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A calculus and a model for a first-order functional language with sharing is presented. In most implementations
of functional languages, argument subexpressions in a function application are shared to avoid their repeated
evaluation. Recursive functions are typically implemented using graphs with cycles. Compilers for these lan-
guages sometimes employ non-left-linear and left-cyclic rules for optimizations. A Graph Rewriting System
(GRS) to address these concerns is developed. It is shown that a GRS without interfering rules is confluent.
Along the lines of Lévy's term model for the A-calculus, a semantics of such a GRS is also presented. An

application of the term model Lo compiler optimizations is discussed.

1. Introduction

Sharing of subexpressions is of utmost importance in the implementation of functional languages. Consider
the function definition F £ = z+z and the expression F(2+3). Any decent implementation, independently of
the evaluation strategy (normal-order or applicative-order) it employs, will evaluate the subexpression 2 -+ 3
only once. Several compiler optimizations are about increasing the sharing of subexpressions to avoid their
repeated evaluation. In this paper, we discuss the syntactic and semantic properties of a calculus, which is
adequate for capturing the sharing of subexpressions in first-order functional languages. The results of this
paper are also relevant to compiling higher-order functional languages, because compilers of such languages
often employ a technique known as “lambda-lifting” [13]. The program that results after lambda-lifting is in
a “supercombinatory” form, and is treated as a first-order program [12].

A way to capture sharing is to represent the expression as a graph instead of a linear text string or tree. This
allows sharing of identical terms through pointers, and avoids repeated evaluation of identical terms as it is
commonly done in normal-order reduction. Graph reduction for the A-calculus was proposed by Wadsworth
in order to bring together the advantages of both the applicative and the normal order evaluation [20)].
Wadsworth also formally proved the correctness of his graph reduction technique. As an aside, Wadsworth
also showed that his graph reduction did not capture enough sharing to lead to an optimal interpreter. More
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recently a new graph structure, which allows sharing of “contezis”, has been proposed in [14, 17]. This latter
technique leads to provably optimal interpreters for the A-calculus [18]. In this paper, however, we are not
concerned with optimality questions, and we restrict our attention to “argument sharing” in a language
which is simpler than the A-calculus.

Much of the past work on graph rewriting has been to prove its correctness with respect to either the
A-calculus [20] or Term Rewriting Systems [7, 8, 9, 16]. In contrast, this paper explores graph rewriting as
a system in its own right, and makes no attempt to prove the correctness of a graph implementation with
respect to a “tree (or unshared) view” of the computation. Motivated by what we have observed in real
implementations of functional languages, we explore syntactic and semantic properties of graphs with cycles,
and rewriting rules that recognize or create cycles. In this respect our calculus goes farther than either [20]
or [8] where only acyclic graphs are considered. Without cyclic graphs some important implementation ideas
are ruled out. More recently, Klop et al. [15] have extended the Barendregt’s graph rewriting system to deal
with cycles. However, their approach is significantly different from ours in that they model cyclic graph
rewriting as “transfinite reduction” of infinitary graph terms.

In the following, we formally introduce a Graph Rewriting System (GRS). The basic feature of a GRS is
the block construct, i.e., letrec. A block in a GRS is not treated as syntactic sugar for application; it is central
to expressing the sharing of subexpressions. Our GRS includes cyclic terms and permits both non-lefi-linear
rules and lefi-cyclic rules. We prove that in the absence of tnterfering rules a GRS is confluent. This is a
more general result than the confluence theorem in [15]. We think that our approach also leads to a simpler
proof of confluence than in [15].

We also develop a term model for a GRS without interfering rules along the lines of Lévy’s term model for
the A-calculus. We introduce the notion of “information content” associated to a term, and show that the
information content defines a congruence on the set of terms. This result can be applied in a straightforward
manner to show the partial correctness of those optimizations that simply increase the sharing in a term.
An example of such an optimization is the common subexpression elimination. Moreover, the result implies
the partial correctness of the cyclic implementation of the Y-rule.

The paper is organized as follows: In Section 2, we introduce graph rewriting taking combinatory logic as
an example, and compare our notation with that of Barendregt’s [8]. We formally describe GRSs, in Section
3. We introduce an ordering on terms based on sharing of subterms, and formulate the notion of a redex
using this ordering. In Section 4, we introduce GRSs without interfering rules and prove their confluence.
Section 5 gives a term model for non-interfering GRSs. In Section 6, we apply the results of Section 5 to
prove the correctness of some compiler optimizations, while in Section 7 we discuss directions for future
work.

2. An Example: A Graph Rewriting System for Combinatory Logic

Given the TRS rule F(x) — G(z, z), the term F(+(2, 3)) can be rewritten to G(+(2,3),+(2,3)). That is,
the term +(2,3) is substituted for each occurrence of the variable z on the right-hand side of the above rule,
and is thus, duplicated. A graph rewriting system avoids this duplication of work by substituting a pointer
to +(2,3) for each reference to variable z, as depicted below:
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Our formalism for expressing graph rewriting is based on the observation that a natural way to represent a
graph textually is to associate an identifier to each node of the graph, and then write down all the intercon-
nections as a recursive let-block. Equivalently we can say that we associate a name to each subexpression of
a term. For example, the above term F(+(2, 3)) will be expressed as

{ t = +(2r3)a
to = F(il);
In t'_w} 5

In applying the above rule, the name ¢;, and not the expression +(2, 3), will be substituted for each occurrence
of z, leading to the term

{ ty = +(2,3);
iz = G(t[,tl);
In tg} .
The substitution of an expression such as 4(2, 3) is not permitted to avoid duplication of work. Only when

+(2,3) becomes a value, i.e., 5, it can be substituted for each free occurrence of ¢;. Therefore, we think that

an essential feature of a language io model sharing is a recursive lel-block construct with a suilable notion of
substituiable values.

The syntax of GRS terms is given in Figure 1. Superscript on a function symbol indicates its “arity” i.e.,

SE € Simple Expression
E € Expression
F* e F*
Constent € F¢
SE := Variable | Constant
E = 8B

| F*(SE\,- -, SEy)

| Block

|
Block = {[Binding;]* In SE}
Binding u= Variable=F
Term = FE

Figure 1. Syntax of terms of a GRS with signature F

the number of arguments it is supposed to have; constants are assumed to be function symbals of arity 0.
Throughout this paper we consider constants to be (in implementation parlance) “unboxed”. Thus, they are
never shared and are freely substitutable. “Boxed” values can be modeled in a straightforward manner by

wrapping a function symbol of arity one (say, called Box) around a value. The textual order of bindings in
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a block is not relevant, and the variable names on the left-hand side in a block must be pairwise distinct.
Furthermore, for technical convenience we make a stronger assumption, that is, no variable name can be
defined more than once regardless of its lexical level. 2 is a special term whose significance will become
clear when we formally define the notion of a redex in Section 3. Next we informally present the GRS for
combinatory logic, and relate our GRS notation to Barendregt’s [8].

roof; tAp =~ ————— root, : Ap

nj:Ap ny Ap

Figure 2. Graph rule for the S combinator

Consider the S rule:

Ap (Ap (AP (S, 2), ¥), ) — Ap(Ap(z, 2), Ap (v, 2))

which is shown in Barendregt et al. graph notation in Figure 2. Intuitively, applying this rule consists
of allocating three new nodes, rooty, n} and ni, corresponding to root,, n; and nq, respectively, (build
phase) and redirecting all the pointers to the redex node (i.e., the node matching root;) to the node rootl
(redirection phase). Notice that the redirection phase does not affect the graph matching the subgraph ¢ =
Ap (Ap (S, =), y) (included in dotted lines in Figure 2), thus we call the subgraph g the precondition of the
above rule. In order to represent the right-hand side (i.e., rhs) of the S rule textually we simply write down

the graph rooted at root, as a recursive let-block. Thus, the Sg rule, that is, the S rule in GRS notation,
can be written as follows:

xy =Ap (z2, z2) ; za=Ap (S, z3)

z=Ap (21, 2) — z={t, = Ap(z, 21);
ta = Ap(z, a);
t = Ap(ty, ta);

In £}

Variables, such as £;,{» and {, that occur on the rhs of the rule but not on the lhs or in the precondition,
generate new corresponding variables for each application of the rule.

Similarly the Kg rule, that is, the K rule in GRS notation is expressed as follows:

ry = Ap(K, z2)

z=Ap(z), 1) — 2=2
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build phase

Py .
- u

to be garbage

matches the

precondition instantiation of collected
of the rule therhs of the rule
{ wy : 2P (s, P)c; ‘ — M= {wv1=Ap(5 P) Sa {w1 =Ap(S, P); =a {w; = Ap (S, P);
EARE SR - wy = Ap {wy, Q); wy = Ap (w1, Q); ¢} = Ap (P, R}
S elio] wi={ t; = Ap (P, R); t; = Ap (P, R); t, = Ap (Q, R);
A t; = Ap (Q, R); t; = Ap (Q, R); t' = Ap(t], thh
wy =G (wy, wa); t'=Ap (1, 1) t'=Ap(ty, t3); wy =G (uy, t');
Inwy} Int'} uy = G (w, ') Inwy}
wy =G (wy, ua); Inw)
In g}

Figure 3. Graph reduction and its corresponding GRS reduction

In Figure 3 we show the graph reduction in Barendregt notation and our notation using the following

term:

wy = Ap(S, P);

wr = Ap(wy, Q)

wy = Ap (w2| R)v
e ——rt

M={

P
wy = G(w, ws);
Inwg} .

Intuitively, the two bindings in the box inside M match the precondition and the subterm p matches the lhs

of the Sg rule according to the following substitution:
z=wy, sy =wr, Ta=w, 23=P, 22=Q, 5 =R .

