {a| o € w-Trees, a <t b, b€ {w(gk) | k > 0}}.

PRrRoPOSITION 3.19. Given a term graph g, Print(g) is in w-Trees™.

PROOF. (i) Since Q) € Print(g), Print({g) is non-empty. (ii) From the monotonicity of the expansions (Re-
mark 3.8) and the monotonicity of the w-function with respect to the <y ordering (Proposition 3.15) follows
that Print(g) is directed. (jii) It is closed downwards by definition. O

3.2. ANSWER OF A TERM

We define the answer or Béhm tree of a term graph as the collection of the printable information obtained
by reducing that term.

DEFINITION 3.20. (ANSWER OR BOHM TREE OF A TERM GRAPH) Given a term graph g, the answer of
g s
Print*(g) = U{'Print(h) | g —»n} .

EXAMPLE 3.21. Consider the term graphs g; and k, introduced at the beginning of Section 3. Since g; does
not contain any redex and each expansion is stable, we have:

Print(g1) = Print"(g1) = {£, cons($, ), cons(1, ), cons(1, cons(1,N)),---} .
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We reduce h; and at each step compute the stable information:
hh  — { z=cons(zy,z}), — { z = cons(zy,z}),
zy = F(z1),20 = 1} zy = cons{zy,x}),
.'B'l' = F(Ib’l),.'!:l = 1}

Print: {0} {2, cons(§2, ), cons(1, 1)} {92, cons(2,92), - - -, cons(1, cons(1, 2))}

In Print*(h;) we then collect all the printable information obtaining
{92, cons(Q, ), cons(1, 2), cons(1, cons(1, ©2)), cons(1, cons(1, cons(1,R))), - -} .
We can thus equate gy to hy. Instead, following [6] we would have concluded that the answer of g; is
{2, cons(£, ), cons(1,Q),- - -, {z = cons(1, z), in z}} .

While the answer of h; is the same as above. Each information in the answer of h; is contained in the

answer of g1, however, g; has more information, namely, the representation in terms of a cycle is part of the
cbservations.

In order to guarantee that the answer is well defined, that is, Print*(g) is in w-Trees™, we need to show that
the printable value is monotonic with respect to reduction. To that end, we extend the signature T of term
graphs with the constant €2, and we introduce an ordering, written as <., on term graphs, which captures
both the sharing and the prefix ordering. Intuitively, g <., & if & can be obtained from g by replacing 2 with
any other term or by increasing the sharing in g. The w-ordering captures what in the literature is known
as rooted homomorphism [8, 11, 32]. For example, we have

G G
Ié F gw Q ‘ éw D ? ﬂtt.-a ‘
\of g A pi A

We will then show that if g <, h then Print(g) C Print(h).
In the following, Fv(g) and Bv{g) denote the free and bound variables of g, respectively.

DEFINITION 3.22. (w-ORDERING: <} Given term graphs g and h, rooted at z; end zy, respectively.

g <u h iff 3 e function o from variables to variables such that:

(i) Yz € Fv(g), o(z) = z;

(i) Vz € Bv(g), if z = F¥(y1,---,3) ( F¥ # Q) in g then o(z) € Bv(h) and o(z) = F¥(o(y1),---,o(ys)) in
k;

(lll) 0‘(2’;) = 2a.

According to condition (ii) if z is bound to  then o(z) is arbitrary. Herein we assume @ =, Q.
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PROPOSITION 3.23. The w-ordering is a partial order.
PROOF. See [8].

PROPOSITION 3.24. Let z be a bound variable of g. If g | z is not a redez and g | z <, h, with h a redez,
then Print(g) = Print(g[z « 0Q}).

PROOF. Since g | z is a potential redex it means that all subterms in g, for any %, corresponding to z are
either {2 or w-redexes. Thus, w(gh) = w((g[z — Q))}), that is, Print(g) = Print(g[z — €]). O

PROPOSITION 3.25. (MONOTONICITY OF Print WITH RESPECT TO <) Given term graphs g and h, ifg <. h
then Print(g) C Print(h).

PRrooF. Let Z = {z | 2 € Bv(g), 2 is not a redex in g and o(z) is a redex in A}, with ¢ the substitution
induced by g <, h. We have

go[Z — Q) < hg .

