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Abstract

Resource management is a key area in the drive to fully realize the performance potential
of parallel and distributed systems. For the task of assigning a set of processors of a
massively parallel processing (MPP) system to a given job, various processor allocation
strategies have been proposed in the research community and are in use at supercomputing
sites. With the advent of the class of non-contiguous allocation strategies, the allocation
performance bottleneck shifted from fragmentation to message-passing contention.

This paper presents a method to estimate and minimize contention incurred by non-
contiguous allocation strategies. Our approach is to analyze the spatial layout of dispersed
nodes. Qur contribution is a set of dispersal metrics that predict contention well and that
are efficient to implement for a variety of interconnection topologies. We put the dispersal
metrics to the test by comparing their contention estimates with measurements taken from
a message-passing simulator. Qur analysis and experiments consider different topologies of
machines, a wide range of communication patterns and different workloads. Because our
results show very high correlations between dispersal metrics and contention, we conclude
that dispersal metrics have the potential to help evaluate and improve processor allocation
strategies.

Keywords: massively parallel processing (MPP), resource management, processor allocation
contention, dispersal, performance evaluation, performance metrics
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Figure 1: Snapshot showing contiguous allocations of four jobs

1 Introduction

Parallel jobs submitted to a massively parallel processing (MPP) system with n processors often
need less than n processors [16]. This is exploited by modern systems that employ space sharing
and run multiple jobs on different processors at the same time. Fig. 1 shows a snapshot of a
25-node machine and how the four jobs that are currently running share the processor space. A
processor allocation strategy controls the assignment of a set of nodes/ processors to a scheduled
job. The goal is to fully utilize the system and to maximize the throughput over a workload/
stream of jobs. In addition to space sharing, some systems use time sharing of nodes and a
gang-scheduling scheme [6]. However, this paper will focus on the issues related to space sharing,
namely processor allocation. Typical assumptions are that each job gets as many nodes as it
requested and that jobs are not reallocated once they started running.

Various processor allocation strategies have been proposed in the research community and are
in use at supercomputing sites. The class of contiguous allocation strategies restricts the nodes
allocated to a given job to form a “convex” shape. Fig. 1 shows an example. Performance suffers
significantly due to processors being wasted because of internal and external fragmentation.
Utilizations of only 34% to 66% are reported [9, 18, 8, 10]. In contrast, the class of non-
contiguous allocation strategies allocates nodes that are dispersed throughout the system. Fig. 3
shows examples. They experience no fragmentation and thus outperform contiguous strategies
reaching utilizations of up to 78% [10, 15, 14]. To further improve the performance of non-
contiguous strategies, it is necessary to select allocations that cause minimal message-passing
contention. External contention is due to job interference: communication between dispersed
nodes of a given job may require a communication link that is currently used by another job’s
messages. Contention affects the overall communication time of messages, the execution time of
jobs, and ultimately job throughput of the machine.

In this paper, we present a method to estimate and minimize contention incurred by non-
contiguous allocation strategies. Our approach is to analyze the spatial layout of dispersed
nodes, referred to as dispersal. We devise several dispersal metrics and discuss their efficient
implementations for different interconnection topologies. A dispersal metric measures the degree
of dispersal of a given job’s allocation and, ideally, reflects the increase in contention in the whole



system that is due to this allocation. To test the usefulness of dispersal metrics, we employ them
to estimate contention and compare these estimates with measurements taken from a message-
passing simulator. Our analysis and experiments consider different topologies of machines, a wide
range of communication patterns and different workloads. Qur results show that there is a very
high correlation between dispersal metrics and contention. We conclude that dispersal metrics
can be used to predict contention and thus have the potential to help evaluate and improve
processor allocation strategies.

We focus on dimension-ordered routing and wormbhole switching [13] (both are adopted in
many existing machines) and on massively parallel processing (MPP) systems with direct in-
terconnection networks having mesh or k-ary n-cube topologies. Intuitively, a k-ary n-cube is
an n-dimensional mesh with wrap-around edges in each dimension. Hypercubes, tori and rings
are special cases of k-ary n-cubes. Examples of existing machines with mesh or k-ary n-cube
topologies are the Intel TFLOP, Intel Paragon, iPSC/860, Cray T3E and Cray T3D. We do
not consider indirect networks {also known as multistage interconnection networks (MIN) or
switch-based networks). Regarding contention, the experiments in [12] showed similar behavior
for direct and indirect networks.