Since wj corresponds to z, it is called the root of the redex. Using the above substitution an instance of
the rhs of the Sg rule is created. It introduces fresh copies for the bound variables of the rhs of the Sg rule.
This step corresponds to the build phase of the Barendregt system. Subsequently, variable w3 is bound to
the newly instantiated term. Thus obtaining M,. This rebinding of ws corresponds to the redirection phase
in Barendregt. M is then canonicalized by flattening blocks and substituting variables and constants in M.
The introduction of fresh variables during the instantiation of the rhs of a rule removes the need to rename
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variables when blocks are flattened. There is one more step called the garbage collection, that is, the deletion
of nodes that are not reachable from the root. Thus, the definition of variable w4 is eliminated because it is
no longer reachable from node wy. The term M is said to rewrite to the final term so obtained. Notice that
the final term is indeed the term corresponding to the rightmost graph in Figure 3.

There is, however, a subtle difference between the two systems which shows up in the presence of “pro-
jection” rules and cyclic graphs. For example, given the rule £ = Il(y) — z = y, and the cyclic term
M={t=1@); Int}, M — M, following the Barendregt system, while M — {t = {; In 1}, following
our system. As explained later {¢ = ¢; In t} becomes @, a symbol which represents a “meaningless” term.
This difference has a strong impact on the confluence of GRSs. We will further clarify these issues after
introducing GRSs formally in Section 3.

3. GRS: Terms, Rules and Reduction
3.1. GRS TERMS

DerFINITION 3.1. (GRS TERM) A GRS term over signalure F = FOU F1 U -.. is defined induclively as
Jollows:
(i) a variable z is a term;
(i) a consiant ¢, where c € F°, is a term;
(iii) Q is a lerm;
(iv) F¥(ys,- -, ue) is a term if Vi, 1<i<k, u; is either a variable or a constant, and F* € F*;
(v) {z1=¢€1;--;2p = €p; Inz} 15 a term of
(v.1) ¥i,1<i<p, z; is a variable and ¢; is a lerm;
(v.2) x is either a constant or a variable;
(v.8) Vi,j,1<i<j<p, =i £ z;.
The order of bindings in a block term is trrelevani.

Clause (v.3) prevents multiple definitions of a variable; for example, {z = 3; z = 4;---In z} is not a legal
term. For technical convenience we assume that if the main term M is of the form F¥(y;, .-+, ) or Q then
M has a name associated to it, that is, M = {t = M; Int}. We also assume that {Inz} = z.

DeFINITION 3.2. (ROOT OF A TERM) Given a GRS term M, the rool of M, Root(M), is :
(i) M, if M is either a constant or a variable;

(11) @, if M is {z1=e; - 2p = ¢p; Inz}.

DerFiNiTION 3.3. (FREE VARIABLES OF A GRS TERM) The set of free variables of a GRS term M, FV(M),
15 defined inductively as follows:

(1) FV(z) = {z};

(1) F¥(c) = §;

(113) FV(Q) = 0;

(iv) FV(F¥(sn, -« me)) = ULFV(w) | 1<i<k);
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(v) F¥({z1= 15+ 12p = €55 Inx}) = (U{FV(es) | 1 < i S pUFV(z)) — {1, -, 35},
where — is the set difference operator.

DEFINITION 3.4. (BOUND VARIABLES OF A GRS TERM) The set of bound variables of @ GRS term M,
BY(M), is defined inductively as follows:

(1) BY(z) = 0;

(ii) BY(c) = 0;

(iii) BY(Q) = 0;

(iv) BY(F(y1, -, ) = 0

() BY({z1 = e1; -+ 525 = 5 In z}) = {21, -, 7} U (U{BV(e:) | 1S i <p)).

DEFINITION 3.5. (VARIABLES OF A GRS TERM) The set of variables of a GRS term M, Vaxr(M), is defined
as FY(M) UBV(M).

DEFINITION 3.6. (CONSTANTS OF A GRS TERM) The setl of constants of a GRS term M, Constants(M),
is defined inductively as follows:

(i} Constants(z) = ¥;
(ii} Constants(c) = {c};
(iii} Constants(Q) = §;
(iv) Constants(F*(y,---,u)) = [J{Constants(y;) | 1<i<k});
(v) Constants({z; = ey;---;zp = &p; Inz}) = (U{Constants(e;) | 1 <i<p}) U Constants(z).

For technical convenience we will assume the following variable convention.
VARIABLE CONVENTION:

i.) all bound variables of a term are distinct;
ii.} all bound and free variables of ¢ term are distinc.

The following two terms are illegal because of this variable convention.

{z={ y=+(w,w) {z={2=+(wuw)
In y} Inz};
w = +(y, z); w=+(y,z);
In w} In w}

DEFINITION 3.7. (SUBSTITUTION OPERATION) Given a GRS term M, y € (Variable U F°), and z €

Variable such that {y,z} € BV(M), the substilulion of y for each free occurrence of z in M, wrillen as
M(y/z], is defined inductively as follows:

(i) z{ly/z) = y;
(i) zly/zl =y, ifz #2;
(i) cly/z] = ¢;
(iv) Qy/z}=Q ;
(v) F¥(ys, - we)ly/ =] = FE(ly/z], - - wely/2));
(vi) {z1 =ex;---52p = ep; In z}[y/2] = {z1 = ery/z];- - s 2p = ply/2]; In z[y/z]}).
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3.2. CANONICAL FORMS OF TERMS

Consider the following terms:

{z=8; { z=8; { w=+(8,8);
z={ y=ux; ¥ =z In w}
w = +(z,y); w = +(z,y);
In w}; In w};
In z}

These terms have different syntactic structure, however, we consider this difference merely syntactic noise.
While the following terms:

{ W=+(zly); { w=+(11,y1);
In w}; In w}

which differ only in the reference to the free variables will not be considered the same. We also consider the
following two terms to be distinct because {2 is not a “substitutable value”:

{ z=F(y,2); { z=F(y.v)
y=Q y=14;
r= In z}

In z}

We introduce the following rules to compute the canonical form of a term.

Block Flattening rule:

{z={n=e;ym=e; {z=w
In y}; — NS Ym = e
Ty =€y o T = ep; zy=ey; 0 Tn = en;
In z} In z}
Substitution rules:
{mi=e;-z=¢--zn=en; Inz} — {2y =¢[c/z]; - -zn = exlc/z]; In z[c/z]} ceg F°
{z1=ey;- 2=y zn=en; Inz} — {z)=ey/z];-- 25 = eafy/z]; v 2{y/z]} tEy

{mi=e;-x=z;--zn=¢€p; N2z} — {z1=¢1[0/z]; - -z, = ea[0/z]; In z[®/]}

where @ is a special constant. These rules formalize the notion of a substitutable expression, and say that
only constants and variables (provided = and y are distinct variables) can be substituted freely. Moreover,
note that a binding like = y or £ = c is deleted after the substitution. If we encounter a degenerate binding
like £ = = then we substitute the special constant ® for . Disallowing such bindings does not help because
they can arise as a consequence of doing a reduction. In fact, as pointed out in Section 2, given the rule
z = l(y) — z =y, the term {z = [(z); In z} will go to ©.

DEFINITION 3.8. (CANONICAL FORM) Given & GRS term M, the canonical form of M is compufed using
the following two steps:
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1. Flatten all blocks in M using the Block Flattening rule. Then apply the Substitution rules 1o the term as
many times as they apply. Let the result be M.
2. Eliminate the garbage, that is, the sublerms of M thal are unreachable from the rool of M. Let ihe result

be Ge (7).
ProprosITION 3.9. The canonical form of a GRS term M always exisis and is unigue,

PROOF. Since there are only a finite number of blocks in M, and an application of the Block Flattening
rule eliminates one block without creating a new one, the Block Flattening rule can be applied only a finite
number of times. The final flattened term is unique since the Block flatiening rule has the diamond property.

There are only a finite number of bindings of the form 2 = y or £ = ¢ or z = = in the flattened term. Each
of these bindings can be eliminated in one substitution step without creating a new binding. Furthermore,
because of the third substitution rule (i.e., the introduction of ®), the substitution rules also have the

diamond property. Hence M exits and is unique. GC{M) is unique by the definition of garbage collection. O

Renaming rule:
{z1=e1;-i3p = g5 Inz} — {x1 = e1[j/z;]; -5 2f = ej[xf/z5); - -5 2p = ep[2] /5] In [z} /25])
where 2} is a new variable. The renaming rule is similar to the a-renaming in the A-calculus.

DeriNiTION 3.10. (o-EQUIVALENCE) Given GRS terms M and N, M and N are said 1o be a-cquivalent,
wrillen as M =, N, iff G¢(M) = 6c(N) up to renaming.

The canonicalization rules plus renaming do not affect the “graph” associated to a term, in other words, all
a-equivalent terms will correspond to rooted isomorphic graphs.

3.3. GRS RULES

DeFINITION 3.11. (GRS RULE) A GRS rule T is a sel of precondilions, x, = €1,--+,%, = €5, and a lefi-
hand side, I, and a right-hand side, r, and is writlen as:

Iy =€, Ty = €p

z=l — z=7r

where:

(i) the pattern of rule v, {xy = ey;-- -z = e5; = =1; In 2}, is a block-term in canonical form, and | & Q;
(i) r is a term such that FV(r) C Var({z; = €1;+- 24 = €,; z =1{; In z}).

The patiern of rule T 15 denoted by P(7). The term v is called the right-hand side of the rule and is denofed
by RHS(7). The free variables of the patiern of v are called the meta-variables of rule r.

Notice that restriction (i) makes it impossible to give a GRS rule to rewrite a constant or a variable. In
general, a GRS rule does not contain any {s.

DEFINITION 3.12. (GRS) A GRS is a structure (A(F), R), where A(F) is the set of GRS terms defined
aver signature F, end R is e sel of GRS rules.
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DEFINITION 3.13. (LEFT-LINEAR RULE) A GRS rule 7 is said to be lefi-linear iff Yy € Var(P(r)), y is

referenced al most once in P(1).

