Moving beyond HTML to Create
a Multimedia Database with User-
Centered Design: A Case Study of a

Biological Database

Eckehard Doerry, Sarah Douglas,
Ted Kirkpatrick and Monte Westerfield

CIS-TR-97-02
January 1997

Department of Computer and Information Science
University of Oregon

Submitted to the Sixth International World Wide Web Conference. Please do not cite or quote this
Technical Report without first obtaining written permission from the authors,

Moving beyond HTML to Create a
Multimedia Database with User-Centered
Design: A Case Study of a Biological
Database

Eckehard Doerry', Sarah Douglas', Ted Kirkpatrick’, Monte Westerfield:

‘Computer Science Dept. ‘Institute of Neuroscience
University of Oregon
Eugene, OR 97403
eck @cs.uoregon.edu

1.0 INTRODUCTION

The technology of the World Wide Web (WWW) provides a revolutionary means for dissemination of
scientific information. For the first time, scientists have 24 hour, low-cost international access to central
repositories of research data without the need for specialized client-side software. In particular, biological
researchers have exploited the power of the Web to create a diverse range of bioscience resources,
including several web-accessible relational databases (e.g., Mouse Genome Database [7], the Human
Genome Database (8], the C. Elegans database [3], the Genome Sequence Database [10], and FlyBase
[6]). There is also a growing number of other Web sites serving static HTML documents; by spring of
1996 there were 26 different Web sites for 15 different species, and the number of sites is increasing at a
rate of about one every three to four months.

The biologists and computer scientists constructing these web sites presume that these web-accessible
resources will aid scientific discovery through more timely, widespread access to better integrated research
information. Although the WWW has made this information physically accessible to scientists, it is
unclear whether it will be cognitively accessible. Busy scientists want useful, accurate, complete and up-
to-date information without needing to learn and use a complex user interface. Will they be able to find
answers to their questions without resorting to powerful but complex query languages like SQL? Will
they be able to get their answers quickly without working through endless hierarchies of useless pages?
Accessibility depends upon usability, and usability is critically related to productivity [9].

Designing a usable interface is challenging. First, the interface design must observe sound principles of
graphic arts and psychology; it must have a functional layout, recognizable icons, and consistent
interaction styles. Good design will reduce the time required to access desired information by minimizing
misconceptions, mistakes and confusion in the search process. Second, it must incorporate a deep
understanding of what information the scientist needs in the immediate context of his or her tasks and
activities. In other words, it must present information using language and conceptual models understood
by the scientist.

We have created a Web-based biological database for the zebrafish research community. The success of
our project and the achievement of true accessibility and productivity depend upon designing, developing,
and implementing with a user-centered approach. In taking this approach, we believe we are relatively

unique among designers of web-accessible data resources. Here, we describe our use of this method, the
specific user interface challenges we faced, and the resulting design.

2.0 OVERVIEW OF THE ZEBRAFISH INFORMATION
NETWORK (ZFIN) PROJECT

Researchers using zebrafish to study basic biology, like genetics and development, are distributed among
more than 100 laboratories in 28 countries. The zebrafish database project evolved out of our earlier Web
site [16], which makes available (in static HTML documents) information on researchers and labs, a
bibliography of publications relevant to the zebrafish research community, photos illustrating zebrafish
developmental stages, and descriptions of laboratory methods, mutant lines, and the genetic map. The
home page was accessed over 20,000 times in its first year.

Due to the exponential increase in information in this research area and the resulting need for more
powerful methods of organizing and accessing these data, the zebrafish research community mandated
extension of the original Web server to create a WWW accessible multimedia relational database known as
the Zebrafish Information Network (ZFIN).

3.0 THE USER-CENTERED DESIGN : PROCESS

User-centered design focuses on the ultimate usefulness and usability of an interactive software product by
assessing the requirements and specifications of the product from the user’s point of view, the user’s
interactive behavior when using the software, and the context of its use. Our design process (Figure 1)
follows the basic steps of user-centered design [15].

FreEE s s reRscs s R s e s s e s s . a.

1
‘é: Detailed Design—)Prototype:_;
1

1

L[]

1
Task and Domain Analysis: Evaluate : _
Develop Database and ——x '“""""“Czj """"""" % |—>Public_Release
Usability Requirements

———> Data Collection ———————3

Figure 1: Steps in the user-centered design process.

Step 1: Develop database and usability requirements

The initial step in our design process is to conduct domain and task analyses. The goal of this step is to
produce both database information and interactive system specifications. However, the biological domain
is extremely specialized, making this analysis very difficult. Development of the abstract data model, the
nomenclature used to label user interface components, and the structuring of interface actions into
information seeking tasks all require deep knowledge of the domain to achieve efficiency and usability.
Accordingly, we began the design process by forging a participatory design team [4, 15] which includes
both biologists and computer scientists. We believe that this collaboration is key to the success of our
project, not only because it provides domain and task knowledge, but also because direct involvement of
biologists gives them a stake in the success of the project.

