The Complexity of McKay's
Canonical Labeling Algorithm

Takunari Miyazaki

CIS-TR-96-11
June 1996

Department of Computer and Information Science
University of Oregon

To appear in Groups and Computation II
(L. Finkelstein and W. M. Kantor, eds.)

DIMACS Seties in Discrete Mathematics
and Theoretical Computer Science

The Complexity of McKay’s Canonical Labeling Algorithm

Takunari Miyazaki

ABSTRACT. We study the time complexity of McKay's algorithm to compute
canonical forms and automorphism groups of graphs, The algorithm is based
on a type of backtrack search, and it performs pruning by discovered auto-
morphisms and by hashing partial information of vertex labelings. In practice,
the algorithm is implemented in the nouty package. We obtain colorings of
Fiirer's graphs that allow the algorithm to compute their canonical forms in
polynomial time, We then prove an exponential lower bound of the algorithm
for connected 3-regular graphs of color-class size 4 using Fiirer's construction.
We conducted experiments with nsuty for these graphs. Our experimental
results also indicate the same exponential lower bound.

1. Introduction

The theoretical complexity status of finding canonical representatives for the
isomorphism classes of finite algebraic and combinatorial structures is a long-stand-
ing unsolved question in computational complexity theory. Since all such structures
can be canonically represented by graphs in polynomial time [10], [19], it suffices
to solve the problem for graphs (cf. [2]).

A canonical labeling algorithm maps an input graph X to its canonical repre-
sentative CF(X) for the isomorphism class such that, for every graph Y, we have
CF(X) = CF(Y) if and only if X 2 Y. We call CF(X) the canonical form of X
and its associated labeling the canonical labeling of X. A number of studies on
computing canonical forms have shown considerable success. In particular, bounds
on certain parameters of a graph make polynomial-time solutions possible. Group-
theoretic methods led to the first significant result (cf. [3]; see also {12]):

THEOREM 1.1 (Babai-Klingsberg-Luks}. For verlez-colored graphs of bounded
color-classes (i.e., color-mulliplicities), canonicel forms can be computed in polyno-
mial time. ‘ O

With considerably deeper use of group theory, Babai and Luks went on to show
that canonical forms of graphs of bounded degree can be computed in polynomial

1991 Mathematics Subjeet Classification. Primary 05C60, 05C85; Secondary 05C25, 68Q25.

Key words and phrases. isomorphism testing, canonical labeling, graph.

This work was partly done as the author's Directed Research Project as a University of
Oregon doctoral student under the direction of Professor Eugene M. Luks. This paper represents
on-going work with Professor Luks, and the final version will appear elsewhere.

University of Oregon, Eugene, OR

2 TAKUNARI MIYAZAKI

time [3], and it was also shown independently by Fiirer, Schnyder, and Specker [8).
On the other hand, the fastest known algorithm to compute canonical forms for
general graphs runs in O(exp(n!/2+*(1))) time for n-vertex graphs (Luks, Zemlya-
chenko, cf. [3]; see also [1], [23]).

Older techniques were often based on a type of brute-force backtrack search.
In general, the naive brute-force method searches all possible vertex labelings of an
n-vertex input graph, yielding O(n!) time. This naive approach can be improved
by classifying the vertices of an input graph into invariant classes during the search
in order to avoid all possible O(n!) vertex labelings (Read and Corneil [20]; see
also §3.1). This vertex classification method is the basis of McKay’s canonical la-
beling algorithm [15], [16], which canonically colors an input graph and finds its
automorphism group to compute its canonical form. However, in addition to vertex
classification, this remarkable algorithm extensively utilizes the information of dis-
covered automorphisms of an input graph (cf. §3.2) and hashes partial information
of vertex labelings (cf. §7) to keep the search space from becoming impractically
large. In practice, the algorithm is implemented in the highly regarded nauty pack-
age [17], which is widely considered to be the fastest practical graph isomorphism
package available.

The generalized naive vertex classification method partitions the set of ordered
d-tuples of vertices (Weisfeiler and Lehman, cf. [21]; see also §2 in [5] for historical
remarks). This method is sometimes called the d-dimensional Weisfeiler-Lehman
method (d-dim W-L) named by Babai. The naive vertex classification method is
then the 1-dim W-L method. The question is, for what d does this method yield
a canonical form in O(n%t!) time (cf. 2], [4], [5])? Cai, Fiirer, and Immerman
constructed a class of pairs of non-isomorphic graphs of bounded color-class that
force d = 2(n) in order for the d-dim W-L method to distinguish them (cf. [5];
originally announced in [4]):

THEOREM 1.2 (Cai-Fiirer-Immerman). There ezisis a sequence of pairs of con-
nected graphs {X,, Yy, baer having the following properties:
(i) Xn and Y, have O(n) vertices.
(ii) Xn and ¥y, are 3-regular and have color-class size 4.
(iii) X, &Yy
(iv) d = 2(n) for the d-dim W-L method io be able {0 answer X, £ Y,. (]

Recall that canonical forms of the Cai-Fiirer-Immerman counterexample can
be computed in polynomial time using basic group-theoretic machinery by Theo-
rem 1.1. Their counterexample still leaves many questions on canonical labeling
algorithms using combinations of combinatorial and group-theoretic methods. In
particular, the question we address is, does the Cai-Fiirer-Immerman counterex-
ample still yield exponential time for McKay’s algorithm? We have positive and
negative answers to this question.

In this paper, for expository purposes, we first consider a simplified version of
McKay's algorithm and give partial answers to our question. Qur simplified algo-
rithm only performs pruning by partial information of discovered automorphisms
of an input graph, and it does not perform pruning by hashing partial information
of vertex labelings (cf. §3).

We recall the construction of the Firer gadget [7], a novel technique used to
construct the Cai-Fiirer-Immerman counterexample, and describe its properties (cf.
§4). We then prove our first main result (cf. §5.2).

THE COMPLEXITY OF MCKAY'S CANONICAL LABELING ALGORITHM 3

THEOREM 1.3. For every graph with the Firer gadgels aliached (including the
Cai-Firer-Immerman counterezample), there ezists an ordering of its colors such
that McKay’s algorithm compules its canonical form and its automorphism group
in polynomial time.

However, for a particular family of graphs with the Fiirer gadgets attached,
some ordering of the colors leads the algorithm to exponential-time computation.
We construct a family of connected 3-regular graphs of color-class size 4 that forces
the algorithm to compute their canonical forms in exponential time (cf. §6.2, Propo-
sition 6.2). Here, we would like to point out that, in general, for algorithms that
make use of the naive vertex classification method such as nauly, smaller the color-
class size, smaller the search tree.