DEFINITION 3.14. (LEFT-ACYCLIC RULE) A GRS rule 7 is said o be lefi-acyclic iff Yy € BV(P(T)), y is
nol reachable from itself in P(7). Otherwise the rule is said to be a left-cyclic rule.

The rule, £ = A{z) — z = 0, is an example of a left-cyclic rule. Notice that a left-cyclic rule is always
non-left-linear.

3.4. IDENTIFYING REDEXES AND w-ORDERING

There are subtle issues involved in identifying redexes in a term. Consider the following two rules:
z) = F(0); =2 = F(0) 21 = F(0)

e = G(zy,z2) — z=0 ™ z=0G(zy, ) — z=0
and the following two terms:
ME{h:F(O); NE{h:F(O);
t2 = F(0); ta = G(ty, 11);
ta = G(tl,tg); In tg}

In ta}

On the basis of the intuitive description given in Section 2, we can undoubtedly say that 7, matches M,

£

with substitution “z = t3,z; = t,z9 = 12", and ™ matches N with substitution “z = {s,2; = {,”. Does
rule 7; applies to N7 or does rule 72 applies to M? Rule 1, does indeed apply to the term N by matching
both the preconditions to the same binding, that is, by the substitution “z; =1;, 22 = 1,,x = {,”. However,
there is no variable substitution that can make 7 applicable to M. Thus, the preconditions of a rule can be
satisfied by overlapping bindings, moreover, the left-hand side of a rule can also overlap its precondition, as
shown in the following example. Consider the rule

z; = G(y)

t=G(zy) — z=0

and the term M = {t = G(); Int}. The substitution “z =1,z; =,y =" makes G(f) both a redex and its
precondition! We can capture the notion of a redex in terms of an ordering on terms.

DEFINITION 3.15. (w-ORDERING: <.,) Given GRS terms M and N in canonical form, M <, N iff 3 a
function o :

Var(M) U Constants(M) — Var(N) U Constants(N)

such thai:
{i) ¥c € Constants(M), a(c) =¢;
(ti) Yz € FV(M), o(z) = z;
(iii) Yo € BV(M), ifz = F*(yy,- -, y&) in M then o(x) € BY(N) and o(z) is bound to FE(o(w), - -, o)) in
N;
(iv) g(Root(M)) = Root(N).
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o is called the substitution funciion induced by the ordering.

Notice that according to condition (éii) if z is bound to Q then = can be mapped to any variable or constant
in N. Intuitively, M <, N if N can be obtained from M by replacing Q with any other term or by increasing
the sharing in M. This is a generalization of the ordering on TRS terms introduced by Huet and Lévy [11].

ProprosITION 3.16. The w-ordering is a partial order with € as the leasi element.

Proor. See [5]. O

The following examples may enhance the reader’s intuition about w-ordering.
Consider the following acyclic terms:

My = {z) = G(z2, 22); 22 = F(0); Inz,}

My = {1 = G(z2, za); z2 = F(0); z3 = F(0); In z,}

M3 = {z) = G(z2,x2); 2 = Q; In 2,}

Ms = {z1 = G(z2,23); 22=Q; 23 =Q; Inx,}

Notice that Ma <, My, M3 <, My, and My is <, M,, M2 and Ma. However, M» and M3 are not related.
Now consider the following cyclic terms:

Ny ={z1 =F(zy); Inz,}

Na = {z1 = F(z2); za = F(zy); In z,}

N3 = {2, = F(z2); z2 = F(xa); 3 = F(x)); In 21}
Notice that Na <, Ny and N3 <, Ny but N+ and N3 are not related.

We use w-ordering as follows in defining a redex. We bind all meta-variables of a rule to . Such a term
is called the closure of e rule, If term p is the closure of rule r then a term M is said to be a 7-redex if
pP<o M.

DEFINITION 3.17. (CLOSURE OF A RULE} Given a GRS rule 7, where P(r) = {21 = €1} - 2o =€; T =
l[; In 2}, the closure of , wriltten as CI(t), is the term {y;, = Q; - -y
I, Inz}, where {g1, -+, ym} = FV(P(7)).

Q; 2y =e15:--Tp = €57 =

DEFINITION 3.18. (SUBTERM ROOTED AT z;) Given a GRS term M = {21 = e1;---zy, = en; In =} in
canonical form, and x; € BV(M), the sublerm of M rooled at z;, wrilten as M@z, is the term GC({z, =

ey xp = eg; Inz;}).

DerFINITION 3.19. (REDEX) A redex in a GRS term M in canonical form is a iriple (1,z,0) such thai:
() 7 is ¢ GRS rule;
(i1) z € BV(M), such that Cl(t) <, M@z;
(111) o 1s the substilution induced by Cl{7) <, M@z,
z 15 said 1o be the rool of the redez. If z = Root(M) then M itself is said to be a redexz.
The set coniaining the rools of all rederes in M is denoted by R(M).
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For example, consider the following rule:
T: z=06G(y,y)—2z=0

and the term M = {z = G(zy, 21); 21 = F(0); z2 = H(z); In 22} which has the following graph:

i E T redex
O
i

0

M@: is a redex because Cl{7) = {y=Q; £ =0G(y,y); Inz} <, M@z,

DeFINITION 3.20. (DISTINCT REDEXES) Two redezes py = (1y,21,01) and ps = (72, 22,02) in a GRS term

M in canonical form are said o be distinct if 7, # T2 or 2) # za.

3.5. REDUCTION

In Section 2 we have explained informally that a GRS reduction consists of first making a copy of the
right-hand side of the rule, and then replacing the root of the redex with that copy. Therefore, we introduce
the notion of an instance of a term M for a given substitution o, and the operation of replacement. An
instance of M is created by substituting o(z) for each free occurrence of variable z in M, and by renaming
each bound variable of M.

DEFINITION 3.21. (INSTANCE OF A TERM) Given a GRS ferm M in canonical form and a substitulion ¢,
an instance of M, writlen as M°, is defined mductively as fellows:

(i) *° = o(x), where ¢ is either a constani or a variable;

(ii) Q° =Q;

(i) F¥(yn,- - m)” = FR(uf, -, 9);

(w) {mi=e; = {2y =(al)/n] - [z3/2,]);

Tp = Ep; T, = (ep[-""l/mll“'[ﬂ-',',/“’p])d;

Inz}? In (:B[-‘Bﬂ/xl]"'[m;:/xp])a}

where x},1<i< p, are new variables.
The above definition does not depend on the order of the substitutions because z{ & Var(M).

Given a rule 7, and a redex (7, z,¢) in M, the reduction step consists of replacing the term bound to z by
(RMHS(7))? ( t.e., an instance of the right-hand side of 7).
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DEFINITION 3.22. (REPLACEMENT) Given GRS terms M and N, where N is in canonical form and BY(N)N
Var(M) = 0, the replacement of the term bound to z in M by N, writlen as M[z «— N, is defined as follows:

(i) M, if z ¢ BY(M);

(i) {z1=e- 2= N iz =eas Inz), fMS{z1=e€1; - ;2= €;--;2, = €5} Inz}.

Notice that no renaming occurs during the replacement, thus the free variables of N can get captured.
Moreover, the bound variables of Af, which are different from z, are not affected by the replacement.

Notation: M[Z «— Q}, where Z = {z1,---,z,} will stand for M[zy — Q] - [z, — ).

Now we state certain uselul properties of replacement.

ProposiTION 3.23. Given GRS terms M, N, and Na in canonical form such that BV(N;) N BV(N:) = 0,
(BV(N1) UBV(N2)) NVar(M) =0, and variables z1, 25 such that z; 2 zo:

M[21 — N]}[Zg — N;_:] = M[Z'_: — Ng][zl — Nl]
ProoF. By cases on the existence of z; and z» in BY(M). O

The following proposition shows that under appropriate circumstances the garbage collection step can be
postponed.

ProprosiTioN 3.24. Given GRS terms M and N, such that N is in canonical form. IfBY(N)NVar(M) =0
and FV(N) C Var(GC(M)) then

GC(GC(M)[z — N]) = G¢(M[z — N)).

Proor. The garbage collection does not affect N. The condition FV(N) C Var(GC(A)) guarantees that the
garbage not picked up by the inner GC is not affected by N, and thus is collected by the outer G¢. O

DEFINITION 3.25. (REDUCTION) Given & GRS term M in canonical form and a rule r, M reduces to N by
doing the T-redex at z in M, written as M —— N, iff (7, z,7) is a redez in M, and N = 6C(M[z — (RHS(T))°])-
z

The reflexive and iranstiive closure of — is denoted by —.

The redex (r, 2, ¢) is often given the name p, and sometimes we will also use the notation M — N to show
the reduction of redex p. Note that each replacement is followed by a canonicalization step.

3.6. DESCENDANT OF A REDEX

DeriNiTION 3.26. (DESCENDANT OF A REDEX) Given two distinct redezes py = (1, 21,01) and pa = (12, 23, 02)
in @ GRS term M in canonical form, the descendant of py with respect to the reduction M — My (writlen

1
as p2 \ p1):
(i} does not exist, if zo & BV(M),);
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(i1} is the triple pb = (72, 22, 0%), if z2 € BV(M,) and o} 1s:
o2(z) aa(z) # 21
oa(z) = ¢ Root(r{') oa(z) =z and Root(ri') # =

® oa(z) = z; and Root(r]")

The descendant of a redex does not necessarily exist, and even if it exists, it is nol necessarily a redex, as
illustrated by the following example. Consider the following two rules:
z1 = G(y)

z=F(z)) —z=n

T .

m: z=G(0)—z=0
and the following reduction:

{ ti = F(ta);i2 = G(0); Inty}

r :
{ tl = F(O), In tl} { ta = G(O), In ig}
The two redexes in the above term are p; = (7,%;,01), where 1 is “2 = 1}, 7, = ts, y = 0", and

p2 = (T2,12,02), where o3 is “z = 15", respectively. ps \ py is (72,12, %), where o4 is “z = 15", and is still a

redex. On the other hand, p; \ p2 = (n,t1,0%), where o} is “z =1, z; =0, y = 0", is no longer a redex.
1 1 g

REMARK 3.27. A GRS is non-duplicalive, thal is, the descendani of a redez, if it exists, 1s unique.