During Step 1 (Figure 1) we used primarily ethnographic methods [1], including interviews with zebrafish
scientists, reading journal articles, attending research talks and lab meetings, and participant-observer
activities such as helping to customize the specialized software used by one of the labs. In other words we
tried to "go native"” in the zebrafish community. We also used questionnaires to gather design input from
scientists around the world, distributing them at workshops, and via the original Zebrafish Web site,
which contains documents on the development of the database project along with a brief list of the types of
information we expect to include. We solicited feedback from our users about their satisfaction with the
current HTML-based Web site and integrated their requests for enhanced functionality and information into
the design of the new database. The goal of this immersion in the working world of zebrafish scientists

was to understand the context of their everyday work activities and its relationship to the proposed WWW
database.

In addition to these ethnographic methods, we looked extensively at other web-accessible biological
database sites to evaluate their information content and user interfaces; we videotaped our own zebrafish
scientists doing simple information retrieval tasks to pinpoint their confusions with the user interfaces and
information models at these other sites. In this respect, we have found the WWW to be an easily
accessible means of drawing on the design experience of others, a critical resource in an area where design
improvements are typically incremental and based on real-world experience.

These domain and task analyses produced specifications for the database information and the user
interface. Database information specifications were captured in a data mode! document intelligible to both
computer scientists and biologists, containing descriptions of database entities, attributes, and
relationships, as well as examples of situations of use for various pieces of information. The data model
serves as the blueprint for database implementation and offers zebrafish biologists a concise overview of
database contents. The current design for the database is complex and incorporates 21 major classes of
information, most of which are highly interconnected.

Step 1 (Figure 1) also produced specifications for the interactive system. In particular, functional and
performance requirements of the system were determined as seen from the user’s point of view [12]. The
first of these, functional requirements, describes what the system should do. Our functional requirements
include:

® Must provide a security mechanism to ensure that only authorized users submit data.

e Must guarantee reliability and completeness of the data, especially because much of it is user
supplied.

® Must have a mechanism to distinguish published data from unpublished or pre-published data.
® Must allow submission of commonly published image types, including annotations.

* Must provide color reliability and reasonable resolution for images so that information is accurate
enough to make science-based decisions.

* Must be accessible from multiple platforms, including older machines, to support universal access
to the database.

e May need to access other databases concurrently with ZFIN.

Performance requirements, the second type of requirements, state how well the system should perform
from the user’s point of view. Thus, performance requirements define criteria for evaluating the actual
usability of the resulting design used in Step 2 (Figure 1) of the design process. Our performance

requirements include:

* Must be easy to learn. We expect user interactions with the database (retrievals or submissions) to
be relatively infrequent, and thus, a typical scientist might forget how to use the interface between
uses. The interface must be learned as you go {no separate manual) and must provide extensive
on-line help.

® Must be fast enough to satisfy most commonly asked questions within a 10 minute session.
* Must provide enough feedback that most searches will find results with three rounds of querying.

* Must keep the user apprised of progress during the data submission process, allowing the user to
“undo" a submission during any step.

It was apparent from our requirements study that we needed to offer a more usable interface than SQL.
Although SQL is extremely expressive, allowing extraction of very complex database relations, it is
practically impossible for non-database professionals to learn and use [5). Thus, a primary challenge in
the design of the ZFIN user interface was to determine in advance a subset of queries which would satisfy
the needs of most users and to create a very simple interface for expressing queries in this subset. This
required an extensive understanding of the domain and tasks.

Constraints Imposed by HTTP/HTML

‘The functional and performance requirements listed above derive from the characteristics and tasks of the
zebrafish research community. Interface design for any Web-accessible application is also severely
constrained by a number of basic limitations in the technology of the Web itself, primarily because the
WWW environment was designed to support distribution of static multimedia documents, rather than
dynamic connections between clients and server-side applications. This bias is reflected in Hypertext
Markup Language (HTML), the simple formatting language used to control interface layout, and in
Hypertext Transfer Protocol (HTTP), the communication protocol used to implement client-server
interaction. By limiting the interface primitives available to the designer and the ways in which client and
server can interact, H-TML and HTTP impose a number of unusual constraints on interface design:

* Inconsistent Look and Feel. A basic premise of HTML is that the language should
logically describe the appearance of interface screens, relegating to the client software low-level
decisions associated with physically displaying the page. Despite recent improvements, control
over the layout and appearance of interface elements remains relatively weak. Consequently,
appearance of the interface may vary widely depending upon the client hardware platform and
browser software used to access the interface.

e Discrete Transaction Model. The HTTP protocol supports only discrete transactions
between client and server. Each transaction retrieves a single HTML document. Transactions may
be initiated only from the client side; the server cannot spontaneously send information to the
client.

* Anonymous, Stateless Transactions, Both HTTP server and client treat each transaction as
completely independent of preceding transactions. Though both typically maintain some record of
document access, this record plays no role in shaping the retrieval or appearance of future
documents. Moreover, the HTTP protocol does not provide integrated mechanisms for
distinguishing between transactions at the user (client) level, meaning that transactions are
essentially anonymous.

These constraints interfere with some basic principles and techniques of modern interface design. For
example, the lack of consistent appearance and spatial positioning across different platforms makes it
impossible to rely on fine-grained presentational similarities to convey information about interface
behavior. The discrete, stateless transaction model does not support interface concepts that "span” several
interface screens (e.g. user authentication, navigation, context-sensitive help); it also rules out most forms
of event-based feedback (e.g. immediate error-checking of input, graying of inappropriate menu choices in
response to other selections) and powerful interaction techniques like direct manipulation.