We then add nauty’s hashing capability into our consideration (cf. §7). We
consider the complete algorithm, implemented in nauty, that performs pruning
both by discovered automorphisms and by hashing partial information of vertex
labelings. Given any trivalent graph with the Fiirer gadgets attached as an input
graph, we prove that graph invariants used in hashing do not distinguish non-
equivalent colorings during any stage of the search. Hence, we conclude that our
exponential example for the simplified algorithm forces even the complete algorithm
to exponential-time computation (cf. §8).

THEOREM 1.4. There ezists a sequence of connecled graphs {X,}nen having
the following properties:
(i) Xn has O(n) vertices.
(ii)) Xn is 3-regular and has color-class size 4.
(i) McKay’s algorithm generates §2(c") veriex labelings 1o compute the canonical
form and the eutomerphism group of X, for some fized consiani ¢ > 1.

We conducted experiments with the naufy system for the family of graphs
that forces McKay’s algorithm to exponential time with some color ordering (cf.
§10). Experiments were conducted with three types of color ordering: one that leads
McKay’s algorithm to polynomial time, one that forces the algorithm to exponential
time, and one whose colors are ordered randomly. Our experimental results indicate
the same exponential lower bound (cobtained in §6.2, Proposition 6.2).

2. Preliminaries

We begin with definitions and describe fundamentals of the naive vertex clas-
sification method (see [1], [2], [3]). Throughout, all graphs we consider are finite
and simple (i.e., undirected without loops and multiple edges) unless noted, and all
colored graphs we consider are vertex-colored graphs defined as follows.

2.1. Vertex coloring. Let X = (V, E) be a graph, where |V| = n. A coloring
of the vertex set V is a function ¢ : V — Q = {1,2,...,n} such that the actual
image (V') is an initial segment of {1,2,...,n}. The color-clusses are the sets
Wilg] = {v € V | ¢(v) = i}. A coloring ¢ is defined by a sequence of non-empty
color-classes W, = (Wi[g], Walg), ..., Wilel), k < n. The color-class size of is
the cardinality of the largest color-class of . We define C(V') to be the family of
all colorings on V.

Let Sym(V'} be the symmetric group of permutations on V. There is a natural

action of Sym(V) on €(V) defined by @9(v) = p(v9™") for ¢ € C(V),veV, and

4 TAKUNARI MIYAZAKI

g € Sym(V). Then we have W,o = (Wijpf], Walp?],..., Wi[¢®]), where each
Wilpf] = (Wilp])? for 1 <i < k.

2.2. Canonical form problem. Let K(V) = 2(%) be the family of all graphs
having a vertex set V. For X = (V, E), there is a natural action of Sym(V) on
EC (‘;) given by {u,v}? = {u?,v?} for u,v € V and g € Sym(V). We define
X4 = (V,E%). Two graphs X,Y € K(V) are isomorphic, denoted by X = Y,
if Y = X7 for some g € Sym(V). The automorphism group of X € K(V) is
Aut{X) = {g € Sym(V) | X4 = X}.

The canonical form problem is to find a function, called a canonical form,
CF : K(V) — K(V) such that, for all X € £(V) and g € Sym(V),

(i) CF(X)= X, and

(ii) CF{X¥#) = CF(X).
Given two graphs X,Y € K(V), we have X 2 Y if and only if CF(X) = CF(Y).

We now extend the above notions to colored graphs. Let K(V) x C(V) be
the set of all vertex-colored graphs having a vertex set V. Two colored graphs
(X,), (Y, ¥) € K(V)xC(V) are isomorphic, denoted by (X, ¢) = (Y, ¢), if Y = X¥
and ¥ = ¢f for some g € Sym{V). The color-preserving auiomorphism group of
(X,p) is Aut(X,p) = {g € Sym(V) | X = X7 and ¢ = ¢?}. Now, a canonical
Jorm is a function CF : K(V) x C(V) — K(V') x £(V} such that, for all X € K(V),
v € C(V), and g € Sym(V'),

(i) CF(X,9) = (X, ¢),

(1) CF(X?,¢?) = CF(X,¢); and

(iii) if CF(X, %) = CF(X, ©), then ¢ = * for some h € Aut(X).
Fix g € Sym(V). Then given two colored graphs (X, ¢), (Y, ¢?) € (V) x C(V), we
have (X,) = (Y, ¢?) if and only if CF(X, ¢) = CF(Y, ¢9).

2.3. Naive vertex classification. The naive vertex classification method is
described by the following color refinement procedure.

Consider & vertex set V and a coloring ¢ : V — €. A coloring ¢' is a refinement
of ¢ if ¢'(u) < ¢'(v) implies ¢(u) < @(v) for all u,v € V. A coloring ¢ is discrete
if ¢ is a bijection from V onto Q.

Let X = (V, E) be a graph, where |V| = n, with a coloring ¢ : V — Q. We now
define a refinement ' as follows. For v € V, let d;(v) be the number of neighbors
of v having color i, and consider the following tuple:

D(v) = (p(v), di{v),da(v), ... ,dn(v)).

We sort these new colors lexicographically and define ¢'(v) to be the ordering
number of the new color-class to which v belongs. We keep refining the coloring
until at some level (") = ©("*+1) for some r < n. We define = (), and we call
7 the stable refinement of .

3. McKay’s algorithm

McKay's algorithm is based on a depth-first search through a tree whose nodes
are stable vertex colorings. At each stage, a vertex is chosen and separated as a
singleton color-class by assigning a new color. First, for expository purposes, we
consider the the simplified version of the algorithm {which only performs pruning
by discovered automorphisms) as follows.

THE COMPLEXITY OF MCKAY'S CANONICAL LABELING ALGORITHM &

Throughout, we denote McKay’s algorithm by nauty(X,y) and the simplified
algorithm by nauty’(X, ¢).

3.1. Basic searching method. Suppose we are given a colored graph (X,),
where X = (V, E) and |V| = n. The algorithm computes CF(X, #) by finding the
canonical coloring that produces the lexicographically first adjacency matrix and
Aut(X, 7).

The search begins with the initial coloring «, which is the roo? of the search tree.
Let ¢ be an arbitrary node of the search tree defined by W, = (W, Ws, ..., W;).
If is discrete, it is an end-node (leaf) of the tree, and we call it a ferminal coloring.
If ¢ is not discrete, a vertex is chosen and turned into a singleton color-class as
follows. Let W; be the first non-trivial color-class (i.e., the first color-class having
size greater than 1) of the smallest size. Such W; is called the farget color-class.
For v € W;, we define the new coloring ind(ip, v} by

Wind(p,v) = (Wi oo, Wicy, Wi\ {v}, Wig1, ..., Wi, {v}).

Let ¢, denote the stable refinement of ind(p, v). We call ¢, the stabilizer of v. The
vertex v is a singleton under ¢,. For S = (v;,va,...,v,), an ordered sequence of
vertices, we define the stabilizer of S to be g = ¢y,4,..v, obtained by repeated
application of the vertex refinement algorithm. The coloring @5 is stable, and the
vertices vy, vs, ..., v, form singleton color-classes. The successors of in the search
tree are ¢, for each v € W;. Thus, the total number of successors of ¢ is |W;].

