Lambda Calculi plus Letrec

Zena Ariola and Stefan Blom

CIS-TR-97-05
July 1997

Department of Computer and Information Science
University of Oregon

Lambda Calculi plus Letrec

Zena M. Ariola
Department of Computer & Information Sciences
University of Oregon. Eugene, OR 97401, USA

email: ariola@ics.uoregon.edu

Stefan Blom
Department of Mathematics and Computer Science
Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam

email: sccblom@cs.vu.nl

The paper consists of three parts.

Part I: We establish an isomorphism between the well-formed cyclic lambda-graphs and their syntactic
representations. To define the well-formed cyclic lambda-graphs we introduce the notion of a scoped
lambda-graph. The well-formed lambda-graphs are those that have associated scoped lambda-graphs.
The scoped lambda-graphs are represented by terms defined over lambda calculus extended with the
letrec construct. On this set of terms we define a sound and complete axiom system (the represen-
tational calculus) that equates different representations of the same scoped lambda-graph. Since a
well-formed lambda-graph can have different scoped lambda-graphs associated to it, we extend the
representational caleulus with axioms that equate different representations of the same well-formed
graph. Finally, we consider the unwinding of well-formed graphs to possibly infinite trees and give a
sound and complete axiomatization of tree unwinding.

Part II: We add computational power to our graphs and terms by defining §-reduction on scoped

lambda-graphs and its associated notion on terms. The representational axiom system developed
in the first part combined with B-reduction constitutes our cyclic extension of lambda calculus. In

contrast to current theories, which impose restrictions on where the rewriting can take place, our

reduction theory is very liberal, e.g., it allows rewriting under lambda-abstractions and on cycles. As

shown previously, the reduction theory is non-confluent. We thus introduce an approximate notion of
confluence, which guarantees uniqueness of infinite normal forms. We show that the infinite normal

form defines a congruence on the set of terms. We relate our cyclic lambda calculus to the plain

lambda calculus and to the infinitary lambda calculi. We conclude by presenting a variant of our

cyclic lambda calculus, which follows the tradition of the explicit substitution calculi.

Part III: Since most implementations of non-strict functional languages rely on sharing to avoid
répeating computations, we develop a variant of gur cyclic lambda calculus that enforces the sharing
of computations and show that the two calculi are observationally equivalent. For reasoning about
strict languages we develop a call-by-value variant of the sharing calculus. We state the difference
between strict and non-strict computations in terms of different garbage collection rules. We relate
the call-by-value calculus to Moggi's computational lambda caleulus and to Hasegawa’s calculus.

Note: The research of the first author is supported by NSF grants CCR-9410237 and CCR-9624711,
The second author was partially supported by NWO grants SIR 13-3416 and SIR 13-3908 and by
NSF grant CCR-9624711. A shorter version of this paper appears in the Proceedings of TACS '97 as
"Cyclic Lambda Calculi” [AB97|.

Lambda Calculi plus Letrec 2

Contents
1 Introduction 4
I Graphs as terms and terms as graphs 7
2 Cyclic lambda-graphs and scoped lambda-graphs 7
3 Cyclic lambda terms: a syntactic representation of scoped lambda-graphs 13
3.1 Mapping cyclic lambda terms to scoped lambda-graphs 14
4 Sound and complete axiomatization of scoped lambda-graphs 17
4.1 A representational rewriting system 18
4.2 Completeness i e e e 21
5 Complete axiomatization of well-formed lambda-graphs 24
6 Sound and complete axiomatization of tree unwinding 27
6.1 Homomorphisms 29
6.2 Soundness v o .o e miERe B« e 8 eudue BTREe oFle S o S ERE G 32
6.3 Completeness 35
7 Summary of the representational calculi 38
8 Alternative representational rewriting systems 41
IT The computational behavior of cyclic terms 46
9 The cyclic lambda calculus Aoy, 46
10 Approximate notion of confluence 53
10.1 Confluence up toaquasiorder v i 53
10.2 A technique to prove confluenceupto 56
10.3 Infinite normal form 58
11 Tree unwinding as an infinite normal form 59
12 Basic properties of the cyclic lambda calculus G5
13 Semantics of the cyclic lambda calculus 73
14 The cyclic lambda caleulus and the traditional lambda calculus 74
15 The cyclic lambda calculus and the infinitary lambda calculi (i
16 The cyclic lambda calculus and an explicit substitution calculus 83
III The sharing calculi: strictness vs non-strictness 87

Lambda Calculi plus Letrec 3

17 The cyclic sharing calculus Aog,q,, 87
17.1 Soundness and completeness of Aogy,e with respect t0 Aopame - - o L. L. 89
17.2 Lazy and lenient strategies of Aoghare - - -« « . . oo u L 91

18 The cyclic call-by-value calculus Aoyyye 94
18.1 Basic properties of the cyclic call-by-value lambda calculus 96
18.2 Semantics of the cyclic call-by-value lambda caleulus 101
18.3 The cyclic call-by-value lambda calculus and the cyclic sharing calculus 104
18.4 The cyclic call-by-value calculus and Moggi’s computational lambda calculus 105

19 Extensions to data structures 110
20 Conclusions 111

Lambda Calculi plus Letrec 4

1. Introduction

Cyclic lambda-graphs are ubiquitous in a program development system [PJ87). However, previous
work falls short of capturing them in an adequate way. This lack of explicit treatment of cycles
results in the loss of important intensional information and in weak theories that cannot express
many transformations on recursive functions. For example, consider the following term:

M = letrec even = Az.if z = 0 then true else odd(z-1)
odd = Az.if z = 0 then false else even(z-1)
ineveny .

(A note on syntax: the construct letrec ---in --- stands for a collection of unordered equations
and a main expression written after the keyword in.) At compile time it might make sense to unfold
or inline odd in the definition of even, triggering the constant folding and unused lambda ezpression
transformations obtaining the term below:

N = letreceven = Az.if £ = (then true else if z = 1 then false else even(z-2)
ineveny .

We can express terms M and N in the lambda calculus extended with pairs (denoted by {,) with
destructors Fst and Snd} and the p-operator (rendered by the g-rule yz.M - Mz := pz.M])) as
follows (we denote the translation by [],):

[M]), = let evenodd = uz.(Az.if z = 0 then true else Snd z (z-1),
Az.if £ = 0 then false else Fat z (z-1))
in Fst even.odd y
[N]). = let even = puy.Az.if 2 = 0 then true else if z = 1 then false else y(z-2)
ineveny .

Note that [M], does not rewrite to [N], in Au. The two terms are not even provably equal. This
means that these simple inlining optimizations are not expressible as source-to-source transforma-
tions in Ag; thus, one cannot use the calculus to reason about their correctness or to study the
efficiency of different application strategies.

Cycles are also important for reasoning about run-time issues. For example, the execution of M
will involve a substitution of even in the main expression, followed by a F-reduction, obtaining:

letrec even = Az.if £ = (then true else odd{z-1)
odd = Az.if z = 0 then false else even(z-1)
in if y = 0 then true else odd(y-1) .

Let us consider {M],. We first apply the p-rule to expose the lambda-abstraction, and then, as
before, perform one substitution followed by a A-reduction, obtaining the following term, in which
we have'denoted the u-expression occurring in [M],, by P:

let even odd = {Az.if z = 0 then true else Snd P (z-1),
Az.if £ = 0 then false else Fst P (z-1))
in if y = 0 then true else $nd P (y-1) .

The unsuitability of a calculus such as Ay for reasoning about execution now comes to the surface.
While the execution of M has made only one copy of even, the execution of [M], has created four
copies of even and three copies of odd.

Interestingly enough, a theory of cycles turns out to be useful also for defining a parser. As
described by Tomita [Tom85] and Billot et al. [BL89], a compact representation of all possible parse

Lambda Calculi plus Letree 5

trees (that could be an infinite number) associated with a string is a cyclic graph, called a parse
forest. The lack of a theory regarding cyclic objects has forced some research projects investigating
automatic programming environment generators, such as the ASF+-SDF system developed by Klint
[KIi91], to apply a disambiguation process to remove the cycles [KV94] and so retrieving a tree
object. Familiar rewriting can then be applied on that object. This disambiguation process would
not be required if cycles were part of the rewriting technology.

We conclude that a theory of cycles is necessary if one wants to reason about compilation,
optimization and execution of programs. Presentation of such a theory is the goal of this paper.

What makes a theory of cycles difficult to develop is that, once lambda-abstraction and cycles are
admitted, confluence is lost, unless the theory is powerful enough to represent irregular structures,
as shown in [AK94, AK96b]. To regain confluence, current formulations of cycles either impose
restrictions, such as disallowing reduction under a lambda-abstraction or on a cycle ([Ros92, BLR96,
Nie96, AK94, AK96b]), or adopt a framework based on interaction nets [Lafa0]. As discussed in
(Mac94] and [AL94] cycles do not destroy confluence in the context of interaction nets, but only at
the expense of greater complexity.

In this paper, we limit our attention to cyclic lambda-graphs that occur in current implementa-
tions of strict and non-strict functional languages (we are not interested in optimality); thus, we will
only consider cyclic lambda-graphs that unwind to regular trees. In contrast to the above mentioned
approaches, we do not restrict the selection of redexes but introduce an alternative way of guarantee-
ing the consistency of the calculus. This consists of an approximate notion of confluence - confluence
up to information content. This new notion is somewhat reminiscent of ancther ‘approximate’ no-
tion of rewriting and confluence, namely, rewriting modulo an equivalence relation and confluence
modulo equivalence [Hue80]. However, unlike these notions, we do not combine rewriting with an
equivalence relation, but with an equally fundamental notion, namely a quasi order, expressing a
comparison between the ‘information content’ of the objects in question. Explicit studies of such a
combination of a rewrite relation with a quasi order are not abundant; the only study that we are
aware of is [Sel96). In the context of process algebra, Sangiorgi and Milner ([SM93}) also consider
equivalences of processes up to an asymmetric relation, such as a quasi order, as a technique to prove
bisimulation.

The paper is divided in three parts. The first part, consisting of Sections 2-8, is devoted to
establishing an isomorphism between cyclic lambda-graphs and their syntactic representations. The
second part, consisting of Sections 9-16, adds computationa! power to our graphs and terms and
presents properties of the resulting equational theory. The third part, consisting of Sections 17-19,
adds sharing to our previously developed calculus, resulting in two distinct calculi that are the
foundation of strict and non-strict functional languages. An extension to data structures is also
presented. We conclude in Section 20.

Part I: We start in Section 2 by introducing cyclic lambda-graphs. As in Wadsworth [Wad71], we
do not deal with all possible lambda-graphs, but restrict our focus to the set of well-formed lambda-
graphs. To define this class we introduce the notion of a scoped lambda-graph. The well-formed
lambda-graphs are those that have associated scoped lambda-graphs. In Section 3, we introduce the
syntactic formalism used to represent scoped lambda-graphs. Throughout this paper these syntactic
objects are referred to as cyclic lambda terms. We present a mapping from cyclic lambda terms to
scoped lambda-graphs. Since different cyclic terms can represent the same scoped lambda-graph,
we introduce in Section 4 the representational calculus Ry. Ry equates all distinct representations
of a scoped lambda-graph. In the same section, we also introduce a confluent and terminating
representational rewriting system, which allows us to associate a canonical representation to each
scoped lambda-graph. Since we would also like to equate different representations of the same well-
formed graph, we extend Ry with two other axioms in Section 5. We calli the resulting system R;. In
Section 6, we further extend R, to make terms that unwind to the same tree provably equal. We call
the calculus R;. In Section 7, we summarize the representational calculi and associated rewriting

Lambda Calculi plus Letrec 6

systems. In Section 8, we explore alternative representational rewriting systems and discuss their
properties. In particular, we introduce the rewriting system Ro™ whose associated convertibility
relation corresponds to the provable equality induced by R,. Ro™ constitutes our starting point for
the next part.

Part II: In Section 9, we define f-reduction on scoped lambda-graphs and its associated notion on
cyclic terms. Ro™ combined with S-reduction constitutes our cyclic lambda calculus. In Section 10,
we introduce the notions of confluence up to a quasi order, of completeness up to a quasi order and of
infinite normal form. We present some sufficient conditions that guarantee soundness of the infinite
normal form with respect to reduction. A comparison between confluence, confluence modulo an
equivalence relation and confluence up to a quasi order is also made. In the following two sections
we introduce two applications of the notions introduced in this section. In Section 11, we show that
Ro™ is confluent up to. This implies that we can define the tree unwinding of a cyclic term as the
infinite normal form of that term. In Section 12, we show confluence up to of the cyclic lambda
calculus. In Section 13, we prove that the infinite normal form defines a congruence with respect to
the term formation rules, guaranteeing observational equivalence. In Sections 14 and 15, we relate
our cyclic lambda calculus to the traditional Jambda calculus and to the infinitary lambda calculus
of Kennaway et al. [KKSdV95], respectively. In Section 16, we present a variant of our cyclic lambda
calculus which follows the tradition of the explicit substitution calculi [ACCL91, Ros92).

Part IIT: In Section 17, we add the notion of sharing to our cyclic calculus for reasoning about
current implementations of non-strict functional languages. In the call-by-name calculus every term
is substitutable, while in the sharing calculus substitution is restricted to values, thus avoiding
duplication of work. We show that this restriction does not change the infinite normal form of a
cyclic term. For reasoning about strict languages, in Section 18, we introduce the cyclic call-by-value
calculus, which is obtained by restricting the garbage collection axiom of the sharing calculus to
collect values only. This expresses the fact that strict and non-strict computations capture the same
amount of sharing. The call-by-value calculus is then equipped with a term model, which allows us to
relate our calculus to the commutative version of Moggi’s computational lambda calculus [Mog88]
and to the recently developed calculus of Hasegawa [Has07). An extension to data structures is
presented in Section 19.

Lambda Calculi plus Letrec 7

Q
/ N\

Az Az
/
T

Figure 1. Wadsworth’s non-admissible lambda-graph

Oﬁ.

Figure 2. Why the black hole is needed

Part 1
Graphs as terms and terms as graphs

2.. Cyclic lambda-graphs and scoped lambda-graphs

We introduce a basic formalism for cyclic lambda-graphs in a format similar to the one used for
first-order term graphs in {BvEG*87]. Following an idea used by Bourbaki in Eléments de Théorie
des Ensembles to deal with quantifiers, an occurrence of a bound variable in a lambda-graph is
represented by a back-pointer to the corresponding binding lambda-node. This implies we will not
be able to represent the lambda-graph of Fig. 1, which Wadsworth {Wad71] calls a non-admissible
lambda-graph. Each argument of a node is either a normal pointer to some node, a back-pointer to
a lambda-node, or is a free variable from the set of variables V. A normal pointer is denoted by v, w,
a back-pointer by ¥, W and a variable by x,y, z. We let A(v); denote the i*" argument of node v. A
graph has a root r, which can be anything that an argument can be. If the label of a node is » then
that node is called a black hole. The black hole denotes provable non-termination. It was already
introduced in the first-order case to be able to reduce a cyclic graph in the presence of collapsing
rules, i.e., rules of the form Iz — z. Consider the reduction given in Fig. 2. If the cyclic graph
on the left-hand side of the reduction reduces to itself then confluence is lost (see [AA95]). A more
thorough discussion of the black hole is given in [AKK*94].

