Symmetry-Breaking Predicates
for Search Problems

James Crawford, Matthew Ginsberg,
Eugene Luks & Amitabha Roy

CIS-TR-96-12
August 1996

Department of Computer and Information Science
University of Oregon

O R T SRy~ s - T E N "I

To appear in the proceedings of the Fifth International Conference on Principles of Knowledge
Representation and Reasoning (KR ’96),
Cambridge, Massachusetts, November 4-8, 1996,
published by Morgan Kaufmann Publishers.

m

Symmetry-Breaking Predicates for Search Problems

James Crawford
Matthew Ginsherg

Computational Intelligence Research Laboratory

1269 University of Oregon
Eugene, OR 97403-1269
{ic, ginsberg}@cirl.uoregon.edu

Abstract

Many reasoning and optimization problems
exhibit symmetries. Previous work has
shown how special purpose algorithms can
make use of these symmetries to simplify
reasoning. We present a general scheme
whereby symmetries are exploited by adding
“symmetry-breaking” predicates to the the-
ory. Qur approach can be used on any propo-
sitional satisfiability problem, and can be
used as a pre-processor to any {systematic
or non-systematic) reasoning method. In the
general case adding symmetry-breaking ax-
ioms appears to be intractable. We discuss
methods for generating partial symmetry-
breaking predicates, and show that in sev-
eral specific cases symmetries can be broken
either fully are partially using a polynomial
number of predicates. These ideas have been
implemented and we include experimental re-
sults on two classes of constraint-satisfaction
problems.

1 Introduction

Human artifacts from chess boards to aircraft exhibit
symmetries. From the highly regular patterns of cir-
cuitry on a microchip, to the interchangeable pistons in
a car engine, or seats in a commercial aircraft, we are
drawn esthetically and organizationally to symmetric
designs. Part of the appeal of a regular or symmetric
design is that it allows us to reason about and un-
derstand larger and more complex structures than we
could otherwise handle. It follows that if we are to
build computer systems that configure, schedule, di-
agnose, or otherwise reason about human artifacts, we
need to endow these reasoning systems with the abil-

Eugene Luks
Amitabha Roy
Department of Computer Science
The University of Oregon
Eugene, OR 97403-1202
{luks, aroy }@cs.uoregon.edu

ity to exploit structure in general and symmetries in
particular.

Automated reasoning is a huge area, so for purposes
of this paper we will focus on search. Abstractly, a
search problem consists of a large (usually exponen-
tially large) collection of possibilities, the search space,
and a predicate. The task of the search algorithm is
to find a point in the search space that satisfies the
predicate. Search problems arise naturally in many
areas cof Artificial Intelligence, Operations Research,
and Mathematics.

The use of symmetries in search problems is concep-
tually simple. If several points in the search-space are
related by a symmetry then we never want to visit
more than one of them. In order to accomplish this
we must solve two problems. First, the symmetries
need to be discovered; e.g., we need to realize that we
can interchange the five ships without changing the
basic form of the problem. Second, we need to make
use of the symmetries.

This paper focuses on the second of these problems. It
was shown by Crawford [Crawford, 1992) that detect-
ing symmetries is equivalent to the problem of testing
graph isomorphism, a problem that has received a sub-
stantial amount of study (see, e.g., [Babai, 1995]).

With regard to taking computational advantage of
the symmetries, past work has focused on specialized
search algorithms that are guaranteed to examine only
a single member of each symmetry class [Brown et
al., 1988; Crawford, 1992]. Unfortunately, this makes
it difficult to combine symmetry exploitation with
other work in satisfiability or constraint satisfaction,
such as flexible backtracking schemes (Gaschnig, 1979;
Ginsberg, 1993] or nonsystematic approaches [Minton
et al., 1990, Selman et al., 1992]. Given the rapid
progress in search techniques generally over the past
few years, tying symmetry exploitation to a specific
search algorithm seems premature.

The approach we take here is different. Rather than
modifying the search algorithm to use symmetries, we
will use symmetries to modify (and hopefully simplify)
the problem being sclved. In tic-tac-toe, for example,
we can require that the first move be in the middle,
the upper left hand corner, or the upper middle (since
doing this will not change our analysis of the game
in any interesting way). In general, our approach will
be to add additional constraints, symmetry-breaking
predicates, that are satisfied by exactly one member
of each set of symmetric points in the search space.
Since these constraints will be in the same language
as the original problem (propositional satisfiability for
purposes of this paper) we can run the symmetry de-
tection and utilization algorithm as a preprocessor to
any satisfiability checking algorithm.

Of course there is a catch. In this case two catches:
First, there is no known polynomial algorithm for de-
tecting the symmetries. Symmetry detection is equiv-
alent to graph isomorphism which is believed to be
easier than NP-complete, but is not known to be poly-
nomial. Nevertheless, graph isomorphism is rarely dif-
ficult in practice, as has been profoundly demonstrated
by the efficient nauty system [McKay, 1990]. Fur-
thermore, it has been shown that, on average, graph
isomorphism is in linear time using even naive meth-
ods (Babai and Kuéera, 1979]. The second catch is
that even after detection is complete, computing the
full symmetry-breaking predicate appears to be in-
tractable.

However, there is generally no reason to generate the
full symmetry breaking predicate. We can generate
a partial symmetry-breaking predicate without affect-
ing the soundness or completeness of the subsequent
search. We will show that in several interesting cases
we can break symmetries either fully or partially using
a polynomial number of predicates.

The outline of the rest of this paper is as follows: we
first defire symmetries of search problems, and dis-
cuss how predicates can be added to break symme-
tries. We then discuss both exact and partial meth-
ods for controlling the size of the symmetry-breaking
predicate. Finally we discuss experimental results and
related work.

2 Definitions and Preliminaries

For purposes of this paper we will assume that we are
working in clausal propositional logic. The symme-
tries of a propositional theory will be defined to be
the permutations of the variables in the theory that
leave the theory unchanged. These symmetries form a

group and we use techniques and notation from com-
putational group theory throughout the paper.