Section 2 covers processor allocation strategies and performance issues. In Section 3 through
5, we motivate and develop several dispersal metrics. Our experiments are described in Section
6. Section 7 concludes the paper and indicates future work.

2 Processor allocation strategies

2.1 Contiguous allocation strategies and fragmentation

Contiguous strategies assign only contiguous sets of nodes. Contiguity can be defined in the
following way: All the nodes allocated to a job form a “convez” shape. One way to enforce this
constraint is to require the nodes allocated to a job to form a subgraph of the original topology
(e.g. a submesh in a mesh). Fig. 1 is an example of four jobs allocated contiguously in a
two-dimensional mesh topology.

Contiguity in mesh topologies ensures that messages from different jobs do not interfere with
each other even if the jobs run at the same time. This has the following advantages: Each job
(or application) can think of owning the machine exclusively, and several runs of the same job
result in approximately equal execution times.

Examples of contiguous allocation strategies for mesh topologies are 2D Buddy [9], Frame
Sliding [5] and First Fit & Best Fit [18]. For hypercube topologies, examples are Gray Code [4],
Partners [1] and Cyclic Buddy [11].

However, contiguous processor allocation strategies suffer from fragmentation. Consider an
additional job in Fig. 1 that requests four nodes. Six nodes are unallocated at this time, but
there is no contiguous block of four nodes available. The nodes (2,3), (2,4), (3,4) and (4,4) for
example are not contiguous because they do not form a convex shape. This situation is called
erternal fragmentation. In addition, internal fragmentation can arise when a job requests j nodes
but receives ¢ > j nodes because of constraints of the machine or constraints of the allocation
strategy. Both types of fragmentation result in unallocated nodes and thus low utilization of the
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Figure 2: External contention for the link between (6,0) and (7,0)

machine. Using First-Come, First-Served scheduling, utilizations of only 34% to 66% are reported
[9, 18, 8, 10] due to serious fragmentation problems. This is unfavorable and contradicts the goal
of high throughput over a stream of jobs.

2.2 Non-contiguous allocation strategies and contention

To utilize unallocated nodes that are not necessarily contiguous, non-contiguous processor al-
location strategies have been proposed [7, 10, 15, 14]. They are also known as scattered or
fragmentation-free allocation strategies. Nodes allocated to the same job are allowed to be dis-
persed throughout the interconnection network. Fig. 3 shows examples.

What are the effects of dispersed nodes? On one hand, there are several advantages: Neither
internal nor external fragmentation occurs, and this results in higher utilization of the machine.
Moreover, non-contiguous strategies easily allow for adding another (possibly dispersed) node.
This is important to two kinds of extensions, fault tolerance and dynamic allocation. In dynamic
allocation, jobs are allowed to change (at runtime) the number of nodes they request, e.g. if their
degree of parallelism changes.

On the other hand, dispersed nodes are typically further apart from each other. This in
itself does not cause a problem, because using wormhole switching the network latency is almost
independent of the path length. However, as discussed below, bigger physical distance increases
the potential for message-passing contention.

Examples of non-contiguous strategies for mesh topologies are defined in [10] and are shown in
Fig. 3: “Random” selects unallocated nodes randomly, “Paging” scans the topology in row-major
order for unallocated nodes, and “Multiple Buddy Strategy (MBS)” allocates a job to (possibly
several) contiguous blocks. [15] describes similar algorithms for k-ary n-cube topologies.