Since (ga[Z « Q])° <t h§,i > 0, from the monotonicity of the w-function with respect to the <t ordering
(Proposition 3.15),

Print(galZ « Q]) C Print(h) .

The result then follows from from Proposition 3.24. O

PROPOSITION 3.26. (MONOTONICITY OF Print WITH RESPECT TO —») Given term graphs g and h, if
g — h then Print(g) C Print(h).

Proor. The proof is by induction on the number » of reduction steps. Suppose g — h, then h is g[z «~ k|,
for a term graph k. Since Print(g) = Print(g[z «~ §]), and g[z — Q] <, g[z — k]: from the monotonicity
of the Print function with respect to <, (Proposition 3.25) we have that Print(g) C Print(h). The result
then follows trivially from the induction hypothesis. £

PROFPOSITION 3.27. Given a term graph g, Print*(g) is in w-Trees™.

PRoOOF.
(i) Print*(g) is non-empty since it contains at least 0.
(i) We show that Print*(g) is a directed set, that is,

Va,b€ Print*(g), 3¢, such that a <t ¢ and b<c .

By definition of Print*, 3 g1, g2 such that, g —» g1, with a € Prini(g,) and g —» gy, with b € Print(gs).
By the confluence of —»,

393, g1 —»gaand g —» g3 .

By monotonicity of Print with respect to reduction (Proposition 3.26) we have that a,b € Print(gs).
The result then follows from Print(gs) being directed.
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(iii) Print*(g) is closed downwards by definition.
a

Using the notion of answer or Bohm tree, we can define an ordering on term graphs as follows.

DEFINITION 3.28. (EgT: ORDERING ON OBSERVABLE INFORMATION) Given term graphs g and h, h EgT
h iff Print*(g) C Print*(h). If g CgT h and h EgT g then g =g h.

If we want Print® to be our interpretation function, Print* will have to satisfy certain properties; that
is, the meaning will have to be preserved by reduction (soundness), and it will have to be compositional
(congruence).

THEOREM 3.29. (SOUNDNESS) Given term graphs g and h, if g —» h then g =gT h-

ProoF. Trivially, h Cg1 g. The other direction follows from the confluence of the system and from the
monotonicity of Print with respect to reduction (Proposition 3.26). O

The proof of congruence requires some more machinery. Since Print* equality deals with expansions of
terms, i.e., trees, it is natural that if a rule in a term graph rewriting system can distinguish between different
sharing of subterms, then Print* would not be a congruence. A way of assuring that =gT is a congruence
is to show that the behavior of C[g] can be inferred from the observations about g, where C[0] is a context,
as defined below.

DEFINITION 3.30. A contezt C[O} is a term graph defined over the signature & extended with a special symbol
a.

For example, {z = F(z,), ) = O} is a context; C[0] is the term graph obtained after replacing O by 0, that
is, C[0] is the term {z = F(z,),z; = 0}.

We want to show the following:

ve(q), Clsl =gT | J{CIBL(a)] | & € Print*(g)} (1)

where Print*(| | §) = {Print*(s) | s € S}, and Bl(a) represents the term graph obtained by assigning a
unique name to each subterm of a.

DEFINITION 3.31. Given a w-TRS term M, its corresponding term graph, written as BL{(M), is defined as
follows:

(i) BL(?) = Q;

{ii) Bl(z) = z;

(iii) BL(F*(My, -+, M,)) = {z; =BL(M)),-- -, 2, = BL(M,),z = F*(zy,--+,z,) inz} .

For example, if a is the term cons(1, cons(1,Q)), then B1(a) is the term graph {z = cons(zy,z2),2; = 1,20 =
cons(z3,x4), 73 = 1,34 = Q).
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Note that (1) can be considered as a syntactic version of the continuity of the context operation. In other
words, to get an approzimation of the answer of C[g] an approzimation of the answer of g suffices. In the
following, we show through examples that in that respect non-left-linear rules are discontinuous,

ExXAMPLE 3.32.
(i) Consider the following rule:

{z=0G(z1),21 =A(z)} — {z=1} .