Let L be a set of propositional variables. As usual,
literals are variables in L, or negations of variables in
L. I z € L, then we write the negation of z as F.
A clause is then just a disjunction of literals (written,
e.g., zVyVz), and a theory is a conjunction of clauses.
One basic observation that will be critical to the defi-
nitions below is that two clauses are considered to be
identical iff they involve the same set of literals (i.e.,
order is not significant) and two theories are identical
iff they involve the same set of clauses.

A truth assignment for a set of variables L is a func-
tion A : L — {¢, f} (on occasion we write 1,0 for ¢, f
respectively). In the usual way, A extends by the se-
mantics of propositional logic to a function on the set
of theories over L, and, by abuse of notation, we con-
tinue to denote the extended function by A.1 A truth
assignment A of L is called a model of the theory T if
A(T) = t. The set of models of T is denoted M(T).

The propositional satisfiability problem is then just
(see, e.g., [Garey and Johnson, 1979)):

Instance: A theory T.

Question: Is M(T) non-empty (i.e., does T have &
model)?

Clearly one can determine whether such an assign-
ment exists by trying all possible assignments. Un-
fortunately, if the set L is of size n then there are
2" such assignments. All known approaches to deter:
mining propositional satisfiability are computationally
equivalent (in the asymptotically worst case) to such
a complete search. Propositional satisfiability is thus
one of the simplest “canonical” examples of a search
problem,

To formally define symmetries we need some addi-
tional notation. Consider a set L. The group of all per-
mutations of L is denoted by Sym(L).? This is a group
under composition; the product 8¢ of 8, ¢ € Sym(L)
is taken to be the result of performing @ and then
¢. Ifv € L and & € Sym(L), the image of v under
6 is denoted v® (it is standard to write the permu-
tation as a superscript so that we can make use of
the natural equality v* = (1#)¢). A permutation 8

'That is, A(Z) is the negation of A(z), 4 is true of a
clause iff it is true of at least one of the terms in the clause,
and 4 is true of a theory ifl it is true of all the clauses in
the theory,

?Recall that a permutation of a finite set L is a one-to-
one mapping # : L — L.

of a set L of variables naturally extends to a permu-
tation of negated variables such that ¥ = ?, and
thus to a permutation of the set of clauses over L,
wherein if C = V_; v, then C* = V[_, v{, and §-
nally to a permutation of the theories over L, namely,
if T = {Ci}igicm, then T? = {CP hicicm.

Let T be a theory over L and let 8 € Sym(L). We
say that 8 is a symmeltry, or automorphism, of L iff
TY = T. The set of symmetries of T is a subgroup of
Sym(L) and is denoted by Aut(T).

For example, consider the following theory: aVG, bV,
aVbVe, G@Vh Notice that if we interchange a and
b the theory is unchanged (again, only the order of
the clauses and the order of literals within the clauses
is affected). It is customary to denote this particular
symmetry by (a).

Permutations of variables in general, and symmetries
in particular, can be viewed as acting on assignments
as well as theories. If § € Sym(L) then @ acts on the
set of truth assignments by mapping A — A, where
8A(v) = A(v?) for v € L2 Hence, if T is a theory
over L, A(T?) = °A(T). Thus, we have the inmediate
consequence that any symmetry of T maps models of
T to models of T, and non-models of T to non-models:

Proposition 2.1 Let T be a theory over L, 0 €
Aut(T), and A a truth assignment of L. Then A €
M(T) iff °A € M(T).

More generally, Aut(T) induces an equivalence rela-
tion on the set of truth assignments of L, wherein A
is equivalent to B if B = %A for some 8 € Aut(7T);
thus, the equivalence classes are precisely the orbits of
Aut(T) in the set of assignments. Note, further, that
any equivalence class either contains only models of
T, or contains no models of . This indicates why
symmetries can be used to reduce search: we can de-
termine whether T has a model by visiting each equiv-
alence class rather than visiting each truth assignment.

3 Symmetry-Breaking Predicates

The symmetry-breaking predicates are chosen such
that they are true of exactly one element in each of
the equivalence classes of assignments generated by
the symmetry equivalence. For example, for the small
example theory discussed in section 2, the two mod-
els are (¢, f, f) and (f,t, f). The theory has one non-
trivial symmetry — the interchange of a and b. As re-

1t is natural to write this as a “left action,” e.g., we
have %94 = ¥(¢4), whereas expressing the image of A under
8 by A® would lead to the awkward relation A% = (A%).

quired by proposition 2.1, applying this perturbation
to a model yields a model. We can “break” the sym-
metry by adding the axiom a —+ b which eliminates
one of the models, (¢, f, f}, leaving us with only one
model from the equivalence class.

In general, we introduce an ordering on the set of vari-
ables, and use it to construct a lexicographic order on
the set of assignments. We will then add predicates
that are true of only the smallest model, under this
ordering, within each equivalence class.* Intuitively
we do this by viewing each model as a binary num-
ber (e.g., (¢, f, f) would be seen as 100). We then add
predicates saying that @ does not map M to a smaller
model (for all symmetries 8).

If 8 € Sym(L), then # acts on any sequence of variables
in Lt if V = (vr,...,vm) then V¢ = (vf,...,0%).
For a sequence V = (v1,...,uy) and 0 € i < m,
it is convenient to demote by V; the initial segment
(v1,...,%) (of course, this is the empty sequence () if
i=0).

If vvw € L, we write v < w as a shorthand for
the clause v - w. IV = (v,...,v) and W =
(w1y...,wm) are sequences of variables in L and 0 <

t £ m, we let F;(V, W) abbreviate the predicate
Vimi=Wii =2 v, <w;.

Finally, we write VV < W as shorthand for

7\ PV, W),

i=1
that is,

v Suy A
(m=w)armswmA
(‘Ul =w1Avg=wg)—}u;; <ug A

The intuition behind this definition is that if we have
an assignment A, then the predicate V < W will be
true of A iff A(V) = (A(v1),...,A(vm)), viewed as
a binary number, is less than or equal to A(W) =
(A(wr), ..., Alwm)).