Notational conventions: given sets S and T', P(S) stands for the powerset of S, § \ T stands for
set difference, " stands for strings over the alphabet T, |w| stands for the length of the string w,
and V @ W stands for the disjoint union of sets V and W. From now on, we will sometimes write
graph for cyclic lambda-graph.

DerniTioN 2.1. A lambda-graph is a tuple (V, L, 4,r) where
- V is a set {possibly infinite) of nodes.
- L:V = {A,@,e} is a labeling function,
-A: Vs (Ve {T|veV Lv) = A} ® V)" is a successor function such that

0,if L{v) = »
|A{v)] = { Lif L(v) = X
2,if Liv) = @

Lambda Calculi plus Letrec 8

5

Figure 3. Pointers versus back-pointers

T

Figure 4. Labeled line

-re(Va{g|veV,L{v) = A} aV).

In addition to the usual conventions on how to give a graphical representation of a. cyclic lambda-
graph, we follow the convention that if an arrow enters a lambda-node from above it represents a
normal pointer and when it enters from below it represents a back-pointer. Thus, for example, we
distinguish between the two lambda-graphs of Fig. 3. We draw a free variable as a labeled line
and not as a node labeled z. For simplicity, we draw the label of the line at the end of the line.
See the lambda-graph of Fig. 4 depicting a free variable z. We picture the root as a pointer or a
labeled line that has no starting node. Fig. 5 shows some more examples of lambda-graphs. The
lambda-graph on the left corresponds to a free variable z with a lambda-subgraph not accessible
from the root. Note the difference between an arrow and a labeled line. Fig. 6 shows some examples
of ill-formed lambda-graphs. In the left graph there are three errors: there is no root, the lambda
has two arguments instead of one and the symbol z is shared by two labeled lines. In the middle
graph the back-pointer to the lambda lacks an arrowhead and the labeled line is illegally drawn
with an arrowhead. In the right graph there are two roots. Moreover, the top application does not
have enough arguments. The fact that some pointers to the application nodes point to those nodes
from below is unusual, but it is not wrong. This is because only back-pointers to lambda nodes
are possible, so pointers to an application, even if they come from below, are always interpreted as
normal pointers.

In the following, when we talk about a path in a lambda-graph, we mean a directed path using
only the arrows representing normal pointers. We refer to a graph in which all nodes are reachable
by a path starting at the root as a garbage free graph. We assume that equality between graphs
stands for rooted graph isomorphism.

In this paper, we will only deal with a subset of all possible lambda-graphs. For example, we will
not consider the third lambda-graph of Fig. 5. To characterize this subset, referred to as the subset
of the well-formed lambda-graphs, we introduce the notion of scope, which associates a set of nodes

Ix 1\ Cl ! @ 1 ! ,'\
GoOHY & A A
z/(A 3/@\2

Figure 5. Examples of lambda-graphs

Lambda Calculi plus Letrec 9

S k(i)
O

Figure 6. Examples of ill-formed lambda-graphs

| . {
A =
’Cé \ Lj;j (o N
\ @
2y /A

Z F4

Figure 7. Examples of scoped lambda-graphs

to a lambda-node. Intuitively, as it will be discussed in the second part, the scope of a lambda-node
v corresponds to that part of the graph that is copied when a f-reduction is performed with v
denoting the function part of the application. This means that at run-time there is no decision to
be made on how much copying to do. This differs from Wadsworth’s graph reduction [Wad71), in
which the amount of copying is determined at run-time. Since in our approach the copying occurs
at once, we rule out optimal implementations which, as discussed in [Mac94), require to copy on a
node-by-node basis.

DEFINITION 2.2. A scoped lambda-graph is a tuple (V, L, 4, S, r), where
- (V,L, A,r) is a lambda-graph

- §:{veV|L(v) = A} = P(V) is a function such that for every lambda-node v the following
axioms apply.

auto: v € S(v)

- bind: Yw : 7 is an argument of w implies w € S(v)

upward-closure: If w; # v and w, is an argument of w, and w; € S(v) then w; € S(v).
.- nesting: ¥V lambda-nodes w : S{w) N S(v) = {} or S(w) C S(v)\{v} or S(v) € S(w)\{w}
- 700t condition: r € V or r € V such that Vv : r ¢ S(v)\ {v}.

For a lambda-node v we refer to S(v) as the scope of v. We depict the scope of v by drawing
a line starting at one side of the lambda-node around all other nodes that are a member of the
scope ending at the other side of the lambda-node. Note that the upward-closure axiom is logically
equivalent to: if un ¢ S(v), wa € S(v) and w, is an argument of w; then w; = v.

EXAMPLE 2.3. The graphs of Fig. 7 and 8 are examples of scoped and ill-formed scoped graphs,
respectively. Since the scope of a lambda-node involves nodes and not edges, we can take the liberty
of drawing the label of an edge either inside or outside the scope, e.g., see the second graph of Fig.

Lambda Calculi plus Letrec 10

y —
I

A
I
/@ @5
@ @
/ N\ / N\

Figure 9. Example of ill-formed lambda-graph

7 in which the left label is outside the scope and the right-one is inside. However, we follow the
convention of keeping the number of line crossings as small as possible. Thus, we draw the labels
inside the box.

The first graph of Fig. 8 violates the bind scope axiom because the first application node has a
back-pointer to the lambda-node v and is not a member of the scope of v. The second graph violates
the upward-closure scope axiom because the scope of the upper lambda-node v is entered from a
node different than v. The third graph violates the nesting scope axiom because the intersection
of the two scopes is non-empty without one being a proper subset of the other. The fourth graph
violates the roet condition because the root points to a node inside a scope.

We remark that the upward-closure axiom implies that if you have an acyclic path from a lambda-
node v to a node w in the scope of v then every node on that path is in the scope of v. However,
the converse does not hold. That is, if for every acyclic path from a lambda-node v to a node w in
the scope of v we have that every node on that path is in the scope of v then we do not have the
upward-closure axiom, e.g., the second graph in Fig. 8 satisfies the condition on paths, but not the
upward-closure axiom.

By definition we get a lambda-graph when we drop the scope function from the tuple. However,
not every lambda-graph is obtained by stripping the scope function from the tuple.

DEFINITION 2.4. A lambda-graph (V, L, A, r) is well-formed if there exists a scope function S such
that (V,L, A, S,r) is a scoped graph.

The garbage free and acyclic well-formed graphs correspond to the admissible graphs described
by Wadsworth [Wad71).

Lambda Calculi plus Letrec 1

B
o\ JOH

Figure 10. A graph with a minimal scope function

ExaMPLE 2.5. The lambda-graph of Fig. 9 is not well-formed. According to the root condition the
top application node cannot be the member of any scope. This forces the scopes of the two lambda-
nodes to be disjoint. If we forget the circled application node then there is exactly one possible scope
function for the graph: the scope of the left lambda-node is the node itself, the two application nodes
below it and the right garbage application node. The scope of the second lambda-node consists of
the node itself, the application nodes below it and the left garbage application node. When we do
have the circled node then we are forced to add it to both scopes because it refers to a node in both
scopes and is not the lambda-node. This violates the nesting scope axiom.

From now on we will assume that a graph consists of a finite set of nodes unless stated otherwise.

For garbage free graphs there is a necessary and sufficient condition to ensure that they are
well-formed.

PROPOSITION 2.6. Given a garbage free graph g = (V,L, A,r). Then g is well-formed iff for every
node v with a back-pointer to w, w is on each path from the root to v.

ProoF.

= Since the graph is well-formed it means there exists a function S such that (V,L,A,5,7) isa
scoped graph. Given this scoped graph and a node v with a back-pointer to w and a path from
r to v. If r is not a member of the scope of w then by the spward-clesure axiom every path to
v must pass through w because v is a member of the scope of w. If r is a member of the scope
of w then according to the root condition r = w and therefore w is on the path.

<= Given a lambda-graph that satisfies the condition we want to define a scope function 5. We do
this by defining a relation S which can be read as a function by taking S(w) = {v]wS v}
We define S as the smallest relation such that:
- For every lambda-node w we have w S w.

- If there exists an acyclic path from a lambda-node w to a node vy to a node vy with a
back-pointer to w then w S v,.

- Ifwny S wy and we S v then wy S v.
The intention is that the first clause forces the auto axiom, the second clause forces both the
bind and upward-closure axioms, and the third clause forces the nesting axiom.

Before showing that the function S defined in this way is actually a scope function we give
an example of a scope function defined in this way. Consider Fig. 10. From the top down let

Lambda Calculi plus Letrec 12

us call the lambda-nodes I3,1; and I3 and the application nodes a,,a; and az. The first clause
forces the lambda-nodes to be members of their own scopes. By the second clause, we have
that l3,a2 and a3 are members of the scope of I. By the same clause, we have that ly,a1,l2
and a; are members of the scope of l;. The third clause adds a3 to the scope of {;. Note that
the second clause makes /; and l; members of their own scope, but does not make I3 a member
of the scope of I3, therefore the first clause is not superfluous. Also note that the second clause
does not require {3 to be in the scope of !, since the path from !, to I3 and e, is cyclic. The
final result is S(h) = {[1,01,12,&2,03},5(12) = {12,02,03},5(13) = {13}

To show that S is a scope function, let v be a lambda-node then:

- auto: v € S(v) by the first clause.

- bind: If a node w has ¥ as an argument then because the graph is garbage free there must
be a path from the root to w. By the assumption this path goes through v and so by the
second clause we have that w ¢ S(v).

- upward-closure: Suppose w; ¢ S(v) and w; € S(v) and w; is an argument of w,. Suppose
w2 # v. wp must have been included in S(v) by application of one of the following clauses:

- There exists a path from v to w; to w', where w' has ¥ as argument. Because the
graph is garbage free there is a path from r to w,. So there also exists a path from
r to w; to w; to w'. This can only be the case if v is on the path from r to w,;, but
that would imply that w, € S{v). Contradiction.

- There exists a w' such that vSw' and w'Sw., where w' is neither v or w;. Suppose
w; € S(w') then by the third clause wy € S(v). This means that w; ¢ S{(w'). We
also have that w; € S(w'). We then repeat the analysis and eventually end up in the
previous case.

- root condition: Before proving that the nesting axiom holds, we prove that the condition
on the root holds.

- If the root is a variable then the graph has no nodes and the condition is met.

- If the root is an application node then in order to be in some scope the root would
have to be on a path from a lambda-node to a node with a back-pointer to that
lambda-node. So there would be a path from the root to a node with a back-pointer
that does not pass through the lambda-node first. Contradiction. So the application
node cannot be the member of any scope.

- If the root is a lambda-node then the root is obviously the member of the scope of
itself. The root is however not the member of any other scope, by applying a similar
argument as in the previous case.

- nesting: Let v) and vy be two different lambda-nodes. Let w € S(v;) N S(v2). Since the
graph is garbage free there must be a path from the root to w. If the root is not a member
of the scope of v; or v; then that path passes through v, and v, because w is a member of
both scopes and by the upward-clasure condition proven above. Let us assume it passes
through v, first. This means that v, is in the scope of v; and therefore by the third
clause S(v2) C S(v)). Suppose v, € S{v2). Then every path from the root to v, must pass
through v, first. Contradiction. So S(v2) € (S(v1) \ {v1)).

If the root is a member of the scope of v, or vy then let us assume the root is v,. By the
root condition shown above we have that v, ¢ S(v;). By the same reasoning as above we
have that S(v2) C S(v1) and so S(v2) C (S(w1) \ {u1}).

Note that the third graph in Fig. 5 is not well-formed since it does not meet the condition stated
in the propaosition above,

Lambda Calculi plus Letrec 13

| (
A
|
z

A

NEWN 5%

x

Figure 11. Two scoped versions of the same graph

PROPOSITION 2.7. Given a well-formed garbage free graph g = (V,L,A,r). Then g has a unique
minimal scope function S, i.e., for all scope functions S':

YoeV:L(v)=2= S(v) CS&() .

PRrooF. It is not difficult to show that the scope function S built in the proof of Proposition 2.6
satisfies this property, O

REMARK 2.8. If a well-formed graph is not garbage free then there need not exist a minimal scope
function. In Fig. 11 we have drawn two scoped versions of the same graph. Both scope functions
are minimal. One could also ask about the existence of maximal scopes. The graphs in Fig. 11 also
are a counterexample against the existence of maximal scopes for graphs with garbage. For every
well-formed garbage free graph, we can define the unique maximal scoping by w € S(v), if all paths
from the root to w pass through the lambda-node v.

The minimal scope corresponds to that part of a lambda-graph that is copied during reduction by
Wadsworth's graph interpreter.

3. Cyclic lambda terms: a syntactic representation of scoped
lambda-graphs

We now introduce the syntactic formalism used to represent finite scoped graphs. The same formalism

was already introduced in [AK96a] for the first-order case, and extended with lambda-abstraction

in [AK94, AK96b]. However, in that work a precise connection between terms and lambda-graphs
was not established.

DEFINITION 3.1. The following clauses define the syntax of cyclic lambda terms:

Terms (Ao) M
Declarations D

x| AzM | MN | (M| D)
I1=M1,...,In=ﬂffn

where the recursion variables z;, 1<i<n, are distinct from each other.

In other words, the set of cyclic lambda terms consists of the lambda calculus terms (i.e., vari-
ables, abstractions and applications) and the letrec construct:

(M|zi=M, - ,z.=M,) .

We sometimes refer to M and D as the external and internal part of (M | D). Terms that differ in the
order of the equations are identified. In the earlier papers on this formalism [AKK96a, AK94, AKI6b]
the entire letrec construct was referred to as a box. In the graphs drawn in those papers there are
boxes that represent these constructs. They should not be confused with the boxes we have used

Lambda Calculi plus Letrec 14

T: MN: ‘ Az.M - (Mo | 2y = My, ,zn = My} :
}
L] @ i s
| AN | ¢ YA VNI
z M N i % 7 -
- - Ly +++ Ty I3 +++ITy Ty +or Ty
T II

Figure 12. Pictorial definition of pyre

here to represent scopes. Scopes are associated to lambda’s and do not reflect the nesting of letrec’s
in a term.

We adopt the following notation: A context C is a term with a hole O in the place of one
subterm. The operation of filling the context C' with a term M yields the term C[M]), possibly
capturing some free variables of M in the process. By convention, bound and free variables are
distinct from each other. M{z := N] stands for the substitution of N for each free occurrence
of in M, without capturing free variables in N. = stands for syntactic equivalence up to a-
renaming, applied to both lambda-bound variables and recursion variables. If D, and D, are the
lists of declarations z; = M), -, Zm = My, and 1y = Ny,---,yn = M, respectively, such that
Vi, j: z; F y; then we denote the list of declarations z; = My,-- -,z = Mp,n =Ny, -, = M,
by Dy, Ds. When it is convenient to do so we sometimes denote a list of declarations as a set, e.g.,
Dy = {z; = My, -, & = My}. For example if D; = {z = y},D; = {y = z} then we cannot
write Dy, Dy, but Dy, D, is fine. Let —» be a reduction relation then +5 denotes the convertibility
relation induced by 3 and —# denotes the reflexive and transitive closure of .