The functional requirements and performance requirements combine with the constraints imposed by
HTML and HTTP to drive the interface design.

Step 2: Iterate detailed design process

Step 2 (Figure 1) is the heart of usability engineering methods [13]. After developing the information and
usability requirements, we moved into the iterative refinement phase of the user-centered design process to
design and implement the user interface. In contrast to the waterfall approach used by traditional software
engineers, this technique relies on rapid cycles of design, prototype implementation, and evaluation with
real users to generate the final product.

Rather than implementing the entire database at once, we initially selected a subset of the database
information (i.e. data types) to take through Steps 2-4 of the design process. This was done primarily for
pragmatic reasons. Some information is of higher priority to the research community or more mature and
complete; staggering development of various data classes allowed us to make useful information rapidly
available. In addition, focusing attention on just a few types of information at a time proved to be an
effective means of managing the complexity of the design.

Each prototype was immediately evaluated by selecting pairs of zebrafish scientists and giving them typical
data retrieval and submission tasks to perform. Videotaping these sessions allowed us to analyze the
amount of time required, misconceptions encountered, and other problems with the interface. We
evaluated their performance against the usability requirements developed in Step 1 (Figure 1). Details of
how to conduct this type of performance analysis can be found in [2]. We used insights gained from this
analysis to shape subsequent prototypes in the iterative design cycle.

When we were satisfied with the usability of a prototype, it was made available to 10 zebrafish scientists
(acting as beta testers) through the WWW, access to the prototypes was limited to these testers. A
“comment form" was integrated into each screen, allowing our testers to record feedback easily and email
it to the developers. At the end of the beta testing period, we also interviewed our testers to discover any
other problems.

Steps 3 and 4: Data Collection and Public Release

Because data collection (Step 3) is not an intrinsic part of the user-centered design process, it will not be
addressed here, in favor of a more focused discussion of usability and interface design issues. Step 4,
public release of the database, is an important part of the user-centered design process rather than its abrupt
termination; usability analysis will continue indefinitely, allowing the system to evolve to meet the
changing demands of users. The commentary forms for gathering user feedback mentioned earlier in the
context of beta testing remain available in the public release. We are also recording (anonymously) the
sequence of screens visited by each user and the total number of visits to each screen in an effort to
determine common usage patterns and to expose areas of confusion. Finally, we are planning to conduct
extensive periodic user surveys, interviewing a sample of randomly selected registered ZFIN users to
assess usage patterns, good and bad features of the Web site, and interest in future information support.

4.0 USER-CENTERED DESIGN: PRODUCT

4.1 User Interface Architecture

Although several research efforts have produced interfaces to interactive server-side applications that rely
solely on the mechanisms available in HTML/HTTP [14], we found it impossible to satisfy our demanding
usability requirements within these constraints. Therefore, our implementation integrated three powerful
concepts to enhance significantly the expressive power of the ZFIN interface:

e Interface state. The ZFIN architecture takes advantage of the underlying database to store and
maintain information about users and interface state. In combination with user authentication, this
provides strong support for data security, navigation and context-sensitive help.

¢ Personalized interaction. By providing mechanisms for authenticating and identifying
individual users, the ZFIN interface tailors its presentation to meet the specific needs of each user.

* Client-side mechanisms. Responsiveness and feedback of the interface is enhanced by taking
advantage of client-side processing wherever possible, distributing responsibility for interface
management more evenly between client and server.

We implemented these concepts in a hybrid processing architecture that augments conventional HTML
specification with the storage capabilities of the underlying database, the computational and formatting
capabilities of a powerful scripting language, and the interactivity enhancements of client-side processing
(e.g. Java and Javascript) to create a flexible, reactive interface programming environment.

: =1
Server-side [

Database

Database
Scripting

HTML
& Javascript

Client-side
¥ it Java
avascrip Applets
A y
USER INTERFACE

Figure 2: Schematic overview of the interface architecture implemented in ZFIN, For clarity,
the schematic focuses on data retrieval; data submission is similar, except data also flow from the
interface back to the database.

Four distinct mechanisms are transparently integrated to create the user interface (Figure 2): a relational
database, dynamically generated HTML pages, Java applets and static HTML pages. Static HTML pages
are the most trivial component and warrant no further discussion, especially because they are only rarely
used in our dynamic interface (e.g. for displaying introductory descriptions).

Dynamic page generation, shown on the left in Figure 2, creates the majority of interface screens in ZFIN.
Raw "application pages", consisting of static elements interspersed with scripted processing instructions,

are stored as text in a database table. We used two distinct types of scripted instructions: database scripts,
which control the content and appearance of the returned page, and Javascript, which controls client-side
dynamics like checking input for errors, enforcing semantic constraints, and updating the navigation
display (discussed in upcoming sections).

As an application page is retrieved from the database, it undergoes a sequence of transformations to
generate the final interface screen presented to the user. First, the database scripts embedded in the page
are executed, issning SQL statements to the database server and using the returned values to control page
layout and to populate the nascent HTML page with formatted data. These scripts may also generate and
embed page-specific Javascript instructions to control dynamic client-side behavior. Variables passed in
the original page request are also available to the script interpreter, and may shape the returned page. The
resulting HTML page is passed back to the user’s browser, which executes any embedded Javascript
instructions and displays the final product.