4. Confluence of a GRS without interfering rules

Not all GRSs are confluent, however, we can show that for a restricted class, namely GRSs without
interfering rules, confluence is guaranteed. We introduce the notion of compatible terms {11] which will be
used, among other things, to define the notion of interference among rules. The idea is that terms which are

not ordered, may still have a common upper bound. As we shall see later, such terms potentially interfere
with each other.

DEFINITION 4.1. {(COMPATIBLE TERMS) Given GRS terms M, and My in canonical form, M, and M+ are
said 1o be compatible, writlen as My 1, Ma, iff 3IMa such that My <, M3 and M. <, M.

For example, consider the following terms:
M, = {z; = G(z2,22); 22 =Q; Inz,},
My = {z1 = G(z2, z3); z2 = F(0); 23 = F(0); In 2.},
My = {1 = G(z2, za); zo = F(0); z3 = H(0); Inz,} .
My and M> are compatible with least upper bound: {z; = G(x2, z3); z2 = F(0); In z1}. On the other hand,
M3 is not compatible either with M} or Ms.

DEFINITION 4.2, (INTERFERENCE) Given {wo distinci GRS rules 1y and 1, 7y is said to interfere with -
iff 3z € BV(P(n1)) such that Cl(ry )@z T, Cl(r2).
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DEFINITION 4.3. (SELF-INTERFERENCE) Given a GRS rule v, 7 is said o be self-interfering iff Iz €
BY(P(71))—Root(P(7)) such that Cl(t)@z 1, CI(7).

DEFINITION 4.4. (GRSy) If all rules in & GRS are non-self-interfering and pairwise non-interfering then
the GRS is called a GRSy).

For example, the following rule:
71 = L(y)

g=L(z;) —z=0

interferes with itself because Ci(t)@z, ., Cl(r). The following rules:

71: 2 =0r(y, True) — z = True

T2 & =0r(True,y) — = = True

also interfere because Cl(7) 1, Cl(m2), with Or(True, True) being the upper-bound.

DEFINITION 4.5. (ORDERING ON REDEXES) Given lwo distinci redezes py = (71, 21,01) and py = (12, 22, 73)
in a GRS term M in canonical form:
(i) p1 occurs inside py, writlen as py < pa, iff 2y € {oa(z) | z € BY(P(m))};
(i1} pa occurs inside py, writlen as p2 < py, iff z2 € {o1(z) | € BV(P(n))};
(iii) py end po are disjoint iff py £ pa, and p2 £ py.
Furthermore, if p1 < pa and pa < py then py and pa are said 1o overlap at the rool.

ProProsITION 4.6. Given a GRSy term M in canonical form, any two distincl rederes py and py in M are
mutually disjoind.

PrRooF. Let py = (11, 21,01) and pa = (72, 22, 02). Suppose p; < ps. Then by Definition 4.5, 3z € BV(P(m2)),
say za, such that z; = ¢a(x2). Therefore, we have Cl(12)@za 1, Cl(7(), with M@z, being the upper bound.
Since rules 7y and 72 are non-interfering, we have reached a contradiction. Similarly, if pa < p;. Hence py
and pa must be disjoint. O

PROPOSITION 4.7. In a GRSy reduction, the descendant of a redez, except for the reder being reduced, if
¢l ezxisls, is always a redex.

Proor. Let M — M,, where p = (1,2,0). Let py = (71,21, 01) be a distinct redex occurring in M, such
that z, € BV(MI).pWe want to show that py \ p = (1, 21, 0}) is a redex, that is, ¢} is a substitution function
from Ci(7,) to M1@z,. According to the definition of descendant of a redex (Definition 3.26), o} differs from
oy only at z, the root of redex p. Therefore, there are only two reasons why (71, 1, @}) may not be a redex:
(1) the new definition of z;

(2) the canonicalization of M[z — RHS(r)?] removes some elements in the range of o,.

The first reason is not possible because, by Proposition 4.6, all distinct redexes in M are disjoint, and
therefore, if 3z € Var(P(n)), such that &y (x) = = then = € F¥(P(r;)). The second reason is also not possible
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because if a variable or a constant in the range of &, is accessible from z; in M then it has to be accessible
from z) in M,. O

THEOREM 4.8. (SUBCOMMUTATIVITY OF A GRSy)) Given a GRSy term M in canonical form, and two

distinct rederes py end p tn M, tf M — M, and M —= Mo, then 3 M3 such that Ms Ll M3 and
2} 2

pi\pz
M, 25 M.
Pa\;

PRooF. Let p; = (n, 21,01), and po = (73,22, 02). Then, My = GC(M[z; — r]']), where r; = RHS(n),
and Ma = GC(M[z2 « r2°]), where ro = RHS(72).

The proof is by cases on the existence of the descendant of redexes p; and ps, respectively.
1: p2\ pr = (72, 22,0%) and p1 \ p2 = (71, 21, 09).

By Proposition 4.7, (12, 22,0%) and (r,z1,0)) must be redexes. Thus, we want to show the
following;

GC(My[z2 — ,.;5]) = GC(Ms[z) — r';;])

We have

GC(Ma[zy — rf;])

se(6e(MTez — T Dler = r{')

GC(M[zz — r37)[z1 — r';;]) (by Proposition 3.24)

GC(Mlza — r3?)iz) — r{']) (implied by the definition of the descen-
dant of a redex (Definition 3.26) and of

the canonicalization procedure (Defini-

]

tion 3.2))
= GC(M[z) — r{*][z2 — r37]) (by Proposition 3.23)
= 6C(M[zr — ri'[z2 — 137]) (Definition 3.26 and 3.2)

6c(Ge(M[z; — ro*])za — r53]) (by Proposition 3.24)
GC(M1 [22 o rg':‘])

2: p1\ p2 = (11, 21,0)) and p2 \ p; does not exist.
We need to show

M, = 6o(Ma[z, — rf"])
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We have

GC(lezl — 1"‘;;])

GC(M[z) ~ r{'][za — r3?]) (following the argument in Case 1)
6c(Mlz1 — r{'llzz = r37))

n

= GC(GC(M([z; —r{'])) (since zy is not reachable in M[z; — r{'] )
= GC(M[z —r'])
= M1

3: p2\ p1 = (72, 22,0%) and py \ p2 does not exist.

The same as Case 2.

4: Both p» \ py and p; \ p2 do not exist.

If p; \ p2 does not exist then there must be a path from z3 to z; in M. Analogously, if pa \ p1 does
not exist then there must be a path from z; to z; in M. Therefore, it must be the case that there
exists a cycle involving z; and z2. Without loss of generality, let us assume there exists a path
from the root of M to z; without visiting z2. This implies that independently of the reduction

of pa, 21 € BV(Ma), that is, p; \ p2 exists in M.. We reach a contradiction, therefore, this case
cannot arise.

O

CoroLLARY 4.9. A GRSy is confluent up lo a-equivelence.

Consider the following projection rules:
n:z=ly) — z=y
nre=ly) — z=y

and the following term M

{ z=1v);
y = J(z);
In z}

then M will have the following reduction:
M
My ={z=I(z); Inz} My = {z = )x); In z}
@
Notice that if both M, and M3 are not reduced to @, the confluence property will be lost, as was observed in

[15]. Barendregt’s graph reduction system is not confluent precisely because of the absence of such a reduction.

Hereafter, we will use the notation GRSC to denote a confluent GRS.
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5. A Graph Model for GRS

We are interested in defining an equality on the set of terms, such that the equality is useful in analyzing
the correctness of compiler optimizations. If we want equal terms to be freely substitutable for each other,
then the equality must be preserved by terms formed by putting equal terms in the same context, which is
defined as follows.

DEFINITION 5.1. (CoNTEXT) Let the definition of a GRS term (Definttion 3.1) be extended 1o include a
special symbol O. A contezl is then a GRS term containing O,

Notrarion: We write C[0] for an arbitrary contezt, such as {z1 = e1;---2, = e,; z =0; Inz}, and C[M)
Jor the term {z) =e); - 2n =€n; =0y Inz}{z — M) ={x; =€;--Tn = €n; z=M; Inz}. As in any
replacement operation BV(M) NBVY(C[Q]) = @, for C[M] to be a legal term. Observe that the free variables
of a term M can get bound in C[M].

For a compiler a useful equality must have the property M = N = ¥C[Q)], C[M] = C[N]. This means
that the equality has to be a congruence with respect to the formation rules of terms. An optimization will
be considered correct if it preserves equality.

An example of an equivalence relation is convertibility. If two terms M, and M. are convertible and the
GRS is confluent, then it follows that there will not be any context that can distinguish between them.
Thus, convertibility is a congruence. Therefore, independent of the meaning or observations we associate to
a term, a minimal requirement that will have to be satisfied is that all terms in the set {M' | M — M’}
have the same meaning. It follows that all optimization rules drawn from the set of rewriting rules will be
automatically meaning preserving. However, as pointed out in [20], convertibility makes too fine a distinction
to be interesting; it does not capture the computational behavior of a term. For example, consider the
following two rules:

ni: z=F(y) — z=F(y) 2: z=06(y) — z={t =G(t1);t1 = G(y); In t}
and the terms
M= {y=F(); Iny} N={y=0G(z); Iny} .

M is not convertible to NV or vice versa. Yet from a computational point of view, we would like to consider
them as producing no information. We may be tempted to extend convertibility by equating all terms without
normal form. However, it has been shown by Wadsworth in [20] that this will lead to an inconsistent theory.