Let T = Tree(X, 7) be the search tree generated by the naive method described
above. Let L = Leaf(X, =) be the set of terminal colorings in T. Given any ¢ € L,
we can form the graph #(X) by relabeling the vertices of X with the discrete
coloring yy. We define the equivalence relation ~ on L by 1 ~ ¢4 if ¥1(X) = 2(X).
Then for any fixed r € L, we have

At(X,m)={geSym(V) |v =19,y € L, and ¢ ~ 7}.

By comparing the adjacency matrices lexicographically, we can define an order on
K(V) and define CF(X, #) = max{#(X) | ¥ € L}.

3.2. Automorphism pruning. Since Aut(X,7) acts semiregularly on L, we
have |L| = c|Aut{X,7)| for some integer ¢ > 0. So it is often not feasible to
generate the entire search tree. This problem is largely overcome by using discovered
automorphisms of X to eliminate sections of the search tree from consideration.

Consider the search tree T. Let ¢ € L be the first terminal node (i.e., the
leftmost leaf). Let p be the best candidate! for the canonical node we have so far.

3.2.1. Orbit pruning. For a non-terminal node ¢ in T, let G, = {4,} <
Aut(X, r), where A, is the set of the generators found so far that stabilize the
color-classes of ¢ (i.e., ¢ = p for g € A,). When the algorithm visits a non-
terminal node ¢ in T, its child is generated according to the orbits of G,. Let
V = {A1,As,..., A} be the orbits of G, and let u; be the minimum? vertex in
A; for 1 € i < r. Wedefine Reps(V) = {uy, uz,...,u.}. At each non-terminal node
, the algorithm fixes vertices in its target color-class, say W = {v;,v»,...,,}, to
generate its children. In particular, out of these s choices, it chooses v; such that
v; € Reps(V) because choosing vertices in the same orbit yields equivalent terminal
nodes under some g € G,.

1By “best,” we mean the terminal node whose coloring induces the lexicographical leader.
?We mean minimum in the lexicographical ordering.

i TAKUNARI MIYAZAKI

T

gca((,', y) =¥
G+ Vigl

Nﬂ(p, v) = v;
2 Pi+1 Vit
/ / AN

¢ P v

F1GurE 1. Pruning by automorphism equivalence

3.2.2. Backtracking by aulomorphism equivalence. Now, for a terminal node v
in T, let »; be the ancestor of v at level i in T.3 For a node ¢ in T, let T, be
the subtree of T" rooted at p. Consider the greatest common ancestor of ¢ and v,
denoted by gca((,v). Here, gea((,¥) = {; = v; for some i > 0. Now, (;4, is the
child of gea((, v) that is on the unique path down to ¢, and v;4, is its another child
that is on the unique path down to v. Similarly, we have gea(p,v)} = p; = v; for
some { < j < i. See Figure 1 for an example.

Automorphism pruning at terminal nodes is performed by considering the fol-
lowing three cases. Suppose the algorithm is generating a terminal node v.

Cask (a). Let g € Sym(V) such that (¥ = v. Suppose g € Aut(X, r). First, ¢
is stored as a new discovered automorphism. Now, the subtrees T¢, ., and T}, are
equivalent under g; that is, each node in T,,, can be relabeled by g to get T,,,,,.
Thus, there is no need to search the subtree T, ,,. So we may immediately return
to gea(¢, v) to skip the search of T,,,, as soon as we find such g € Aut(X, 7).

CasE (b). Suppose the condition of Case (a) fails (i.e., g ¢ Aut{X,7)). Then
let b € Sym(V) such that p* = v. Suppose h € Aut(X,x). Here, »; = gea((,v),
and let V denote the orbits of G,,. Suppose v;4, is generated from v; by fixing
a vertex v € Reps(V). If h induces new orbits of G,,, say V’, and v ¢ Reps(V'),
then we may immediately return to gea((, v} because Tg,,, and T}, ,, are equivalent
under some ¢ € G,;. Otherwise, we may immediately return to gea(p, v) since T,
and T, are equivalent under h € Aut(X, 7).

Yit+:
CasE (c). If the both conditions of Cases (a) and (b) fail, we simply return to
the parent of v.

141

4, The Fiirer gadgets

4.1. Construction. In [7], describing the construction of his counterexample
for the d-dim W-L method for bounded d, Fiirer constructs gadgets to form a pair

3The root of T is defined to be at level 0,

THE COMPLEXITY OF MCKAY'S CANONICAL LABELING ALGORITHM T

7
N\

(SVP)

GOy

FIGURE 2. The graph =3

of non-isomorphic graphs. Here, we recall the construction of his gadgets, called
the Firer gadgets.

Let Y be a graph of size m (i.e., | V(Y)| = m) such that deg(Y,v) > 2 for each
v € V(Y). WLOG, we assume Y is connected throughout. We replace each vertex
v € V(Y') of degree k by the graph Z; defined as follows [5]:

(i) VEr) = AcUBe UM, whete Ay = {a; |1 <i<k}, Be={bi|1<i<
k}, and My = {ms | SC{1,2,...,k} and |5] is even};

(i) £Ee) = {{ms,ai} i€ S} U{{ms,b}|i ¢S}
Here, we color each pair of vertices a; and b; with a unique color, and we color the
middle vertices M; with a different color from the others. Let & be such a coloring,
then the resulting colored graph is (Z;,).

Thus, =i consists of a set of 2¥=! vertices in My each connected to one vertex
from each of the pairs {a;,4},1 < i < k. Furthermore, each of the middle vertices
is connected to an even number of a;’s.

LEMMA 4.1 ([5]). Let ¢ € Aut(S:,0), then g stabilizes {a;,b1},..., {ar, be}.
So | Aut(Zg,0)| = 2. Each g € Aui(Zy,0) is determined by inlerchanging a;
and b; for each i in some subset S of {1,2,...,k} of even cardinality. O

The graph X(Y') is defined as follows [5]:

(i) For each vertex v € V(Y') of degree k, we replace v by a copy of Z;. We

denote such Z; by A'(v), its middle vertex set M; by M(v), and its coloring
d by 0,,.

(ii) To each edge e = {v,w} € E£(Y), adjacent to v, we associate a pair {a;, b;}
from A'(v). We call this pair {a(v, w), b(v, w)}.

{iii) We connect the a vertices and the b vertices at each end of each edge. That
is, we draw the edges {a(v, w), a(w,v)} and {b(v, w), b(w,v)}. We denote
this pair of edges by X(e).

For each v € V(Y'), the graph X(v) is colored uniquely by #,. The resulting colored
graph is denoted by (X'(Y),).