Message-passing contention occurs when several messages want to use the same communication
link at the same time. Each channel/ link of the interconnection network can only be used by
one message at a time, others have to wait. (Even with virtual channels, the more messages
contend for a link, the longer it takes until all are through.) FErternal contention is caused by
two or more messages of different jobs contending for a link. Fig. 2 shows an example. Two
communicating nodes of job A and two communicating nodes of job B would both like to use
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Figure 3: Snapshots of different non-contiguous strategies

the link between node (6,0) and node (7,0) at the same time. External contention occurs only if
a non-contiguous allocation strategy is used (since different jobs do not interfere if a contiguous
allocation strategy is used). In contrast, internal contention is caused by two or more messages
of the same job contending for a link. It can occur no matter whether a non-contiguous or a
contiguous allocation strategy is used. (In some cases, the dispersal of nodes due to a non-
contiguous allocation may even reduce internal contention.)

The bottomline is that contention affects the overall communication time of messages, the
execution time of jobs, and ultimately job throughput of the machine. Although contention
has shown to be negligible in case of small messages [10, 12] or high software latency [12], it in
general is the deciding performance factor within the class of non-contiguous processor allocation
strategies (10, 12].



3 Motivation for dispersal metrics

As seen in Section 2, non-contiguous processor allocation strategies assign nodes that are possibly
dispersed, thus achieving the best performance so far. For further improvement, it is important
to study message-passing contention, the new performance bottleneck.

To our knowledge, previous research on contention in non-contiguous allocation strategies fo-
cused on the following: [10] studied whether the advantages of non-contiguity overcome the
disadvantage of contention, [12] studied under what conditions contention matters and [14] im-
plemented a non-contiguous strategy taking contention into account.

In this paper, we present a method to estimate and minimize contention under non-contiguous
allocation strategies. Our contribution is a set of dispersal metries that measure the degree of
dispersal of a given job’s allocation and, ideally, reflect the increase in contention in the whole
system due to this allocation.

Our approach is to analyze the spatial layout of dispersed nodes. This is motivated by the
following: First, the differences in dispersal are visually striking. Fig. 3 shows snapshots of
different non-contiguous allocation strategies {10] servicing a given jobstream. All snapshots
show the same jobs 11, 12 and 15. For the MBS strategy, the nodes allocated to jobs 11 and 12
are contiguous and the nodes allocated to job 15 form two convex rectangles. In contrast, the
job allocations for the Paging strategy look “more dispersed”, job 11 and job 12 consist of two
clusters each and the nodes of job 15 are somewhat adjacent but do not form a convex shape at
all. The job allocations for the Random strategy seem to be even “more dispersed”.

Second, spatial layout obviously affects job interference. If in Fig. 2 the second node of job A
had been (3,0) instead of (7,3), then there would have been no contention.

Third, known results suggested a relation: contiguous allocation strategies restrict the loca-
tion of nodes allocated to a given job to form a convex shape and do not experience external
contention, while non-contiguous allocation strategies do not restrict the location of the nodes
allocated to a given job and do experience external contention. We are interested in whether
non-contiguous strategies with “less dispersed” allocations are likely to experience less contention
and how to define “less dispersed”.

The final motivation is that dispersal is easy to compute, as will be discussed below. Per job
dispersal metrics are based only on the addresses of the nodes allocated to the job in question.
The addresses of those nodes are available at allocation time and are static over the lifetime of
the job.

Sections 4 and 5 discuss different dispersal metrics and their efficient implementations. In
Section 6, we test their ability to estimate contention.

4 Per job dispersal metrics

Per job dispersal metrics are calculated on a per job basis. Fig. 4 shows a snapshot of an 8 x
4 mesh topology with three allocated jobs. This example is used throughout Section 4. What
is the degree of dispersal of each job? We discuss three different categories of per job dispersal
metrics as well as algorithms to compute them. We consider two-dimensional mesh topologies
first. Afterwards, we extend the algorithms so that they work for k-ary n-cube topologies as well.
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Figure 4: Enclosing rectangle and communication for job 36

The three categories are: nodes affected, links affected and distances & diameter.

4,1 Nodes affected

This metric is pretty simple: it represents the number of nodes in the system that may be
affected if the allocated nodes (i.e. the nodes allocated to the job we look at) do an all-to-all
communication. Why is this indicative of contention? The more nodes are affected, the more
likely is external contention. If a foreign node (i.e. a node not allocated to this job) is affected
and it belongs to another job that does communication as well, messages from both jobs are
likely to contend, resulting in external contention. Fig. 4 shows the all-to-all communication
of job 36. If foreign node (7,3) of job 41 wants to communicate with node (2,3) for example,
external contention is likely to occur.