For example, if terms M and N do not have normal forms, then both the following terms in SK-combinatory

logic:
MIE{ t=AP(sz); NIE{ t = Ap(z,3);
tl = M; tl = N;
ta = Ap(t, 1) ta = Ap(t, t1);

In tg} In tg}



Properties of a First-order Functional Language with Sharing 19

will not have normal forms either, and thus, will be equated. However, by plugging both of them in the
context {z = K; z = O; In z} we can derive K = S. As shown in [6], this will immediately lead to an
inconsistent theory, and will cause all terms to be equated.

The notion of head normal form (hnf) was introduced by Wadsworth to syntactically characterize the class
of terms that cannot be equated. Intuitively, a term does not have a head normal form if no information
can be extracted by reducing that term in any context, that is, the term is totally undefined. For example,
the two terms M and N, introduced earlier, are totally undefined, while the above terms M; and N; have
some information contained in them. For example, we know that whichever term M, reduces to will have a
stable prefix of the form: { ¢ = Ap(x,K);t; = O;ta = Ap(t,t1); Inta}. Similarly for Ny, {t = Ap(«,S8);1) =
O;t2 = Ap(t,11); In ta} constitutes a stable prefix. Informally the hnf of a term embodies its maximum stable
prefix. Since the hni’s of M, and Ny are different they cannot be equated. Furthermore, if two terms M and
N do not contain any information, i.e., do not have hnf’s, it intuitively implies that the terms C[M] and
C[N] will exhibit the same behavior and thus, can be equated. In this manner, we have performed a further
classification of the terms without normal forms into ones that contain some information and those which
contain no information. It is therefore legitimate to ask which terms in head normal forms can be equated.

Convertibility may still be too restrictive, as shown by the following example, where Cons is the usual list

contructor:
M ={ == Cons(y, 2); N ={ z = Cons(y, z);
y = F(0); y = F(0);
z = Cons(w, Nil); z = Cons(y, Nil);
w = F(0); In x}
Inz}

Graphs for M and N may be drawn as follows:

M:cons N : Cons
s
§ +

1; Nil 0 o
]

;
/\ N\

M and N are in normal form but clearly not inter-convertible. However, if internal representation of lists is
ignored by an observer then both the terms represent the same unfolded list, F(0) : F(0) : Nil. If the GRS
containing these terms has a non-left-linear rule, it may be possible to distinguish between such terms. Thus,
such terms cannot be equated without disallowing non-left-linear rules.

We should also notice that M <, N, i.e., M has “less sharing” than N in the above example. Does it
mean that A is “less defined” than N in the sense that one can compuie less with M than with N?. We
would like to answer the above question without delving into heavy duty model theory. We have carefully
said “compute” to emphasize that we are interested in studying what a term represents from an operational

point of view. In particular, we are interested in observing the gradual syntactic building up of the final term.
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We introduce a function w to compute the stable part of a term, that is, the part of the term that will
not change as more reductions are performed on it. The w function captures what Lévy has called the direct
approzimation of a A-calculus term {18], and Welch has called the instantaneous semantics of a term [21].
Take the following term:

P={ t=Ap(Y,f);
In t}

where the rule for the Y combinator is expressed as
z=Ap(Y,f) — z={t=Ap(f,11); t1 = Ap(Y,f); Int} .

Since Ap(Y, f) occurring in P is a redex, we cannot predict what Ap(Y, f) will produce without reducing it.
Thus, without any prior knowledge of the reduction, we will have to assert that no information is associated
to P, otherwise, a wrong assumption may lead to a situation where we have to retract what was printed
earlier. Thus, we will say that w(P) = Q, where @ stands for ro information. Let’s perform one-step reduction
on P to obtain the term:

Pr={t=Ap(f,11);
t = Ap(Y, f);
Int} .

At this point notice that all further reductions of Py will produce terms with context: {t = Ap(f,0); Int}.
Thus, we can safely say that w(FP) is

f/\g

In general, we will have

Q / A”\ / AP\
f Q@ f /AP\
Fi Q
Notice that as more reductions are performed the stable part should get larger, that is, w(P) <, w(P;) <.
w(Py)- .. We remind the reader that <, is the syntactic ordering on terms which captures both the sharing
and the fact that § is less than any other term. Assuming that this chain has a limit, then, even though the
term P does not have a normal form, it may still have a precise meaning.

We collect all the (stable) information gathered by reducing P in a set, called W*(P), and say that it
represents the information content of P. We can now formulate our original question regarding the impact
of sharing on a program’s behavior as follows: f M has less sharing than N then is W*(M) contained in
W*(N)? As we shall see shortly, this is indeed the case in the absence of interfering rules.

It is also interesting to analyze if M “less defined” then N implies that for all context C[Q), C[M] is “less
defined” than C[N]? That is, is the equality induced by W* a congruence? Later we will see that, in the
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absence of interfering rules, the equality introduced by infermation content is also a congruence. Thus, the
collection of stable information contained in GRS terms does indeed turn out to be a model for GRS without
interfering rules.

We will need the following definition shortly.

DEFINITION 5.2. (INITIAL $2-FORM OF A TERM, Mq) Given a GRS term M in canonical form, Mg is the
term GC(M[R(M) — Q)).

5.1. INSTANT SEMANTICS

The instant semantics of a GRS term A is obtained by computing its stable part, where stable part means
the part of M which will not change by further reductions. A solution that comes to mind is to replace
each redex in a term by an Q, that is, to treat Mgq as stable. Intuitively, this seems right because a redex
can become any expression, and (2 is less than all expressions. Furthermore, it seems that if A — N then
Mg <o Nn. Unfortunately, this solution has a problem, as shown by the following example. Consider the
rules

nic=Fyy) —z=4 nie=Wy) —z=y
and the following reduction:

ME{ t=F(t1,t2); :—:P M[E{ t=F(t1,i[);
tl = A(O), tl = A(O),
ta = I{ty); In t}
Int}

The only redex in M is rooted at ¢2, and thus, its stable part is the following term Moa:
F
A Q
|

0

However, since M, is a redex, M, does not contain any stable information. Thus, the information contained
in M is less than the information contained in M. This is contrary to our intuition that the information
should not decrease with reduction. The problem is due to the presence of rule 7 which can introduce
sharing. If we want to compute the instant semantics of a term without analyzing the rhs of rules then we
have to assume that the arc pointing to Q in Mz can be redirected to point to the node of label A, and thus
making Mz a 7-redex. In other words, we should not treat M~ as being in stable form. However, Mg does
give the stable part of a term M in a Recursive Program Schema (RPS)!
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5.1.1. STABLE INFORMATION IN RPS AND TRS

We remind the reader that a Recursive Program Schema (RPS) is a TRS which has a finite set of function
symbols {Fy,- .-, Fp} (the “unknown” or user-defined functions) where F; has arity m;, and a disjoint set
of basic function symbols {Gy,:--,Gm} (the “known” functions}, where G; has arity /;. The rewrite rules
of a RPS have the form F™(zy,--,zm,;) — 1;,1 € i < n, where all variables z;,1 < i < m;, are pairwise
distinct and {t; is an arbitrary term built from variables and functions, F;, - -, Gj, - -. Furthermore, for each

F; there is exactly one rule.
LEMMA 5.3. For any RPS term M, Mq is the stable prefizc of M.

Proor. If Mg = then Mp is obviously stable. If Mg # © then YNV such that Mg <, N, N cannot be a
redex at the root, in other words, Mp is stable. O

However, Mq is not necessarily the stable prefix for 2 TRS term mt. Consider the following rules:
i Az) — B(x)
7: F(B(z)) — O
and the reduction
M = F(A(z)) — N = F(B(z))

Mg is F(2), while Np is ©, and Mn €. Nn. Thus, we erronecusly assumed that F(Q2) is a stable prefix.
A TRS differs from a RPS in that even though the TRS term F(Q) is not a redex it can become one by
increasing its information, for example, by substituting B(z) for Q. This phenomena is called the upward
creation of redezes. Reduction of a term in the A-calculus can also result in the upward creation of redexes.
To cope with this problem in the A-calculus, Wadsworth[20] and Lévy[18] had introduced the notion of an
w-rule, which reduces any term that can become a redex (by upward creation) to Q. The w-rule for the
A-caleulus is

QM —0.
The w-rule associated to 7, and 72 will be F(2) — 2. However, in the presence of non-left-linear rules it is
difficult to generate w-rules for a TRS as shown by the following example. We remind the reader that non-

left-linearity in a TRS is interpreted as tree equivalence on terms. Now consider the TRS rule F(y,y) — y.
Suppose we generate the following w-rules:

F(?,y) —Q
F(y,) — Q

then the term M = F(A(0), A(R2)) will be in stable form. However, it should not be because by replacing Q
by 0, M becomes a redex.

1 Private communication with Jean-Jacques Lévy.
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5.1.2. w-REDEX

Non-left-linear rules constitute a problem for a GRS also. Since we want to include them in our analysis,
we abandon the idea of generating w-rules, and instead introduce a new notion of redex, called w-redez [11].
A w-redex captures our intuition about why a term should be rewritten to Q. It consists of analyzing a term
to see if it can become a redex by either replacing Q with some other term or by increasing the sharing in
the term. The stable part of a term M will be computed by first replacing all redexes in M by Q, and then
by reducing all w-redexes to Q .

Notice that we have taken a conservative approach in determining which terms can become redexes; we
may reduce to £ some terms, which may never become a redex. However, we also need to guarantee that not
too much information is lost. Since the stable part will be a part of our criteria for equating terms, we may
end up equating far too many terms and lose congruence. Clearly if we reduce everything to ©, all terms
will get equated and we will immediately have an inconsistent model. As we will see in Section 5.6, a way of
guaranteeing that not too much information is lost is by showing that the behavior of a term C[M] can be
inferred from the observations about M. Consider the rules

n: z=Fyy) —z=4
zy = F(0,1)
z=0G(z)—=z=3

Ta @

and terms M = F(0,1) and N = F(2, 1). Suppose we compute the stable information of term M by applying
the (incorrect) rule: = F(y;, y2) — z = Q. Then both w(M) and w(N) will be £ and as such they will
be equated. Now consider the context C[0O] = {¢; = G(t2); t2 = O; Int,}. C[M] produces 3 as a possible
observation, while C[N] does not. Thus, we erroneously equate terms which are not “extensionally equal”.
[t seems that we cannot discard any information that can be used to build terms. By treating w(M) as Q
we discard too much information as can be seen by the fact that by plugging the observations of M in C[O]
we will not be able to observe 3.