3.1. Mapping cyclic lambda terms to scoped lambda-graphs

We define a mapping from cyclic terms to scoped graphs to give graph-semantics to cyclic terms.
To simplify the definition of this mapping we introduce the notion of a {scoped} pre-graph, in which
the condition on the arity of a black hole is relaxed.

DEFINITION 3.2. A (scoped) pre-graph is a (scoped) graph where a node labeled with e may have
0 or 1 argument{s). If such a node has arity 0 we still call it a black hole but if it has arity I we call
it an indirection node.

We have chosen the same symbol for indirection nodes and black holes because a black hole can
be seen as a special case of an indirection node: an indirection node that refers to itself and therefore
cannot. be removed.

We map cyclic terms to scoped graphs via the mappings ppr. and Sim:

Ppre . Ao -» scoped pre-graphs
Sim : scoped pre-graphs — scoped graphs .

The mapping ppe transforms every lambda, every application and every occurrence of a variable,
that is not on the left-hand side of an =-sign, into a node of the appropriate type (lambda, application
and indirection, respectively). For a term Az.M the scope of the lambda contains the lambda-node
itself and every node corresponding to the subterm M. Formally, we have:

DEFINITION 3.3. Given M e Ao, puro(M) is constructed recursively as follows:

- ppre(x) is the scoped pre-graph with a single node labeled ¢ as the root with z as the argument.

Lambda Calculi plus Letrec 15

MY NN N b)(

Figure 13. Simplification of scoped pre-graphs

\lOCl/
e AN
ko Y

Figure 14. Example of simplification of mutually referring indirection nodes

~ Pppre(M NY) is the union of the scoped pre-graphs ppe{M) and ppre(N) with a new root labeled
@ whose arguments are the roots of ppe(M) and pyre(N).

- Ppre(AT.M) is the scoped pre-graph ppre(M) plus a new root node v labeled with A that has
the root of ppre(M) as it's argument and with every argument x in p,..(M) replaced with a
back-pointer to v. The scope of the lambda-node v is the complete set of nodes of the generated
graph.

- ppre({Mo | 1 = My,-+-,z, = My)) is the union of the scoped pre-graphs pp.(Mo) up to
Pore(Myp) with the root of ppre(Mo) as root and every argument z;, i-= 1,---,n replaced by
the root of ppre(M;).

The pictorial equivalent of the above definition is given in Fig. 12, in which for simplicity we
denote ppre(M) by M. Note that in the case for a lambda-abstraction each labeled line z is trans-
formed into a back-pointer. Instead, in the case for a letrec expression the labeled lines z, - - -z, are
transformed into pointers.

The mapping Sim transforms a scoped pre—graph into a scoped graph by removing all indirection
nodes or transforming them into black holes. This is accomplished by the three rewriting rules
described in Fig. 13. The first rule transforms an indirection node that has itself as argument into a
black hole simply by forgetting the argument. The second rule replaces all pointers to an indirection
node v, that points to a different node w, by copies of the (back-)pointer from v to w and then
removes v. The last rule removes an indirection node v that has a free variable z as argument and
changes every pointer to v to a line labeled z. The result of the normal form of these operations
is well defined because we have local confluence and termination. The termination part is trivial.
Local confluence follows mastly from the fact that redexes are disjoint. To this general case there is
one exception. When two indirection nodes refer to each other, as in Fig. 14, then a redex may be
destroyed. However, the results of contracting the two redexes are isomorphic, so local confiuence
holds.

We will refer to Sim(g) as the simplification of scoped pre-graph g. The mapping p from cyclic
terms to scoped graphs is then obtained by composing ppre and Sim.

DEFINITION 3.4. Given M & Ac. The scoped graph p(M) is Sim{ppee (M)).

Lambda Calculi plus Letrec 16

| }
7/ g 7
7/ \ /\/
L] :_/,I' . -
T Yy

Figure 15. Construction of p({Az.z y | ¥ = 2))

(z |z = 1) (zlz=yp)

: \ \ : . b
P P =
® [L] Yy

J ,

Y

(z|yv=1) (z|y=2)
. o

i — L -

-

L 2
I
z
Figure 16. How simplification works with only variables

EXAMPLE 3.5. In Fig. 15 from left to right we have ppe((Az.2 y | ¥ = z}), the result of contracting
one simplification redex and the result of contracting the remaining two simplification redexes. Note
how in the second step the node labeled o with z as an argument gets erased by giving the label z
to the second argument of the application node. In Fig. 16 we show ppee of {2 | z =z}, (x| z = ¥),
{(z |y =1y} and {(z | y = 2} and the rewriting sequences of those pre-graphs to their simplified form.
Considering the last graph note that the indirection node gets deleted. This implies that even if
in the graph the reference to a node is unique, the same is not necessarily true in the term. For
example, consider M = (z | z = Ay.y, z =). In p(M) the reference to the lambda is unique, in the
term it is not.

DEFINITION 3.6. Given M € Ao and a scoped graph g. Then M represents g if p(M) = g.

REMARK 3.7. Both p,,. and p map many different cyclic terms to the same graph. For example,

(zylz=zyy=2)Ez|z=2){y|y=2),
but
pore((zy|z=2,0=2)=ppe((z |z =2) (y |y =2)) .
The ppre of both terms is the pre-graph on the left of Fig 17.

Lambda Calculi plus Letrec 17

Q
/3N A l

N——o—a@8
HN—a—29
[}
]

Figure 17. An illustration of representation

Ppre makes more distinctions than p, e.g.,

Poce({z ¥ | T= 2,4 = 2}) # ppre(22) but p({z ¥ | 2 = 2,y = 2)) = p(z22) .

The ppre of term 2z is the middle pre-graph of Fig. 17. The p of the above three terms is the graph
on the right of Fig. 17.

Next, we define a sound and complete axiom system on cyclic terms which we call the represen-
tational system. All terms that are provably equal in"the representational system map to the same
scoped graph, and all terms that map to the same scoped graph are provable equal.

4. Sound and complete axiomatization of scoped lambda-graphs

For all caleuli developed in the paper, we assume the presence of the following axiom and inference
rules that make provable equality a congruence relation.

M=M
M=N= N=M
M=N N=P = M=P
M=N = C[M}=C[N].

In giving the axioms we assume that no variable capture occurs, e.g., z(z | = z) is not equated to
{zz | z = 2z}.

DEFINITION 4.1. The representational calculus Rg is given by the following axioms:

Lift:
. (M|D} N = (M N |D)
M(N|D)y = (M N|D)
Empty boz garbage collection:
M) = M
Merge:
(M|D)| D) = (M | Dy, Da)
(M|z=(N|D1),Dy) = (M|z=N,Dy,D,)
Naming:
M= (zlz=M) z a new variable
Variable substitution:
(Mlz=y,D) = (Mlz:=y]|D[z:=y]) zy

Lambda Calculi plus Letrec 18

e

Figure 18. Pictorial description of R,

The first five axioms move the bindings around the term. The other two axioms deal with
indirection nodes. They abstract away from the names of the nodes.
We can now prove that R is sound with respect to scoped graphs.

THEOREM 4.2. Given M, N € Ao. If Rg+ M = N then p(M) = p(N).

PROOF. When we construct ppce for every left and right-hand side of every axiom we conclude that
for the first five axioms the result is the same and for the last two the results simplify to the same
graph. See the pictorial description in Fig. 18, in which we have drawn dashed boxes to indicate
where the letrec constructs in the original term were. A dotted edge stands for zero or more references
to variables in a set of definitions. A question mark stands for either a variable or a pointer to a set
of definitions. [J

4.1. A representational rewriting system

Among all possible representations of a graph, we would like to select a canonical one. To that end,
we characterize the provable equality of the representational calculus as a confluent and terminating

Lambda Calculi plus Letrec 19

rewriting systemf. We can then take as the canonical representation of a graph the unique normal
form of one of its representations.

We start by orienting the axioms from left to right. To guarantee termination we then impose
some restrictions on the naming axiom. These restrictions have to disallow reductions such as the
following ones:

3 {z|lz=r) 3 (w|lw={(z|z=2)) = -
2o (yly=2) (el 2z

We first replace the naming rule with the following two rules:

Az M = {(yly=rz. M)
MN 2 {z|z=MN) ,

that is, we only give names to lambda-abstractions and applications. Next, we only give names to
expressions that do not have a name already, which is when an expression is embedded inside zero
or more external parts of boxes and occurs at the top or as the direct subterm of a lambda or an
application. This is formalized by restricting the application of the above two rules to safe contexts.

DEFINITION 4.3. A safe context Ciape is defined as:

Cate = C'|C[lz.C']| C[C' M]|C[M C")
¢' == 0|{C'|D)

EXAMPLE 4.4. Here are some examples of naming steps and the corresponding safe context:
MNP = (z|z=MN)P Ciafe = 0P
(zPlz=MN) = ((yly=zP)|z=MN) Cuare={0|z=MN)
Ar{dyM|z=2z) = dAz{{ufju=dyM)|z2=12) Cpp=Ar.(0]z=1z).
The following naming steps are not allowed:
z = (y|ly=1) Cate =0
(M N|D) = (z|z=(M N|D)) Coure =0
Mlz=PQ) - (M|z=(|y=PQ)) C=(M|z=0).

In the first two reductions we do not apply the proper naming rule. Instead, the context in the last
reduction is not safe.

DEFINITION 4.5. The representational rewriting system Rg* is given by the following rewriting rules:
g El B g

(M|DYN = (M N|D)

M (N|D) » (M N|D)
M) = M
(M| D1) | Dy) = (M| Dy,Ds)

(M|z=(N|Dy),Ds) = (M|z=N,Dy, Dy)
Mlz=y,D) & (Mlz:=y]|Djz:=y)) zZy
Care[At.M] = Chare[{y | ¥ = Az.M)}] y a new variable
Coate[M N| = Curef(y |y =M N)) y a new variable

Even though the naming rule is restricted, we still have that the provable equality of the repre-
sentational calculus is the same as the convertibility of the rewriting system.

t Also in the proof of completeness we will make use of the fact that the rewriting system is confluent and
terminating.

Lambda Calculi plus Letrec 20

PROPOSITION 4.6. Given M,N e Ao. Rgy-M =N if M = N.
0

PRoOF. Follows from the fact that if two terms are equal by applying the naming axiom in some
context then they have a common reduct. Formally, given a cyclic term M and a context C, there
exists an N such that

C[M]—»N and C[{z | = = M)]-»N ,

for z not occurring in M. We prove this fact by cases on the context.

- C is a safe context. We can then write M as (--- (M’ | D,}--- D,,), where M’ is cither a variable,
an application or an abstraction. If M’ is not a variable then

Cl(---(M" | D1} Dp)] = Cl(-++(fz | 2 = M’} | D)+ Du)]5Cl{z | = M", Dy, -, Do)}

and
Cliz|z={(M'| D1} Dp)]»Cl(z |z = M',Dy,---,Dp}] .

If M' is a variable, say y, then if m = 0 we just apply variable substitution and empty box
removal. Otherwise,

Cl{:--(y | D1} -+ D) =Cl{y { D1, -, Din)]
and

Clzlz=(-(y| D1} Du))}»C[{z |z =y, D1, -, Dm)] = C[ly | D1,"+-, D)}

- C is not a safe context. This means that we can write C as
C'{Ply=(--(O| D) Da),D)] .
It then follows that
CM]=C'[(P|ly=(-(M|D1)- - Dy),D)|»C'[{P |y = M, Dy,---, Dy, D))
and

Cllzlz=M)] = C'[P|y={(-({z|z=M)|D)---Dy),D)]
-+ C'(P|ly=z,2=M,D,,---,D,,D)]
= C'|(Ply:=z]|z=Mly:=z],Dify:=12],--+, Duly := x|, D[y := z})] .

The last terms of the two reduction sequences are a-equivalent and therefore considered the
same.

(]
LEMMA 4.7. Rg* is confluent and terminating.

PROOF.-Termination follows from Theorem 7.4. A simple check verifies that the system is locally
confluent. Confluence then follows from Newman’s lemma [Bar84). [J

REMARK 4.8. The set of representational normal forms, NF, is the subset of cyclic terms that match
the following specification:

NF = z|{z|D")
D’ = EQ|EQ,D
EQ = z=zxz|xz=yz|xz=M.NF

The restricted form of these normal forms gives rise to the following observations:

Lambda Calculi plus Letrec 21

- The set of nodes of p(M), for M in normal form, can be taken as the set of recursion variables
because every application, lambda and black hole has exactly one name.
- Given an equation z = Ay.M the scope of z is precisely the set of recursion variables defined by

the equation or any equation nested inside it. For example, given z = Ay.{z | z = y y) we have
that S(z) = {=x, z}.

In Section 8, we discuss an alternative rewriting system obtained by orienting the naming axiom
from right to left.

4.2. Completeness

To show that the representational calculus contains sufficient axioms to equate all distinct represen-
tations of the same scoped graph, we introduce a mapping that associates a cyclic term to a scoped
pre-graph:

Ypre : scoped pre-graphs —+ Ao .

This mapping is based on the scheme of translating every node to an equation (z = z for a
black hole, z = y for an indirection node, ¢ = y 2 for an application node and z = Ay.(z | D}
for a lambda-node) and placing these equations in such a way that every equation gets placed in a
subterm of a lambda-abstraction corresponding to node v iff the equation came from a node in the
scope of v except v itself.

DEFINITION 4.9. Given a scoped pre-graph g = (V, L, A, §,r) we construct the cyclic term e (g)
as follows: Let x, be a variable for every node v € V and y, be a variable for every lambda-node
v € V such that they are all pairwise distinct. For every argument a we define N, by distinguishing
cases for a:

- a is a pointer to v: N, is z,

- @ is a back-pointer to v: N, is y,

- a is the variable z: N, is z
The term M, is given by cases on the label of v.

-L{v)=e: M, isx, if A(v) =eand M, is N 4(v) otherwise

- L{v} = A: My is My {Naqw) | Dsquyr(v})

- L{v) = @: M, is Nag), Naqu),
The set of equations Dy, for a set of node W, is given by

Dy ={zw=My|weW,VpeW:weS{p)=>w=p} .

Ype(g) is then defined as (N, | Dy).

In the above definition the restriction imposed on Dy, i.e., Yw,p ¢ W, if w € 5(p) then w = p,
guarantees that equations are put in the right list of declarations. For example, consider the right
graph of Fig. 7. Let v; and v; be the left and right lambda-nodes, and v3,v4,vs be the top left, top
right and bottom application nodes, respectively. Then,

Dy 3,000} = {T3 = 11%5, T2 = Mya (T4 | 24 = T5y2), T5 = 22} .

The mappings ppre and Pyre do not satisfy either g = pure(Ypre(9)) or M = Ypre(ppre(M)). For
example, given M = zx, Ypre(ppre(M)) is

(z) | 1 = 9 3,29 = z,23 = 1) .

And, given g as ppre(zz) (see the graph on the left of Fig. 19), ppre(¥pre(g)) is the graph h on the
right of Fig. 19. We do however have the following:

Lambda Calculi plus Letrec 22

H—u8

g . h

Figure 19. The result of applying ¥y and then ppee

PROPOSITION 4.10. Given a scoped pre-graph g = (V,L, A, S, 7). Then ppre(¥pre(g)) simplifies to g.