Let g = {21 = A(z1), in 1} and C[0] = {z, = G(=z12),z2 = O, in z,}. Since Clg] — 1, we would
conclude that the answer of Clg] is {£2,1}. However, 1 can not be obtained by plugging in the con-
text any observation about g. g is not a redex and its expansions are stable, thus the answer of g is
{€,A(R2), A(A(R2)), - --}. Let us insert in the context C[O} any of the above observations: the answer of
C[9Y is 2 because C[f)] is not a redex but can become a redex. The same applies if we plug any other
observation of g in C[O]. That is, the answer of C[B1(a)] is 2, for any observation a of g.

(ii) Consider the following rule:

{z=Gz),m = Ay, )} — {z=1} .

Let ¢ = {z = A(z1,71),21 = B(0), in z} and C[D] = {z, = G(22),z2 = O, in z;}. The answer of g is
{Q,A(,Q),---,A(B(0),B(0))}. Let us plug the observation ¢ = A(R,Q) in the context, obtaining the
term graph C[Bl(a)] = {z1 = G(z2),z2 = A(z3,24),z3 = Q,z4 = O, in 71}. C[BL(e)] does not contain
any redex but is a potential redex, that is, by increasing its sharing it can become a redex. Thus, the
answer of C[B1(a)] is 2, the same applies for any other observation of g. While, C[g] — 1 and thus the
answer of C|g] is {,1}.

LEmMMA 3.33. (MONOTONICITY OF EgT WITH RESPECT TO <.) Given term graphs g and h, if ¢ <., h
then g Cpy h.
PROOF. By induction on the number of reduction steps we prove that

if g —» gy then 3h; such that h —» hy and Print(g,) C Print(h;)

Suppose g — g1. Let z; be o(z), with o the substitution induced by g <. k, and let k) be such that

h — h;. Let F = {s | o(s) = 21,5 # 2,5 not bound to Q}. Then, g;[F « Q] <. h;. Due to orthogonality,
1

each s € (F NBv(g;)) denotes either a redex or a potential redex in g;. Thus, from Proposition 3.24,

Print(g,) = Print(g,[F «~ Q)) .
It follows from the monotonicity of the Print function with respect to <, (Proposition 3.25) that
Print(g1) C Print(h) .
The result then follows from the observation that due to orthogonality any redex occurring in g but not in

F is still a redex in g[F « 0. Therefore, there exists a corresponding redex in h;. IJ

1 Private communications with Georges Gonthier and Jean-Jacques Lévy.
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THEOREM 3.34. Given a term graph g, | |{C[B1(a)] | a € Print*(g)} EgT Cldl-

PROOF. Let g —» h, and a € Print(h). We have

Bl(e) Sw h
Ci{Bi(a)] CgT C[h] (by the monotonicity of CRT with respect to <, (Lemma 3.33))
=pT Cly] (by soundness of =g (Theorem 3.29)) .
(]

In order to prove the other direction, that is,

vC[a), Clol Cp | {C[BL(a)] | a € Print*(g)}

we show:
(i) if g — h then the information associated to each expansion of k can be obtained by reducing an
expansion of g;

(i) not too much information is lost by applying w-reductions.
LEMMA 3.35. Given a term graph g, if g —» g1 then Vk,3i,B1(g") —» h and B1{g}) <, h.

PROOF. The proof is by induction on the number of reduction steps of g —» g,.
Suppose g —+ g1 by reducing the redex (7,z,¢). Let 7 be I — 7. Then, g, is g[z «— (r°)']. By definition of
expansions and due to orthogonality we have:

BY((glz +— (*)])*) <u BUg )21 — (r*)] -+ [za &= (r°")]
where:
(i) If we let o' be the substitution induced by Bi(g’) <. g, we have

{z1,--+,2n} = {w | w € Bv(B1(g*)) such that ¢'(w) = z and w is not bound to a} .

(i1) ¥4,1<5<n, z; is a 7-redex occurring in B1(g'). (The expansions are such that the pattern of a redex is
fully expanded. For example, if you have the rule:

{z =A(z1),z1 = B(y)} — {z=I(y)}
and the term
{z\ = A(z2), 22 = B(zy), inz1}

then we consider the expansions: A(B(f2)), A(B(A(B(R2)})),- -, but not A(B(A(f2))).)
(iii) Vj,1<j<n,o; is a substitution from { to B1{g*).
Since B1(g)[zy «~ (r"1)']--[zn + (r")'] is the result of a complete development of Bl(g') with respect to
F = {z1,--+,2,} (written as B1(g) — &), ¢* is the term we are looking for.