Henceforth, we fix an ordering V = (vy,...,um) of the
variables in L. Then the set of truth assignmeats of
L inherit a lexicographic ordering, i.e., A < B if, for
some i, A(v;) = B(v;) for j < i, while A{v;) < B(v;).

‘We note that this is surely not the only way to create
symmetry-breaking predicates. One can break symmetries
by adding any predicate that is true of one member of each
equivalence class,

In other words, viewed as binary numbers, A(V) <
B(V).

Now consider & symmetry 8 of a theory T. The
predicate V' < V¥ rules out any model M for which
M > M. It is inmediate that

Proposition 3.1 Let T be e theory, and V be an or-
dering of it's variables. Then the predicate

vve
8cAut(T)

is true only of the lezicographically least model in each
equivalence class of truth assignments. Hence, it is a
symmelry-breaking predicate for T.

Returning to the example we have been tracking, we
take V = (a,b,c). Recall that @ swaps a and b. Thus
Vf = (b,a,c),0 V<V is:

a—+b
a=b—=(b—=a)
(a=bAb=a)—= (c—)

In which the only non-tautologous term is a — b.
This rules out the model (¢, f, f). This model is ruled
out because & maps it to the lexicographically smaller
model (f,¢, f).

By addition of auxiliary variables the predicates given
by V < V? can be represented by a linear number of
clauses. We do this by introducing a new variable e;
defined to be true exactly when v; = v?. This can be
done by adding the following clauses:

(v;l\vf) e
@A) > e
(e.- I\‘U,') -} v?
(e,-Av_.-) —bv_f

Nevertheless, since Aut{T") may be of exponential size,
the entire symmetry-breaking predicate given by this
theorem may be quite large. In general we have the
following negative result:

Theorem 3.2 The problem of compuling, for any
theory T, a predicate true of only the lexicographic
leader in each equivalence class of models is NP-hard.

The proof of this theorem is technical and is given in
the appendix. The proof includes showing the NP-
completeness of the following question: Given an in-
cidence matrix A of a graph I, can one reorder the

vertices and edges of I so as to produce an incidence
matrix B that exceeds A lexicographically?

Despite this negative worst-case result, it is still pos-
sible to generate, either exactly or approximately,
symmetry-breaking predicates for interesting prob-
lems. In the next two sections we focus on exact meth-
ods and show that in some cases where Aut(T') is ex-
ponential it may still be possible to generate tractable
symmetry-breaking predicates. Then, in section 6, we
turn to approximate symmetry breaking.

4 The Symmetry Tree

For problems, like n-queens, with a relatively small
number of symmetries we are done: one simply com-
putes the symmetries and then calculates the predi-
cate for each symmetry. However, many interesting
problems have many symmetries, and computing the
predicates for each symmetry yields unnecessary dupli-
cation. For example, if 8, ¢ € Aut(T") agree on the first
i variables then F;(V,V?) = P;(V,V*). In order to at-
tack problems with a large number of symmetries, we
first organize the symmetries into a symmetry tree, and
then show how the tree can be “pruned”. To describe
the symmetry tree and pruning methods we need some
notation for permutations.

Again, let T be a theory over L and V = (v, ...,um)
be a fixed ordering of L. We can describe a permuta-
tion of the variables by listing the image of V' under
the permutation. For example, the permutation tak-
ing vy to v, v3 to v3, and vy to v; can be written
as [vg, v3,v]. The notation is extended to partial per-
mutations, which are 1-1 maps of initial segments of
V into V, thus the partial permutation taking v; to
v3 and vy to v; is written [v3,v,]). Note that initial
segment could be empty, giving rise to the partial per-
mutation [].

For purposes of the formal development to follow, it
is useful to describe these partial permutations with
a standard group-theoretic construction. Let G =
Aut(T). For 0 € i < n, let G; be the set of per-
mutations in G that do not move the first i variables.
Thatis,G;={9€G|vf=v,-. for 1 € j <i}. Thus,

G=Go2G12---2Gn=1

(the last being the identity subgroup). For 0 <i < n,
let C; denote the set of right cosets of G; in G. A right
coset C € C; is a set that is of the form G;8 for some
& € G (note that G is the disjoint union |)¢, C). For
purposes of this paper, one can think of a right coset
as a partial permutation. For this, let § € C, then
the partial permutation of length i associated with &

is [v{,...,vf). Note that this i-tuple is independent of
the choice of # € C.

We can now describe the structure of the symmetry
tree, SB(T'), for T. The root of SB(T'), considered to
be at level 0, is G. The set C; comprises the nodes at
level i. Furthermore, C € C; is a parent of C' € Cy
iff C' € C. Equivalently, in terms of partial permu-
tations, the root is [| and each node [uwn,...,w;—;]
will have one child [w,..., w1, z] for each = that is
the image of v; under a symmetry mapping Vi_; to
(wh seey wi—l)-

To illustrate this construction, recall the example dis-
cussed in section 2. Assume that V = a,b,c. There
are two symmetries of this theory: the identity opera-
tion, and the exchange of a and b. The first of these
takes a to itself, and the second takes a to b, There
will thus be two children of the root node: [a] and [b).
Given that a is mapped to a, b is forced to map to b,
8o the node [a] has only the child [a b). Similarly the
node [b] has only the child (b a]. The final symmetry
tree is shown in figure 1.

(8] [b]

[a,b] [b,a]

[a,bc] [b,a,]

Figure 1: Symmetry trees for simple example.

The duplication previously observed in the symmetry-
breaking predicate of Proposition 3.1 arose precisely
because P;(V,V?) = B(V,V*) whenever 8 and ¢ be-
long to the same right coset of G;. With this in mind,
for C € C;, we define Q(C,i) to be P;(V,V?) for any
(all) 8 € C. (The “" in the notation “Q(C,i)" is
not superfluous, that is, it is not determined by C;
it is possible that G; = G; for § # i in which case
C € C;(G).) Finally, we associate the predicate
Q(C,i) to the corresponding node C € C; in SB(T).
It is now clear that the conjunction of the predicates

assigned to the nodes of SB(T)

A A Q@)

i=1CeC;

remains a symmetry-breaking predicate for T'.