8 TAKUNARI MIYAZAKI

NoTE. The coloring ¥ colors each X'(v) with unique & + 1 colors, so ¥ colors
the entire graph A'(Y) with 3, ev(y){deg(Y, v) + 1) colors. If d = max{deg(Y,v) |
v € V(Y)}, then (X(Y),) has color-class size 2971,

Now, let ¢ = {v,w} € £(Y}), and consider its corresponding pairs of edges
in X(e), say {e1,e2} = {{e(v,w),a(w,v})}, {b(v, w),b(w,v)}}. Suppose we have
g € Aut(X'(Y),d) that swaps e; with es (i.e., g swaps a(v, w) with 5(v, w) and
a{w, v) with b(w, v)). Then g twists e. For a cycle C in Y, we say g twists C if g
twists each e € £(C).

OBSERVATION 4.2. Let g € Aut(X(Y), V). Then g is delermined by twisting
edge-disjoint cycles of Y. 0

REMARK. Aut(X(Y),d)is a 2-group.

4.2. Individualization. We now define our notion of individualization of ver-
tices. We then describe some properties of individualization on (X'(Y), ¥) when the
color refinement algorithm is applied.

Let (X, 7) be a colored graph. A vertex v € V(X)) is individualized if v has its
own unique color. We say we individualize a vertex v € V(X) when we separate
v by assigning a unique color to v and applying the color refinement algorithm to
stabilize this new coloring. For (X'(Y'), ¢}, where ¢ is arbitrary, a vertex v € V(Y)
is X-individualized if each vertex in (X'(v), ¢|v(v)) has its own unique color. An
edge e € £(Y) is A-individualized if each vertex in (X(e), ¢|x(.)) has its own unique
color.

OBSERVATION 4.3. For (X(Y),9), let v € V(Y) and k = deg(Y, v).
(i) If we individualize a vertez in M(v) C V(X(v)), then v is X -individualized.
(i) Suppose we only individualize pairs of vertices a; and b; of X(v) in some
order. Then v is X-individvalized ezactly when k —1 pairs of verlices a; and
b; are individualized.
(iii) The target color-class has size 2 during any slage of individualization. O

We define a subgraph of ¥ induced by a coloring on X'(Y).

DEFINITION. Given (X(Y),9), let ¢ be a stable color refinement of 9. For
(X(Y), p), let ['(Y,) be the subgraph of Y defined by
(i) V(I'(Y,¢)) = {ve V(Y)| v is not X-individualized with ¢}, and
(i) E(T(Y,9)) = {e€ E(Y) | e is not X-individualized with }.

LEMMA 4.4. Given (X(Y),9), let © be a stable color refinement of 9. If
I'(Y,) # @, then T'(Y,) contains a cycle.

PRroOF. Suppose I'(Y,p) is a forest. Let U C WV(I'(Y,¥)) be the set of all
vertices of degree 1 in I'(Y,¢). Let v € U, and suppose deg(Y,v) = k. There are
k — 1 X-individualized edges adjacent to v. By Observation 4.3 (ii), v must be
A-individualized. Thus, v ¢ V(I'(Y, ¢)), a contradiction.

5. Colorings that allow polynomial-time solutions

5.1. Coloring scheme. We now introduce a coloring scheme that allows the
algorithm nauty’, described in §3, to compute the canonical form of (¥(Y),d) in
polynomial time.

THE COMPLEXITY OF MCKAY'S CANONICAL LABELING ALGORITHM 9

LEMMaA 5.1. Given (X(Y), V), consider applying the depih-firsi veriex classifi-
calion algorithm. There ezists an ordering of the colors of (X(Y),9) such thai,
Jor every generaled sequence of slable refinemenis 9 = ¢p,¢1,...,0r = ¢ €
Leaf(X(Y'), 1), eack graph I'(Y,;),0 < i < r —1, is connected.

ProoF. We show, given (X(Y'),:), where I'(Y, ;) is connected, the vertex
classification algorithm can individualize a vertex in some non-trivial color-class
having the smallest size (not necessarily the target color-class) so that ['(Y, pi4;)
is connected for 0 < ¢ € r — 1. Since I'(Y, ;) is connected, it contains a cycle.

Suppose I'(Y, ;) itself forms a cycle. Let ¢;4; be the resulting stable color
refinement after individualizing a vertex in X'(v) for some v € V(I'(Y, i)). Then
I'(Y, Pl'-i-l) =4a.

Suppose I'(Y, ;) properly contains a cycle, say C. There is an edge ¢ =
{v, w} € &£(C) such that deg(T(Y,¢;), v} > 3. Let ;11 be the resulting stable color
refinement after individualizing a vertex in A'(e). Then the remaining components
of C keep I'(Y, pi4+1) connected. 0

5.2. Polynomial-time solutions. We prove our first main result. Let 1,4
be a coloring obtained by permuting the color-classes of ¥ so that it satisfies the
condition of Lemma 5.1.

ProposITION 5.2. Given (X(Y),04), where n = |V(X(Y))|, the algorithm
nauty’ generaies a search tree having O(n®) nodes to compute CF(X(Y),94) and
Aut(X(Y),04).

ProoF. We utilize the fact that each automorphism is determined by twisting
edge-disjoint cycles of Y (cf. Observation 4.2). At each stage of individualization,
we twist a cycle in I'(Y, ¢), eventually leading to an automorphism when we reach
a terminal node. We write V' = V(X(Y')). Let T be the search tree generated by
the algorithm. Let { be the leftmost leaf of T and ¢; be the ancestor of ¢ at level
i. Suppose the height of T, is h;. We have the following claim:

CLaM. The number of nodes in T, is ¢, (k) = 3(hi + 1)(h: +2).

To confirm our claim, for every leaf v in T, we show g € Sym(V) such that
¢? = v is an automorphism, so the algorithm returns to the parent of gea((, v).
We induct from the leftmost leaf {. Let {; be the parent of { and v be (s
another child. Now, I'(Y,(;) itself forms a cycle. Then g € Sym(V) such that
¢f = v is an automorphism that twists this cycle. Here, h; =1 and #,(h;) = 3.
Suppose that the algorithm is visiting some ancestor of {, say {; at level i.
Now, ;- is the parent of ;. Let v; be {;_’s another child and v be the leftmost
leaf generated from ;. By Observation 4.3, I'(Y,(;) is connected and contains a
cycle. Now, there is an edge e € E(I(Y,{i-1)) \ E(T(Y,¢;)) that gets twisted by
any g € Sym(V') such that {f = v;. The edge e is on a cycle in I'(Y,{;—1) because
I'(Y, ;) would be disconnected otherwise. Then we have the following two cases.
(a) e is on a cycle in I(Y, i—1) \ T(Y,), or else
(b) e is on a cycle in I'(Y,¢i—1), and parts of this cycle are in ['(Y, (;).
In either case, let C be such a cycle. Eventually, v induces the automorphism that
only twists C.