Although this layering of scripting mechanisms greatly enhances flexibility, the end product is still HTML,
which does not support dragging, pointing and other forms of direct manipulation. For some tasks, there

was simply no way to meet the usability criteria developed Step 1 (Figure 1) of our design process without
access to these more advanced interaction techniques. Thus, the architecture also allows the integration of

special purpose Java applets' to implement advanced interface functionality.

The only cost incurred by this architecture is a slight decrease in accessibility; the integration of client-side
technologies like Java and Javascript means that, to access the interface, users must have browsers that
support these technologies.

4.2 User Interaction: The ZFIN Interface

The interface supports four primary interaction modes (Figure 3): surveying database contents and
activities, querying to retrieve information, submitting and updating data, and using specialized data
manipulation tools.

Biologist

(USER
INTERFACE

—y v y—

Database Management System
({DBMS)

Figure 3: Four interaction modes supported by the ZFIN interface. Arrows indicate the
relationships of modes within the context of an interaction.

4.2.1 Surveying Database Contents and Activities

Our analysis of usability requirements during Step 1 of the design process showed an overwhelming
demand for immediately productive, efficient access to information for untrained users.

The ZFIN "home page" (Figure 4a) meets this requirement by immediately presenting users with an
overview of available data and accessible activities. In this way, the interface establishes a simple
conceptual model of the data space and streamlines the most common access scenario, namely, performing
a basic search for information. The "status” of the data in each category is indicated, priming users’
expectations about data integrity and completeness.

Fis ER View Go Bookmarks Opisns Directory, Windew

Current TASK: ZDB HOME]

Abgutthe Zebratish | £ CHek the lock dcon to login asa ZDB user, Only
the Zeby |ﬁ registesed upers may spbhit of updete date Planse

Datebase project plaEistates for mformation on how to become a reglstered user,
New grototypes and Click the halp icon at any time to obtain detailed
Prolest: dp| information on the current page.

| WARNING| | This datsbaseis currently under construction. The foBowing merkers indlcate the
statuy of vaious pirts of the datahace 3 e S i
|| 9-Betatesting | s-EarlyPrototype o-Nmcet |

DATA

I[Znhraﬁsl:PEOPLEi e
!’PUBLigAleN | .SEAEQH -
MUTANTS SEARCH
IMAPMzmms T
r "'imzs's?' T R e T T
Fr T — ==

Figure 4a: The ZFIN “home” page as first scen by users entering the sile.

Figure 4 also illustrates how the concept of personalized interaction [17] simplifies the interface. By
distinguishing among users, both as individuals and as members of pre-defined groups, the interface
presents each user with a customized perspective that contains only those elements accessible to the user.
In this way, the interface focuses the user’s attention on relevant activities, while concealing unnecessary

complexity. For example, when users access ZFIN, they are initially classified as "guests", permitting
them free viewing access to all data, but barring them from submitting updates or new data. The latter
activities are reserved only for "data submitters”, scientists within the zebrafish research community who
have applied for and received authorization to submit data. Figure 4b shows the lower portion of the home
page seen by Ted, a member of the "data submitter” group, after he has logged in. As a data submitter,
Ted has access to a set of activities centered around data submission which are unavailable to guest users
(Figure 4a). Note, however, that Ted is unable to add new persons or publications to the database; these
activities are reserved for the unrestricted "database administrator" group, of which Ted is not a member.,

e NG“'M'.. . ;k e T e ——
| status of various parts of the database:

[ocBetaistng | s-FarlyProogpe

-

[o-Newent |

_DaTA | ACTIVITIES ACCRSSIBLE (0 Tod Riripotrick |
| o | SRarc f
PUBLICATION | : i
|2 SEARCH ;
- |
| MUTANTS | SEARCH e o g esans |
. = i destred by cross-beeediig [
I L —————————— — - o —

ADD NEW chmed geng
! ADD NEW EST |
'MAPMARKERS ARD NEWRAPD
& Rt ADD NEW SST
IE
| ADD NEW SSCP .

il L | S S i

e SEARCH ADD NEW IMAGE |

Figure 4b: The ZFIN “home” page as seen by an authorized submitier after logging in.

We implemented identification of individual users by using the "HTTP cookie" mechanism [11] in
combination with a table of user information stored in the underlying database. When a user logs in, name
and password are checked against the user table and, if successful, a randomly generated "identity key" is
installed as an HTTP cookie in the user’s browser; the key is also associated with the user’s record in the
database. With every subsequent transaction, the user’s browser passes the cookie to ZFIN to establish
identity and permission status. This interface then uses this information during the dynamic page-
generation process to determine whether the user has permission to access a requested page and, if so,
which activities to make accessible to the user within the page.

The ZFIN home page (Figure 4a) also establishes the overall layout of the interface, with navigation tools,
help, and lab notebook available at the top of each screen, and a "content” area below. This structure is
consistently maintained throughout subsequent screens.

4.2.2 Querying to Retrieve Information

Focused search is very different from the more general browsing activity supported by traditional WWW
sites; users typically have a well-defined set of target criteria in mind when they initiate the search. A
successful interface must allow efficient expression of these criteria using domain terminology, must
summarize search results, and must maintain the connection between search criteria and matching records.