5 Pruning the Symmetry Tree

Working from the symmetry tree to generate
symmetry-breaking predicates eliminates a certain
amount of duplication. However, there are cases in
which the symmetry tree is of exponential size, For
example, the theory (zVyV z) A (ZEVFVZ) admits
all 3! = 6 permutations of {z,y,2}. Although, we
do not typically expect to see all n! permutations of
the variables appearing in practical problems, it is not
unusual to see theories with exponentially large sym-
metry greups. Furthermore, we would surely want to
take advantage of the symmetry-breaking opportuni-
ties afforded by such a group.

In this section we show that pruning rules can achieve a
drastic reduction in size of the symmetry tree in some
important cases while still breaking all the symme-
tries. To see how this is done consider the symmetry
tree shown in figure 2. Here, we suppose that Aut(T)
includes the permutation (z; z;), exchanging z; and
z;. Then, for any nodes in the symmetry of T of the
form [zy,z;] and [z4,2;), § # 1,1, the subtree rooted
at {z;,2;] (namely, the tree T} in the diagram below)
can be pruned.

[2:1]) [z:]

[z1,7;] [i,;5)

T Ty

Figure 2: Symmetry trees for pruning example.

To see why this is so, consider any node [z;, 2, ..., Z]
in T;. Composing the symmetry creating this branch
with (z; z;), we must find a corresponding node
[£1,24,...,2x] in Ty. In this example, it is not difficult

to show that Q([zy,xj,..],k) = Q(lxi,z;,-.),k).
Thus we can prune T3 without loss of inferential power.

The example can be generalized as follows.

Consider a right-coset C' € C;. Take 8 € C (the con-
structions to follow are independent of the choice of 8).
Let ~c,; be the smallest equivalence relation on L such
that v; ~g; U; forl<j<iie,v ~gi wil v and
w are the endpoints of a sequence u,u?,u®?, uf?
such that, with the possible exception of one of these
endpoints, all terms are in V;. Observe that, if w is
in neither of the sequences V; nor V#, then the ~g;
equivalence class of w is a singleton.

iFrom the definition of @, one can see that if 2 ~¢;
y then for any child ¢",i + 1 of C,i in §B(T), the
antecedent of Q(C’,i + 1) forces z = y. From this
observation one can show:

Theorem 5.1 Let C € C;. Suppose that 8 € G =
Aut(T) stabilizes the equivalence classes of ~g,; (i.e.,
v ~ci v? forallv € L). Then, for all j > i and
C’ e Cj w'.th C’ C C,

Q(C'8,5) = Q(C', 7).

Hence, all descendents of the level i node C' in SB(T'}
may be pruned.

Proof: Let C', j be as indicated. Let g € C'. We must
show that the conjunction of the predicates

V¥ =Vie, =
(V#)j1 =

v; £ U;Os (1)

Vi1 (2)
imply v; < u}'.

Now, (2) implies V;? = V;, which implies equality of
all the variables in each the equivalence classes of ~¢ ;.
But, since 8 stabilizes these classes, this implies V¢ =
V (i.e., the conjunction of all v* = v), and, therefore,
V# = V¢ Hence, (2) and (3) imply v; < v}* as
required. a

In applying the condition globally, we need to be sure
that we do not overprune.

It is safe to prune in all instances where ~C9,iFE ~C.i,
in which case, ~¢y,; is a proper refinement of ~¢g,; (for
C,8,i as in the theorem, v ~gy,; w always implies
U ~gi W)

In the case that ~gp;=~c, one could prune pro-
vided that C@ < C (there is an induced lexicographic
ordering on C;, which is easily seen via the partial-
permutation interpretation of cosets).

Although some technical extensions to this theorem
are possible, this formulation is particularly useful be-
cause suitable & can be found using standard tools of
computational group theory. The computation em-
ploys “set-stabilizer” techniques that are closely re-
lated to graph-isomorphism methods. In particular,
methods of Luks [1982] are guaranteed to exhibit suit-
able 8, if such elements exist, in polynomial time un-
der various conditions, including boundedness of the
equivalence classes of ~¢ ;. As it turns out, in practi-
cal computation, this is rarely a difficult problem any-
way and is are generally considered to have efficient
implementations at least for the cases corresponding
to i < 10000 [Butler, 1991).

One case in which pruniag is particularly effective is
when the symmetry group of the theory is the full
symmetric group (that is, any permutation of L is a
symmetry of the theory). In this case the symmetry
tree is of size n!, but after pruning only n? nodes re-
main. To see why this happens, note that since any
perturbation is a symmetry, for any C € C; there will
always be a § € Aut{T'} that stabilizes the equivalence
classes of ~¢,;. So for any node C we can always delete
all it's descendents (so long as we bave not already
deleted the node C@'). If one prunes while the tree is
being generated, the entire pruned tree (and thus the
symmetry-breaking predicate) can be generated in n?
time. The resultant predicate is not minimal. It turns
out that if V = (vy,...,v,) then the predicate that
one generates consists of a clause v; — v; for any i,j
such that 1 £ i < j € n. There are obvious poly-
nomial time simplifications that will reduce this to a
linear number of clauses, but it is not clear how useful
these simplifications will be in the general case,

Remark, Other, less extreme, cases can be con-
structed in which pruning is effective. However, there
are also cases in which the symmetry tree is not prun-
able to polynomial size. The existence of such cases
is a consequence (assuming P#NP) of theorem 3.2;
in fact, the theorem suggests, more strongly, that for
some theories, there is no tractable lex-leader predi-
cate since lex-leader verification is NP-bard. However,
we can also directly construct theories where the sym-
metry tree cannot be pruned to polynomial size even
though the lex-leader problem is in polynomial time
(the algorithm uses the “string canonization™ proce-
dure of [Babai and Luks, 1983}, applicable because the
group turns out to be abelian). The existence of the
polynomial time algorithm, in turn, guarantees we can
find some symmetry-breaking predicate in polynomial
time even though SB(T') is useless for this purpose.
Details will appear in a future paper.