1The graph X; \ X2 is the subgraph induced by the vertex set V(X;)}\ V(Xz).

10 TAKUNARI MIYAZAKI

fl f2 fa

FIGURE 3. The graph Y,

By induction, the number of nodes in T¢; is t1(/;}, and the height of T¢,_, is
hi -+ 1. Since the algorithm returns to the parent of (;_, immediately after v is
generated, the number of nodes in T¢,_, is given by £;(h;) + h; + 2 =t (hi—y).

The height of T" is O(n). Consequently, by our claim, the number of tree nodes
generated is O(n?). O

6. An exponential lower bound

We construct a family of 3-regular graphs of color-class size 4 that forces
McKay’s algorithm to compute their canonical forms in exponential time.

6.1. Construction. An edge e is a bridge (or isthmus) if the removal of e
increases the number of connected components. First, we construct a multigraph
Y, that has a bridges and & + 1 cycles.

DEFINITION. Let o > 0 be an integer. Let Y, be a multigraph defined by
V(Ya) = {v1,... ,va,1,...,we} and E(Y,) = E; U Ea U E3, where
(i) E1={e1,eat1 | e1 = {v1,11} and eas1 = {wa, wa}},
(ii) Ez2 = {ei, el |ei = el = {w;—1,v:},2< i <}, and
(i) Ea={fi | {vi,ws},1 €i<a}.
Let Cy be the first cycle of Y, consisting €, alone, Caq1 be the (@ + 1)st cycle of
Yo consisting ep4) alone, and C; be the ith cycle of Y, consisting e; and e} for
2<i<a.

Now, we apply Fiirer's construction to ¥,. We denote the resulting graph by
(X(Ya), V). Here, observe that X'(Y,) is now a simple graph (i.e., a graph without
loops and multiple edges} even though Y, is not.

REMARKS. The graph Y, is a 3-regular graph, so (X(Y,),?) has 8a color-
classes and color-class size 4. The automorphism group of (¥ (Y,),) is an elemen-
tary abelian 2-group. In particular,

Aut(X(Y,),) = Zo x - - - x Zo,
a+ 1 times

where each Z» corresponds to twisting a cycle C; of Y,.

OBSERVATION 6.1. Given (X(Y,), V), consider applying the depih-firsi verter
classification algorithm. Denole a sequence of stable color refinements from the root
of the search tree ¥ to a leaf) by ¥ = o, ¢1,... ,01 = Y. There ezisls an ordering
of the colors of (X(Yy),¥) such that fi, fo,..., f; are the only X-individualized
edges when p; is generaled for 1l <i< o, O

THE COMPLEXITY OF MCKAY'S CANONICAL LABELING ALGORITHM 11

6.2. Exponential-time solutions. We prove our second main result. Let
Y5 be a coloring obtained by permuting the color-classes of # so that it satisfies the
condition of Observation 6.1. The algorithm generates exponentially many nodes
in the search tree to compute the canonical form of (X (Y,), 75).

PROPOSITION 6.2. Given (X(Y,),Up), where n = | V(X (Ya))|, the algorithm
nauty’ generates £2(c") nodes in the search iree to compute CF(X(Y,),¥5) and
Aut(X(Yy),9p) for some fized consiant ¢ > 1.

Proor. We write V = V(X' (Y,)). Let T be the search tree generated by the
algorithm, First, the height of T is 2a+1. Let { be the leftmost terminal node of T,
WLOG, we assume that ¢ induces the canonical labeling.® After (is generated, the
first @+ 1 terminal nodes generated (excluding ¢) induce automorphisms defined by
twisting the cycles Cy,Ca,...,Ca41 (cf. Proposition 5.2). Now, no automorphism
twists bridges fi, f2,.. ., or fy; thus, no other terminal nodes induce automorphisms
during the search.

After generating the first o + 2 terminal nodes, no branching is performed at
any levels below level & because the generators of Aut(X'(Y,), ¥g) are already found
and so are its orbits (cf. §3.2.1).

We now prove that T contains the complete binary subtree of height «. Suppose
the algorithm is visiting a node i at some level k < a after { is generated (i.e.,
after all the generators of Aut(X'(Ys),Jn) are found). Let {; = gea(¢, p&) at some
level j < k. Let ¢ # { be a terminal descendant of ;. Then g € Sym(V) such that
¢? = ¢ must twist the bridge f;, so g ¢ Aut(&'(Yy),?5). Thus, when a terminal
node is generated, it fails to satisfy the pruning conditions of Cases (a} and (b) in
§3.2.2 except for the first o + 2 terminal nodes. Also, note that no orbit pruning is
performed above level @+ 1 (cf. §3.2.1). So T contains the complete binary subtree
of height a.

Consequently, for (X'(Y,),¥p), the number of tree nodes in T generated by
the algorithm is given by ta{a) = 2°*! — 1+ 2%(a + 1) + 1(a® + 3a + 2). Since
n = |V| = 20a, the number of tree nodes in n is given by T(n) = ta(35) = 2(c"),
where c= ¥2> 1. O

7. Hashing with a graph invariant

7.1. Graph invariants. While automorphism pruning reduces the size of
each equivalence class of terminal colorings of the search tree to a manageable size,
it does not reduce the number of classes. To reduce the number of such classes,
McKay defines graph invariants (called indicator functions in [15), [16]) to hash
partial information of vertex labelings.

DEFINITION. A function f : K(V) x C(V) — N is a graph invariant if, for all
X e K(V), p € C(V), and g € Sym(V), we have

(X2, ¢%) = (X,).

Let ¢ € C(V). For the sequence of the color-classes W, = (Wi[g], Waly], ...,
Wi[pl), we write | W, | = k for the number of the color-classes and || W, || =
(IW1[&ll, [Walell, . . . , IWk[g]]) for the sequence of the sizes of the color-classes.

5Since no automorphism can twist bridges, having the canonical node (i.c., a terminal node
that induces the canonical labeling) elsewhere in the search tree does not make tree pruning more
efficient.

12 TAKUNARI MIYAZAKI

The graph invariant in nauty is defined according to some canonical information
obtained during color refinement steps with some hash function k as follows.

DEFINITION. For ¢ € C(V), suppose the stable coloring 7 is obtained by the
sequence of refinements p, ¢, ..., (") = . We then define

AX, @) = (Il W I, IWer], - - s | Ween 1),

where h is some hash function.

7.2. Canonical forms with a graph invariant. For X = (V,E), let p €
C(V) and S = (v1,vs,...,v,) be a sequence of vertices. Consider the sequence of
stabilizers @y, , Yo a1+ s Puyvgev, = Ps. We define

A(X,0,8) = (A(X, p), A(X,ind(p, 11)), . .. , A(X, ind(@y, 05 0s_, s).