Proor. We map the graph g to a term M by ;. and then map this term M to a graph h, by Ppre-
We have to show that by applying simplification rules we can transform h into g. To show that this
is possible we investigate the effects of .. and ppre. The function e maps nodes to equations
and p,re maps symbols to nodes. Since ppre has a recursive definition and always produces a graph
with a node as the root we can assume that for every equation z, = M, the root of the graph of
M, is the node n,,. We will show that it is possible to simplify & to a graph that contains only the
nodes {n;, | v € V} and such that v = n., is an isomorphism.

We will show this by considering every node v € V. We will not distinguish between normal and
back pointers explicitly. A simple analysis shows that this tagging of pointers is preserved. There
are four cases for v

- If v is a black hole it gets mapped to the equation z, = z,. The z, in the right-hand side gets
mapped to an indirection node n.,, that refers to itself. We may simplify this to n,, being a
black hole.

- If v is an indirection node referring to w then it gets mapped to an equation z, = z,. The
symbol z,, gets mapped to the indirection node n,, referring to the node n._. No simplification
is necessary.

- If v is an application node with arguments v; and v, then v gets mapped to an equation
Ty = Zy, Tv,. The application gets mapped to the node n.,, the symbols z,, and z,, get
mapped to indirection nodes referring to n., and ng,, respectively. These indirection nodes
are the arguments of n., and this situation simplifies to n,, having Nz, and Nz, as its
arguments directly.

- If v is a lambda node with argument w then it gets mapped to the equation z, = Ayy.(zy |
Ds@y{v})- The lambda gets mapped to the lambda node n,,, with the image of the z,, as
its argument. The z,, gets mapped to an indirection node referring to n._. This simplifies to
ng, having n;, as its argument directly, All nodes in the scope of v get mapped to equations
nested in the equation for v, which in turn get mapped to nodes in the scope of n_,.

|

An important corollary from this proposition is that every scoped graph can be represented.
COROLLARY 4.11. Given a scoped graph g. Then Yore(g) represents g.

It is then sensible to define:

DEFINITION 4.12. The canonical representation of a scoped pre-graph ¢ is the normal form of Ppre(7)
with respect to Rg’.

Lambda Calculi plus Letrec 23

Note that the only case in which the representation of a scoped graph is not in normal form is
when there is a lambda-node that has no nodes in the scope except itself, since the term associated
to such a node will be of the form Ay.(z |) which must be rewritten to Ay.z.

LEMMA 4.13. Given M € Ao. If M is in normal form with respect to Rgt then Rog F M =
Ypre(ppre (M)).

ProoF. By structural induction on M. According to Remark 4.8 we have the following two cases:

- M is a variable z. Then %yre(ppre(z)) = (21 |) = x), which by application of the variable
substitution and empty box garbage collection rules reduces to z.

- M is (z | D'). By cases on the type of equation in D':

z = z. This equation gets mapped to an indirection node having itself as argument. This gets
mapped back to z = z.

T = yz. In the pre-graph this corresponds to an application node labeled with = and two
indirection nodes pointing to y and z, respectively. When we translate back we get z =
T1 I2,%1 = ¥,%2 = z. Which reduces to z = y z with two applications of variable
substitution.

z = Ay.N, where N is in normal form. Follows from the induction hypothesis.
(]

LEMMA 4.14. Given a scoped pre-graph g. Then Rg F pee(g) = Ypre(Sim(g)).

PROOF. From Fig. 13 it is clear that the application of the first rule does not change tPpre, and the
application of the last two rules corresponds to the variable substitution axiom. O

We can now prove that Ry is complete with respect to scoped graphs.
THEOREM 4.15. Given M,N e Ao, If p(M) = p(N) then Ro - M = N.

ProoF. This follows trivially from the claim that if M is a representation of the scoped graph g
then Ro - M = wpre(g)'

To prove the claim let M’ be the normal form of M with respect to Rg*. Obviously Rg - M = M.
From the soundness of Ry (Theorem 4.2) we know that M’ represents g and therefore that the
simplification of ppre(M') is g. From Lemma 4.13 we know that Ry - M’ = Yprelppre(M”)). Applying
Lemma 4.14 we then have Ro F Ypre(ppre(M')) = ¥pee(g) and so:

RorM=M = Ypre(Ppee (M) = Pprelg) -
O

COROLLARY 4.16. Given a scoped graph g. The canonical representation of g is the normal form of
any representation of g.

PROOF. Since Ry is complete (Theorem 4.15) we know that every two representations, say M and
N, are provably equal. By Proposition 4.6, M and N are convertible with respect to Ry*. Since the
rewriting system is confluent and terminating (Lemma 4.7) it follows that M and N have the same
normal form. This unique normal form is precisely the canonical representation of graph g. O

This corollary implies that the set of scoped graphs and the set of Rg'-normal forms are isomor-
phic.

Lambda Calculi plus Letrec 24

5. Complete axiomatization of well-formed lambda-graphs

We have now established how scoped graphs are represented by cyclic terms. Since a well-formed
cyclic graph can have different scoped graphs associated with it, our next goal is to find axioms that
equate the representations of these alternatively scoped graphs.

DEFINITION 5.1. A scoped graph h is an alternatively scoped version of a graph g = (V, L, 4, S, 1)
(written as h ~ g) if h = (V, L, A, 8", 7).

For example, the first two graphs of Fig. 7 are alternatively scoped versions of the same graph
(i.e., the fourth graph of Fig. 5). These two graphs are represented by the following terms:

(o]e=y-(w | w=wy)w =22) ,
and
(z|z=Ay.{w|w=uwyw =2zz)) .

To equate the above two terms we extend the representational calculus with the following lambda
lift axiom:
Az.{M | D) = (Az.M | D) z not freein D .

We then have:

{z|z=(My.{w|w=uwy}w =zz)} internal merge
{z|z=Ay.{{w|w = wiy}w = zz)) lambda lift
{z|z=Ay{w|w=wyw =z2z}}) external merge

x|z =Ay.(w|w=wuy),w = 22)

However, on graphs with garbage, the lambda lift axiom is not necessarily powerful enough.
Consider the following two terms (displayed in Fig. 11),

(z]zo = Ayo{z | 21 = A1y | z2 = o 11))) and (2| 21 = dy1.(y | o = My (T | T2 = 30 m1))) -

It is impossible to prove these terms equal using the lambda lift axiom because that would require
lifting the inner lambda out of the scope of the outer lambda, which is impossible because of the
garbage application node which has to be inside the scopes of both lambda’s. Restricted to garbage
free graphs Ry combined with the lambda lift axiom is sound and complete for alternatively scoped
graphs, that is for scoped graphs that have a unique minimal scope function. We leave the problem
of finding a sound and complete axiom system for all graphs with garbage open. Instead, we study
graphs up to alternative scoping and garbage collection. Thus, we introduce the operation of garbage
collection which removes nodes that are not reachable from the root. We denote the restriction of
function L to the set V by L tv.

DEFINITION 5.2. Given a scoped graph g = (V,L,4,S,r) and a subgraph W of g such that (i)
r ¢ W, (ii) for every node v that has a node in W as argument, v € W, (iii) for every lambda-node
ve W, S(v) C W. Then, the result of garbage collecting W from g is defined as:

gelg, W) = (VAW L tvyw, 4 tvaw, 5',7)
where 5'(v) = S(v) N (V \ W) for every lambda-node v & V' \ W.

For example, in Fig. 20 we have that for every 1 < i < j < 4 there exists a set W such that
gc(gi, W) = g;. Notation: if the set W represents all nodes not reachable from the root then we let
gc(g) = ge(g, W). Referring back to Fig. 20 we have that ge(g;) = g4,i = 1,2, 3.

Garbage collection is axiomatized by the following axiom:

(M|Dy=M D1M,

Lambda Calculi plus Letrec 25

} 0 | g2

- A -\

U a4 . U A .
U/@\/\ 0
I

| g3 i 4

A =

D rﬁ ‘ 0

Figure 21. Pictorial description of the lambda lift axiom

where D L M means that the set of variables that occur as the left-hand side of an equation in
D does not intersect with the set of free variables of M. We will also adopt the notation D L D',
where D' is) = M,,---, %z, = My, which stands for D 1 M;,1<i < n.

THEOREM 5.3. Given M, N € Ao.

(i) If M = N by the lambda lift aziom then p(M) ~ p(N).
(ii) If M = N by the garbage collection aziom then there erists ¢ set W such that gc(p(M), W) =
p(N).

PRroOF. Follows trivially from the pictorial descriptions of the new axioms given in Fig. 21 and 22,
respectively. The dashed boxes indicate the presence of letrec constructs. O

We call R, the representational calculus extended with the lambda lift and garbage collection
axioms. Its effects on the represented graphs can be stated as follows:

PROPOSITION 5.4. Given M,N e Ao. If R, - M = N then gelp(M)) ~ ge(p(N)).

PROOF. We know that ~ is an equivalence relation. Hence the result follows from proving that the
result holds for a single application of each axiom. This single axiom can be

pely ; |
i M D M

Figure 22. Pictorial description of the garbage collection axiom

Lambda Calculi plus Letrec 26

- An axiom from Ry: By Theorem 4.2 we have that p(M) = p(N).

- The lambda lift axiom: By Theorem 5.3(i) we have that p(M) ~ p(N). It is then not hard to
see that ge(p(M)) ~ ge(p(IV)).

- The garbage collection axiom: By Theorem 5.3(ii) we know that there exists a set W such that
ge(p(M), W) = p(N). It is then obvious that ge(p(M)) = ge(p(N)).

O

In order to show completeness of R we first study the associated rewriting system R7*, which
is obtained by extending Ry* with a rule for the lambda lift axiom and one for garbage collection.
The rewriting rule associated with the lambda lift axiom is:

Az.(M | Dy, D3} = (Az(M | D1} | D) Dy L Dy, not freein D; and Dy # { } . {5.1)

We need to introduce this more general rule to guarantee confluence of R*. By just orienting the
lambda lift axiom from left to right we would not be able to close the following diagram:

drlly|ly=za}|z=2) —(Azly|ly=z3) |2 =2)

Az.{y |ly=zmz,2=2)

With the rule given in 5.1 we can rewrite the bottom left term to the top right term. Rule 5.1 is a
combination of the external merge axiom and the lambda lift axiom:

Az.(M | Dy, Dg) = Az.{(M | Dy) | D2} = (pz.{M | Dy) | D2) .

For the same reason, we introduce a more general form of the garbage collection rule, which allows
us to remove subsets of equations:

(MIDth)—}(MlD;) DzJ.(MID])&IldDz?‘-‘{}
Obviously, the provable equality relation of R, is the same as the convertibility relation of R*.
PROPOSITION 5.5. Ry’ is confluent and terminating.

PRoOF. Termination is proven in Theorem 7.4. Confluence then follows from local confluence and
Newman’s lemma. [

We can now prove that the axiomatization of garbage collection is complete and that R, is
complete-with respect to well-formed graphs.

THEOREM 5.6. Given M,N ¢ Ao,

(i) If ge(p(M)) = gc(p(N)) then RgUgeH M = N.
(i) If p(M) ~ p(N) then R, M = N.

Proor.

{i) By a simple induction on the nesting of scopes one can prove that for every cyclic term P we

have that Ro U ge F Ypre(p(P)) = tipee(ge(p(P))). So we have that Ry U ge F Ypre(p(M)) =
Ypre(p(NV)). By Corollary 4.11 and Theorem 4.15 we may conclude that RoUget+ M = N.

Lambda Calculi plus Letrec 27

(i) Let M; and N be representations of gc(p(M)) and gc(p(N)), respectively. By the previous
point we can prove M = M, and N = N;. We still have that g(M;) ~ p(N1). Let M, and
N2 be the R{* normal forms of M; and N, respectively. It is easy to prove that M, and N,
are minimally scoped. Because by Proposition 2.7 the minimally scoped graph is unique M,
and Ny must represent the same graph. Because M, and N, are also Rg*-normal forms by
Corollary 4.16 we have that My = N,.

a

Next, we study the relationship between garbage collection on graphs and garbage collection on
the representation. We know that if M =< IV then there exists a set W such that ge(p(M), W) =

p(N). The other direction is more subtle. A simple induction on the structure of M shows that if M
represents a scoped graph g then the garbage collection normal form of M represents gc(g). However,
if ge(g, W) is well defined for some set W then it does not imply that we can find a term N such that
N represents gc(g, W) and M N. For example, in the graph p{{z |u =z (z | w = y y))) we can
garbage collect z z. In the term we first have to rewrite by lift and merge to (z|lu=zz,w=yy),
before we can garbage collect. The problem is that other garbage nodes are caught inside the garbage
we want to remove. We can always free this garbage using lift and merge:

THEOREM 5.7. Given a scoped graph g and a subgraph W of g that we con garbage collect. If M
represents g then there exists N, M WN and N represents gc(g, W).
ProorF. We first rewrite M to its R3* normal from M’. A simple structural induction on A’ then

shows that we may rewrite M' using only the garbage collection rule to a term N representing
ge(g, W). O

6. Sound and complete axiomatization of tree unwinding

We now want to prove equal every two representations of graphs with the same tree unwinding.
Since these unwindings are in general infinite, in this section we assume that all graphs are possibly
infinite, except when stated otherwise. When we say a graph can be represented it is implied that
that graph is finite, since only finite graphs can be represented. A treeis a larnbda-graph where every
node is referenced by a normal pointer exactly once. So there is one pointer to every lambda-node
and zero or more back-pointers. As usual the set of nodes of the tree unwinding is defined as the
set of all paths starting at the root. Usually these paths are represented by strings of integers. Here,
for convenience, we use a more verbose representation which keeps track of the nodes visited. For
example, consider the following graph g (depicted on the left of Fig. 23):

({v1,v2,va}, (6.1)
{v1 = @,v3 = A\ v3 = @),
{1)1 - Ua Vo, Uz V3,3 3 Tg Ta),
(Y1

).
The nodes of the unwinding of g (see the graph on the right of Fig. 23) are
{vl,ullvg,vllvzlvg,vﬂvz,v12v21v3} ,
instead of {¢,1,11,2,21}.

DEFINITION 6.1. The unwinding of a graph g = (VL L,A,r) is a tree gy = (V,,, Ly, Ay, ro):

Lambda Calculi plus Letrec 28

| |
A A A
| | |
@ @ @
Figure 23. The unwinding of an acyclic graph

-Vu=s{r|reV}U{priw|pveV,, A(v)i =w,weV}

- Ly(pv) = L(v).
praw, if A(v),=w

- Aulpv)a=< Piw ,if A(v), = and p = p; w p» where w does not occur in p;
x iAW)y =2

STy =T.

Note that the unwinding of a graph only depends on the accessible part, as in the first order
case.

EXAMPLE 6.2. The unwinding of graph g given in equation 6.1 and displayed in Fig. 23 is given
below.

Vu = {Ul, ™].‘U2, ™].Uz].v;;, ™ 21)2, ™" 21}21113}
Lu = {Ul — @,‘Ul lug z\, v 1 lys — @,‘U]2Uz =3 z\,‘t}12‘l_)211}3 — @}
Ay = { v = wylyve v 20y,
vilyg — vy lvs l‘U3,
nlwlyy — 1u4 m,
1©2us v 2v91v3,
n20lvs w3 v 2vy v 20
}
Fy = 1t .