edu(F)
Suppose g —» ga1 — gn. We have that Vk, 3i such that

i k
— <uw hn
Bl{g,,) = h, and Bl(g;) <. h
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where 7 = {2, | #1(21) = z and z; a redex }, with oy the substitution induced by B1(g}_,) <. gn_. By
induction hypothesis, 35, such that B1(g’) —» h, and B1(g}_,) <o fn-1; let ¢’ be the induced substitution
function. Note that ¥z, € Fy, the corresponding node in h,_; is a redex. Let F| = {o(z;) | 21 € F,}. Each
z1 € Bv(BL(g}_,)) such that o'(z;) € F| either belongs to F; or is §. Therefore, hpy —— h!, and

edu(F])
In <o R, Subsequently, B1(g%) <, A!. O
COROLLARY 3.36. Given a term graph g, g =g7 L{BL(¢*) | k > 0}.

ProoF. We show that g Cg |I{B1(g*) | kK > 0}. Let a € Print*(g), that is, g —» g, and a € Print(g).
Let k,a <y w(g1fy). Thus, a € Print(B1(g,*)). From the above lemma, 3i,B1(g*) —» h and Bl(g,*) <., h.
From monotonicity of Print with respect to <, (Proposition 3.25), 2 € Print(h). Thus, e € Print*(B1(g*)).

The other direction follows from the monotenicity of Cgy with respect to the <, ordering (Lemma 3.33).
O

ExAMPLE 3.37. Consider the following rule:
{z =F(z1},71 =0} — {z =0}

and the term g = {z = F(z), in z}. Taking Print(g) = {1} guarantees that the behavior of a term is
determined by its expansions. Suppose we say Print(g) = {Q, F(22),F(F(R)},- -}, then g #g1 LI{B1(¢") |
i 2 0}. In fact, Print*(g) = {Q,F(Q), F(F(R)), -}, while Print*(B1(g)) = Q, for any i.

LEMMA 3.38. Given w-TRS terms M,N. If M —» N then BL(M) =gT BL(N).

PRrooF. Since B1(N} <, B1(M), the direction BL(N) Cg1 M follows from the monotonicity of EgT with
respect to <..

Let R be a set of term graph rules, and R, be the set of term graph rules associated to R, (that is, for
each w-rule ! — £ a name is associated to each subterm of I). RUR, is an orthogonal term graph rewriting
system and thus is subcommutative [8, 6]. Let B1(M) —» g, B1{N) and BL{M) —» p g. We want to show
that each information contained in g is obtained by reducting B1{N'). From the subcommutativity of RUR,;,

dh,g —> g, h and BA(N) —»p h .

Since Print(g) = Print(h) and Print(h) C Print*(BL{V)) we have BL{M) Egy BLN). O
THEOREM 3.39. Given a term graph g, Clg] Cg1 LI{C[B1(a)] | a € Print*(g}}.

Proor. Suppose Clg] —» h, we want to show that each information about h, say a, can be obtained by
plugging in the context some observation about g.

Due to the subcommutativity of a term graph rewriting system [6] we first reorder the reduction Clg] —» h,
in a way consisting of first reducing all redexes inside g and then reducing the redexes in the context; that
is,

Clg) — h=> 3¢, Clg] —» Clg’] and C[g']7h .
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where C[g’]?h means that Clg’] reduces to A without performing any redexes occurring in g'.
Let F be the set of all redexes occurring in g'. Due to the absence of overlapping rules we have

Cly'[F — Q) = Clgh] —» AiF — 9] .
Since for each z in F such that z € Bv(h), z is the root of a redex in k, we have that each information
regarding h is contained in h[F « Q]. That is,
a € Print(h[F — Q]) .