An algorithm that approximates the number of affected nodes (nodes_affected) finds the min-
imal enclosing rectangle that includes all the job’s nodes and counts the number of nodes inside
this rectangle. Let min, be the minimal and maz, be the maximal x-coordinate of allocated
nodes. Analogously, min, and maz, are the minimal and maximal y-coordinates.

nodes_affected = (mazx, — min, + 1) * (maz, — min, + 1)

Fig. 4 and 5 show the enclosing rectangle and the communication for job 36 and 37, respec-
tively. Nodes_affected for jobs 36, 37 and 41 is 16, 16 and 32, respectively. The enclosing rectangle
for job 41 is the entire 8 x 4 mesh.

This algorithm is efficient. To calculate the enclosing rectangle, we look at each allocated node
once and for each dimension record the minimal and maximal values seen so far. The algorithmic
complexity for an n-dimensional mesh and jobsize j is O(n * j). In contrast, the complexity of
an exact count (that does the routing) would be O(n * j% * k) where k is the maximal number of
nodes in one dimension.

The enclosing rectangle includes all nodes that are affected. This is clearly due to minimal
dimension-ordered routing. On the other hand, some nodes in the rectangle may not be affected
at all. TFig. 5 shows job 37 as an example. Nodes (1,1), (1,2), (2,1) and (2,2) are inside
the minimal enclosing rectangle, but they are not affected by communication of job 37. The
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Figure 5: Enclosing rectangle and communication for job 37

enclosing rectangle sometimes overestimates the number of nodes that are really affected. The
worst case for a & x & mesh topology is a situation with one node in the upper left and one node
in the lower right corner: nodes_affected would be k%, while the number of actual affected nodes
would be roughly 4k.

4.2 Links affected

This metric has less overestimate and links are more appropriate because messages typically
contend for links, not for nodes. This time, we represent the number of links in the system
that may be affected if the allocated nodes of a given job do an all-to-all communication. Is
this approach indicative of contention as well? The argument from the previous metric applies
similarly: The more links are affected, the more likely is external contention. A link from or to
a foreign node indicates possible external contention.

An algorithm that approximates the number of those links (links_affected) projects the nodes
allocated to the job into both dimensions and for each dimension records the minimal (min)
and maximal (maz) coordinate as well as the number of distinct coordinates (count) by using a
bitvector.

links_affected = (maz, — min,) * count, + (mazx, — min,) * count,.

Fig. 6 shows the bitvectors and the communication for job 41. Links_affected for jobs 36, 37
and 41 is 24, 12 and 40, respectively. While nodes_affected for jobs 36 and 37 were both 16,
this time, the values for links_affected differ, more accurately reflecting the actual interference
potential.

This algorithm is efficient, its complexity for an n-dimensional mesh and jobsize 7 is O(n * 7)
as well. It looks at each allocated node once and for each dimension records the minimal and
maximal values seen so far as well as checks whether it has seen that coordinate before.

Why does it work? Take the communication of job 41 in Fig. 6 as an example and consider
the links in x-dimension first. (maz, — min;) represents how many links it takes to route from
maz, to ming or vice versa. In how many rows does routing in x-dimension occur? In each
row that has at least one allocated node. This equals to count,. That is why (maz, — min.) is
multiplied by count,. The same argument holds for the links in y-dimension.

8
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Figure 6: Bitvectors and communication for job 41

It is easy to see that this time there is no overestimate for mesh topologies. (The overestimate
for k-ary n-cube topologies is marginal but can be seen in Fig. 7.)

4.3 Distances and diameter
This category of dispersal metrics is motivated by cluster analysis.

o Average_distance represents the average distance over all pairs of nodes allocated to the
job.

e Summed_distance represents the sum of the distances between all pairs of allocated nodes.