The R, representational calculus is sound with respect to tree unwinding. To guarantee com-
pleteness we need another axiom, as was already pointed out in [AK94] for the first-order case. This
axiom is the copy axiom, defined as:

M = N Jo: VoV N =M,
where o is a function from recursion variables to recursion variables, and N is the term obtained by
replacing all occurrences of recursion variables = by o(z) (leaving the free variables of N unchanged)
followed by a reduction to normal form with the unification rule:

3

c=Mz=Maz=M. (6.2)

ExaMmpLE 6.3. The following equality is an example of the copy axiom:

wly=lzww=dzy)={y|y=rew' v =rey',y = Az ,

Lambda Calculi plus Letrec 29

where the mapping ¢ is: w' = w, y — y and ¥’ ~ y. In this case, N° is
ly=rzw,w=2zy,y=Azw) ,
which reduces to (y | ¥y = Az.w,w = Az.y) by application of rule 6.2.

We let B2 denote R extended with the copy axiom. We denote by T the rewriting rule obtained
by reading the copy axiom from left to right.

In order to ease the relation between terms and possibly infinite trees we introduce next the
notion of homomorphism on scoped graphs.

6.1. Homomorphisms

A homomorphism between two scoped graphs (Vy, Ly, 4;, 51,1)-a.nd (Va, Lo, Az, Sa,7,) is a function
f from V] to V5. We extend the application of function f to sets in the standard way. The extension
to arguments is given by Vz € V : f(z} = z and Vv € V : f(8) = f(v). The extension of function f
to strings of arguments is again the standard (point-wise) extension. Among the natural conditions
for a homomorphism f are:
YveVi: Ly(v) = Lo(f(v)) ,

Yve V1 f{Ai1(v)) = A2(f(v))

and
fr)=rs .
The last condition indicates that we are interested in a rooted homomorphism. For first-order graphs
these conditions are sufficient to guarantee that two homomorphic graphs have the same tree un-
winding. The presence of bound variables makes the matter more complicated, as shown next.
Consider the graphs of Fig. 24. They are represented by the following terms:

M, = (naot|nat=Xz.cons (nat' (S z)) z,nat' = Az.cons (nat (S z)))
M, = (nat|nat= Az.cons (nat (S 1)))
Mz = (nat|nat = Az.{cons (nat' (S z)) z | nat' = Ay.cons (nat' (S z)) y)) .

Accarding to the conditions for a homomorphism stated so far, there exist homomerphisms from
both the left and right graph to the graph in the middle. However, while the first two graphs have
the same tree unwinding, this is not so for the middle and right graph. This entails the introduction
of another condition. Before stating this condition we introduce the belongs to relation.

DEFINITION 6.4. A node v belongs to a lambda-node w if
(i) v# w,
(i) veSw),
(iii) for every u such that v e S{u) we have that S(w) € S(u).

If a node does not belong to any lambda-node we say that it belongs to a special symbol called root.

For example, referring to the right graph of Fig. 24, we have that the lower Jambda-node belongs to
the lambda-node on the top, which in turn belongs to the root.

REMARK 6.5. In addition to the observations made in Remark 4.8, we also note that if the Re-
normal form of a term M is of the form

(1)z = My, 20 = M)

then exactly z;, -+, T, are the nodes belonging to the root. And if M contains an equation of the
formz=Ay{z; |z =My, ,z2n = M,,) then exactly z;,-- -, z, are the nodes belonging to z. There
is no other way a node can belong to some other node (or to the root).

Lambda Calculi plus Letrec 30

13\ 5

Cons @
W ,
A / /
S @ S
/\

|

X -

N g@
/

@ @
can/s \@ i con/s \@ }
N \@ ‘ | \@ j
/ \J / _\‘_H_/
S s

Figure 24. Why restricting the scope function is not enough

Figure 25. Homomorphism and garbage

We can now state our next requirement for a homomorphism f as follows:
- Vu e V) : If v belongs to w then f(v) belongs to f(w).

Because a node may belong to the root we define f(root) = root. Referring back to Fig. 24, this new
condition disallows the graph on the right to be homomorphic to the middle graph, since if we call
vy and va the upper and lower lambda-nodes, respectively, then we have: vy belongs to u; but f{v,)
belongs to root which is different from f(v,).

If we only consider garbage free graphs then the notion of a homomorphism corresponds to
copying the corresponding canonical representations. This is not so for graphs with garbage, as it
can be shown by considering Fig. 25. This figure contains two examples. In both cases the dashed
arrows define a function which satisfies all conditions for homomorphisms, stated so far. However,
the corresponding terms are not in the copying relation. In the left example the left graph is not a
copy of the right graph, because the garbage node gets deleted. The same holds for the right example
in a more subtle way: if there is garbage in a scope then this garbage is present in all copies.

Lambda Calculi plus Letrec 31

To maintain the correspondence between a homomorphism on graphs and copying on terms we
impose the following conditions:

Vve V) : L{v) =X = f(S1(v) = S2(f(v)
fMy=Vv, .

We summarize the discussion so far with the following definition.

DEFINITION 6.6. Given two scoped graphs (V;, L1, A4y, 51,r) and (V2, L2, A2, 82,72). A function
f: W =V, is a homomorphism if:

- f(M) =V

- Ywe Vi1 Li(v) = Ly(f(v))

- Ywe Vi : f(Ai1(v)) = A2(f(v))

- Ywe Wi L{v) = X = f(5(v) = S2(f(v)

- fln)=r,

- Vv ¢ V; : If v belongs to w then f(v)} belongs to f{w)

The following common properties of homomorphisms hold:
PROPOSITION 6.7.

(1} Given scoped grophs g,h. If f : 9 = h is a homomorphism then f : ge(g) = ge(h) is also a
homomorphism.

(ii) Given scoped graphs g1,82,93.- If fi 1 91 = g2 and fa : g3 — g3 are homomorphisms then
fao fi:g1 = g3 is alse a homomorphism.

ProorF. Trivial. O

In the proofs of soundness and completeness we establish a homomorphism from the unwinding
to the original graph. This can only be done if the unwinding has a scope function. The scope
function we need is given by: '

DEFINITION 6.8. Given a scoped graph g = (V, L, 4, 5,r). The scoped unwinding g2 of g is the
unwinding g, extended with the scope function:

Spv)={pviu{pviA(w)i|pweSkv),Alw); e S(v}\v} .

In Fig. 26 we have drawn a cyclic graph and its scoped unwinding. Note that the scopes of the
lambda-nodes are not nested.

LEMMA 6.9. Given a scoped graph g and the scoped unwinding g5 of Ig. The function f:pv— v
defines a homomorphism from g’ to ge(g).

PROOF. All conditions except the condition on belonging to are trivial. Suppose p; v belongs to
p2 w. Then by definition of belongs to we know that p, v € S(p, w)\ {p2 w}. This implies that there
is a path from p; v to po w that does not include any lambda-nodes. In turn this implies that there
is a path from w to v without including any lambda-nodes. Let us assume v does not belong to w.
This means there exists a w' such that v € S(w') \ {w'} and w' € S(w) \ {w}, which contradicts

Proposition 2.6, since there is a path in gc(g) to v that does not go through the corresponding
lambda-node. O

Lambda Calculi plus Letrec a2

Figure 26. The unwinding of a cyclic graph

6.2. Soundness

Soundness with respect to tree unwinding depends on two lemmas. The first relates copying to a
homomorphism and the second relates a homomorphism to unwinding.

LeMMA 6.10. Given M\ N e Ao. If M = N then there exists ¢ homomorphism

fip(N) = p(M) .

PROOF. By definition of copy we know there exists a variable mapping o such that N? = Af. We
reason by cases.

- M is in normal form with respect to Rg’. This means that N must also be in normal form. Let
us assume M is not a variable, then by Remark 4.8 the sets of nodes of p{M) and p(N) can be
taken as the sets of variables that occur on the left-hand sides of equations. If we do so then
the restriction of ¢ to the set of variables occurring on the left-hand side of an equation in N
is a homomorphism between p{N) and p(M), which can be easily verified.

- M is not in normal form with respect to Rg’. This means that N cannot be in normal form either.
To reduce this case to the previous one we are going to prove that the following diagram holds:

M——— (63)
|]
¥ ¥
P__E)_ -Q

where the vertical arrows denote a reduction to normal form with respect to R;*. We then have
a homomorphism f : p(Q) — p(P), which of course is also a homomorphism f : p{N) = p(M),
as required.

Lambda Calculi plus Letrec a3

To show diagram 6.3 we take a closer look at the computation of N?. This computation is of
the form
-4
N < NyopN°
where the first step is the syntactic substitution and the other steps are the reduction to normal
form with respect to unification rule (see equation 6.2). Note that if a representational rule is

applicable in N then it is also applicable in N? and vice versa.
We obtain diagram 6.3 by showing the existence of diagrams of the form:

a unif
—ie

(6.4)

where in the vertical direction we have one or more steps in the representational rewriting
system Rp’.
We now reason by cases.

- A lift, empty box garbage collection, merge rule is applicable. We take the following steps:

- We take a reduction to normal form with respect to the lift, empty box and merge
rules. Since these redexes do not depend on the names of variables, we can easily fill
in the left square of diagram 6.4.

- We then proceed by tiling the right square. To make the tiling process work, we use
lift, empty box and merge steps in the vertical direction and lift, empty box, merge
and unification steps in the horizontal direction. We have only the following two non-
trivial diagrams with a rewriting step other than a unification step in the horizontal
direction. We have the generic pattern:

.'.L‘=M,:I::=M unif ‘z-_—_M
I
[:
Y
z=Mz=M--~z=M,z=M--=-z=M
unif

and the specific critical pair:

z=(M|D),z=(M|D) it -z = (M| D)
I

:z::M,D,:r:(M|D)—-—-'-:z::M,D,:r=M,D—l;ﬁ?—:r=M,D

If we start from a term in normal form with respect to the lift, empty box and merge
rules then the bottom reduction will have only unification steps, since a unification
step can only create new unification redexes. Termination of the tiling process follows
simply from the fact that the rewriting system containing lift, empty box, merge and
unification is terminating,.

- The naming rule is applicable. We will prove a special case of diagram 6.4:

o unif

— vl (6.5)
P l

¥ ¥ el

T o T Tunir

We work from right to left this time. The steps are:

Lambda Calculi plus Letrec 34

- We can complete the right square by tiling. There is only one non-trivial elementary
diagram:

z = C[M],z = C[M] unif -z = C[M]
|
|

z=Cliyly =:3w>1,a= = C[M]
I

4
z=Cllyly=Mz=Clly|y=M)|~~~z=Cly|y= M)

Note that the new name is the same in every naming step. This is necessary to be
able to do the unification step on the bottom. Thus we close the right square.

- The left square has n naming steps on the right. All of these steps use the same
variable. To get a legal sequence on the left we must choose n new variables, extend
the variable mapping by mapping each of the new variables to the variable used in
the naming redexes.

- The variable substitution rule is applicable. We prove the diagram 6.4 as in the previous
case, again working from right to left.

- First we tile the right square. The non-trivial tiles needed are:

$:M+I=ML$=M
|
|
¥

r=M, =M

|

|

Y
z=Mz=M-—=z =M

unif
and)
(Mlﬂ::y,:c:y,D)-L(M{z=y,D)
l
¥
Mz :=v] |z I: ¥, Dlz := y])
[
v .
(Mlz :=y] | Diz := y]) = (M[z .= y]| Dlz := y})

Remember that y[z := y] = y and for every term P we have Pz := y]z := y] =
Pz :=y].
- To fill in the left square we again use a tiling argument with the following diagram:

(M|z=y, D) ——Z (M? |2° =47, D°)
|
|
¥

Mz :=y]| D[z :=y]) - - = (M°[z7 := y°} | D[z := y°|}

Lambda Calculi plus Letrec 35

Figure 27. Two scoped graphs without an intermediate graph

LEMMA 6.11. Given two scoped graphs g and h and a homomorphism f:g — h. Then g, = h,,.

Proor. By Proposition 6.7(i) we can assume g and h are garbage free. By Lemma 6.9, we have
homomorphisms f, : g5 — g and f2 : k% — h. By Proposition 6.7(ii) fo f : gs —+ hisa
homomorphism. It is then easy to show that g, = h,. O

We can now prove that R; is sound with respect to tree unwinding.

THEOREM 6.12. Given M, N € Ao, representing graphs g and h, respectively. If Ry - M = N then
Ju = hy.

PROOF. The soundness of all axioms except copying is trivial. The soundness of copying follows
from Lemma 6.10 and Lemma 6.11. O

6.3. Completeness

The proof of completeness uses almost the same strategy as the proof for the first-order case given
in [AK96a). There, given two graphs g; and g; with the same tree unwinding an intermediate finite
graph h is constructed such that there exist homomorphisms from h to g; and gy, respectively. It is
then proven that if there exists a homomorphism from one graph to another, these two graphs are
provably equal. Because our notion of homomorphism preserves scope information and garbage it is
in general impossible to find such an intermediate graph for scoped lambda-graphs. Take the graphs
g1 and g; displayed in Fig. 27. Assume there is a homomorphism from a certain graph h to both g;
and g;. Then & must have two nodes ! and a, respectively, such that { maps to the lambda-nodes
and the argument @ of / maps to the application nodes. From the condition on belongs to, it then
follows that a belongs to the root and that a belongs to {. Contradiction.

However, given scoped lambda-graphs g, and g we are able to find a pair of intermediate finite
graphs (g1, g5), differing only by their scope information, such that there exist homomorphisms from
g to gc(g:1) and from g4 to ge(gz) (Lemma 6.13). The two graphs in the figure are an intermediate
pair themselves, with the identity as homomorphisms to themselves. We then prove that if there
exists a homomorphism from one graph to another then any two representations of those graphs are
provably-equal (Lemmas 6.9 and 6.14). Completeness then follows from the fact that we can prove
graphs that differ by garbage and scope information equal.

Given two scoped graphs g; and g2, we can take as intermediate graphs the corresponding tree
unwindings. Unfortunately the provable equality for homomorphisms only works for finite graphs
(just as in the first-order case) and the unwinding is in general infinite. Thus, we prove next that if
there exists a pair of possibly infinite intermediate graphs there also exists a pair of finite intermediate
graphs:

LEMMA 6.13. Given finite scoped graphs gy, ga, possibly infinite scoped graphs hy,ho with hy ~ h;,
and homomorphisms f) : hy = g1 and fa : hy = go. Then there exist two finite scoped graphs hi, k),
with hy ~ hy, and homomorphisms f{ : hi = g, and fi : bl = ga.

Lambda Calculi plus Lotrec 36

PROOF. Define the scoped graph g, x g2 by

Vi

Ly((v1,v2))

Ay ((v1,12))

Sx ((f1(v), f2(v)))

Tx

{(Hh(v), f2(v)) | v e Vi, }

Lg, (v1)

(4g, (v1), Ag, (v2))

{(fl(w)! f2(w}) I we Sfu (U)}

(rg,17g3)

The function = : (z,y) — = defines a homomorphism from g, x g, to g, and from g, x a1 to gs. All
conditions are straight from the definition except belonging to. If a node (fi(w), f2(w)) belongs to a
node (f1(v), f2(v)) then w must belong to v and by the fact that f is a homomorphism f, {(w) must
belong to f(v).