REMARK. A(X?, 09, 59) = A(X,p,8) forall X e K(V), p € C(V), sequences
of vertices S, and g € Sym(V).

For a graph (X,¢), let L = Leaf(X,) be the set of all leaves of the search
tree generated by the depth-first vertex classification algorithm. Terminal color-
ings s, and s, cannot be equivalent unless A(X,p,S1) = A(X,¢,S:). Fur-
ther efficiency can be achieved by ordering the vectors A(X, g, S) lexicographically
and redefining CF(X) to be max{ps(X) | vs € L and A(X,,S) = A"}, where
A* = max{A(X,¢,S) | ¢s € L}. By this means, McKay’s algorithm nauty elimi-
nates sections of the search tree that cannot contain either new automorphisms or
CF{X).

7.3. Local equivalence. For stabilizers s, , ¢s,, what are conditions on g,
and s, in order to get the equality A(X,p,S1) = A(X, ¢, S2) independent of h?
To answer this question, we introduce our notion of local equivalence of colorings.

A semiregular bipartile graph is a bipartite graph with a given chromatic par-
tition V' = V4 U V5 such that all vertices in the same color-class have equal degrees.
For W1, V2, disjoint subsets of the vertex set of the graph X = (V, E), let B(V,, V2)
denote the bipartite subgraph of X induced between V) and V5. If [Wj| = |Va] = 1,
then the bipartite subgraph B(V}, V4) is called trivial. We first characterize stable
colorings as follows (cf. Proposition 2.1 in [1]).

OBSERVATION 7.1. For X = (V,E), let ¢ € C(V). The coloring is stable if
and only if every subgraph induced by Wi[yp] is regular and cvery induced bipartile
subgraph B(W;[], Wjlg]) 1s semiregular for 1 <1,j <|Wy|. O

Now, we define our notion of local equivalence. For X = (V, E), let ¢, ¢ € C(V).
The colorings ¢ and v are locally equivaleni, denoted by ¢ ~; ¥, if every non-
trivial bipartite subgraph B(W;[g], Wjle]) is color-preserving isomorphic to the
corresponding subgraph B(W;[¢], W;[]) for 1 <i4,5 < |W,|.

Let S = (v1,v2,...,v,) and Sz = (wy,ws,...,w,) be sequences of vertices of
the same length, where each v;,w; € V,1 < i < 5. Let Ky = (vy,v2,...,) and
Kj = (wy,wy,...,w) be the subsequences of length k < s. Now, for p € c(v),
define @1 = ind(pxk,,ves1) and Ba = ind(px,, wip). If B} ~; @) for all
i and k, then A(X,p, S1) = A(X,,S2). That is, having the local equivalence of
refinements at all levels is a sufficient condition to have the values of A equal.

THE COMPLEXITY OF MCKAY'S CANONICAL LABELING ALGORITHM 13

8. Still exponential

Let Y be a 3-regular graph. For (X'(Y),), let T be the search tree generated
by the depth-first vertex refinement algorithm. Then all colorings in T at the same
level are locally equivalent as follows.

ProrosiTiON 8.1. For (X(Y),9), let ¢ = V5, and ¢ = Vs, be locally equiv-
alent stabilizers. Let & = ind(p,v) and ¥ = ind(¥, w), where v and w are in
the target color-classes of o and ¢, respectively. Then ®) and W) are locally
equivalent for 0 < r <n.

ProoF. Let Wi[p] and W;[¢] be the target color-classes of ¢ and 9, respec-
tively. First, we show ® ~; ¥. Suppose Wy[®] = {v,v'} and Wy[¥] = {w, v'}. For
all non-trivial color-classes W;[®)] that are adjacent to v, we have B({v}, W;[®]) =
B({w}, W;[¥]) and B({v'}, W;[@]) = B({w'}, Wj[¥]). Consequently, @ ~, ¥.

Suppose ®(r=1) ~, ¥(r-1) for some r > 1. Here, it suffices to show the iso-
morphisms of all pairs of non-trivial bipartite subgraphs B{W;[®(")], W;[®(")]) and
B(W;[®()], W;[w(")]), where color-classes W;i[®(")] and W;[¥(")] are properly con-
tained in color-classes of $("=1) and ¥{"=1), respectively.

First, fix W;[®("] € W;[®("~1)]. Suppose |Wi[®("=1)]| = 2, then |W,[¥(—1))|
= 2. Let ¢ € Wi[®"~V)] and {y,¥'} = Wi[¥{"-V)]. Let W;[®{")] be a non-trivial
color-class adjacent to z. Since |W;[®(")]| = |W;[¥()]| = 2 or 4, we have

B({z}, W;{2") = B({y}, W;[¥*)) and B({z}, W;[#"]) = B({y'}, w;[¥).

Suppose |Wi[®("~1)]| = 4. Then Wi[®"~1] = M(v) for some v € V(X(Y)).
That is, |W;[®("]| = 2 and Wi [®(—1)] = W [¥("=1)]. Let W}, [®()] and W}, [@(7)]
be the color-classes that form two outer pairs of X(v). Here, we observe that
W;, [8)) = W;, [¥(7)) and W, [@(7)] = W;, [¥(")]. The color-classes of (") adjacent
to W;[®(")] are W;, [@(7)], W;,[@(")], and a singleton W, [®(")] for some j3. We then
have the three required pairs of color-preserving isomorphic semiregular bipartite
subgraphs. O

We conclude this section with two corollaries.

CoroLLARY 8.2. Given (X(Y),?), consider applying the depih-firsi verlex
classification algorithm. Let Js, and Us, be stabilizers at the same level in the
search tree. Then A(X(Y),¥,51) = MA(Y), 9, S2) for any hash function h. ()

CoRoLLARY 8.3. Given (X(Y,),98), where n = |V(X(Y,))|, the algorithm
nauty generales §2(c”) nodes in the search iree to compuie CF(X(Y,),Vp) and
Aut(X(Y,),9g) for some fized constant ¢ > 1. a

9. Extending the distance

For a coloring ¢ € £(V) and a vertex v € V, the standard stable refinement @
is based on a lexicographic ordering of the tuple D{v) = ((v),d1(v),... ,dn(v)).
We can extend this method by counting the numbers of neighbors of distance § in
each color-class. For vertices v,w € V = V(X), the number of edges traversed in
the shortest path joining v and w is called the disfance in X between v and w and is
denoted by 8(v, w). Forv € Vand U C V, we define Ns(v,U) = {we U | 8(v,w) =

14 TAKUNARI MIYAZAKI

8} and n;(v,U) = [Ng{v,U)|. For a coloring ¢, where W, = (W, Wa,..., W),
and a vertex v € V, consider the tuple

Ds(v) = ((v), ns(v, W1}, ns(v, Wa), . .., ns(v, Wi)).