Thus, a € Print*(Clgg]). By Corollary 3.36, 3i such that a € Print*(C[gh]). Since 35,B1(Clgh)’) <.
C[Bl(ghj )], we have that a € Print*(C’[Bl(ghj)]). Moreover, by Lemma 3.38, w-reductions do not change
the meaning of a term. Therefore,

a € Print* (C[BLw(gh")))) .
0

COROLLARY 3.40. (CONGRUENCE OF =gT) Given term graphs g and k, if g =g h then
Clgl =g7 ClAl-

ProoF. Follows from Theorems 3.34 and 3.39. O

Notation: the restriction of the ordering <., to 0-free terms is called the less-sharing ordering, written as

Ssharing :

PROPOSITION 3.41. Given term graphs g and h, if g < h then

sharing
(i) if g — g, then there exzists term graphs gs, h; such that

h — h1,01 —» g2 and g2 Ssharing hy

(ii) if h —» h; then there exists term graphs g, such that
g—mn and L1} Ssharing hl .

Proor.
(i) By induction on the length n of the reduction g —» g;.

n=1. Let ¢ — g1 by reducing redex z. Let h; be the term obtained by reducing redex z, in h, with
71 = o(z), with ¢ the substitution induced by the ordering ¢ Ssharing h.Let F = {s ] o(s) = 1 }.
Since for each s in F, s denotes the root of a redex in g, let g2 be obtained by reducing all redexes
in F. We have: g; <., h; and g, —» g2 by the subcommutativity property.

n>1. Let g —» g’ in n — 1 steps, and ¢’ — g,. By induction hypothesis, 34}, g" such that

g — g",h— k] and g" Ssharing hy -
From the subcommutative property 3g;,

n—gandg’ —gyorg’' =g, .

If g2 = g" the result is proved, otherwise it follows from the induction hypothesis.
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(ii) Since each z € Bv(g) such that o(z) is a redex in k, z denotes a redex in g.

O

THEOREM 3.42. Given term graphs g end h, if g Ssharing h then g =gt h.

PROOF. From the monotonicity of g1 with respect to <. follows that g EgT h. The other direction
follows from Proposition 3.41(é7), and the fact that if g Zsharing " then Print{g) = Print(h). O

COROLLARY 3.43. All optimizations that do increase sharing in a program are totally correct.

4. Relation between graph and term rewriting

We want to explore if term graph rewriting is a correct implementation of term rewriting. A term graph
rewriting system is correct with respect to a TRS if the following two conditions are satisfied:

(i) each information obtained by reducing a term graph can be obtained by reducing an expansion of the
graph in the corresponding TRS;

(ii) each information obtained by reducing a term in a TRS can be obtained by reducing the term in the
corresponding term graph rewriting system.

We do not impose any restriction on the set of term graphs; that is, terms may contain cycles, however, their

expansions will be TRS terms.

In the next section we introduce the function BT which returns the Béhm tree of a TRS term. The function
BT defines a congruence relation on the set of TRS terms, moreover, in [1] we have also shown that the
interpretation function BT defines a stable model; that is, for any information, say a, of C[M] there exists
a minimum amount of information of M that is sufficient to derive a.

4.1. BOHM MODEL FOR ORTHOGONAL TRSs

Let (T(Z), R) be a TRS, with T(X) a set of first-order terms defined over signature £, and R a set of
rewrite rules. We restrict our attention to orthogonal TRSs, that is, the rules have to be non-overlapping
and left-linear. As in Section 3, to a TRS we associate a w-TRS=(Tq(X), R.), with R, the set of w-rules
associated to each rule in R. Next we define the answer associated to a TRS term.

Notation: to avoid ambiguity, TRS reductions will be denoted by —» {. As before, Ny is obtained by
substituting its redexes by 2.

DEFINITION 4.1. (ANSWER OF A TRS TERM OR I's BOHM TREE) Given a TRS term M, the answer of
M is BT(M) = {a | a € w-Trees,a <y w(Na), M —»N}.

Analogous to term graph rewriting system, we can show that the answer of a TRS term defines an
interpretation function. The proof methodology is the same as the one developed in Section 3, and most of the
proofs carry over to the TRS case. The only difference shows up in the proof of the continuity of the context
operation. In particular, we remind the reader that in proving that C[g] Cgy | |{C[B1(a)} | a € Print*(g)}
we made use of a property of reductions, namely that a reduction of the form C[g] — h can be re-ordered
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in a way consisting of first reducing all redexes occurring in g and then performing the rest of the reduction.
This property follows directly from the subcommutativity property of term graph rewriting systems without
overlapping rules. For orthogonal TRSs, due to the duplication of redexes, subcommutativity is lost. Thus,
we show in Section 4.3 that TRS reductions can be re-ordered in an inside-out manner.