Summed_distance is different from links_affected in that it does a multiple count of affected
links.

o Distance_from_center represents the sum of the distances of each allocated node to the
allocated node that is most central, i.e. the allocated node for which this sum is minimal.

e Diameter represents the maximal distance between any two allocated nodes. Diameter is
somewhat similar to nodes_affected, especially if the job allocation is rectangular.

Why is this indicative of contention? The distance between two nodes equals the path length if
the pair communicates using minimal dimension-ordered routing. The longer the path, the more
likely is contention.

The algorithm looks at all j*(;—1) pairs (I,m) of allocated nodes, computes their distance(l,m) =
abs(l; — mz) + abs(l, — m;) and returns

I, T) . distance(l,m)

i*(G—1)

average _distance =

F ]
summed.distance = Y > distance(l,m)

=1 m=1

9



[0 @@ O @ O wicuimae
1 O@.O §5 @ roce slhocaisd 10 ob 36
: PABAD A .
(- O O @ 9:-) @ roe atlocated to job 41
T T R i
gt

Figure 7: K-ary n-cube: mazgap and communication for job 41

1
distance_from_center = mlin( Y distance(l,m))

m=1

diameter = nllax(distance(l, m))
am

These formulas are accurate. The algorithmic complexity for an n-dimensional mesh and
jobsize j is O(n * j?) because we have to look at all pairs. This algorithm is more expensive than
the previous two. But it is still efficient compared to low-level message-passing of a simulator.
Also, the j? distances could be roughly approximated by computing the j distances to one
randomly selected node only.

4.4 Extension to k-ary n-cube topologies

While extensions to higher dimensional mesh topologies are straightforward, we need some modi-
fications for k-ary n-cube topologies. K-ary n-cube topologies differ from mesh topologies in that
they have wrap-around edges. Dimension-ordered routing traverses one dimension at a time.
To travel through one dimension, the message can travel in either direction (e.g. left or right
in x-dimension) because of the wrap-around. The direction taken depends on which one takes
fewer hops.

We need the following changes to the algorithms from the previous subsections so that they
work for k-ary n-cubes topologies. For nodes_affected and links_affected in mesh topologies, we
took min and maxz for each dimension because affected nodes or affected links were only found in
between these extrema. With wrap-arounds, we change both algorithms to find the maximal gap
mazgap in each dimension where there are no nodes or links affected. This is done by a linear
scan of the bitvector that is constructed for each dimension. If mazgap is bigger than k/2—1 then
nodes or links in this maximal gap are not affected (we set realgap = mazgap) because routing
around this gap is always shorter than routing through it. If mazgap is not bigger than £/2 -1
then all the nodes or links might be affected (we set realgap = 0). In the k-ary n-cube version of
the first two algorithms, we have to change maxz; —min; to k—realgap; — 1. Fig. 7 shows a k-ary
n-cube topology (for the sake of comparison to Fig. 6 it has 8 nodes in the first and 4 nodes
in the second dimension). For job 41, mazgap, = 4 = realgap, and mazgap, = 0 = realgap,

10



results in nodes_affected and links_affected having values of 16 and 28, respectively. The scanning
of the bitvectors (of length k) changes the algorithmic complexity to O(n * (7 + k)).

For our distance and diameter metrics, we computed the distance in each dimension by sub-
tracting the coordinates. For k-ary n-cube topologies we have to take both directions into
account. This is accomplished by using the Lee distance [3]. With the address of [ and m being
lils...1, and myms...m,, resectively, we compute

lee_distance(l,m) = Z min(abs(lyim — Mdim ), k — abs(lgim — Maim))-

dim=1

Other than that, we use the formulas from the previous subsection. The algorithmic complexity
remains at O(n * 72).

5 Average dispersal

All previous dispersal metrics are computed for a single job (“per job dispersal metric”). Average
dispersal is defined as the average value of a per job dispersal metric over a jobstream (workload)
for a given allocation strategy (“dispersal metric per jobstream”).

There are two arguments for average dispersal. First, it is typical to run a jobstream (to eval-
vate allocation strategies) because some previously allocated jobs are still running and constrain
the current situation.