Figure 5 presents the search interface implemented in ZFIN. The simple layout and limited number of
search criteria reflect our commitment to accessibility and ease of use rather than expressive power.
Although the underlying database query language (SQL) allows formulation of arbitrarily complex queries,
the interface limits constraints to conjunctions of a handful of criteria identified by our domain analysis as
most useful (i.e. most discriminating, most likely to be known at time of search).

|4

Current TASK: ZDB HOME| Fod STOCES)| _(“_%J _@
SEARCHICRITERIA e
Search for. mutant | line of fish where: RESET|| SEARCH|
NAMEoontalns: [oyd Lab: | Eugme | '
Mutated CHROMOSOME(1-29: (11 carmiws ALLELE: 7]
MUTATIONTYPE: -~ - | phenotype i | cowsij_— j
Search Results (searching mutant lines) i
MUTANT Alldd) MulLType Chrom¥ Lab ||
j Ssane (T ST s A W ey
syclopsicye) b213 trensiocation 12 Eugene
cyciopsteye) 29 UNKNOWN 12 Eugeme
m. sleved 23 tendecaten 12 Byene |||
crelomslove) 32 UNKNOWN 12 Eugene I
ceeions(cye) k551 polnt mutation 12 Eugene i
cyclopsicys) KOS UNKNOWN 2 Ewmee |
m 823 UNKNOWN 2 Eugene l
; ——— —_ i i, - a..........,é

Figure 5a: Search interface for mutant stocks.

The interface maintains the conceptual connection between search criteria and search results by juxtaposing
them on the same screen; there can be no confusion about the criteria that produced the currently displayed
set of records. More generally, the spatial relationship between criteria and results visually relates the
user’s goals and actions to the responses produced by the system. This arrangement also makes iterative

refinement of the search very easy, applying new constraints while observing the effect on the set of
matching records.

The two screens shown in Figure 5 also illustrate the consistency of the search interface between data
classes. Although the criteria are different for each class, the basic screen layout and search process are
identical.

10

Current TASK: ZDBHOME| Pind PHBLICATION| @I Lm
SEARCH CRITERIA 2
AUTHOR containg |rotarfield mm[l—”"'
Publication YEAR: [] shoract i | mr
: P i
Cen Suibp L B
Search Rasults (Total of 8 records found) ?dnub:ﬁ_
AUTHORS _
Akinetko -M- A, Johason-S-L. Ll
Westarheld~M; Ekker=M. i
Raiaherd-E! Nedivi-E. Wagner-1.
Skani=J-H-P. Westirbeid-h.
Sapich-D -3, He-R-K Werterhield-M. | ;
Akimenko=M-A_Ekker- M. Wegasr-J |
Lin-'W. Westerfield-M. i
i
|
_ Wensriisdd-M Star-0. Wegner-].
|| 1993 ThaZsbrafish Bekc A Gode e sha Labaratory Uen of - Woartariald- 34
[l 152 ificemien a1 Tors dncning of satelies- Live rrpensies - Ekker-M. Fi-A Werteris-M.
(| 1992 Zabratshbor ued Pag pracs. Westerbiald - |
1992 Fumenosd poessisn s ol -G ua kighly Plschel-A-W, Omss-P. Westerfisld-M, i
copserved berwasn Sebrofsh sod mics 4

Figure 5b: Search interface for publications.

4.2.3 Data Submission and Updating.

Support for user submission and updating of experimental data is one of the most important and unique
features of the ZFIN interface. We encountered four primary challenges during our design of the data
submission interface: supporting naive users, enforcing data security, supporting multi-step submissions,
and providing context-sensitive navigation and help,

Supporting naive users.

To support inexperienced users, the data submission interface provides instantaneous feedback wherever
possible, checking entries for correct format and enforcing semantic constraints between fields. For
example, error dialogs appear when values are out of range, incorrectly formatted, or incompatible with
previously specified values. We implemented this feature by embedding context-specific Javascript
instructions in each data submission screen.

Another important ease of use heuristic employed in the interface is the preference for popup menus over
text entry (Figure 6a). Popup menus are particularly helpful to infrequent and inexperienced users who
may not remember or know the possible values or valid data formats for each field. They also provide a
convenient means of enforcing uniform biological nomenclature, increasing the effectiveness of data
indexing and retrieval.

11

| P um Gs Beskmwks Oplions [Dirisscy Wimbewr

Help
Current TASK: ZDB HOME| New Image| _EJM

i = — - sz_:_iﬁ:i—-lﬁ--{ e ——
! M:@%&M;h&mﬁmh =\fmm=hkmsunmnmmmm

i the submis:

'| MUTANT LINE: UNENOWN, |§Eﬂ u;mmthal
| UNENCWN

DEVELOPMENTAL STAGE: %

|
Deplcted smimalfs ot GastrudwS0% -epibaly — | stage, chout: 20% troughthts | -
stage. ' i
| o
1MAGEFREPARATION;
SPECIVMEN: EM-secton - MAGETYFE: s =

ORIENTATION: sagital-amterior to. gt — |

LABELING: | Specly s Lobel

Figure 6a: A portion of the data entry form for submitting a new image to ZFIN.

Enforcing data security.

In any network environment, allowing remote data modification greatly increases the risk to data security.
Our user authentication mechanism conveniently enforces data security, selectively restricting access to
allowed data manipulation activities. The interface enforces security not only at the page level, but on a
feature by feature basis within each page. For example, the interface allows the user to update his or her

personal record (Figure 6b), except name and publications; these options appear only to the database
administrator.