We also have that g; x go ~ g2 x gu. O

LEMMA 6.14. Given scoped graphs g,k and a homomorphism f: g —+ h. If M and N represent g
and h, respectively, then Ry - M = N.

PROOF. Since we can prove equal any two representations of the same scoped graph (Thecrem 4.15),
it follows that we only need to show there exist two representations of g and h that we can prove
equal. The two representations we choose are ¥ipre(g) and Yjpre(h). We prove them equal by showing
there exists a variable mapping o such that ¥uce(9)°/ = Ypre(h). We define:

op(Ty) =Zp0y o

where z, is the variable associated to node v in the construction of ¥i,ce(g) (see Definition 5.1). We
can safely assume that the set of variables bound by lambda’s in Yipre(g) and pre(h) are disjoint
from the set of free variables and recursion variables. Since the scopes of distinct lambda-nodes that
map to the same lambda-node are disjoint (due to the belong to condition of homomorphism) we
can safely assume

Yo =Ys(v) -

Before we prove ¥ipre(9)°/ = tfpre(ht) we first prove two claims. The first claim is that for every
argument a we have N/ = Nj(,). We prove this claim by cases on a:
- free variable z: We have f(z) = x.
- pointer v: We have N3’ = 23’ = 34,y = Ny(q)-
- back-pointer 5: We have Ng’/ = 3’ = yy = yy(v) = Ny(a)-
The second claim is that for every argument a and every set of nodes W C Vy we have:

(Na | Dw)*! = (Ny) | Dyw)) -
We prove this second claim by structural induction. By the first claim we have NJ' = N t{a)- Let
. W ={weW|VpeW:we S(p) = w=p)

and
W"={we f(W)|¥peW :weS(p)=>w=p} .
We can derive from the fact that f preserves the belongs to relation that f(W') = W". We also

have that
Da{ ={zy = M::,’}wew: and Df(w) = {-'Bw = Mw}wEW“ .

All we need to show now is that (zo/ = Mg') = (z Flw) = Mj(y)). For the left-hand sides this is
trivial, for the right-hand sides we need to do a case analysis on the type of w (which is also the
type of f(w) because f is a homomorphism):

Lambda Calculi plus Letrec ar

- black hole. The right-hand side is the same as the left-hand side for both equations.

- application node. We have that
o' = Nluy, Nifurs 20d Myy = Nagsonn) Nagro,) -

Because f is a homomorphism we have for i = 1,2 that A(f(w)); = f(A(w);). By the first
claim it then follows that My’ = Mj,,.

- lambda-node. We have that

My = Myu(Nagw) | Dstupiw))™ and My = Ms(w) AN agsqu | Ds(stumis(w)}) -

Because f is a homomorphism we have A(f(w)) = f(A(w)) and f(S(w) \ {w}) = S(fwh)\
{f(w)}. So by induction hypothesis we have that

(Naw) | Pseupn(uw))™ = (Nagg(wn | Ds(rwmizw)) -
By assumption gy, = yy(y) 80 also M2 = M 7(w)-

This completes the proof of the second claim.
Since f is a homomorphism we have f(r;) =ry, and f(V,) = Vj,. By those facts and the previous
claim we have:

Yore(9)7' = (N, | Dy,) = (Ny(r,) | Dyv,)} = (Ve | Dv) = tipre(h)
(|

Given a well-formed graph g = (V,L, 4,r) we say that M is a representation of g if p{M) =
(V,L, A, 8,r). We can now prove that R is complete with respect to tree unwinding,.

‘THEOREM 6.15. Given graphs g and h with the same tree unwinding. If M and N represent g and
h, respectively, then Ra - M = N.

PROOF. Let g; and h; be p(M) and p(N), respectively. Since g and h have the same tree unwinding
it follows that g% ~ h; ;. From Lemmas 6.9 and 6.13 it follows there also exists a pair of finite graphs
g1 and.hj homomorphic to gc(g1) and ge(h,), respectively. The result then follows from Lemma G.14
and Theorem 5.6.

We summarize this proof in the following diagram:

. 91:; h[f‘
6.9 Ihom 6.13 1mm| 6.9
h—geclg) o T M —— () —— My

M 5.6() 7 614 756(i)7 614 7 5.6() N

The numbers at the top refer to the statement used to prove the squares they are in and the numbers

in the bottom row refer to the statement used to prove the terms to the left and right of them equal.
O

Lambda Galculi plus Letrec 38

(M|DYN = (M N|D)
M(N|D) = (M N|D)
M) = M
(M| D1) | Dy) = (M| Dy,D,)
(M|2=(N|D1),D2) = (M':F:N,D[,Dz)
M = (z|z=M) z a new variable
Ro (M|z=y,D) = (Mlz:=y]|Djz:=y)) =2y
(M|Dy = M D1M
i3 Mx.(M | D) = (Az.M | D) x not free in D
o M =N Je:Va VN =M

Table 1. Sound and complete axiomatization of tree unwinding

{(M|DyN = (M N[D)
M{(N|D) - (M N|D)
M) - M

((M | D1) | D2} = (M | Dy, D)
(M |xz=(N|Dy),D;} -+ (M|z=N,D,,Dy)
Csate[Az.M] = Caurl{y |y =Az.M}] v a new variable
Coare[M N] = Cuate[ly |y=M N)) ¥ a new variable

Ry (M|z=y,D) & (Mlz:=y]|Dlz:=y)) zZy

(M Dy, Dz) — (M Dy) Dy # {1, D: L(M [Dy)
Ry Az{M | D1, D3} = (Az.(M | Dy) | Dy) Dy # {},D, L Dy, ¢ free(D5)
Ry M = N VoV, N° =M

Table 2. Summary of the representational rewriting systems

7. Summary of the representational calculi

In Table 1 we summarize the distinct representational calculi we have introduced so far. We remark
that these systems are not minimal, e.g., the empty box garbage collection axiom is a special case
of garbage collection and therefore is superfluous. The external merge axiom is also superfluous as
it may be derived from naming and internal merge:

{M| D1} | D2) = {x|z={(M|Di}|Ds)) naming
= (z|z={M|Dy),D;) internal merge
= (z|z=M,D, D)) internal merge
= (z |z = (M| Dy, Dy)) internal merge
= (M I D],D2> naming

We conjécture it is not possible to drop any of the other axioms without losing the completeness
results proved in the previous sections. This does of course not mean that there are no other possible
variations. We could for example replace the application lift axioms by the single axiom

(M| Dy)N | Dy) = (M N | Dy, Dy)

and still have an equivalent calculus. Since our goal is to have calculi that are easy to work with, we
will not pursue the derivation of a minimal system any further.

In Table 2 we summarize the corresponding representational rewriting systems. The convertibility
relation of these systems is the same as their associated provable equality. This was proven in
Proposition 4.6 for R3* and is trivial for R{* and R,

Lambda Calculi plus Letrec 39

Next, we prove termination of Rg* and R*. To that end we define a function [-] on cyclic terms
that gives a decreasing measure. This function is a pair of two measures, [-lt and |.|5. ||; counts the
number of naming redexes; |.|2 associates a multiset to every term that counts for every letrec and
every equation the distance to the root, counting passing through a lambda and an application but
not counting passing through a letrec. In giving |.|;, we use the measures l.Ii, i = 0,1 that count the
number of unnamed nodes in a term assuming the top node does not (i =0} or does (i = 1) need a
label.

DEFINITION 7.1. The termination measure for normalization of the representation (written as [.])
is defined by:

|M| = (IM]1,|M]2)
where |M]; = |M|] and [M{i(i = 0,1) is defined by

|zl{ = 0
Dz.Mly = i+|M]|!
|M NJj = i+ M|} + N[}

KM | 2o =M, zn = Ma)li = |ME+ 30, |M;)9

and (M|, is defined by:

lz]2 = {}
IM le = inC('MhUIng)
|Az. M|z = inc(|M|z)

(Mo | 21 = My, 2 = Mp)2 = Upo(§0F U |Mils)

where inc(S) = {n+1|n e S}.
We use the standard ordering on both components and the lexicographic ordering on the pair.

Before proving that every step decreases the termination measure, we first show two lemmas.
These lemmas reduce the task of proving |C[M]| > [C[N]| if C[M] - C[N], by an application of
the rule M — N, to proving |M| > |N|. We adopt the notation:

21 = My, 0 = Mala = | ({0} U [Mil)

i=1
LEMMA 7.2. Given M,N € Ao and a context C.
() IF 1M1 2 INE and [M]} > [NJ} then for j =0,1: [C[M]F] > (CIN]}-
(ii) Jf|M]} > NI} then |Coare[M]I} > [Cunre[N]|}.
PRrROOF.)

(i) Simple induction on the context C.

(ii) Follows immediately from the claim that there exists a constant ¢ such that for every term P,
|Csate[P]l} = ¢+ [P]}. We prove the claim by cases on Cyape:
- Cgare = C': Simple induction on C'.

- Caare = C[Az.C"): 1t is not hard to prove that |C[Az.C'[P]]|! = |C[Az.z]j} + JC'[P]j}. The
result then follows from the first case.

- Csafe = C[C' M]: From the first case and the equation: |C[C'[P} M]|} = IC{z z]|i +|C'[P)I} +
|M]1.

Lambda Calculi plus Letrec 40

wate = C[M C']: Similar to previous case.
m|

LEMMA 7.3. Given M,N € Ao and a context C. If M|z > |N|; then |C[M]|2 > |C[N]|z-
ProoF. By induction on the context C.

- ¢ = 0. Trivial.
-C=PC.
[C[M}2 = |P C'[M],

= inc(|Pl2 U |C'[M]l2)

> inc{{P|z U [C'[N]|2)

= [P C'[N]lz

= [C[N]l2
-C=0C Q.

|C[M]|z2 = inc(|C'[M]l2 U |Ql2) > inc(IC’[N]I2 U|Q]2) = [C[N]|2
-C= A0
|C[M]]2 = inc(|C'[M]|2) > inc(|C'[N]|2) = |C[N]l.

-C=({C"| D).

|IC[M]|2 = |C'[M]]2 U {0} U |D]2 > |C'[N]|2 L §0} U|D|; = IC[V]]2
-C=(P|z=C"D).
|IC[M]|2 = | Pl U {0} U|C'[M]|2U {0} U D> > |Ply U O} UIC[N])l2 U {03 U D]z = |C[V]]2
0

THEOREM 7.4. RT* is terminating.

PRrooF. We show that if C[M] = C[N] then |C[M]| > |C[N]|. By cases on the rule being applied.
Neming rule. We obviously have:

M NIi > Hyly=M N)|}
[Az.M[} > [y|y=Az.M)|}

By Lemma 7.2(ii) we then have |[C[M]|; > |C[N]|,, because C must be a safe context. Hence,
|C[M]] > |CN]].

Other rules. We claim that every other rule satisfies |M[{ > |N|} and |M|; > |N|,. It then follows
by Lemma 7.2(i) that |C[M]|, > |C[N]|; and it follows by Lemma 7.3 that |C[M]|2 > |C{N]a.
Hence, |C[M]] > |C[N]|.

The claim about the first measure is trivial for all rules. We prove next the claim about the
second measure

(M | D) N, inc(|{(M | D)|2 U[N|2)
inc(JM|2 U {0} U|D|2 U |N|2)
inc(|M]2 U|D|2 U|N|) U {1}
inc(IM|2 U|D|2 U|N|2) U {0}
inc({M|2 U [Nz} U f0} U D}y
|M Ni2U 0} U |D]a

KM N | D)la

vy nm

Lambda Calculi plus Letrec 41

M (N | D) inc(|M{z U |N|2 U {0} U|D]2)
inc(|M|2 u |N|2) U {0} U ‘Dl'z

(M N | D)2

v

[Az{M | D1,y = N,Da)l = inc(|M|2U {0} U|D;|2U {0} U|NJ2 U|Dy)s)
> iDC(lMlg U ‘EO} u ID112) u HO, OB U |N|2 u iDz!g

[{Az(M | D1} |y = N, D),

|(M | D1, Da)|s |M|2 U {0} U |Dy]z U| D2,
|M]2 U {0} U Dy

(M [D1}z

v

(M D2 = |[M|u {0}
> IMIg

KM | z = (N | D1}, D3}l |M|2U {0} U (V]2 U f0} U |Dy|2) U 0} U |Dy)s
[M]z2U 0} U |N]|z U f0} U |Dy|2U D2l

[{M |z = N,Dj,Da)la

v

[((M [D1) | Da)l2 (12 L {0} U [D1]z) U {0} U [Dg],

> |M|2 U 'EOB U |D1|2 U]Dzlz
= [(M | Dy, D3}l
{M |z =y,D)| M|z U O} U {0} U D
[M|2u {0} U D],

v

|M[z := y]|z U {0} U D]z := y]|»
|(M[z := y] | D[z = y])|
O

8. Alternative representational rewriting systems

We now investigate alternative representational rewriting systems obtained by orienting the naming

and copying axioms in the opposite direction. When we orient the copy axiom from right to left we
obtain the compression rule: :

Mo N Jo:Va VM =NMZN .

The proviso M # N is there to ensure termination. When we orient the naming axiom from right
to left we obtain the unique substitution rule:

{zlz=M)—- M .

Lambda Calculi plus Letrec 42

If we want to replace naming in R3* with this rule then, to avoid critical pairs with the lift and
merge axioms, we extend the unique substitution rule to °

(Cramelz] |z = M, D} = {Crame[M] | D) x not shared
(M | y= Cname[l'],z = N,D) - (M | v = Cnnmg[N],D)] $ x, x not shared

where z not shared means there exists only once reference to z, and Cpame is
Chame =0 i Cnnme M L M Cnamc ! (Cna.me | D) I (M |':z: = Cname:D) -

This restriction on the context avoids substituting under a lambda-abstraction. This needs to be
forbidden because it would move some nodes into the scope of a lambda, which is not allowed in Ry
We remove this restriction for Ry and R,, due to their completeness with respect to well- formed
graphs. Hence, we can replace naming in R;* and R3* with the more general rules:

{Clz] |z=M,D) — (C|M]|D) z not shared
(M|y=Clz],z=N,D) = (M|y=C[N],D) y# =,z not shared

ProroSsITION B.1.

Rﬂ F (Cname[m] | r = M) = Gnnmc[M] z not Shared
R F (Clz] |z = M) = C|M] z not shared

Proor. The proof uses structural induction on the context C|/]

- C = 0. Follows from the naming axiom.

-C=C'N
(Clllz=M) = (C'lz] N|z=M)
= (Clz]|z=M) N left lift
= C'[M] N =C[M] induction hypothesis
-C=NC'.
(Clz] |z = M) (N C'lz] |z = M)

N (C'[z] | z= M) right lift
N C'[M])=C[M] induction hypothesis

It

- C = Ay.C". (This case does not occur for Cpame.)