Second, the following two scenarios show the problems exhibited by dispersal metrics per job
and how they are resolved by average dispersal. Dispersal metrics per job are static, whereas
the processor allocation problem in general and contention in particular are highly dynamic.
Dispersal metrics per job do not consider other jobs, they are blind-folded so to speak:

o To experience external contention, at least two different jobs have to interfere. A highly
dispersed job A is likely to have a high value of per job dispersal metric. But if there is no
other job to interfere with, external contention is zero.

e If a dispersed job B interferes with a contiguous job C, both experience external contention
but only B is likely to have a high value of per job dispersal metric.

One approach to resolve these problems is to take a snapshot and average the per job dispersal
metrics over all jobs that are running at this point in time. This helps in the second scenario,
because although the contiguous job C doesn’t expect contention, the job B does.

In our experiments, we go a step further and average over all jobs of the jobstream, instead of
taking a lot of snapshots. This is more efficient and it also helps in the first scenario: It is very
likely that there was another job in addition to job A a short time earlier or that there will be
another job a short time later (in both simulation studies and the real world, machines normally
have a high load) and contention was or will be occuring.

11



6 Experiments

The purpose of our experiments is to examine the ability of different dispersal metrics to estimate
contention. We conducted two sets of experiments: The first set of experiments tests per job
dispersal metrics. The second set of experiments uses average dispersal which considers the
whole jobstream. We compare contention estimates based on dispersal metrics to contention
measurements produced by a message-passing simulator. Qur experiments consider both mesh
and k-ary n-cube topologies of interconnection networks, a wide range of communication patterns
and different workloads.

6.1 Simulation environment

To obtain contention measurements, we use ProcSimity [17], a discrete-event simulator, It models
the arrival, service and departure of a stream of jobs in a multicomputer. It supports selected
allocation and scheduling strategies on architectures with a range of network topologies and
several routing and flow control mechanisms. The detailed message-passing behavior is simulated
down to the level of individual flits and message-passing buffers. Contention is measured by
recording the amount of time the header flit of each message is blocked in the network waiting
for a channel to become free.

To get a variety of spatial layouts we employ different allocation strategies. For mesh topologies
we use the non-contiguous strategies Random [10], MBS {10] and Paging [10] (with different page
sizes and different indexing schemes) as well as the contiguous strategies First Fit [18], Best Fit
[18] and Frame Sliding [5]. For k-ary n-cube topologies we use the non-contiguous strategies
Random [15], MBS [15], Paging [15] and Multipartner [15] as well as the contiguous strategies
Buddy (9}, Gray Code [4] and Partner [1].

Our simulation model uses wormhole switching and minimal dimension-ordered routing (XY
routing for mesh and Lee routing for k-ary n-cube topologies). Concerning architecture, we have
two uni-directional links between adjacent nodes and either a 16 x 32 mesh topology or a 8-ary
3-cube topology. The scheduling policy is set to FCFS, because for testing dispersal metrics, we
saw no significant differences when the scheduling algorithm was changed.

6.2 Workload

Realistic workload parameters are important. Both contention and the spatial layout of allocated
nodes depends on workload characteristics. We set the workload parameters in our simulation
according to workload parameters observed in traces of production machines (e.g. an Intel
Paragon at the San Diego Supercomputing Center [16]). Our jobstreams consist of 1000 jobs.
Jobsizes have an exponential distribution with mean of 16. For the purpose of non-empty waiting
queues, we choose short interarrival times (Poisson distribution).

Five communication patterns are modeled: all-to-all broadcast, one-to-all broadcast, fast
fourier transform (FFT) as well as multigrid benchmark and kernel CG benchmark from NAS
parallel benchmarks [2]). These cover many typical communication patterns and the complexity
ranges from O(j) to O(j2), j being the jobsize. Fig. 8 shows all-to-all and one-to-all communi-
cation for a job of size 4 as well as the different communication phases of FFT for a job of size

12
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16. If the communication pattern has different phases, barrier synchronization is used between
the phases.