Supporting a nested, multi-page submission process.

The interdependence of experimental data presented a major challenge in the design of the data submission
interface. A "data submission" includes not only new information, but also specifying the myriad
relationships between that datum and other records contained in the database. The need to establish
connections between a new record and related records results in a complex, nested data submission
process in which the submitter must digress repeatedly from the main submission task to search for and
create links to related information.

12

Pl B Wew 0o Betmarke Oplts Devlry Wedew ol

Current TASK: ZDB HOME| Find PERSON| View Person] Updiie Persen g]—l .Egl

Westerfield, Monte

tn
Eugene, CR¥7,
USA

Upda]

UpdatefPhone: {541) 3464407 o
\
Update[FAX: (541)346-4548

Update| Ematt; MONTERUONEURQO.UCREGON.EDU

Updzte] URL: bitputizfishoregen o)

ypdmllviomph, and Ressarch Interasiy:

Ph.D., Duke University

Research in ourlsh facuses on understanding the mechanisms that regulate the differentiation of i
newrons. We would particulardy Mke to understand how the specific properties of different kinds of i
neursns are regulsted. We study this question b zebeafish using a combinotfon of anstomical, i
physislagical, molecular, and genetic tachnigues.

Egb" TING Y directly add publications record. i
JEDATING Pabs: You camet adions to your Contect Administrator¥ a
publication you think should appear belaw Is tnissing.

Figure 6b: The updating interface seen by a user when updating his own record.

For example, a submitter must digress from the primary task of submitting a new mutation (Figure 7a) to
search for the publication (Figure 7b) in which the mutation was first described (i.e. primary publication).
After finding the publication, the user selects it and automatically returns to the mutant submission form
(Figure 7c).

The basic HTTP/HTML environment cannot accommodate this complex, nested sequence of task and
digressions (subtasks) because it supports no notion of interface state. The central difficulty lies in
managing the automatic "return” from a subtask to the task from which it was initiated, bringing the
information specified in the subtask back to the primary task.

We implemented this functionality by saving interface state? in the underlying database and passing a
reference (pointer) to that state to pages associated with the selected subtasks. Specifically, the record of
interface state captures two important pieces of information as a digression is initiated: the values
contained in the partially completed data submission form and the position (i.e. viewport) within that form

to which the interface should return when the digression ends. As a first step in any digression, a
“temporary" record is created in the database and filled with the current values of the form’s input fields.
The unique identifier for this "stack frame" is then passed along to subsequent pages as a hidden form
element. When the digression ends, the values stored in the temporary record are retrieved and the original
form reconstructed; from the user’s point of view, the interface has "returned” to a previous screen.

13

Im'mmm-w.w_mﬁ ' H_-'i'[

remee e -

Corvent TASK: ZDBHOME| New Mutant| @I @

PUBLICATIONS:

|_ Hkhlmy Publieatlons UPUBLIEHED

| A one] Related Publications

Figure 7a: A typical digression sequence. To submit a new mutation, the user must specify the publication in which the
mutation was first produced.

r —_— —

Current.TASK: ZDB KOME| New Mutant| Fiad PUBLICATION| @]@ !

ruhumsm?mrr_ e e

. SEARCH CRITERIA ,
|

| AUTHOR cohtatar | eised mmuhsf; ‘
|

|

. Clear Sextings | sEARGH]

Search Results rTotal of 39 reeards found) | Peiniable Uiing
YEAR AUTHORS Al
SELEGT 1996 | Appel~-B Karth-Y Ulaagrw-B. Ther-3 Eond-T. | |]:
Dtﬂi-l-B.Esunl-!.w- _'l I
1996 Hetin-P-D Raille-D-W, Bramin-C-E. i
Lryabapre ey [f TFbre® Soeesser-K~L Weston-I- A Eisen-J-5 :
BELECT 1996 | Fuible-D-W. Eiswn-J-5, I
i
SELECT 1955 Ruble-D-W Erea-j-9, 4 i
SELECT 1594 A ceastickakare mas ot the sabasfialy - Pelathware- | Jobnaca- . Midsea-C-HN 2l

Figure 7b: This brings up the constraint-based search interface, which is used to locate the publication record.

(Fa BB Vew G4 Bawkmris Optoss Brvry Wadem _ oy |
Current TASK: ZDBHOME| New Mutent| .(,ﬂl @]
_ =
R I P — ST L T e T — - 11
PUBLICATIONS:

Figure 7c: The user is returned to the mutant submisssion, with the specified publication filled in.

14

Providing context-sensitive navigation and help.

Not all digressions are as straightforward as the one presented in Figure 7. A submitter may need several
tries to fine-tune search criteria, or may need to view one or more records in the candidate set before
selecting one. This raises another prominent design challenge: during "deep” digressions, users easily
become confused about the relevance of the current screen to the task solution process as a whole. In
other words, users tend to "get lost” in the task space. Left unsupported, their only remedy is to return to
the home page and start over.