4.2. SOUNDNESS AND COMPLETENESS OF TERM GRAPH REWRITING

Due to the presence of cycles, the translation of a term graph will not always produce a TRS term but a
possible infinite sequence of them. To define an infinite term we perform the ideal completion of {Tq, <t).

DEFINITION 4.2. (INFINITE TERM) The set of infinite terms, called TS, is the ideal completion of Tq.

DEFINITION 4.3. (ANSWER OF AN INFINITE TERM) Given an infinite term M, the answer of M is
Print (M) =J {BT(t) | t € M}.

PROPOSITION 4.4, Given an infinite term M, Print} (M) is in w-Trees™.

PRrooF. We show that Printl, (M) is directed. Let a,b € Print’ (M), then 3¢,,t, € M such that e € BT(¢,)
and b € BT(tz). Since M is directed, 3t3 € M such that ¢; <; t3 and &3 <t t3. Since BT is monotonic with
respect to <y, we have: BT(t,) C BT(t3) and BT(¢2) C BT(t3). The result follows from the fact that BT(t3) is
directed. O

DEFINITION 4.5. Given a term graph g, the corresponding infinite term is

g°={ala<ibaeTn be{g*|k>0}}.
PROPOSITION 4.6. Given a term graph g, g* is in T,

PRrRoOF. Trivial since Yk > 0,g* < g*+. O

The translation between a term graph rule and a TRS rule requires attention because the right-hand side
of a term graph rule may contain cycles. As such, the translation of a term graph rule may result in a set of
TRS rules. The translation of the left-hand side { of a term graph rule is obtained by unwinding 1.

ExAMPLE 4.7.
(i) The translation of the following term graph rule:

{z=Cy)} — {z = Alz1,¥), 21 = B(z)}
is the set of TRS rules below:
Cly) — X(w

X(y) — AX1y)wy)
X1(y) — B(X(y)
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Note that the second and third rule generate all the expansions of the right-hand side of the above term
graph rule.

(ii) The translation of the cyclic implementation of the Y-rule, which in term graph notation is expressed as
follows:

{z=Ap(Y, f)} — {z = Ap(f,2)}
is the set of TRS rules below:

Ap(Y,f) — X(f)
X(H  — Aelf,X(f)

DEFINITION 4.8. Given a term graph rule v : | — 1, with r rooted at = and {y1, -y} = Fv(r). The
translation of term graph rule T is:

TR(7) = {Unwind(l) — X (31, -, ¥k)} U Rezp(r) .

DEFINITION 4.9. Given a TRS rule T : 1l — 1. The corresponding term graph rule is:
Bly(r) = B1(l)) — B1(r)'

with B1({)'(B1(r)') denoting the renaming of the root of BL(1)(B1(r)) with a fresh variable .

Given a set of term graph rules R, let
Ry =U{TR{7) | 7 € R}
and
Rg = {Blr(r) | 7 € Ry} .

Note that Ry is a set of TRS rules, while Hg contains the corresponding term graph rules. We denote the
reduction relation on term graphs induced by Rg as —» Rp) while —» Ry denotes the reduction relation on
TRS terms induced by R;. Let 'Printgg(h) be the printable value of term graph A computed with respect
to Rg, and let 'Print}zg(h) be the answer of h with respect to Rg; that is, Print}ig(h) = U{'Printgg(hl) |
h— Rghl}. (We remind the reader that Print*(h) and Print(h) are computed with respect to a set of
term graph rules R.) The translation TR does not change the meaning of a term.

PROPOSITION 4.10. Given a term graph g, Print*(g) = U{'Print;zg(Bl(g" Nik >0}
Proor. Foliows from Corollary 3.36. O

The right-hand side of rules in Ry are acyclic, therefore, if g is an acyclic term graph and g —» Rg h, then
h is also acyclic.

PROPOSITION 4.11. Given an acyclic term graph g. If g —» Rg h then Unwind(g) —*Ry Unwind(h).
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Proor. The proof is by induction on the number n of reduction steps of ¢ —» Rg h. Let » = 1, that is,
9 —Rg h by reducing the redex rooted at z. Then Unwind(g) —» Ry Unwind(h) by a complete development
of all redexes corresponding to z. The result then follows from the induction hypothesis. O

DEFINITION 4.12. Given a term graph rewriting system (Ac, R.) its corresponding TRS is (A, R), where:
(1) A={a|ae€ g™ Vge A};
(2) R={r|r € TR(r'),Vr' € R.}.