We sort these new colors lexicographically and define ¢'(v) to be the ordering
number of the new color-class to which v belongs. We keep refining the coloring
until at some level (") = ("+!) for some r < n. We define S;{y) = (", and we
call S5{p) the 8-stable refinement of p. Note here that $ = S,(). Furthermore,

we define
- Si(y) f6=1,
S = it
8(e) {s,(s,_l(w)) i8> 1.

We call Ss(p) the strongly 8-stable refinement of @. Il ¢ = Sg(p), then we call ¢ is
strongly b-stable.

In theory, for a fixed § > 0, both é-stable and strongly é-stable refinements
can be computed in polynomial time. However, for practical purposes, there is a
weaker color-refinement heuristic. If ¢ is strongly 6-stable, we define dists() = ¢.
Otherwise, for some € < 8, ¢ is strongly (¢ — 1)-stable but not e-stable. Then
there exists a non-trivial color-class W;[y] such that D,(vy) # D.(v2) for some
v1,v2 € Wilp].” Now, let ¢’ be the new coloring defined by lexicographically
ordering the tuples D,(v) for v € V. Here, the color-class W;[¢] splits as W] =
Wi, [¢'] U Wi,[¢'] U---U Wi, [¢f] for some £ > 1. We then define dists{) by the
sequence of color-classes

Wdilt;(lp) = (Wl[‘P]: sy pvt'—I[‘P]r le'l[‘P’]l Q0O le.l[(P,]! w"l'+1[‘P]: DOOH Wk[fp]).

We say dists() splits the color-class W;[y], and we call dists() the §-distance
refinement of .

For the family of graphs (X' (Yy), ?5), applying dist, () at each level improves
the performance of the algorithm only by a constant factor (i.e., it still remains
exponential) for the following reasons.

ProprosSITION 9.1. Let Y be a 3-regular graph. Given (X(Y),9), let ¢ be a
stable refinement of J. For ell § > 0, the refinement dists(p) does not split any
color-class of v of size 2.

PROOF. Suppose ¢ is defined by W, = (W, Wa, ..., We). Let W; be a color-
class of size 2 and v,w € W;. Then

(i) for § =1,2,3,4, and 5, we have ns(v, W;) = ns(w, W;); and
(i1) for 6 > 6, we have Ns(v, W;) = Njs(w, W;)

forall W;,1<j <k d
CoRoLLARY 9.2, For (X (Y,),?), let ¢ = U5, and ¢ = U5, be stabilizers. If p
and 3 are locally equivalent, then for all 1 < 6 < n,

(i) dists() and dists(y) are locally equivalent, and
(ii) the stable refinements of dists(¢) and dists() are locally equivalent. a

8 This is defined in nauty as an optional vertex-refinement heuristic.
7We take the minimum of all such i's determined uniquely by some ordering of color-classes.

THE COMPLEXITY OF MCKAY'S CANONICAL LABELING ALGORITHM

TaBLE 1. The number of tree nodes generated and the CPU time

for (X(Ya),¥p), where 1 < o < 23.

Graph [V(X(Ya))] | Search tree size | CPU time (seconds)
(X¥(Y1),98) 20 10 0.01
(X (Y2),95) 40 25 0.03
(X (Ya),98) 60 57 0.07
(X(Ya),95) 80 126 0.21
(X(Y:s),?B) 100 276 0.50
(X(Ys),¥5) 120 603 1.25
(X(Y7),98) 140 1,315 3.18
(X(Ya),95) 160 2,860 8.04
(X(Ye),¥5) 180 6,198 20.23
(X(Yio), 75) 200 13,377 51.91
(X(Yn),98) 220 28,749 139.43
(X (Y2), 75) 240 61,530 306.55
(X(Yia), ?5) 260 131,176 729.66
(X(Y14),95) 280 278,647 1,499.58
(X(Y1s),98) 300 589,959 3,395.27
(X(Yis), V) 320 1,245,336 7,737.59
(X(Yi7),95) 340 2,621,610 16,379.63
(X(Yis), 95) 360 5,505,213 20,261.31
(X(Y19),98) 380 11,534,545 44,285.77
(¥(Y20),98) 400 24,117,478 177,259.39
(¥(Ya1),93) 420 50,331,900 211,538.75
{(X(¥2:),98) 440 104,857,875 460,035.89
(X(Ya3),98) 460 218,104,107 994,427.10

10. Experiments with nauiy

15

We first conducted experiments with the nauly system using its default pa-

rameters to compute the canonical form of (X' (Ya),). We refer to {17] for details
on the implementation of the algorithm. We used the program dreadnaut [17] for
nauty (version 1.7) running on a Sun SPARCstation-1 computer under the op-
erating system SunQOS (version 4.1.3). The experiments were conducted for the
following three types of colorings on (¥ (Yy), 9).

(i) (X(Y%),9Y4), where 94 is defined in §5.1. We call this Type A.
(i) (X(Yz),?98), where Jp is defined in §6.1. We call this Type B.
(iii) (X(Ya),Yc), where d¢ is a coloring defined by randomly permuting all the
color-classes. We call this Type C.

For Type A, we tested for 1 < a < 31, and for Type B, we tested for 1 < o < 23.
For Type C, we took the average of 16 randomly generated ¢ for each size, where
1 < o € 31. We collected the numbers of tree nodes generated and the CPU
execution time measured by dreadnaut. Table 1 shows the number of tree nodes
generated and the CPU time of Type B for 1 € a < 23 obtained by nauty. Figure 4
shows the numbers of tree nodes generated for Type A, Type B, and the average of
16 randomly generated Type C’s for each size. Here, the curves in Figure 4 appear
to show that the number of tree nodes generated for Type A has a polynomial
upper bound, and for Type B, it has an exponential lower bound. For the average

16 TAKUNARI MIYAZAKI

le+09 ¢ T T T T T T

[Type A —— |

I . Type B~ 1

le+08 | +_.A'\.'t:mgc of Type C's -@- 3
»

le+07 | A _.-?

& 4]

e er"d 1

le+06 | o AT

Search tree size

100 200 00 400 500 600
Graph size (the number of vertices)

FIGURE 4. The number of tree nodes generated

of Type C’s, its behavior is not quite clear from our experiments, which leaves some
questions in studying average time complexity of Type C’s.

We also conducted experiments using nauly’s optional vertex-refinement heuris-
tics (called vertex tnvariants in [17]). Except for dist, (), which showed some im-
provement by a constant factor {cf. §9), no other heuristics helped the performance
on our exponential examples.