6 Approximation

If the symmetry tree is of exponential size, and no
pruning is possible, then a ratural approach is to gen-
erate just a part of the tree, and from this smaller tree
generate partial symmetry-bresking predicates. We
call a predicate P a partial symmetry-breaking predi-
cate for a theory T if the models of P consist of at
least one member of each of the symmetry equivalence
classes of the truth assignments of the variables in T

We can thus add P without changing the sound-
ness or completeness of the subsequent search. The
trade-off here is that the search engine may visit
multiple nodes that are equivalent under some sym-
metry of T. In essence, then, approximating the
symmetry-breaking predicate trades time spent gen-
erating symmetry-breaking predicates for time in the
search engine.

In the next section we discuss various approaches to
generating partial symmetry-breaking predicates.

7 Experimental Results

We have implemented a prototype system that takes a
propositional theory in clausal form and constructs an
appraximate symmetry breaking formula from it. The
implementation consists of the following steps:

1. The input theory is converted into a graph such
that the automorphisms of the graph are exactly
the symmetries of the theory. This is done using
the construction given in (Crawford, 1992). There
are three “colors” of vertices in this graph, the
vertices representing positive literals, those rep-
resenting negative literals, and those representing
clauses. Graph automorphisins are constrained
to always map nodes to other nodes of the same
color. We also add edges from each literal to each

- clause that it appears in. These edges (together
with the node colorings) guarantee that automor-
phisms of the graph are symmetries of the theory.

2. We find the generators of the automorphism
group of the graph using McKay’s graph iso-
morphism package, nauty [McKay, 1990]. nauty
is very fast in practice though there are known

*Far efficiency we special-case binary clauses by repre-
senting z V y with a link directly from z to y (instead of
creating a node for the binary clause and linking = and ¥
to it). This is important because some of the instances we
consider have a huge number of binary clauses and some of
the algorithms that follow are quadratic, or worse, in the
number of nodes.

examples of infinite classes of graphs which

drive nauty to provably exponential behavior
[Miyazaki, 1996].

J. From the generators of the automorphism group
we construct the symmetry tree and then generate
the symmetry-breaking predicate. As expected,
in many cases computing the entire symmetry-
breaking predicate is computationally infeasible.
We use several approximations to compute partial
symmetry-breaking predicates:

o generating predicates for just the generators
returned by nauty,

¢ building the symmetry tree to some small
depth and generating predicates for this
smaller tree, and

¢ generating random group elements and writ-
ing predicates for only those elements.

An alternative, not yet implemented, would be
to use pruning rules such as those from section 5
(though these obviously will not work in all cases).

In the experiments below we generally compare the
run time for testing the satisfiability of the input the-
ory alone and conjoined with the symmetry-breaking
predicate. In all cases SAT checking was done using
the TABLEAU algorithm [Crawford and Auton, 1996)
and run times are “user” time. All code is written in

C.

7.1 Experiment 1: The pigeonhole problem

The pigeonhole problem PHP(n,n — 1) is the follow-
ing: place n pigeons in n—1 holes such that each pigeon
is assigned to a hole and each hole holds at most one
pigeon. This problem is obviously unsatisfiable. We
study this problem because it is provably exponentially
hard for any resolution based method, but is tractable
using symmetries. A typical encoding of the problem
is to have variables {P;|l €i<n,1<j<{n—-1)}
where P;; is taken to mean that pigeon i in hole j.
PHP(n,n—1) is then:

(ViViVk (j # k) = (P v Pa)) A
(Vi Vigjg(n-1) Pij) A
(Vi Vicicn Fij)

Since all the pigeons are interchangeable and all the
holes are interchangeable, the automorphism group of
PHP(n,n — 1) is the direct product of 2 symmetric
groups. The order of this group (n!(n — 1)!) prohibits
the full use of the symmetry tree. Furthermore, as we

demonstrate in the Appendix (see final remark), prun-
ing as in section § cannot help in this case. Hence, for
these experiments, we generate only those predicates
that are associated with the generators of the auto-
morphism group (or, more specifically, the set of gen-
erators returned by nauty). For PHP, such generators
are not only determined in polynomial time, but also
serve to break all symmetries. (Of course, in general,
the predicates associated with generators of Aut(T") do
not suffice to break all symmetries.)

The run times for various sizes of the n are shown in
figure 3. Run times are on a Sparc 10:51

It is difficult to tell from the run-time data what the
scaling is, but it turns out that we can show analyti-
cally that every step of our implementation is in poly-
nomial time. The input theory can be represented as
a graph with 3n? — 2n 4 2 vertices®. nauty takes this
graph as input and finds the generators of its auto-
morphism group. To do this nauty builds a search
tree in which each node is a coloring of the vertices
which is a suitable refinement of the coloring of the
parent node.” The time that nauty spends on each
node is polynomial in the size of the input graph. So
to show that nauty runs in polynomial time it suffices
to show that the number of nodes is polynomial. The
proof requires a discussion of the details of the inter-
nals of nauty that is beyond the scope of this paper,
but cne can show that for this problem nauty expands
exactly 2n% — 3n — 1 nodes. Computing symmetry-
breaking predicates for the generators is obviously in
polynomial time. The last step is SAT checking which
is, in general, exponential, but for these theories, aug-
mented with the symmetry-breaking predicates, there
was no need {0 run TABLEAU: a proof of unsatisfiabil-
ity was obtained by a polynomial time simplification
procedure that is used as a front-end to TABLEAU.

7.2 Example 2: N-queens

The n-queens problem has been well studied in the
CSP literature, but we include it here as a prototypi-
cal example of a problem with a small number of geo-
metric symmetries. The problem is to place n queens
on a n by n chess board such that no two queen can
attach each other. N-queens has 8 symmetries and for
any size board the full symmetry tree has eight leaves.