DEFINITION 4.13. (SOUNDNESS) Given a term graph rewriting system A = (A.,R.) end its corresponding
TRS T = (A, R), then A is sound with respect to T, if Yg € A., Print*(g) C Print>, (g%).

DEFINITION 4.14. (COMPLETENESS) Given a term graph rewriting system A = (A., R.) and its correspond-
ing TRS T = (A, R), then A is complete with respect to T, if YM € A, BI(M) C Print*(BL(M)).

THEOREM 4.15. A term graph rewriting system A = (A., R.) is sound with respect to its corresponding
TRS.

Proor.
Print*(g) = U{'Print;!g (Bl(g')) | g* € g} (Proposition 4.10)
C U{BT(g%) | ¢' € 9=} (Proposition 4.11)
= Print,(9*) .
a

EXAMPLE 4.16.
(i) Consider the rule:

{z=i)} — {z=y} .
The reduction:
g={z=I(z)} — @
is sound because
Print*(g) = Print, ({Q, (2),((R)),---}) = {Q} .
(i1) Consider the rule
{z=A(y)} — {z=B(v)} .
The reduction
9= {z =A(2)} — {z=B(z)}

is sound because

Print*(g) = Print, ({2 A(Q), A(A(R)),--}) = {2, B(1), B(B(R)),--} .

THEOREM 4.17. A term graph rewriting system A = (A., R.) is complete with respect to its corresponding
TRS.
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PROOF. Let a € BT(M), that is, 3N, M —» N and e < w(Ng). By induction on the length n of the
reduction M —»N we show that a € Print*(B1(M)).

n = 0. Since a € Print(B1(M)), then a € Print*(BL(M)).
n>0. Let M —¢ Ny and N} —»¢ N in n — 1 steps. We have

B1(M) — M, and B1(Ny) <. M, .

By induction hyphothesis a € Print*(B1(Vy)). By monotonicity of EgT with respect to <, (Lemma
3.33):
a € Print*(M,) .

Follows from the soundness of =gt (Theorem 3.29) that ¢ € Print*(B1(M)).

0

COROLLARY 4.18. The cyclic implementation of the Y rule is totally correct.
4.3. INsIDE-oUT REDUCTION

We show completeness of inside-out reductions for TRSs by lifting the TRS reduction in the term graph
rewriting world, finding the corresponding inside-out reduction and then projecting the reduction so obtained
back to the TRS world.

Let us first show that inside-out reductions are complete for term graph rewriting systems containing
acyclic terms and right-acyclic rules only (i.e., the right-hand side of a rule does not contain a cycle), hereafter
called acyclic term graph rewriting systems. Intuitively, an inside-out reduction consists of reducing a term
in a bottom-up fashion. Consider the following rules:

n:{z=0Gk} — {z=0} 7 {z=H(@y)} — {z=y}
i {z=Dy2)} — {z=y} T {z=Fu)} — {z=D(y,y)}
and the following term:
{ T = H($2)1
Ty = D(z3,14),
I3 = G(O),
4 = F(0),
in Il}

The reduction consisting of redexes z3, 74, z2, 1, will be an inside-out reduction, analogously for z4, z3, Z2, T1
or 73, z;. However, ;, %4, is not an inside-out reduction, because after having reduced redex z, we reduce
the redex z4 which is below z;. Notice that a reduction of newly created redexes only is inside-out.

Notation: given a term graph g and redex z occurring in g, we denote as n the corresponding node in G(g),
where G(g) is the graph associated to g (see [1]).

DEFINITION 4.19. (ORDERING ON REDEXES) Given a term graph g and two distinct redezes z,,z, occur-
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ring in g. We say z) « z3 in g iff 3 a path in G(g) from n., to n.,. We denote the transitive closure of <
with €%, and the reflexive and transitive closure of <€ with <".

Notice that in a cyclic term two redexes 2; and z could be such that z; «* z, and zp <t 2.