11. Remarks

11.1. Other classes of graphs. In general, if we ignore pruning by hashing
partial information of vertex labelings, it is not so difficult to construct examples
that can force the algorithm to exponential time. In fact, a referee pointed out that
the family of graphs consisting of a disjoint union of triangles and squares will do
the job. For such graphs, the naive vertex classification method (described in §2.3)
cannot detect the difference between triangles and squares; and thus, we are forced
to backtrack. The size of their search trees becomes exponential if we arrange vertex
labelings so that triangles are matched with squares. It still remains exponential
even if each pair of triangles and squares are colored uniquely with initial color-
class size 7. However, we note that if we extend the distance of neighbors to
6 = 2 during the refinement step (as described in §9), the naive vertex classification
method computes the orbit partitions of such graphs in one refinement step, and
their canonical forms can be computed in polynomial time. The referee’s idea of
triangles and squares can be pushed further by taking a sequence of polygons at
the cost of increasing color-class size. Consider an n-vertex graph consisting of a

THE COMPLEXITY OF MCKAY'S CANONICAL LABELING ALGORITHM 17

sequence of m-gons and (m + 1)-gons, where m = 8(y/n), with vertex labelings
arranged as in the triangle-square example. With § being a fixed constant, if we
ignore pruning by hashing, such an example gives a search tree of size £2(¢v™) for
the method described in §9. Here, note that its color-class size is unbounded: in
particular, it has size £2(y/n).

Another example was suggested by McKay [18]. He pointed out that the family
of graphs consisting of a disjoint union of strongly regular graphs, non-isomorphic
but having the same parameters, would be a good candidate to force his algorithm
to exponential time. But such an example also requires increasing color-class size.

11.2. On-going work. McKay’s algorithm is based on coloring the vertex set
V into invariant color-classes according to the number of neighbors in each color-
class. This method can be extended by coloring V' according to some invariant
information obtained by partitioning the set V¢ of ordered d-tuples in an analogous
way (i.e., by the d-dim W-L method). This is a generalized, stronger version of the
extended-distance algorithm described in §9. This algorithm not only searches
out up to distance d but also considers all possible colorings of d-tuples. Since
the present work was completed, by extending our results, we have constructed a
family of connected 3-regular graphs of color-class size 4 that forces d = 2(y/n) in
order for the extended algorithm to work. That is, with d being a fixed constant,
this example yields search trees of size £2(cV™) for some fixed constant ¢ > 1. This
result is stronger than what is stated in §9 in the sense that the algorithm we
consider employs the more generalized d-dim W-L method. This result will appear
elsewhere.

Acknowledgements

It is a pleasure to express many thanks to my advisor Professor Eugene M. Luks
for suggesting this problem to me and for helpful guidance, suggestions, and en-
couragement. I would also like to acknowledge the referees for their effort, interest,
and suggestions.

References

1. L. Babai, Moderately exponential bound for graph isomorphism, Fundamentals of Compu-
tation Theory, Proceedings of the 1981 International FCT-Conference, Szeged, Aug. 24-28,
1981 (F. Gécseg, ed.), Lecture Notes in Comput. Sci., vol. 117, Springer, New York, 1981, pp.
34-50.

, Automorphism groups, isomorphism, reconsiruction, Handbook of Combinatorics,
vol. 2 (L. Lovész, R. L. Graham, and M. Gritschel, eds.), Elsevier Science B.V., Amsterdam,
1995, pp. 1447-1540.

3. L. Babai and E. M. Luks, Canonical labeling of graphs, Proceedings of the 15th Annual ACM
Symposium on the Theory of Computing, Boston, Apr. 25-27, 1983, ACM, New York, 1983,
pp. 171-183.

4. J. Cai, M. Fiirer, and N. Immerman, An optimal lower bound on the number of varicbles for
graph identification, Proceedings of the 30th Annual Symposium on Foundations of Computer
Science, Research Triangle Park, N.C., Oct. 30-Nov. 1, 1989, IEEE Computer Society Press,
Los Alamitos, Calif., 1989, pp. 612-617.

y An oplimal lower bound on the number of variabies for graph identification, Combi-
natorica 12 (1992}, 389-410.

6. J. D. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Math., vol. 163,
Springer, New York, 1996.

7. M. Fiirer, A counterezample in graph isomorphism testing, Tech. Rep. C5-87-36, Department
of Computer Science, The Pennsylvania State University, University Park, Pa., 1987.

18

11.

12.

13.

14.
15.

16.
17.

18.
19,

20.

21.

22.
23.

TAKUNARI MIYAZAKI

M. Fiirer, W. Schnyder, and E. Specker, Nermal forms for trivalent graphs and graphs of
bounded valence, Proceedings of the 15th Annual ACM Symposium on the Theory of Com-
puting, Boston, Apr. 25-27, 1983, ACM, New York, 1983, pp. 161-170.

. M. Hall, Jr., The theory of groups, 2nd ed., Chelsea Publishing Company, New York, 1976.
. Z. Hedrlin and A. Pultr, On full embeddings of calegories of algebras, Illinois J, Math. 10

(1966), 392-406.

N. Immerman and E. S. Lander, Deacribing graphs: a firsi-order approach lo graph eanon-
ization, Complexity Theory Retrospective (A. Selman, ed.), Springer, New York, 1890, pp.
59-81.

P. Klingsberg and E. M. Luks, Succinct certificates for a class of graphs, manuscript, 1981,
E. M. Luks, fsomorphizm of graphs of bounded valence can be tested in polynomial time, J.
Comput. System Sci. 25 (1982), 42-65.

R. Mathon, Semple graphs for isomorphism testing, Congr. Numer. 21 (1978), 499-517.

B. D. McKay, Compuling eutomorphisms end canonical labellings of grapks, Combinatorial
Mathematics, Proceedings of the International Conference on Combinatorial Theory, Can-
berra, Aug. 16-27, 1977 (D. A. Holton and J. Seberry, ¢ds.), Lecture Notes in Math., vol, 686,
Springer, New York, 1978, pp. 223-232.

y Practical graph isomorphism, Congr. Numer. 30 (1981), 45-87.

, nauly uszer’s guide, version 1.5, Tech. Rep. TR-CS5-80-02, Computer Science Depart-
ment, Australian National University, Canberra, 1980.

, Personal communication with L. Babai, 1995.

Q. L. Miller, Graph isomorphism, general remarks, J. Comput. System Sci. 18 (1879), 128-
142,

R. C. Read and D. G. Corneil, The graph isomorphism discase, J. Graph Theory 1 {1977},
338-363.

B. Weisfeiler, On construction and identification of graphs, Lecture Notes in Math., vol. 558,
Springer, New York, 1976.

H. Wielandt, Finite permutetion groups, Academic Press, New York, 1964.

V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich, Greph isomorphism problem,
Zap. Nauchn. Sem. Leningradskogo Otdel. Mat. Inst. Steklov, (LOMI) 118 (1982), 83-158
{Russian); English transl., J. Soviet Math. 20 (1985), 1426-1481.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGON, 1477 EasT

13TH AVENUE, EugeENE, OR 97403-1202

E-mail address: miyazaki®cs.uoregon.edu