5.2. w-REDUCTIONS AND ITS PROPERTIES

DEFINITION 5.4. (w-REDEX) A w-redez in a GRS term M i canonical form is a pair (7,z) such that
(1) v is a rule;

(ii) z € BV(M) and z is nol bound to 2;

(1) Cli(t) 1o M@z and Cl(7) £ M@z,
z 15 called the rool of the w-redex. If z is also the root of the ferm M then M is said 1o be ¢ w-redexz.

The set containing the rools of all w-redezes is denoted by R, (M).

Notice that because of condition (iiz), a w-redex cannot be an ordinary redex. For the example given at the
beginning of Section 5.1, we have that Cl(1) £, M2 and Ci(r,) 1., M2, thus, M is a w-redex, and will be
reduced to € in computing the stable part of M.

DEFINITION 5.5. (DISTINCT w-REDEXES) Two w-redezes py = (11, 21) and ps = (13,22) in @ GRS term M

in canonical form are said o be distinct if either 1) # 72 or 2) # 23.
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PROPOSITION 5.6. Given GRS lerms My and My in canonical form, if My <., M, then
(1) if Ma is a w-redex then M, is esther a w-redex or ;
(ii) if Ma is a redez then My is either a reder, a w-reder or €).

PRoOOF. (i) From the definition of w-redex we have that 3 7 such that M, 1., CI(7). Therefore, if M; is not
Q it must be a w-redex. Analogously for point (i). O

DEFINITION 5.7. (w-REDUCTION) Given ¢ GRS term M in canonical form, M w-reduces o N by doing the
T w-redez al z, wrillen as M %u N, iff (7,z) is a w-redez 1n M and N = GC{M[z — Q]). A term is said
to be in w-normal form when it has no w-redezes.

Note that since 2 is not a substitutable value, M{z — ] is in canonical form.

DEFINITION 5.8. (DESCENDANT OF A w-REDEX WITH RESPECT TO w-REDUCTION) Given iwo distinct w-
redezes py = (11, 21) and p2 = (T2, 22) in a GRS term M in canonical form, the descendant of p» with respect
to the reduction M —w M, {written as pa \ p1):

(i) does not ezist, if zo & BV(M,);

(ii) is the pair ph = (72, z2), if z2 € BV(M,).

The following proposition shows that, given two distinct w-redexes p; and pa, even in the presence of
interfering rules p» \ p; is an w-redex if it exists.

PROPOSITION 5.9. Given w-redezes py = (71, 21) and pa = (72, z2) in ¢ GRS term M in canonical form, if
M —, M, and z; € BV(M)) then either pa \ p1 is an w-redex or 22 is bound 1o Q in M.
P1

PRooF. Since M; = GC{M[zy — Q]), My <. M. Therefore, if z2 € B¥(M,) then M@z, <, M@z,.
Therefore, by Proposition 5.6, p2 \ p1 is either a w-redex or Q. O

The stable part of a term M, ie., w(M), will then be computed by first replacing all distinct redexes
occurring in M by  and then computing the w-normal form of the term so obtained. Before giving the

formal definition of the w-function we introduce some properties of w-redexes and w-reduction.

THEOREM 5.10. (SUBCOMMUTATIVITY OF —,) Given two distinct w-redezes py and pa in a GRS term

M in canonical form, if M —,, My end M —,, M2, then 3 M3 such that My ﬂw Ma and M; ﬂ»w Ma.
pL Pa pi\pa pa\m

Proor. Let py = (1'1,21), pr = (Tg,Zg), and M; = GC(M[21 — Q]), My = GC(M[ZE — Q]) If z;y = 25 then
M, = Mz = Mj. I 2y # z> then the proof, analogous to Theorem 4.8, is by cases on the existence of py \ p2
and pa \ p;. We show the first two cases only.

1: p2\ p1 = (72,22) and p1 \ p2 = (71, 11).
By Proposition 5.9 py \ p2 and p» \ p; must be w-redexes. Thus, we want to show the following;:

GC{ M [z2 — Q]) = GC(Ma[z, — Q]).
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We have

GC(My[z2 — Q)

GC(GC(M[z1 — Q])[za — 2]) (by Proposition 3.24)
GC(M([z1 — Q][22 — Q)) (by Proposition 3.23)
GC(M[zz — Q[z — Q) (by Proposition 3.24)
GC(GC(M[z2 — Q))[z1 — )

= GC(Mafz, — Q))

2: pp\p2a=(n,21) and p2\ p1 does not exist.
We need to show

My = GC(M2[21 — Q]) 5

We have

GC(Mglzl — Q])

GC(GC(M[z2 — Q])[z1 — Q])

GC(GC(M[z) — Q])[22 ~ Q]) (following the argument in Case 1)
GC(M [z — Q)) (since z3 ¢ M, and GC is idempotent)
M,

O
COROLLARY 5.11. —, is confluent.
PropostTioN 5.12. —»,, is strongly normalizing.

PRrooF. Suppose there are n function symbols in a term M. Each w-reduction gets rid off one function
symbol and does not introduce any new ones. Thus, the lenght of w-reductions on M is bounded by n. O

Since w-reductions are strongly normalizing and confluent we can now define the w-function as follows.
DEFINITION 5.13. (w-FUNCTION) Given a GRS lerm M, w(M) is the w-normal form of Mq.

5.3. INTERACTION OF w-REDUCTIONS AND NORMAL REDUCTIONS

In the following, we analyze the effect of w-reductions and normal reductions on w-redexes and redexes,
respectively.

DEFINITION 5.14. (DESCENDANT OF A REDEX WITH RESPECT TO w-REDUCTION) Given an w-reder p) =
(r1,21) and a redex p2 = (72,22,02) in a GRS term M in canonical form, the descendant of pa with respect
to the reduction M —, My (wrillen as py \ p1):

14}

(i) does not exisi, if zo & BV(M,);
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(ii) is the triple ph = (72, 22,0%), if z2 € BV(M,), and o} is:
tﬂﬂ={wm oa(z) # 21

Q ga(z) =

The following proposition shows that an w-reduction cannot destroy a redex in the absence of interfering
rules,

PROPOSITION 5.15. Given an w-redez py = (11,21) and a redex p» = (72,22,02) tn a GRSy term M in
canonical form, if M —, M, and zo € BV(M)) then pa \ py is a redez.
4}

Proor. If zp € BY(M)), let pa\ p1 = (72, 22, 0%). If 3z, o2(x) # oh(z), by non-interference it must be the case
that = & BY(P(72)). Moreover, suppose 3z € BV(P(2)), o5(x) does not occur in M, it means that all paths
from za to o5(x) go through z;. This means that z; € {o2(y) | ¥ € BV(P(72))}. We reached a contradiction;
therefore, ¥z € BV(P(7)), e5(z) occurs in M. Since the new definition of z; and the garbage collection do
not affect the substitution o5, pa \ py is a redex. O

DEFINITION 5.16. (DESCENDANT OF AN w-REDEX WITH RESPECT TO REDUCTION) Given a reder p, and
an w-reder py = (72,22) in @ GRS term M in canonical form, the descendant of pa with respect to the
reduction M — M (writlen as p2 \ p1):

1

(i) does not exist, if zo ¢ BV(M,);
(1) is the pair ph = (72, 22), if 22 € BV(M)).

A reduction, however, can destroy an w-redex even in the absence of interfering rules, as shown in the

example below. Consider the rules
n: e=Fyyy) — =z=y
T a=G(0) — z=1
and the reduction

M={t, =F{a,13,14); — My ={ t, = F(1,13,14);
t

t2 = G(0); ’ ta = G(Q);
ta = G(Q), f.4 = G(O),
ta = G(0); Int}

In tl}

Note that the w-redex rooted at ¢; in M is no longer an w-redex in M,;. However, it can get restored by
reducing the redex rooted at {4 and the w-redex rooted at {3. Equivalently, by setting £3 and ¢4 to (,
respectively.

Before stating the property that w-redexes can be restored we need the following proposition.

ProposITION 5.17. Given GRS terms M and N in canonical form. [f M <, N, lei p = (r,z,0) be a redez
in M and py = (1,21,01) be a redez in N such thai oprn(z) = 2 then

GC(M[z — RHS(1)°][Z — Q]) <., 6C(N[z; — RHS(7)71])
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where £ = {s | omn(s) = 21,8 % z}.

PROOF. We first show that the function oary restricted to the domain of variables occurring in GC(M [z —
Q]{Z ~ Q]) induces the ordering:

GC(M[z — Q[Z — Q]) <u GC(N|[z; — RHSE(7)"1]) .

Suppose it is not, then it must be the case that for an element, say z, occurring in the left-hand side term,
o (z) does not oceur in the right-hand side term. This means that the replacement of the term bound to
zy in N by RHS(7)"* has removed the path to oarn(z). However, this means that the corresponding path
in M also gets removed by setting z and all the elements of Z to Q. Contradiction. Therefore it must be the
case that oarn(z) occurs in GC(N[z) — RHS(r)%1]).