Initially, we assumed that the history mechanisms built into most browsers would adequately support
navigation through the task space, allowing users to view and move back through a list of previously
traversed pages. However, our usability testing revealed a crucial difference between casual browsing and
task-oriented data access. In a task-solution process, a one-to-many (rather than a one-to-one)
correspondence exists between the physical pages retrieved and the conceptual steps within the process.
For example, iteration of the search-retrieve cycle (i.e. while refining constraints) generates a lengthy
sequence of retrieved pages associated with the same conceptual step (i.e. find candidate data) in the search
task. All of these pages appear in the browser’s history list, leaving the user confused as to where they all
came from (not realizing that each new search generated a new page) and how to get back to the preceding
step in the task. What is needed is a task-sensitive mechanism that maintains a user’s orientation within
the task space by tracking his or her progress through the conceptual steps within each task.

The ZFIN navigation tool provides users with a dynamically-updated representation of their current
position within the task space. Beginning with the "home page", tiles corresponding to each conceptual
step in a task appear in the “control strip"” found at the top of each page (see Figures 4-7) as the user
embarks on that step. At any point within a digression, a click on the tile representing some earlier,
enclosing step aborts the digression, instantly returning the user to the earlier step.

The explicit representation of the user’s current task alse supports a powerful context-sensitive help
mechanism. Because the interface maintains a complete history of a user's interaction, it is able to provide
specific guidance on how to complete the current task.

4.2.4 Specialized Tools

Although the interface features described in the preceding sections on searching and data submission are
adequate for describing, retrieving, and displaying text data, they do not efficiently’ support manipulation
of complex, domain-specific data types like annotated images and genetic maps. We developed two Java
applets to support these data types. The image annotator (Figure 8a) allows the user to place annotations
dynamically on a submitted image. The genetic mapping engine (Figure 8b) is a sophisticated tool for
analyzing the spatial relationships among genetic markers appearing on a selected segment of a
chromosome. Both applets communicate directly with the database server to retrieve data required by the
applet or, in the case of annotations, to add information to the image record. These specialized tools
enhance usability by supporting directly the conceptualizations of domain data prevalent in the biological
domain, transparently mapping them to underlying data representations.

15

Color: Jbisck G white red blue 44
Dwscriptlon: [sotice how the pnmordlum of the notechord and
Savadese [1 [B¢ spinal cord just dorsal to bt 1pring from the
Sevwdesc| hightly packed tail bud mesenchyme.

Description

Lt §

Figure 8a: The image annotator, shown in edit (versus viewing) mode. Annotations can be
placed, edited, and enhanced with arbitrary text descriptions.

=i i Genetic Map
Warning: Applet Window
e R Gene N RAPD _imutation) EST
2 RFLP. .] STS 1 SSLP

Ell CadiTE Linkage Group: ']I Marker: Isc.ssq Datalls[Pesition: [pasg Ranga from: Ij e I[

p10 p2o P20 pi0 £ P 70 80 p90 100 M P20 piag 140 o
albr z1}73
1721010 _9AB1I7G_ _ BMJ5D -———l—mv pov 941850 505 :::.1& —nin_ 3AH4ZS
184 420 S 191150 Mgl
—18a4a 14AD.1600 —_
_M4AD 1600

14Y.1150
I 8F.1400
—

134

Figure 8b: The genetic mapping tool supports analysis of spatial relationships among genetic markers.

16

5.0 CONCLUSIONS

Rapidly expanding access to the WWW holds incredible promise for increased data sharing and
collaboration within widely-distributed research communities. Web-accessible databases will make
available a much broader range of data than printed media, including multimedia data types and
information that, although useful, might never be formally published; new findings can be made available
almost instantly, rather than being delayed for months by a lengthy editorial and printing process.

There are a number of challenging obstacles to such universal accessibility. First, scientific domains are
unusually complex, with domain ontologies that evolve with the expanding frontiers of the discipline; the
kinds of information accepted as "data" and the research techniques that generate this information change
over time. Consequently, interface design for a research database is much more demanding than for
stable, single-use databases. From a practical perspective, the WWW environment imposes challenging
constraints on the design on a web-accessible interface, severely limiting the interface concepts and
interaction techniques available to the designer.

The case study presented here shows how user-centered design can be used to manage domain complexity
and generate meaningful usability requirements, by focusing attention on the real-world work activities
(i.e. research processes) of users and on the ways in which access to various kinds of information (data)
contributes to these activities. It also demonstrates how the constraints imposed by the WWW
environment can be greatly ameliorated by extending the rudimentary interaction model defined by
HTTP/HTTP with three powerful concepts: interface state, personlized interaction, and client-side
dynamics.

Functional and Mni_ntain orientation Easy to Support domain-
Performance Dunsecurity U s specific data types
REQUIREMENTS

Fast access
to target data

Timely and
relevant feedback

Interface

FEATURES Task-sensitive
Help

Screens tailored to
individual users

Task-sensitive Dynamic Error-
Navigation and constraint checking

Interface
state

Figure 9: A graphical summary of the conceptual extensions to HTML/HTTP in the ZFIN system
(lowest level), the specific interface features they support (middle level), and how these features, in
turn, support specific functional and performance requirements established in Step 1 (Figure 1) of our
user-centered design process (upper level).

Figure 9 summarizes our observations on the relationships among these underlying interface concepts, the
specific interface features they give rise to, and the ways in which these features support the usability
criteria generated by our user-centered analysis.