DEFINITION 4.20. (INSIDE-OUT REDUCTION)
Let A be the reduction gg — gy — -+ g; — -+ — §j — -+ — gn. A is said to be inside-out,
20 =

21 i =1
written as g1 —» gn, iff Vi,j, 0 S i < j < n, z; is not a redez occurring in g;, such that z; €+ z;.
1w

THEOREM 4.21. (COMPLETENESS OF INSIDE-OUT REDUCTION FOR ACYCLIC TERM GRAPH REWRITING)
Given an acyclic term graph rewriting system. If g —» h then there exists a corresponding inside-out reduc-

tion, g —» h.
10

Proor. The proof is by induction on the number n of reduction steps of g —» h.
The base case is trivial. Suppose it holds for n—1, and let A be the reduction

gz—ﬂ'gl?"'—'gs—;’"'gj—:'*"'—’gu .

Let z; be an internal redex in g, that is, a redex in g such that Aj # i, z; <+ z;j. Let A7 be the reduction g —]
hy, and A\ A} be the projection of A with respect to A}, which is well-defined due to the subcommutative
property of term graph rewriting systems. Due to the non-duplicative property of term graph rewriting
systems [6], we have that the length of the reduction A\ Aj is less than the length of A; therefore, there
exists an inside-out reduction, called A3, of A\ A]. We define A* to be the reduction A}A$. Since 2 is an
internal redex, A* is an inside-out reduction, [J

The completeness of inside-out reductions does not necessarily hold for confluent term graph rewriting
systems with overlapping rules, as shown in the example below. Given the rules:

T {z=Fm),z1 =6(y)} — {z=mz}
2 : {z =G(y)} — {z=y}
131 {z =F(y)} — {z=Fz1),721 = G(y)}
The following reduction does not have a corresponding inside-out reduction,
{z1 = F(z2), 22 = G(y)} T la=6)—y.

The problem lies in the fact that a redex is not guaranteed to remain a redex. For example, by performing
redex z; first, z; is not a 7 -redex anymore.

Notation: M —»¢ M' denotes an inside-out TRS reduction, which can be defined as in Definition 4.20.
10

THEOREM 4.22. (COMPLETENESS OF INSIDE-0UT REDUCTION FOr TRS) Given a TRS, if M — N,
then AM', such that M —wy M' and N —¢ M'.
10

PROOF. From Proposition 3.41 and Proposition 4.11 we can construct a term graph reduction such that

B1(M) —» g and N —» Unwind(g) .
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We reorder the above term graph reduction in an inside-out manner (Theorem 4.21). The reduction so
obtained is projected in the TRS world (Proposition 4.11). This final reduction is inside-out because the
unwinding preserves the ordering among redexes. O

Note that the stronger result: M —»y N => M —»; N does not holds. Consider the TRS rules:

A0y —1
F(z) — G(z,z)

then the following reduction can not be ordered in an inside-out manner:

F(A(0)) — G(A(0),A(0)) —t G(A(0),1).

Conclusions

We have presented the semantic properties of orthogonal (cyclic) graph rewriting and shown the correctness
of graph rewriting with respect to term rewriting. The motivation for this work came from a desire to
formalize the operational semantics of languages such as Id [28] and pH (a parallel variant of Haskell [20]).
These languages depart from purely functional languages by allowing a restricted form of assignment, namely
the creation of an unbound variable which can be defined later on. (In a purely functional language a variable
is given exactly one binding or definition at creation time.) This, however, comes at the cost of destroying
referential transparency, that is, the definition of an identifier can not be substituted for each occurrence of the
identifier in an unrestricted manner. As such, these languages need a precise treatment of sharing. A term
graph rewriting constitutes a suitable intermediate language for the compilation of the above mentioned
langnages. Moreover, we can express optimizations in terms of source-to-source transformations on the
intermediate language. The term model developed in this paper provides the right criterion for expressing
the total correctness of these optimizations. In particular, we are able to show total correctness for the
optimizations that increase the sharing in a term and for the cyelic version of the Y-rule.

The author is currently working, in collaboration with Jan Willem Klop, on extending the work to include
A-abstraction. We would also like to provide a theory that covers multi-rooted rules. Multi-rooted rules are
needed to express side-effect operations. This would provide a sound mathematical basis for Id and parallel
Haskell. It would also be interesting to investigate the suitability of term graph rewriting systems as an
intermediate language for other classes of languages, such as imperative languages.
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