Since our focus is on contention, we consider communication only (no computation). To study
contention, we use heavy communication loads which are designed to produce heavy contention.
Message quota 1s a parameter to ProcSimity related to the communication load which in the
current version is independent from the communication pattern. We keep it fixed so that a
typical node sends on the average as many messages as there are other nodes in the same job.

6.3 Results
6.3.1 Per job dispersal

We conduct two sets of experiments. The first set of experiments uses per job dispersel metrics.
We run one allocation strategy and one communication pattern. For each of the 1000 jobs of the
jobstream we compute (for each dispersal metric) the correlation between dispersal metric and
contention. Contention is the average blocking time of messages of that job as measured by the
simulator.

For correlation computations, we use the Pearson correlation coefficient. Results reported
represent the statistical mean after 20 simulation runs with identical parameters, and given 95%
confidence level, mean results have less than 3% error. Additional details about the simulator
are described in [10}.

Table 1 shows the correlation results for a 16 x 32 mesh topology, MBS allocation strategy and
two different communication patterns. Fig. 9 shows the scatter plot for all-to-all communication
and the dispersal metric nodes_affected.

Correlation ranges from 0.22 to 0.50 and the points of the scatter graph do not fall in a straight
line. This is due to the fact that dispersal metrics per job do not consider other jobs, while
contention depends on them (see the scenarios in Section 5). Therefore, contention estimates by
per job dispersal are likely to be either too high or too low if we look at single datapoints.

To see a possible trend, we group the datapoints with similar dispersal values into intervals,
compute the average contention for each interval and connect these points. The resulting curve
is shown in Fig. 9. It is increasing, i.e. on average, bigger dispersal correlates with bigger

13



all-to-all | one-to-all
nodes_affected 391583 | .256183
links_affected 444805 | .225672
average_distance 407117 | .499982
distance_from_center | .499775 | .279724
summed distance 501765 | .507082
diameter 361437 | .222952

Table 1: Correlation for per job dispersal metrics (MBS strategy, 16x32 mesh)
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Figure 9: Scatter plot of per job dispersal metric (nodes_affected) vs. contention {all-to-all
communication, MBS allocation strategy, 16x32 mesh)

contention.
Different communication patterns and different allocation strategies result in graphs very sim-
ilar to Fig. 9. The same is true for k-ary n-cube topologies.

6.3.2 Average dispersal

The second set of experiments uses average dispersal (per jobstream). As discussed in Section 5,
they resolve the problem of dispersal metrics per job being blind-folded.

Table 2 shows the correlation for an 16 x 32 mesh topology and five different communication
patterns. Table 3 shows the correlations for a 8-ary 3-cube and two different communication
patterns. The correlations are very high, varying between 0.890 and 0.998 overall. For both
topologies the dispersal metric summed_distance has the highest correlation for all-to-all commu-
nication. For other communication patterns in mesh topologies, the dispersal metric diameter
achieves the highest correlation. For one-to-all communication in the k-ary n-cube topology, the
dispersal metric links_affected has the highest value.

Fig. 10 shows the scatter plot for average diameter and for all five communication patterns
in one graph. For each communication pattern, the datapoints are close to a straight line.
This visually shows the high correlations. The slopes of the regression lines vary for different
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all-to-all | one-to-all | FFT MultiGrid | NASCG

nodes_affected 910878 | .996691 985869 | .986541 992155
links_affected 927287 | .997315 .993006 | .989280 .992311
average_distance 913628 | .998490 990213 | .991278 995726

distance from_center | .979404 | .973173 J980911 | .960587 959212

summed_distance 996203 | .925024 934681 | .895492 .890912

diameter 939838 | .996631 995940 | .994470 .996535

Table 2: Correlation for average dispersal (16x32 mesh)

all-to-all | one-to-all

nodes_affected 959740 | .990280
links_affected 942668 | .993962
average.distance 953251 | .991443

distance_from_center | .973884 | .964315
summed_distance 981271 | .936519
diameter 971608 | .964080

Table 3: Correlation for average dispersal (8-ary 3-cube)
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Figure 10: Scatter plot for five communication patterns (average dispersal metric diemeter, 16x32
mesh)
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Figure 11: Scatter plot for 20 jobstreams (average dispersal metric diameter, 16x32 mesh, FFT

communication)

communication patterns. All-to-all communication has the biggest slope and one-to-all shows
the smallest slope. Other average dispersal metrics show similar graphs.