Clallz=M) = (M.Clz)|z=M)
= M.(C'[z] |z = M} lambda-lift
= Ay.C'|M]=C[M] induction hypothesis
-C=(C'| D).
(Clz] | = = M) {C'[z] | D) | = = M)

(C'lz] | D,z = M) external merge
((C'[z] | = = M) | D) external merge
(C'|M]| D) = C[M] induction hypothesis

C=(N|y=CD)
(Clz] | £ = M)

m

(N |y =C'lz],D) |z = M)

(N|y=C'lz],D,z = M) external merge
(N|y={C'lz] |z = M),D) internal merge

(N |y=C'[M],D) =C[M] induction hypothesis

[[

Lambda Calculi plus Letrec

43

Rgaae:
(M|DyN =+ (M N | D)
M(N|D) -+ (M N|D)
M) = M .
({(M | D1} | D2) = (M |Dy,Ds)
(M | = (N [Dl))D2> —* (M I z =N|D1'D2)
(M|z=y,D) = (Miz:=y]|Dlz:=y]) z#y
72331110:
Caate[Az.M] = Cupel(y [y =Az.M)] v a new variable
Caafe[M N] —+ Csafe{(y | y= M N)] Y a new variable
Lus

. (Cnamelzl | z=M, D)

= {Crame[M] | D} = not shared
M|z= Cna.me[ll]sy =N,D) =+ (M|z= Chame[N], D) _z # y,y not shared
Ryase
(MlD],Dg) -+ (MlDl) Dg#{},Dz.L(MlD])
AzAM | D1, D;) = {Mz{M | Dy) | D,) Dy # {},D) L Dy, z ¢ free(D;)
Ry
{Clz] | z=M,D) - (C[M]|D) T not shared
(M |z=Cly,y=N,D) - (M|z=C[N},D) z £ y,y not shared
R'z”” 5
M= N Jo: Va2 V,N =M
—5Tom
Ry
M2 N Jo: Vo VM =N,M%ZN

system | rules confluent | terminating

—+ Rbase'Rnnme es s
%ﬁ— Rgue‘Rgnq §ES ies
Ry | Ry’ Rp™e yes yes
R | Rbese, R, Rbase yes yes
R | Ry, Rgw yes no
RE | Ry, Rome ? yes
R3* | Ry, Rsery no no
R Ri, Rgomp no yes

Table 3. Summary of alternative representational rewriting systems

Lambda Caleuli plus Letrec 44

(]

In Table 3 we present how all the different systems combine with each other. We have adopted the
following notation: we superscript a representational rewriting system R with one or two arrow(s).
The (top) arrow indicates the orientation of the naming axiom. If present, the lower arrow indicates
the orientation of the copy axiom.

REMARK 8.2. Given a graph g and a set W such that gc(g, W) is well defined we have shown that
for every M representing g we could find an N representing gc(g, W), such that M —=*N. For R{~

1
however such an N does not necessarily exist. For example, in the graph of {z|ly=y(zz) we
have two application nodes which are garbage. On the graph it is legal to remove only the first of
the two. In RJ* we have the following reduction sequence:

Ely=y@z) = ly=y(zlz=zq)
i (zly=yz,z=zx)
== {z|z=z) .
The last term in the sequence properly represents the garbage collection of the single node. The

naming step at the beginning is however essential in this rewriting sequence. Hence, in R~ it is
impossible to rewrite to a term representing the graph with the single node removed.

PRroposITION 8.3.
(i) The following rewriting systems ere confluent: RE, Ri~.
(i) The following rewriting systems are terminating: R, T RS, RE.
(iii) Given M,N € Ao. Then:
RoFM=NiffM N N
RiFM=NifM AT N

ngM:NiﬁM?N:ﬁM?NiﬂMwN.

PROOF.
(i) From local confluence and the next item.

(ii) To prove termination of R¥* we use the same pair of measures as in the proof of termination of
RT" (Theorem 7.4). For the other systems we use a modified version of this pair of measures.
The first counts the number of equations, the second measure remains unchanged.

(iii) Completeness is obvious, soundness follows from:
{Clz) |z =M,D) = {{Clz] |z = M)| D) external merge
= (C[M]| D) Proposition 8.1
and

(M |z=Clyl,y=N,D) (M|z=(Cly}]|y = N),D) internal merge

(M |z = C[N],D) Proposition 8.1 .

a

Because in the first-order case the compression rule together with naming yields a confluent
system, we conjecture that the same holds for cyclic lambda terms.

Lambda Calculi plus Letrec 45

CONJECTURE 8.4. The rewriting system RE is confluent.
REMARK 8.5. Confluence is lost for the systems R3* and RE.

R3*. The counterexample to confluence is similar to the one presented in [AK96a]. Consider the
following two reductions:

(z|m=wm)?(z|m=wy,y=wm)m(z]x:w(wm))
and

Ele=wa) D Ele=wyy=waz=wypwyly=w(wy) .

It is impossible to rewrite the two right-hand side terms to the same term: Every reduct of
the first will have an even number of w’s and every reduct of the second an odd number. In
[AK96a] we pointed out that confluence can be regained by giving a name to the subexpression
w .

RE. The counterexample consists of the following two reductions:

(1 |z =wzp, 20 =w 23,23 =w T4, T4 =W T5,T5 = W Tg,Tg = W T)) ~comp’

(z1 | 21 = w z2, 22 = w z;) @ | o = w (w 2))

and

() |21 =w 23,20 =w 23,%3 = W T, Ty = w T5,%5 =w Tg,Tg =W T1) =

(zy |21 =w 23,20 = w 73,23 = w z) T @ |z =w (w (w zy))) .

It is impossible to rewrite the two right-hand side terms to the same term because they are in
normal form.

In Section 11, we will show that the non-confluence of R is not a serious problem, since the
system enjoys a new property which guarantees uniqueness of infinite normal forms. These infinite
normal forms correspond to the possibly infinite tree unwinding.

Lambda Calculi plus Letrec 46

PR

Figure 28. f-reduction on scoped lambda-graphs

BN

Figure 28. Moving the lambda-node and its scope inside the scope of the application node.

Part I1
The computational behavior of cyclic
terms

9. The cyclic lambda calculus Aoy,

The representational calculus R, makes terms and graphs isomorphic. We now give computational
meaning to our graphs and terms. This is done by first introducing S-reduction on scoped graphs.
We will then give an axiomatic view of this reduction.

f-reduction on lambda-graphs

A [B-redex in a lambda-graph is an application node whose first argument is a lambda-node. The
contraction of a S-redex is a two-step process (see Fig. 28). In the first step we check if the reference

\/ N
/_,/(\ N\ o /\
“71 7

Figure 30. Beta-reduction principles for interaction nets and lambda-graphs

Lambda Calculi plus Letrec 47

to the lambda-node from the application node is unique and if the application node is outside the
scope of the lambda-node. If one of these tests fails we copy the lambda-node and its scope in such a
way that the test succeeds on the result (see the left step of Fig. 28). We then place the lambda-node
(the copy if a copy has been made) and its scope in the same scope of the application node (the
original if a copy has been made)(see Fig. 29). The second step is a redirection of pointers consisting
of: 1) replacing the application node by an indirection node whose argument is the argument of the
lambda-node, 2) replacing the lambda-node by an indirection node whose argument is the former
right argument of the application node. Note that all pointers to the indirection node replacing the
lambda-node need to be changed from back-pointers to normal pointers. This second step is drawn
on the right of Fig. 30. On the left of the same figure we have drawn the S-reduction principle used
by interaction nets [Laf90]. There the use of indirection nodes is superfluous because there is exactly
one reference to the application node and exactly one back-pointer to the lambda-node.
In the following definition we use the notation i @ V for the set {i®v|ve V}, fori=1,2.

DEFINITION 9.1. Given a scoped graph g = (V, L, 4, S, r) and an application node v € V such that
the first argument w of v is a lambda-node. The contraction of the f-redex v in g, written as g5 h

is defined as follows.
(1} We first define a scoped graph g, = (V', L', 4',5",+') by:

V= (VA S(w)} ® S(w) if the reference to w is unique and v ¢ S{w)
T Tl Ve Sw) otherwise

- L'(i®u)=L(u),i=1,2

The functions fi and f; we use in giving the arguments are given for single arguments and
extended pointwise to strings of arguments.

- A(leu) = fi(A(u), ifugv
- A(1@v) = (28 w)(/i(A(v)2)), where

filz) =z

fi(v) = 1v

H(E) = 1&v

- A'2®u) = fa(A(u)), where

folz) =z
fa(v) = 2@v ,ifve S(w)\w
f2(v) = 1®v , otherwise
L) = 28v ,ifveS(w)
f2(T) = 1@v , otherwise

-S5'20u)=28 5(u)
- S'(1®u) =16 S(u), if v ¢ S(u)
- S'(l@u) = S(u)® S(w) , ifve Su)

-r'=1@&r, where 1@z = z.

(ii) We then update g; to obtain scoped graph g, in the following way:
-A(lev), = A2 w)
- A20w) = A'(1 @),

Lambda Calculi plus Letrec 48

l l \
(>\ 'j;@\ AN
(4] E L]) R Y

Figure 31. f-reducing (y (y z) | y = Az.2)

R
(8] o | W]

Figure 32. f-reducing {(Az.yz | y = Az.z)

®

D=~
.~

- Alev):= A1),

-L(lev):=-e

-L2w):=e

- §'(2® w) := undefined

- We replace every argument 2@ w by 2@ w

The graph h is then Sim(g2).

EXAMPLE 9.2. In Fig. 31 we present an example of f-reduction, Since we have two references to
the lambda-node a copy step is first performed, followed by the redirection and simplification steps.
In Fig. 32, since the reference to the lambda-node is unique and the application node is outside the
scope of the lambda, we avoid the copying. The first step brings the lambda-node in the same scope
as the application node, and, as before, we have the redirection and simplification steps. Note that
the first step is necessary, since if we perform the redirection directly in the first graph we obtain

@] i i 9 '
@5 ‘.,\/@5 '\ / *
1

raly
é@b ﬁf”@ '_/@__ 4

Figure 33. Copying could be necessary with unique references

Lambda Calculi ptus Letrec 49

\-/ \e-/ N/
@ . -— M
/ N\

AV S
Gy Gk

Figure 34. Proof by picture

the ill-formed graph displayed on the extreme right. In this case this ill-formed graph is simplified
to a well-formed graph, but this is not true in general. In Fig. 33, we have a unique reference to the
lambda-node but still we perform a copy step since the application node and the lambda-node are
in the same scope. The graph on the extreme right represents the graph we would have obtained
if we did not perform the copy step. Note that graphically the back-pointers to the lambda-nodes
change into normal pointers by just replacing the label of the node.

Axiomatization of §-reduction

We now proceed by giving axioms on cyclic terms that describe S-reduction. The first step is de-
scribed by the axioms introduced so far. For the second step we introduce the following Bo-axiom:

(AzM)N=(M|z=N) .

The rewriting system obtained by orienting the fo-axiom from left to right is denoted by fo™. Its
reduction relation is denoted by e

THEOREM 9.3. Given M,\N e Ao. If M i N then p(M) - p(N).

ProoF. See Fig. 34. O

EXAMPLE 9.4. The f-reduction of {z | £ = Ay.z y) (see Fig. 33, in which we need to draw the root
pointer) is described below.
Mz(z|z=Mzy) (z|z =Mz’ y,2' = My .zy') copy
(zlz= (Mo’ y|z' =M zy')) merge
{z|z=Ay{z' y|z' =My .2y')} lambda lift
(z|z=Xdyz' | 2' = Ay .zyVy) left lift
(z |z = Ay.(\ .2y)y) naming
zlz=dylzy' |y =9)) SN fo.

In [AK96b} we have called the subterm zy of {(z |z = Ay.zy} an tmplicit B-redez which needs to
be made ezplicit, i.e., of the form (Az.P)Q, in order to be reduced. In our cyclic calculus, an implicit
f-redex can be made explicit by the use of the R representational axioms. However, we would also
like to make a redex explicit by applying a representational rewriting system. As shown in Section 8
we have different alternatives. We choose R5* because it contains copying and unique substitution,
operations that are sufficient to expose implicit redexes. Referring to the example above, we have

(z|z=dyzy) =t (®lz= ez’ y,0' = Ay zy')

c

st {zlz=Ap(M zy')y)

unq

Lambda Calculi plus Letrec 50

Ro™
(Clz] | z = M, D) =t (C[M]|z=M,D)
(M|m=0[y]1y=N’D) =t (M|I=C[N],y=N,D)
((M | Dy} | D2) - (M| Dy,Ds)
(M|$=(Nf.D1),D2) Tt (M*$=N,D1,.D2)
(M|D)N s (MN|D)
M(N|D) <z (MN|D)
Az M | Dy,Dz) 2 (Az{M | Dy) | D) D3 # {},Dy 1L Dy,z ¢ free(D,)
(M| Dy, Dz) - (M]|Dy) Dy # {}, D2 L (M| D)
M) o M
M = N VoV N =M
Bo~
{Az.M) N 53t (M|lz=N)

Table 4. Ao;}, .: the rewriting systems for the cyclic calculus.

where the underlined term is now ready to be B-reduced. A copy step followed by a unique substi-
tution step captures the inlining transformations discussed in the introduction. This sequence can
be more simply described by the following two rules, called external and internal substitution rules,

(Clz] |x=M,D) = (CM]|z=M,D)
(Mz=Clyy=N,D) - (M|z=C[N],y=N,D) .

We admit the above two rules in R3*. This means that the variable substitution and unique substi-
tution rules become obsolete. We refer to the obtained system as Ro™ (see Table 4) and to Ro™
combined with So™ as Ao ot and ——— denote the one-step reductions induced by Ro™

hame*®
and Xop? ., respectively.

THEOREM 9.5. Given two scoped graphs g and h such that g i h. If M represents g then there
exrists an N that represents h such that M m»N .

Proor. Let g = g' = h, where g’ is the result of the first step of S-graph reduction. We claim
that we can reduce M to a term M’ representing g', such that the occurrence of the redex in M’
occurs ds a subterm of the form (Az.P) Q. It is then obvious that rewriting this subterm of M’ to
(P |z = Q) yields a term representing .

To prove the claim we consider the following two cases:

- The redex in g is represented by a subterm of M of the form {--- (Az.P | Dy)---D,) Q.
In this case a sequence of lift steps will expose the redex:

{-+-(Az.P} D1} Dpn) Qp (- {(Az.P) Q| Dy)--- D) .

The term on the right-hand side represents g' (which in this case is the same as g).

- The redex in g is a represented by a subterm of M of the form {--- (z; | Dy,)--- Din,y @, with
M containing the following equations:

I = ("'(-r’.! | D?l)"‘D2n2)1"':$n = (---{Az.P I Dnl)"'Dnnn) .

Lambda Calculi plus Letrec 51

a

In this case we reduce the subterm by lift to {---{z; Q | Dy,) -+ Di,,} and we reduce the
equations by internal merge to

Tl =x21D11:""D2np"':In = I‘\I-P'nDnl.:"'sDnn.. .

We then substitute variables until we have the subterm z,, Q. The term we obtain in this way
still represents g. We then use substitution to rewrite the subterm to (Az.P) Q. This takes
care of moving the lambda term into the right scope. If we were forced to copy we are done.
If we should not have copied then the nodes coming from the equation z, = Az.P are now
garbage. Like in the proof of Theorem 5.7, we proceed by rewriting the term to application
lift and merge normal form. It is then possible to rewrite using garbage collection to a term
representing the graph with the node belonging to z,, = Az.P removed. Because of the special
form of the set of garbage to be removed, an entire scope, and because the lambda abstraction
corresponding to this scope already has a name we do not need naming.