As one can see from the construction in section 4,

®The theory actually has O(n®) clauses, but many of
these clauses are binary clauses that become edges in the
graph rather than nodes

7A refining of a vertex coloring C is another vertex col-
oring € such that if vertex i and 7 have the same color in
C then they have the same color in C.

100000 T T) T T
Without symmetry —e—
With symmegyy e
10000 | -
)
1000 | / .
= -
§ wof el -
A//
10 | /r -
‘ [l L L L 1
5 10 15 20 25 30 as
Number of pigeons

Figure 3: Run times for the pigeon-hole problem with
and without symmetry. Note that the y axis is log
scaled.

nodes at depth i in the symmetry tree generate clauses
of length linear in i. It turns out that long clauses
are of very little use to a satisfiability checker like
TABLEAU, so for these experiments we cut off the sym-
metry tree at depth 20 and generate predicates only
up to this depth. The results are shown in figure 4.
Run times are for a Sparc 5.

100000 T T T T

B 1 Without symmaety -e—
3 Wmeegyy-o-—
10000

1000
100 F

10

0.1 1 1 1 t
5 10 15 20 25 30

Figure 4: Run times for n-queens with and without
symmetry. Note that the y-axis is log scaled.

We know that N-queens is a somewhat delicate prob-
lem in that reordering the clauses in the input can
drastically change the behavior of SAT checkers (espe-
cially as n is increased). Therefore, we took each the-
ory (with and without symmetry-breaking predicates)

and randomly perturbed the order of the clauses (and
of the variables within the clauses) 50 times.8® We
then ran TABLEAU on each permuted theory. Figure
5 shows the average run times. As can be seen, the
qualitative nature of the results has not changed but
a fair amount of noise has been removed.

1m- 1] L] L] 1 L)]]

Without symmetry —e—
With gmmew -

0-1 1 L 1 L L L H L 1

6 8 10 12 14 18 18 20 22 24 26

Figure 5: Average run times over 50 random permu-
tations with and without symmetry. Note that the
y-axis is log scaled.

8 Related Work

[Freuder, 1991) discusses the elimination of inter-
changeable values in constraint satisfaction problems.
[Brown et al., 1988] discuss an algorithm for backtrack-
ing search in the presence of symmetry. In their ap-
proach the search engine is modified so that at each
node in the search tree a test is done to determine
whether the node is lex-least under the symmetries of
the theory. {Krishnamurthy, 1985) discusses the idea
of using symmetries to reduce the lengths of resolu-
tion proofs. He uses the “rule of symmetry” which
asserts that if 6 is symmetry of a theory Th, and one
can show that p follows from Th, then 8(p) also fol-
lows from Th (since the proof could be repeated with
each step s replaced by §(s)). Tour and Demri [1995]
show that Krishnamurthy’s method is NP-complete in
general, but that a restriction of it is equivalent to
graph isomorphism. Their restricted method appears
to be the same as that discussed by Crawford [Craw-

®Obviously these perturbations have nothing to do with
symmetries of the theory. The idea here is only to aver-
age out the cases where the SAT checker gets “lucky” and
stumbles on a model almost immediately.

®For 23 queens the data given is for 20 perturbations.

ford, 1992], and Tour and Demri’s proof of graph iso-
morphism uses essentially the same construction used
by Crawford. Benhamour and Sais [1992) also dis-
cuss techniques for making use of symmetries within
specially designed search engines. The most successful
uses of symmetry in reducing search spaces is surely in
the large and growing literature on the application of
automorphism groups to combinatorial problems (see,
e.g., [Butler and Lam, 1985; Lam and Thiel, 1989;
Lam, 1993; Laue, 1995]). This work has made impres-
sive contributions to the discovery and classification of
designs and to the study of combinatorial optimization
problems.

9 Conclusion

This work has shown how symmetries can be utilized
to add additional constraints, symmetry-breaking
predicates, to search problems. These constraints en-
sure that the search engine never visits two points in
the search space that are equivalent under some sym-
metry of the problem. Complexity results suggest that
generating symmetry-breaking predicates will be in-
tractable in the general case. However, partial sym-
metry breaking can be done in polynomial time (as-
suming the associated graph isomorphism problem is
tractable). Preliminary experiments have been com-
pleted showing that partial symmetry breaking is effec-
tive on prototypical constraint-satisfaction problems.
Work continues on more realistic applications, such as
applying these techniques to propositional encodings
of planning problems [Joslin and Roy, 1996).

Appendix

Theorem 3.2 is a direct consequence of the NP-
completeness of

Problem. MAXIMUM IN MODEL CLASS (MMC)

Input: A theory T over L; an ordering of L; M €
M(T).

Question: Does there exist § € Aut(T) such that °M <
M?

We shall demonstrate completeness by a reduction
from CLIQUE (Garey and Johnson, 1979]. We make
use of an intermediate problem, which is interesting
in its own right. For lexicographic ordering, we con-
sider m x n matrices, as mn-tuples, taking the rows in
succession.

Problem. MAXIMUM INCIDENCE MATRIX.

(MiM)

Input: An incidence matrix A for a graph I'.

Question: Is there an incidence matrix B for I such
that B > A with respect to lexicographic ordering.

Recall that a [V x| E| incidence matrix of T = (V, E) is
determined by specified orderings of V and E, wherein
Ai; = 1 or 0 according to whether or not the ith vertex
lies on the jth edge. Two such matrices are then re-
lated by permutations of the rows and columns. Thus,
in particular, the NP-compieteness of MIM establishes
the NP-completeness of the problem of the existence
of a matrix B, obtained from a given {0,1}-matrix A
by permuting rows and columns, such that B > A.

Lemma 9.1 MIM is NP-complete.

Proof: MIM is in NP since suitable orderings of V' and
E can be guessed and verified. For the completeness,
we reduce CLIQUE to MIM. Suppose we are given an
instance (T, K) of CLIQUE, wherein I' = (V,E) is a
graph and X is a positive integer; the relevant question
is whether I contains a K-clique (i.e., a complete sub-
graph on K vertices). We may assume [V| > K > 3.