Moreover, for all elements x in BW(RHS(7)7), let ' be its renamed version. The following function:

o"(z:) _ O‘MN(:!:) zE GC(M[Z — Q][Z — Q])
1z 2 € BARHS(7)?)

determines the ordering:

CC(M[z — RHS(1)7](2 — Q) <. 6C(N[z1 — RHS(T)7']) .
O

PROPOSITION 5.18. Given a redex py = (71,z1,01) and an w-redez p = (7,2) in @ GRSy term M in
canonical form, if M — M, and z € BY(M,) then p\ py is either an w-redex or il can become so afier

[}
having perfomed some w-reduciions on Myq.

Proor. Since p is an w-redex, IN, M <, N such that oan(z) is the root of a -redex in N. Let z{ =
oan(z1) be the root of the redex (7, z],0}), and let Ny be such that N — Ny. Let Z = {2/ | opn(2') =
2

1
z1,%" is not bound to Q, z* £ z;}. By Proposition 5.17 we have

GC(M[Z — Q]) Su GC(N[2} — RHS(r{)]) = My

Moreover, by Proposition 4.7 the descendant of the redex rooted at oara(z) in N must be a redex in N;.
Therefore, by Proposition 5.6 we have that p\ p; must be either a redex, an w-redex or Q in GC(M;[Z — Q]).
By non-interference it follows that the only condition applicable is for p\ p) to be an w-redex in 6C(M,[Z —
Q]). The result then follow from the fact that Z C R{(M)UR,(M). O

We now discuss two additional properties of the w-function, that are, its monotenicity with respect to <,,
and with respect to reduction. These will be very useful in later proofs.

ProrosiTiON 5.19. (MONOTONICITY OF w-FUNCTION WITH RESPECT TO <,) Given GRS ierms M and
N in canonical form, if M <, N then w(M) <, w(N).

Proor. Let 2 = {z [ oarn(z) € R(NYURL(N), z is not bound to Q}. From Proposition 5.17,
GC(M[Z — Q]) <u w(Nag) =w(N) .
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By Proposition 5.6, Z C (R(M) U R, (M)). Therefore, we have
w(M) <o GC(M([Z — Q]) <u w(N).
O

PROPOSITION 5.20. (MONOTONICITY OF w-FUNCTION WITH RESPECT TO REDUCTION) Given GRS terms
M and N in canonical form, if M —» N then w(M) <, w(N).

ProoF. The proof is by induction on the number of reduction steps. Suppose M — N, where p = (7, z, o),
p

then N = GC(M|[z «— PJ), for some term P. Since w(M) = w(6C(M[z — Q])) and GC(M[z ~ 9)) <.
GC{M [z — P)), then from the monotonicity of the w-function with respect to <,, (Proposition 5.19) we have
that w(M) <., w(¥). The result then follows by induction. O

5.4. MEANING oF A GRS TERM
We collect all observable information about GRS terms in a set called w-graphs.

DEFINITION 5.21. (w-GRAPHS: SET OF OBSERVATIONS) Given a GRS, the set of all observations, called
w-graphs, is defined as:

w-graphs = {w(M) |V GRS terms M}.

We would like to define the meaning of a term M as the limit of the set of our observations, that is,
{w(M') | M — M'}. However, w-graphs does not guarantee the existence of such a limit. Therefore, we
apply the ideal completion method to turn w-graphs into a complete partial order [10]. Given a partial order
(A, <), a subset D of A is an ideal iff (i) D is non-empty. (i{) Va,b € D,3c € D,a < cand b < ¢, (ifi)
Yee D, ifdde A,d<cthend e D.

DEFINITION 5.22. (w-graphs®™: DOMAIN OF OBSERVATIONS) Given a GRS, the domain of observations,
called w-graphs®™, is the ideal completion of w-graphs, that is:

w-graphs® = {I | I C w-graphs and I is an ideal }.

To reflect this change in our domain of observations, we include all w-graph terms smaller than w(M) in our
observations as follows.

DEFINITION 5.23. (W*: THE INFORMATION CONTENT OF A GRS TERM) Given a GRS term M in canon-
ical form, W*(M) = {a | a € w-graphs,a <, w(M'),M — M'}.

We need to define under what conditions W*(M) is an element of w-graphs™, that is, W*(M) is an ideal.
ProrosiTioN 5.24. (W*(M) 1s AN IDEAL FOR GRSc) For all GRSc terms M, W*(M) is in w-graphs®.

ProorF.
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(1) W*{M) is not empty since it contains at least €;

(i) We show that W*(M) is a directed set, that is, Ya,b € W*(M), 3c, such that a <, ¢ and b <, ¢. If
a € W*(M), it means that IM), such that M —+ M, and a <, w(M,). Analogously, IM2, M —= M,
and b <, w(M>). Follows from the confluence of — that IM3, M; — M3 and My —+ Mj. Moreover,
from the monotonicity of the w-function with respect to — (Proposition 5.20) we have

a <u w(Mas) and b <, w(Ma)

that is, w{Ma) is the element we were looking for.
(iii) W (M) is closed downwards by definition.
O

Let’s now define a semantic ordering based on the information content.

DEeFINITION 5.25. (Cg: INFORMATION ORDERING) Given GRS terms M and N in canonical form, M Cg
N ifW*(M)CW*(N). f MCg N and NCg M then M =g N.

If we want W* to be our interpretation function, W* will have to satisfy some properties, that is, the meaning
will have to be preserved by reduction, and it will have to be compositional. In other words,

Soundness: M -—N — M=ghN
Congruence: M =g N = C[M]=gC[N].

We will first show the soundness, and then later come back to a discussion of congruence after a digression

on ithe impact of sharing on the meaning function.

PROPOSITION 5.26. (SOUNDNESS OF =g) Given GRSc terms M and N in canonical form, if M — N
then M =g N.

PRroor. Trivially, N Cg M. Next, we prove that M Cg N. Let P € W*(A), it means that IM;, M — M,
and P <, w(M;). From the confluence of — we know that IM3, My —» M2 and N —» M>. From the
monotonicity of the w-function with respect to reduction (Proposition 5.20), we have that P <, w(M;) <,
w(M3). Since w(Mz) € W*(N), then P € W*(N) as well. O

5.5. IMPACT OF SHARING ON PROGRAM BEHAVIOR

What is the impact of sharing on program behavior, that is,

M<, N=MCgN?
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It turns out that in the presence of interfering rules the above will rot hold. Consider the following GRS
which has confluent but interfering rules:

r; = B(0); 22 = C(0)

z=A(z),29) — 2 =0
Ta: z=C(0) — z =B(0)
73: z=B(0) — z = C(0)

and the following terms:

M={ t1 =A(la, ta); N={ 11 =A(ls,ta);
t2 = B(0); 12 = B(0);
ta = B(0); Int}
Int}

then, it is easy to see that W*(M) = {Q,0}, while W*(N) = {Q,{z; = @; z2 = A(z1,21); In 24}}.
Therefore, M <, N and M Zg N. However, there is no such problem for a GRS without interfering rules.

THEOREM 5.27. (MONOTONICITY OF Eg WITH RESPECT T0 <) Given GRSy terms M and N in canon-
ical form, if M <, N then M Cg N.

Proor. We prove that if M — M’, then 3N’ such that N — N’ and w{M') <, w(N"). The proof is by
induction on the number of reduction steps of M —» M.

Let M —'M,, where p = (7,z,0). Then p' = (7,7',0'), where z' = appn(z), and ¢/ = opqy 0 0, is a
redex in N.pLet N 7 Ny, and 2 = {5 | opn(s) = ', s not bound to 2, s # z}. That is, Z is the set of all

variables in M, distinct from z, which are mapped into z'. From Proposition 5.17,

ec(Mz — RHS(T)NIZ — Q) <w 6C(N[z' — RHS(F)°]) = M.

By Proposition 5.6, Z C {R(M)UR,(M)}. Therefore,

w{M) = w(6C(M[z — RHSE(7)°][Z — Q])).
Therefore, by monotonicity of the w-function with respect to <., (Proposition 5.19) we have
w(My) <o w(Ny).
Notice that any redex in Mj, that does not belong to Z, is a redex in GC(M;{Z — ) (Proposition 4.7),

and therefore 1t must be a redex in N;. The result then follows by induction. O

This theorem leads to a simple but powerful result regarding the behavior of terms obtained by plugging
terms related by sharing into any context.

CoROLLARY 5.28. Given GRSy terms M and N, if M <, N then ¥C[O], C[M)] Cg C[N].

Proor. It follows from the fact that if M <, N then C[M] <, C[N). O
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It will be shown later this result can be applied in a straightforward manner to show the partial correctness
of those compiler optimizations that simply increase the sharing in a term.

5.6. CONGRUENCE

Consider the rule
7: z=F(y) — z = {t =F(y); t1 = Cons(y,1); Int,}
and the following two terms:
M = {z = Cons(1, z); In x} N={z=F(1); Inz} .
Notice that N £, M, but given the chain:
N— Ny —+Nyg—r oo — Nj — - -
where N; = {tp = F(1);t1 = Cons(1,t);- - +;¢i = Cons(1,2;_1); In ¢;}, we have that
w(N) o w(N) <o -+ Sw w(Ni) Lo - S0 M.

In fact, using induction on i we can show that N Cg M, and one would correctly guess that YC[O], C[N] Cg
C[M]. However, this does not follow from Corollary 5.28. We need to show that Cg is a congruence relation.
Note that terms like M and N arise in the cyclic implementation of recursive rules, such as the Y-rule.

A way of assuring that Cg is a congruence is lo show that the behavior of C[M], for any context C[O},
can be inferred from the observations about A4, that is,

vC[O], C[M]=g| [{C[P]) P e W"(M)}.
In other words, the context should be a continuous operation with respect to our observations. (Notice that
W=(LH{CIP]| P e Ww*(M)}) = {W*(C[P]) | P € W*(M)}.)
We will first prove

velol, ||[{CIP]| P e w*(M)} Cg C[M]
that is, by plugging the observations of M in the context we do not produce more information than the one
contained in C[M].
LeEmMMA 5.29. Given a GRSy term M and contezt C[Q], [ I{C[P] | P € W*(M)} Cg C[M].