Fig. 11 shows the scatter plot for FFT communication, for average diameter and for 20 job-
streams that differ in the seeds for the probabilistic parameters. It shows four clusters, the lowest
for the contiguous strategies First Fit, Best Fit and Frame Sliding, the second for MBS (non-
contiguous), the third for Paging (non-contiguous) and the fourth for Random (non-contiguous)
allocation strategy. In this graph, the slope of the regression line for different workloads is almost
identical.

Ilig. 12 shows rank correlation, the example chosen is all-to-all communication pattern and
the average dispersal metric links_affected. Dispersal metric, measured contention and measured
average service time rank the different allocation strategies in the same order. (First Fit, Best Fit
and Frame Sliding have the lowest values, followed by Paging and MBS, Random is last.) Since
dispersal metrics are much easier to obtain, they have the potential to replace costly low-level
simulations.

In additional experiments, we reduce the average number of messages sent per job. Much less
contention is measured. This results in lower correlations (0.08 to 0.61) and indicates that the
ability of dispersal metrics to estimate contention is worse if there is only little contention. This
is not bad, because we are more interested in estimation of contention if contention is a problem
(i.e. high), not if contention is not a problem (i.e. low). Considering the case with non-marginal
contention, we are on the safe side. If contention is marginal, dispersal metrics are still likely to
prefer one allocation strategy over another, even if both strategies experience almost the same
low contention.
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Figure 12: Rank correlation for six allocation strategies (average dispersal metric links_affected,
16x32 mesh, all-to-all communication)

7

Conclusions and future work

Non-contiguous processor allocation strategies assign nodes that are possibly dispersed, thus
achieving the best performance so far. For further improvement, message-passing contention
should be minimized. Qur contribution towards this goal is a set of dispersal metrics that are
based on the spatial layout of dispersed nodes. Qur six dispersal metrics are called nodes_affected,
links_affected, average.distance, summed_distance, distance_from_center and diameter.

To summarize our results:

e QOur dispersal metrics are efficient to implement for mesh and k-ary n-cube interconnection

topologies.

Our dispersal metrics predict contention well. Our simulation experiments show that our
dispersal metrics have very high correlations with message-passing contention (if communi-
cation is non-marginal). Correlations of contention estimated by average dispersal metrics
(over a workload) with contention measured by the simulator range from 0.890 to 0.998
for a wide range of communication patterns and two network topologies (mesh and k-ary
n-cubes).

All six dispersal metrics perform well, the vast number of correlation coefficients are big-
ger than 0.9. However, our analysis and experiments show some differences among dis-
persal metrics. First, the algorithmic complexity for nodes_affected and links_affected is
lower. Second, different average dispersal metrics perform best in estimating contention
depending on communication pattern and network topology. For all-to-all communication
summed_distance is best. An explanation might be that its design is tailored to all-to-all
communication. For the other communication patterns in mesh topologies, diameter has
the highest correlation.
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o Dispersal metrics have the potential to help evaluate and improve non-contiguous processor
allocation strategies. Selecting the job allocation causing minimal contention is necessary
to improve non-contiguous allocation strategies. Being efficient to compute and having high
correlation with contention, average dispersal metrics can be used to evaluate allocation
strategies and thus in many cases replace costly low-level simulations. Being computed at
allocation time and contributing to average dispersal, per job dispersal metrics can guide
non-contiguous allocation strategies to help minimize contention and thus optimize overall
performance.

Future work includes employing dispersal metrics to improve non-contiguous processor allo-
cation strategies (controlling the spatial layout, so to speak). Investigating the impact of 1/0
nodes in the topology is a next step because they might introduce other patterns of contention
and in general I/O often is a bottleneck. We also consider further experimentation with disper-
sal metrics. Additional experiments could investigate the cut-off point between marginal and
non-marginal communication, the influence of message size distribution and mean message size
as well as the influence of different jobs doing different communication patterns.
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