We augment I to a graph I = (V, E) as follows. Fixan
ardering vy, 1,... v of V. The additional vertices
comprise sets W, X, and Y, disjoint from V and from
one another. We describe these along with new edges:

1. W is a complete graph on K vertices,
{wi,wy,...,wk}, ordered as indicated by the
subscripts.

2. For each w; € W, join w; to each veriex in a
new set X; of size |V|(|V] +1)/2}; X =, X is
ordered so that X; precedes X; for i < j. Only
X is joined to V' and this is done by joining the
first |V| elements of X, to vy, the next [V]| -1
elements to v,, the next |V| - 2 to v3, etc.

3. The set Y, joined only to V, provides a new com-
mon neighbor for each pair of vertices V' and also
ensures the degree of each v € V is maximal in
[. Thus, for 1 <i < j < {V|, we create a new
vertex y;; and add edges joining it to v; and v;.
Finally, for each v; € V, join v; to the vertices in
a new set Y; chosen so as to bring the total de-
gree of v; to precisely d = K — 1 + [V|(|[V] +1)/2
(which is also the degree of each w € W). Let
Y={y;|1<i<j<|VI}Ul),Y:. Weorder Y
so that: for i < 7, y;; precedes ¥;; for i < #' < j,
Y; precedes y;y;; and for i < j < j', yi; precedes
Yije -

The vertices V = WUXUVUY in the resulting graph
I’ are ordered in the sequence W X VY with the orders

within each of the four segments as indicated above.
By construction, I has a K-clique, W. Observe, how-
ever, that I has a second K-clique iff " had a K-clique,
since the vertices in X UY have degree at most 2.

For the instance of MIM, we take A to be the lexico-
graphically greatest incidence matrix of I with respect
to the indicated ordering of the vertices, In this regard,
note that the maximum incidence matrix for a given
vertex ordering is obtainable in polynomial time.

We claim that A is the maximum incidence matrix
for ' if W is first in the ordering of V. For, suppose
A' is the maximum such matrix. Then rows X + 1
through K + |X| of A’ must again correspond to X,
the only other vertices directly joined to W; which
forces these rows to duplicate their counterparts in
A. The next |V| rows in A’ must now correspond to
V, since these are the only remaining vertices directly
joined to Y; suppose these rows correspond to the or-
dering v;,, Vi, ¥4,... of V. Since the v;, row in A’
cannot be exceeded by the v; row in A4, v;, must also
be joined to |V elements of X, in fact, to the first
|V] elements; so i; = 1. Similarly, iy = 2, i3 = 3,
etc., so that V remains ordered as before. But, given
this ordering of V', the maximality of A’ requires Y
to be ordered as specified above (except for irrelevant
reorderings within each Y;). Thus, A’ = A, proving
the claim.

We need to show that [has a second K-clique iff I
has an incidence matrix B > A.

Suppose [has a K-clique W' C V. Reorder V so
that W' comprises the first X elements and the (K +
1)st element is the common neighbor in Y of the first
two elements of W’. The matrix B induced by the
new order agrees with A in the first K rows but its
(K +1)st row exceeds that of A (the (K + 1)st row of
A begins 0%-1109-20, while the (K + 1)st row of B
begins 0X-1109-21), Hence B > A.

Conversely, let B be the maximum incidence matrix
for I and suppose that B > A. Since the first K rows
of A recorded a K-clique consisting entirely of vertices
of maximum degree d in [, this segment cannot be
strictly exceeded. Hence, the first X vertices in the
ordering that produces B must form a clique. Since
B > A, this clique is not W, ' (m]

Remark. We trust that the above demonstration
will discourage finding-lex-leading-incidence-matrices
as an approach to finding canonical forms for graphs
and, thereby, to graph isomorphism.

Lemma 9.2 MMC is NP-complete.

Proof: MMC is in NP since, one can guess 8, if it
exists, and verify both # € Aut(T) and °M < M in
polynomial time. We reduce MIM to MMC as follows.
Suppose the m x n matrix A constitutes an instance of
MIM. Let X and Y be sets of size m, n respectively We
describe a theory T' on the set L = X x Y of variables,
namely,

T= Az,:'ex (v, vELy) A
yeY o N
A zeX ((ﬂ:, y) v (:I:, y') v (3| U’))

y'EY

Trivially, T is a tautology. One verifies that Aut(7T)
is Sym(X) x Sym(Y) acting on X x Y in the natural
way. We fix orderings), 22, ...,Zm and y1,¥2,...,¥n
of X and Y respectively, and let X x Y be ordered
lexicographically. The m x n {0,1}-matrix A yields a
model M of T wherein M((z;,y;)) = 1— A;; (the 0,1
reversal to accommodate a conversion from maximal
matrices to minimal models). There is a natural cor-
respondence between row (respectively, column) per-
mutations and Sym(X') (respectively, Sym(Y)). Thus,
if B is obtained from A via a row permutation and a
column permutation, then the permutation pair yield
8 € Sym(X) x Sym(Y’). It follows directly that B > A
iff ®M < M, establishing the reduction of MIM to
MMC. u |

Rernark. This particular proof of the NP-
completeness of MMC was chosen so as to show
that the problem remains NP-complete even when L
can be identified with some X x ¥ and Aut(T) =
Sym(X) x Sym(Y). Note that the pigeonhole prob-
lem engenders a theory of exactly this type. (the fact
that |[X| = |Y| - 1 in PHP is not significant — rou-
tine padding could be used to force this restriction in
MIM). Thus, we have demonstrated the futility, for
PHP, of pruning via methods, like that of section 5,
which rely solely on information contained in Aut(T)
and SB(T).

Acknowledgements

This work was supported in part by ARPA/Rome Labs
under grant numbers F30602-93-C-0031 and F30602-
95-1-0023, by AFOSR under grant numbers F49620-
92-J-0384 and F49620-96-1-0335, and by NSF under
grant number IRT-94 12205. The work benefited from
various discussions over the years with many peo-
ple including Bart Selman, Steve Minton, Takunari
Miyazaki, David Etherington, David Joslin, and all
the members of CIRL.