Java Tools

Interface
CONCEPTS

Personalized
interaction

Client-side
processing

At the implementation level, our work demonstrates that the integration of several technologies, an
underlying database, HTML, database scripting, Javascript and Java, establishes a flexible substrate for
creating expressive and reactive web-accessible interfaces. By judiciously interweaving these technologies

17

to capitalize on their respective strengths, the ZFIN interface architecture defines a pragmatic balance
between simplicity and expressive power.

We have focused our work to date on maximizing the accessibility of data contained in the ZFIN database,
applying user-centered techniques to streamline individual data manipulations. In the future, we plan to
expand our focus to support the full research process in which database access is embedded by developing
tools to support database-centered interaction among widely-distributed members of the research
community. Examples include mechanisms for collaborative shared access to the database, interactive
discussion forums, and viewer commentary appended to specific data records. We envision ZFIN as the
cornerstone of a virtual community of research scientists linked via the WWW, working together, and
sharing a common set of data,

Acknowledgments

Mike McHorse and Paul Bloch provided essential system administration support for our computers and
network. The base code for the genetic mapping applet was written by Gregg Helt and provided by the
bioWidgets Consortium. We would also like to thank our numerous informants within the zebrafish
research community, who patiently took time to explain their research methods to us. The zebrafish
database project is sponsored by NSF grant BIR-9507401.

References

1. Blomberg, I., Giacomi, J., Mosher, A., & Swenton-Wall, P. (1993), Ethnographic Field Methods and their Relation
to Design. In Schuler, D., & Namioka, A. (Eds.). Participatory Design: Principles and Practices. Hillsdale, NJ:
Lawrence Erlbaum Assoc.

2. Douglas, S.A. (1995), Conversation Analysis and Human-Computer Interaction Design. In P.J. Thomas (Ed.)
Social and Interactional Dimensions of Human-Computer Interfaces. Cambridge University Press, 1995, pp.184-
203,

3. Genome Informatics Group. (1996). ACEDB (World Wide Web URL http://probe.nalusda.gov:8300/cgi-
bin/query?dbname=acedb). Belisville, MD: US Department of Agriculture.

4. Greenbaum, J., & Kyng, M. (1991). Design at Work: Cooperative Design of Compiuter Systems. Hillsdale, NJ:
Lawrence Erlbaum Assoc.

3. Greene, 5.L., Gomez, LM., & Devlin, 8.J. (1986). A cognitive analysis of database query production. In
Proceedings of the Human Factors Society (pp. 9-13). Santa Monica, CA: Human Factors Society.

6. Harvard Medical School. (1996). FlyBase (World Wide Web URL http://cbbridges.harvard.cdu:7081/). Cambridge,
MA.

7. Jackson Laboratory. (1996). Mouse Genome Database (World Wide Web URL http://www.informatics.jax.org/).
Bar Harbor, ME.

8. Johns Hopkins School of Medicine, {1996}, Genome Database (GDB) (World Wide Web URL
http://gdbwww.gdb.org/). Baltimore, MD.

9. Landauer, T. K. (1993). The Trouble with Computers. Cambridge, MA: MIT Press.

10. National Center for Genome Resources. (1996). Genome Sequence Database (GSDB) (World Wide Wed URL
http://www._ncgr.org/gsdb/). Santa Fe, NM.,

11. Netscape Communications Technical Document (1996). Persistent Client State - HTTP Cookies. (World Wide Web
URL http://home.netscape.com/newsref/std/cookie_spec.html). Mountain View, CA.

12. Newman, W.M., & Lamming, M.G. (1995). Interactive System Design. Wokingham, England: Addison-Wesley.
13. Nielsen, J. (1993). Usability Engineering. Boston: Academic Press.

14. Rice, I., Farquhar, A., Piemot, P.,& Gruber, T. (1996). Using the Web Instead of a Window System, In
Proceedings of CHI'96 (pp. 103-110). Vancouver,B.C.; ACM.

18

15. Schuler, D., & Namioka, A. (1993). Participatory Design: Principles and Practices. Hillsdale, NJ: Lawrence
Erlbaum Assoc.

16. University of Oregon Neuroscience Institute (1996). The FISH Net. (World Wide Web URL
http://zfish.uoregon.edu). Eugene,OR.

17. Yang, J. Y. & Kaiser, G. E. (1996). An Architecture for Intergrating OODBs with WWW, In Proceedings of Fitfth
Intl. WWW Conference . Paris, France. (Also available at
http://wwwS5conf.inria.fr/fich_html/papers/P31/Overview.html.)

Notes

1. This observation raises an obvious question: if Java supports the full expressive power of a modern interface
programming environment, why not implement the entire interface as a Java applet, completely avoiding all
constraints associated with HTML/HTTP? Several factors make this impractical. First, increased expressive power
comes at the price of increased complexity. Implementing even relatively simple interfaces requires the sustained
efforts of a skilled programmer; subsequent revisions compound this effort. We also found that the performance of
Java applets varies widely, depending on the capabilities of client-side hardware and software. For these reasons, the
ZFIN interface relies on Java only for those interface elements that can not be supported in any other way.

2. Note that this enhancement is theoretically significant, upgrading the underlying model of the task space from a
finite state automaton to a more powerful push-down automaton,

3. Although one could conceivably implement functionally similar tools using only HTML (e.g. using clickmaps), the
resulting interface would be extremely unwieldy, because every action requiring a response by the system would
require a server transaction Lo refresh the display.

19