PRrooF. Suppose M —» M', then VP, P <, w(M') we have

P <w M’
C[P] Cg C[M'] (by monoctonicity of Cg with respect to <, (Corollary 5.28))
=g C[M] (by soundness of =g (Proposition 5.26)) .
g

The other direction

velo), CM]cg| HClP)| P e w* (M)}
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requires some more machinery. We want to show that each observation of C[M] can be obtained by first
observing M and then plugging those observations instead of M in the context. The proof has two basic
steps. First we show that each reduction sequence C[M] —» N can be reordered, such that, if the sequence
contains any redexes that are descendants of redexes in M then in the reordered sequence these redexes are
performed before all others. Second, we show that the w-function does not lose too much information. Since
the w-function involves two steps - first computing Mgq and then applying w-reductions — we will analyze
the impact of these steps separately.

In the following, we will use the notation M z{any N, where Z(M) C R(M), to mean that no descendant
of redexes in Z(A) is reduced.

ProprosiTiON 5.30. Given a GRSy term M in canonical form, if C[M] — N then IM', M — M’ and
CIM' mimy N.

Proor. Let Z(M) be the set of redexes in M contracted during the reduction C[M] — N, that is,
Z(M) = {z € BY(M) | 3,C[M] — N; S Niy1 — N}. Then by the subcommutative property of

GRSy (Theorem 4.8), IM', C{M] T C[M’) and C[M'] »im"y N, where cd(Z(M)) denotes a complete

development with respect to Z(M). O

PROPOSITION 5.31. Given a GRSy term M in canonical form, if M 25w N then GC(M[Z(M) — Q]) —»
GC(N[Z(M) — Q)).

Proor. Follows from Propesition 4.7. O
ProposiTION 5.32. Given GRSy terms M and N, if M —», N then M =g N.

PRrooF. Since N <, M, and by monotonicity of Cg with respect to <, (Theorem 5.27), we have that
N Cg M. In order to prove the other direction let M — M by reducing redexes in Z. From Proposition
5.15, w-reductions do not destroy redexes, therefore, 3N}, N — N, by reducing the descendants of redexes
in Z. The result then follows from Proposition 5.18. O

LEMMA 5.33. Given GRSy terms M and N, and contezt C[0), if C[M] »liny N then w(N) Eg Clw(M)).

Proor. By Proposition 5.31,
ClGC(M[R(M) — Q})) — GC(N[R(M) —Q)) .
Moreover, by the soundness of reduction {Proposition 5.26),
C[6C{M[R(M) « Q])] =g GC(N[R(M) — Q]) .
Since w(N) <o GC(N[R(M) — Q]), from the monotonicity of Tg with respect to <, (Proposition 5.27),

w(N} Eg GC(N[R(M) — Q]) =¢ C[GC(M[R(M) — Q)] .
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Since ClaC(M[R(M) — Q})] —., Clw(M)], and by Proposition 5.32 w-reductions preserve the meaning
Clec(M[R(M) — Q))] =g Clw(M)].

Therefore, w(N) Cg GC(N[R(M) — Q]) =g Clec(M[R(M) — Q])] =¢ Clw(M))].
Pictorially we have

o w
v
Clo(M)] - === === ===~ > w(N)
(]

LEMMA 5.34. Given a GRSy term M and contezt C[0)], C[M] Cg | {C[P) | P € W*(M)}.

Proor. Since
CiM] =g | {Q 1Q € W*(C[M))}
we want to show that
|Ll{Q1Qew M) g | [{cIP)| P e w*(M))

that is, V@ € W*(C[M]), 3P € W* (M) such that @ Cg C[P]. If @ € W*(C[M]) it means that C[M] —+ N
and @ <, w(N), and, therefore, by monotonicity of Cg with respect to <, (Theorem 5.27), we have
Q Cg w(N). By Proposition 5.30, given the reduction C[M] — N, IM', M — M’ and C{M'] wiary N.
Therefore, by Lemma 5.33 we have

w(N) Cg Clw(M)] .
Since w(M') € W*(M), by letting P = w(M’) we have that @ Cg C[P]. O

THEOREM 5.35. Given a GRSy term M and contezt C[D], C[M] =¢ | [{C[P]| P € W*(M)}.
ProoF. Follows from Lemma 5.29 and Lemma 5.34. O

THEOREM 5.36. (CONGRUENCE OF =g WITH RESPECT TO THE CONTEXT OPERATION) Given GRSy terms
M and N, and contezt C[O], if M =g N then C[M] =g C[N].

Proor. C[M] =g |J{C[P]| P € W*(M)} (by Theorem 5.35)

=g L{C[Q] | @ € W*(N)} (by the hypothesis)

g =g C[N] (by Theorem 5.35) .

We stressed again that in the presence of interfering rules, =g is not guaranteed to be a congruence.
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Consider the rules
n: z=Ay) —z=A(y)
T2 = =B(y) — z=8(y)

o z; = A(y)
Y Z=Fz) —z=2
P z; = B(y)
* z=F(zy) —z=3
and the following two terms:
M={1t=A(z); N={1t=B(z);
Int} Int}

Notice that M =g N, but the context {t; = F(t2); t2 = O; In%,} can distinguish between M and N.

6. Correctness of Optimizations

If we let (A(F), Ropt) be a GRS, where A(F) represents the set of terms over signature F, and R,p; a set
of optimization rules, then correctness can be formulated as follows.

DEFINITION 6.1. (T'OTAL CORRECTNESS) An optimizer (A(F), Rop:t) is totally correct with respect to a
GRSy (A(F),R) if VM € A(F), if M — N using rules in Rop then M =g N.

In many situations it is acceptable if optimizations produce a more defined program.

DEFINITION 6.2. (PARTIAL CORRECTNESS) An optimizer (A(F), Ropt) is partially correct with respect to a
GRSy (A(F), R) iff VM € A(F), if M — N using rules in Rop then M Cg N.

Fact 6.3. If M —— M, by applying the common subezpression elimination rule then M <, M.
PROPOSITION 6.4. The common suberpression elimination is partially correct with respect o a GRSy -

ProoF. Directly from the above fact and Corellary 5.28. O

Let GRSY be a non-interfering GRS containing the following Y-rule:

Y-rule : z=Ap(Y,f) —z={ t=Ap(f t1);
ty = Ap(Y, f);
Int}

We can avoid the redex rooted at ¢; on the right hand side of the above rule by using the following cyclic
Y-rule:

Ye-rule : z=Ap(Y,f) — ¢ = Ap(f,z)

ProPosITION 6.5. The cyclic Y-rule is partially correct with respeci to a GRSY.
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PRrooF. Suppose M — M) using the Y-rule and M — M, using the Yc-rule, Then M, Cg M, and the
result follows from Theorem 5.36. O

If we want to prove the total correctness of the cyclic implementation of the Y rule or the common
subexpression elimination rule, then we need to impose further restrictions on the GRS rules. In particular,
non-left-linear rules (which include left-cyclic rules) will have to be disallowed. Furthermore, sharing will
have to be ignored from the observations as well. The reader may refer to [1}, where such a term model based
on Bchm trees is presented.

Surprisingly, the following algebraic rules:
*(z,0) — 0
*(z,1)— =z
are not partially correct according Lo our model, Consider the following reduction:
Mi={z=G(7); y=+(=,1); Iny} — M| ={z =G(7); In z}.

As long as G(7) is a redex, w(M,) <, w(M{). However, if G(7) is not a redex, then there is no relationship
between w(M;) and w(M]). Such situations can arise either because of type errors or deadlocks. We illustrate
the deadlock situation by the following example:

Ma = {z =+(y,5);y = #(z,1); In 2} — My = {2 = *(z,5); In z}.

Notice M is type correct but it cannot produce an integer as an answer. However, in our term model,
without the optimization M; will produce itself as an answer, and with the optimization it will produce M3,
which is not related to AM2. We believe that cycles involving “strict operators” should not be observable,
that is, the observations of both A and M should be Q.

7. Future directions

We have defined a class of GRSs which can express sharing of terms, including cyclic terms. Qur GRS
admits both non-left-linear and left-cyclic rules. We prove the confluence of GRSy, that is, a GRS with non
interfering rules, and develop a term model a la Lévy for such GRSs. Furthermore, we apply the semantic
relation to show the partial correctness of important optimizations such as the common subexpression elim-
ination and the cyclic implementation of the Y-rule. The main advantage of our approach is its simplicity
because it avoids infinitary terms and associated transfinite reduction.

The motivation for this work came from a desire to formalize the compilation process of Id, an implicitly
parallel language [19]. Id has a purely functional, higher-order, non-strict core. In addition Id also contains
logical variables in the form of I-structures and mutable variables in the form of M-structures. The compiler
of Id is expressed as a series of translations into simpler and simpler languages. In our prior work we have
introduced the Kid (Kernel id) language [3] and the P-TAC (Parallel Three Address Code) language 2], and
provided the translation of Id into Kid and of Kid into P-TAC [4]. We have formalized many optimizations
in the Id compiler in terms of source-to-source transformations on these intermediate languages.

Functional subset of P-TAC can be seen as an example of the GRS presented in this paper. Functional
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Kid, however, is more general due to the presence of A-abstraction. A model for a GRS with A-abstraction
will provide a sound mathematical basis for the functional subset of the Id language. However, even proving
confluence for the A-calculus with sharing is a difficult problem.

Another direction of work would be to incorporate a notion of types, and the distinction between strict
and non-strict operators in our GRS framework. This will allow one to prove the correctness of compiler
optimizations, such as the algebraic rules.

Yet another direction would be to incorporate I-structures and M-structures in our GRS. Elsewhere, we
have shown the confluence of a GRS with I-structures [2]. I-structures operations can be expressed using
“multi-rooted rules”. However, a term model for a GRS with I-structures would require a very different
treatment of unconnected subterms and garbage collection.
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