References

[Babai and Kuéera, 1979) L. Babai and L. Kugera.
Canonical labelling of graphs in linear average time.
In Proceedings of the Twentieth IEEE Conference
on Foundations of Computer Science, pages 4649,
1979.

[Babai and Luks, 1983] Laszlé Babai and Eugene M.
Luks. Canonical labeling of graphs. In Proceed-
ings of the Fifteenth Annual ACM Symposium on
Theory of Computing, pages 171-183, Boston, Mas-
sachusetts, 25-27 April 1983.

[Babai, 1995) L. Babai. Automorphism groups, iso-
morphism, reconstruction. In L. Lovész R. L. Gra-
ham, M. Grétschel, editor, Handbook of Combina-
torics, chapter 27, pages 1447-1540. North-Holland
- Elsevier, 1995, 1985.

[Benhamou and Sais, 1992] Belaid
Benhamou and Lakhdar Sais. Theoretical study
of symmetries in propositional calculus and appli-
cations. In D. Kapur, editor, Automated Deduc-
tion: 11th Iniernational Conference on Automated
Deduction (CADE-11), Lecture Notes in Artificial
Intelligence, pages 281-294. Springer-Verlag, 1992.

[Brown et al., 1988] Cynthia A. Brown, Larry Finkel-
stein, and Paul W. Purdom. Backtrack searching in
the presence of symmetry. In T. Mora, editor, Ap-
plied algebra, algebraic algorithms and error correct-
ing codes, Gth inlernational conference, pages 99-
110. Springer-Verlag, 1088.

(Butler and Lam, 1985) G. Butler and C. W. H. Lam.
A general backtrack algorithm for the isomorphism
problem of combinatorial objects. Journal of Sym-
bolic Computation, 1(4):363-382, 1985.

[Butler, 1991] G. Butler. Fundamental algorithms for
permutation groups. Lecture notes in computer sci-
ence. Springer-Verlag, 1991.

[Crawford and Auton, 1936] James
Crawford and Larry Auton. Experimental results
on the crossover point in random 3sat. Artificial
Intelligence, 81, 1996.

[Crawford, 1992] James Crawford. A theoretical anal-
ysis of reasoning by symmetry in first-order logic
(extended abstract). In Workshop notes, AAAL-92
workshop on tractable reasoning, pages 17-22, 1992.

[de la Tour and Demri, 1995) Thierry Boy de la Tour
and Stéphane Demri. On the complexity of extend-
ing ground resolution with symmetry rules. In Pro-

ceedings of the Fourteenth International Joint Con-
Jerence on Artificial Intelligence (IJCAI-95), vol-
ume 1, pages 289-285, 1995.

[Freuder, 1991] Eugene G. Freuder. Eliminating in-
terchangeable values in constraint satisfaction prob-
lems. In Proceedings of the Ninth National Confer-
ence on Artificial Intelligence, pages 227-233, 1991.

(Garey and Johnson, 1979) M.R. Garey and D.S.
Johnson. Computers and Intractability. W.H. Free-
man and Co., New York, 1979.

[Gaschnig, 1979] John Gaschnig. Performance mea-
surement and analysis of certain search algorithms.
Technical Report CMU-CS-79-124, Carnegie-Mellon
University, 1979.

(Ginsberg, 1993] Matthew L. Ginsberg. Dynamic
backtracking. Journal of Artificial Intelligence Re-
search, 1:25~46, 1993.

[Joslin and Roy, 1996] David Joslin and Amitabha
Roy. Exploiting symmetry in plan generation. Un-
published manuscript, 1996.

[Krishonamurthy, 1985) B. Krishnamurthy.
proofs for tricky formulas.
22:253-275, 1985.

[Lam and Thiel, 1989] C. W. H. Lam and L. Thiel.
Backtrack search with isomorph rejection and con-

sistency check. Journal of Symbolic Computation,
7(5):473-486, 1989.

[Lam, 1993] C. W. H. Lam. Applications of group
theory to combinatorial searches. In L. Finkelstein
and W. M. Kantor, editors, Groups and Computa-
tion, Workshop on Groups and Computation, vol-
ume 11 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 133-138,
1993.

Short
Acta Informalica,

[Laue, 1995] R. Laue. Construction of groups and the
constructive approach to group actions. In S. Wal-
cerz T. Lulek, W. Florek, editor, Symmetry and
Structural Properties of Condensed Matter in Pro-
ceedings of the Third International School on The-
oretical Physics, pages 404-416. World Scientific -
Singapore, New Jersey, London, Hong Kong, 1995.

{Luks, 1982] E. M. Luks. Isomorphism of graphs of
bounded valence can be tested in polynomial time.
J. Comp. Sys. Sci., 25:42-65, 1982.

[McKay, 1990) B. D. McKay. nauty users guide,
version 1.5. Technical Report TR-CS-90-02, De-
partment of Computer Science, Australian National
University, Canberra, 1590.

Minton et al., 1990] Steven Minton, Mark D. John-
ston, Andrew B. Philips, and Philip Laird. Solv-
ing large-scale constraint satisfaction and schedul-
ing problems using a heuristic repair method. In
Proceedings of the Eighth National Conference on
Artificial Intelligence, pages 17-24, 1990.

[Miyazaki, 1096) Takunari Miyazaki. The complex-
ity of McKay's canonical labeling algorithm, In
L. Finkelstein and W. M. Kantor, editors, Groups
and Compulation II, Workshop on Groups and
Computation, volume to appear of DIMACS Series
on Discrete Mathemalics and Theoretical Computer
Science, 1996.

[Selman et al., 1992] Bart Selman, Hector Levesque,
and David Mitchell. A new method for solving hard
satisfiability problems. In Proceedings of the Tenth
National Conference on Artificial Intelligence, pages
440-446, 1992.