We can then conclude that Aoj} . is complete with respect to lambda-graph reduction and
unwinding.

We present next our cyclic call-by-name caleulus, which for simplicity contains the more general
forms of the lambda lift and the garbage collection axioms. We do not include the naming axiom,
since the inclusion of the substitution axioms makes it derivable.

DEFINITION 9.6. The call-by-name cyclic calculus (Aopame) has the following axioms.

Bo:
(Az.MIN = {(M|z=N)

Substitution;

(Clz] | = = M, D) = (CM]|z=M,D)

(N|z=Clzi),z; =M, D) = (N|z=C[M],z,=M,D)

Lift:

(M| D)N = (MN|D)

M{N | D) = (MN|D)

Az (M | D,D") = ((Az.M | D)| D" D 1 D' and z not free in D'
Merge:

(M |z={(N|D),Dy) = (M|z=N,D,D,)

(M| D){D") = (M|D,D)

Garbage collection:

(M | D,D') = (M|D) D' L{M|D)

(M]) =M

Copying:

M = N Jo:V=aV,N° =M

Ao ime (Given in Table 4) constitutes the call-by-name cyclic rewriting system.

From now we will omit the subscript 'name’ if it is clear from the context that we intend the
call-by-name cyclic lambda calculus.

PROPOSITION 9.7. Given M,Ne Ao. oM =N if M = N.

The main difference between Ao,ume and the A¢-calculi [AK94, AK96b] involves to the substi-
tution and merge operations. Here, these operations may occur in any context, whereas in [AK94,
AKOGb] they cannot occur on a cycle. For example, the A¢-calculi allow the following substitution

step

(z|z=Azy(82),y = Awy(Sw)} = {z |z = Az.{dw.y(Sw))(Sz),y = Aw.y(Sw)) |

Lambda Calculi plus Letrec 52

but disallow the following one
(z| = Az.y(S2),y = Mw.z(Sw)) = (z | z = Az.(Aw.z(Sw))(Sz2),y = Aw.z(Sw)) .

The first rewriting is an example of an acyclic substitution, that is, we substitute the definition of
y in the definition of x, where z and y do not lie on the same cyclic plane. Instead, in the second
rewriting, = and y lie on the same cyclic plane. This is an example of a cyclic substitution. Cyclic
substitution is the cause of non-confluence, as shown by the following example (see Fig. 35, in which
we have omitted the garbage):
[
[
|

/ | AN
| ‘ N |
WY
e @

Figure 35. Failure of confluence of Ao

ExAMPLE 9.8.

M = (z|z=2Azy(Sz),y = Aw.z(Sw))

= (z|z=Az.(dw.z(Sw))(Sz),y = Aw.z(Sw))

= {z |z = Az.2(5(52)),y = lw.z(Sw)) (*)
M = {(z|z=Azy(S2),y = ;w.z(Sw))

= {z|z=Az.y(5z),y = Mw.(Az.y{S2))(Sw))

= {(z|z=2Azy(Sz),y = 2w.y(S5(Sw)) (##)

The terms (*) and (**) (which correspond to the bottom-left and bottom-right graphs, respectively,
of Fig. 35) have no common reduct, since in the term (*) an even number of S's is reachable from
the root z , while the term (**) will contain an odd number. This ‘out-of-synch’ phenomenon is
also observed by reducing (in at most w steps) the infinite terms that arise by unwinding the cyclic
graphs. This counterexample is more subtle than the one presented in Remark 8.5, since in here
there are no operations (that are sound with respect to the infinitary lambda calculus) that can be
introduced to regain confluence. By disallowing the substitutions for x and y the counterexample
disappears. In [AK96b] the only way of making the two implicit redexes y(5z) and =(Sw) explicit
is by using the operation of copying:

{z|z=Azy(Sz2),y = dw.z(Sw)) Ty

(x| z=Azy(5z),y = dw.g’'(Sw),z' = Az.y'(5z2), ¥ = Mw.z'(Sw))—»
(x| £ = Az.(Qw.z'(Sw))(Sz),y = Mw.(A2.y'(52))(Sw), =" = Az.y'(S2), 4" = Mw.z'(Sw)) .

Lambda Calculi plus Letrec 53

Now, substitutions for y and z' are allowed thus exposing the underlined redexes. However, new
implicit redexes are created.

Moreover, in the A¢-caleuli, the merge rules had the proviso that only acyclic letrec’s could be
merged. For example, the following rewriting is allowed:

(z |z = (A2y(S2) |y = Awy(Sw))) (& | = = Az.y(52),y = Muwy(Sw)) |
but not the following one:
{(z|z=(Az.9(Sz} | ¥ = Aw.z(Sw)})) = (z | z = A2.9(S2),y = Mw.z(Sw)) .

If the above step were allowed then confluence would have been lost, since the acyclic substitution
for y is turned into a cyclic substitution once the internal letrec is removed, as shown in the diagram
below.

(x| z = {M2.y(Sz) | y = Mw.z(Sw))) ~(z | £ = Az.y(Sz),y = Aw.z(Sw))

(x| z = (Az.(Aw.z(Sw))(Sz) | ¥y = dw.z(Sw)))

In summary, in [AK94, AK96b], the focus was on finding a confluent calculus that could express
cyclic lambda graph rewriting. Instead, we do not take confluence as the guiding factor in designing
the calculus. Thus, we do not restrict the calculus, but introduce a new way of proving the consistency
of the calculus. More specifically, we introduce an approximate notion of confluence - confluence up
to information content. This notion allows us to abstract away syntactic details.

10. Approximate notion of confluence

Once cycles are admitted it seems natural to consider infinite normal forms instead of normal forms.
We thus introduce a new property, confluence up to a quasi order, which guarantees uniqueness of
infinite normal forms. In the rest of this section we work with abstract rewriting systems, since we
do not need the extra structure terms have to define the necessary notions.

10.1. Confluence up to a quasi order

We start by introducing a few notions about abstract rewriting systems where the set of objects also
has a quasi order defined on it.

DEFINITION 10.1. An ordered abstract rewriting system (ARS) is a structure (A4, =, <), where
(A,—) is an ARS and (A, <) is a quasi order.
Given an ordered ARS (A, =, X). Then
- — is monotonic with respect to =< if

Ya,be Ara=b=a=b.
- — iz confluent up to < if
Va,b,ce A:a—wba—pc=>3dec A: b=ad,c = d .
- — is weakly confluent up to < if:

Va,b,ce A:a—pbawc=Idec A:bad,cred=<e .

Lambda Calculi plus Letrec 54

. = b a a — b
: / \ T
] A {
| b [3 1
| N ’ \ I
¥ X P 4 ' ¥
c = d d < e b = ¢ c = d
) @ (i) (v

(i) - is confluent up to <

(ii) — is weakly confluent up to <
(iii} +— is complete for = up to <

(iv) +— commutes with = up to <

Figure 36. Pictorial definitions

- We denote by = the reflexive transitive closure of the relation ((&=uU=)n=).
- We define m==<n .

See Fig. 36(i) and (ii) for a pictorial definition of confluence and weak confluence up to a quasi
order (in short, (weak) confluence up to). The relation between weak confluence and confluence is
expressed in the following proposition.

PROPOSITION 10.2. Given an ordered ARS (A, —,=). If = is monotonic with respect to < and
weakly confluent up to < then = is confluent up to <.

Proor. Elementary. O

It is obvious that given an ordered ARS (A, —, <} we may conclude that — is confluent if — is
confluent up to < and < € —». Moreover, we have:

PROPOSITION 10.3. Given an ordered ARS {A, —, <). If = is confluent and monotonic with respect
to X then — is confluent up to <.

PROOF. Trivial. 0
Like for normal confluence we have the following proposition:
ProrosiTioN 10.4. Given an ordered ARS (A, —+,=X). If — is confluent up to < then
Va,be Ataetr b= Jcec A:bwc,a<c.

Proor. Pictorial proof by example:

NN

- s

TA
~

Lambda Calculi plus Letrec 55

Next, we give an analysis of confluence up to in terms of some simpler properties. We begln with
some deﬁmtmns

DEeFINITION 10.5. Given an ordered ARS (A, —, <), and another reductnon relation = C—. Then
- +} is complete for —+ up to < if

Va,be A:a»b=>3Iccd:arnrc,b=c.

- We denote by o the reduction relation = \ .
- A o—r-conversion is denoted <.
- +— commutes with — up to < if

Va,b,ce A:awbjar»c=>3dec A: b d,c<d .
See Fig.36(iii) and (iv) for the pictorial equivalents of these definitions.

LEMMA 10.6. Given an ordered ARS (A, —,~). Let =C— such that

(i} — is complete for = up to %;

(ii}) — commutes with — up to <.

Then - is confluent up to <.

Proor. In diagrams:

13 (i)

B~—---H8

e
1A
=]
-
[F8

a

Less restrictive notions of confluence, such as confluence modulo an equivalence relation have
already been proposed [Hue80, DJ90}. We relate these notions to confluence up to.

DEFINITION 10.7. Given an ARS (A4, —+) and an equivalence relation ~ on A. Then
- reduction modulo (written as —) is defined by:

a—b,ifdabed: a~a a2 ~b.
- — is weakly confluent modulo ~ if
Va,a',b' € A: (a~»a',a—»b' = 30", 1" : o'=»a", b'4b",a" ~ V") .
- — is confluent modulo ~ if
Va,a',b, € A: (a ~b,a—wa’,bb = Ja",b": a'~»a" b'b",a" ~ ") .
- — is complete for — modulo ~ if

Va,be A: (a—»b=>3c,de A: b—rc,c~d,a—»d) .

See Fig. 37 for the pictorial equivalents.

Lambda Calculi plus Letrec 56

/ \ / \ ?
%
\
a' b' ﬂ.' br s Y
~ N p 4 ~ ' *
A Vs
* " e n}— * "o ";é— b==c ~ d
a b a b
1) (i) (iii)

(i) ~-+ is weakly confluent modulo ~
(ii) — is confluent modulo ~
(iif) — is complete for — modulo ~

Figure 37. Pictorial definitions

PROPOSITION 10.8. Given an ordered ARS (A, —+,=%). Definea~bifa<bandb<a. Then
(i) — is weakly confluent up to < if = is (weakly) confluent modulo ~.
(ii) — is confluent up to < if

(ii.1) — is complete for —, and

(ii.2) — is confluent modulo ~, and

(1i.3) — is monotonic with respect to <.

Proor. Point (ii) follows from the following diagram and point (ii.3).

d!

7
= ~ s
(i£.2) P :
s (i)
" A ¥
— ~ — e e
oy ~

O

Given an ordered ARS (A4,—,X). Let ~ be an equivalence relation such that ~C (< N *).
Then, confluence modulo ~ implies confluence up to <. There are however cases where we do have
confluence up to < and not confluence modulo ~, as the following example shows:

EXAMPLE 10.9. Consider the following ARS:

0 2 4

S

1 =3]

This ARS is not confluent, but it is obviously confluent up to < (the natural order on natural
numbers). It is immediately obvious that this ARS cannot be confluent modulo ~.

10.2. A techmnique to prove confluence up to

According to Lemma 10.6 it is sufficient to find a standard reduction —=C— that is complete and
commutative up to a quasi order to prove that — is confluent up to the quasi order. Next, we present
sufficient conditions that guarantee that these two properties lold.

Lambda Calculi plus Letrec 57

LEMMA 10.10. Given an ordered ARS (A, —, <), a relation »C—+ and an equivalence ~Cr. If the
following two diagrams hold

T ‘Q—QT
| |
| |
J |
¥ ¥

— M ~ .
~~ ~

then
(i} = commutes with — up to <, and
(ii} = is complete up to <,

PRrooF. (i) Follows from the left diagram. (i) Follows from the right diagram. O

The proofs of confluence up to in the rest of this paper will also use the fact that o~ C~ and

apply the lemma above with ~=+¢%. Thus, in each case we prove a lemma stating the following
diagrams:

T T

| |

| |

: v) ¥
= ——

2 2

In each case, to prove this lemma, called reduction lemma, we use a technique called decreasing
diagram technique [vO94]. This technique derives commutativity from local commutativity. It con-
sists of associating a label to each reduction step and giving a well-founded order on these labels.
If all local diagrams turn out to be of a specific kind, namely decreasing, then commutativity is
guaranteed.

DEeFINITION 10.11. Let |.| be the measure from strings of labels to multisets of labels defined by:
las . ..an| = {a;| there is no j < i with a; > a;} .

Then, the diagram
. o
o

by b

is decreasing if {a,b} 2 |ab; ... by and {a,b} > |bay ... a,.].

THEOREM 10.12. If two lobeled reduction systems are locally commutative and all local diagrams
are decreasing with respect to a well founded order on labels then the systems are commutative,

PRooF. See [vO%94]. D

We remark that we are free to give any label to any occurrence of a step. It is especially useful
to be able to give different labels to the same step occurring horizontally and vertically. However,
once we give a label to an occurrence of a step then it is fixed.

Lambda Calculi plus Letrec 58

The decreasing diagrams technique sometimes fails if there is duplication in both the horizontal
and vertical direction, e.g., there is no possible labeling that makes the following diagrams all
decreasing:

——— —_=
T T T
I | ¥
| | T
¥ ¥ ¥
- - - =g - =0 = -0 - = = -0

It is often possible to solve this problem by introducing a form of parallel reduction in, for example,
the horizontal direction. With respect to parallel reduction the three diagrams should then collapse
into the single diagram

i

)y
[
|

¥

- = — -

which can be made decreasing by ordering the parallel reduction larger than the standard reduction.

10.3. Infinite normal form

We define the infinite normal form of a term as the maximum information that can be obtained by
reducing that term. It may seem strange that the notion of infinite normal form depends on the
notion of information content, but all notions of infinitary reduction depend on the specific way of
defining the limit construction. We model the information content of a term as a function from the
set of objects of an ARS to a partial order. This function and the partial order induce a quasi order
on the elements of the ARS. The intuition of information content demands that the rewrite relation
is monotonic with respect to the induced order. Formally:

DEFINITION 10.13. The structure {(4, -+, <),w, (B, <)) is called an ARS with ordered information
content if:
- (A,—, =) is an ordered ARS
- — is monotonic with respect to <
- (B, <) is a partially order set
- wis a function A — B
a =% biff w{a) < w{d).
We often refer to w(a) as the information content of a.

If it is obvious which structure 4 = {{A, —, <), w, (B, <)} is meant then we say that A is confluent
up to (information content) instead of saying that — is confluent up to <.

DEFINITION 10.14. Given a partial order (B, <). We define the downward closure of a set ' C B,
denoted by L C, as
{beB|b<acC} .

DEerFINITION 10.15. Given an ARS A with ordered information coutent {(A, —, <),w, (B, <)).
- The infinite normal form of an a & A is defined as:

Inf{a) =1 {w(b) | a—#b} .
- A has unique infinite normal forms if

Va,be A:a < b= Inf(a) = Inf(b) .

Lambda Calculi plus Letrec 59

Next, we show that confluence up to guarantees that the infinite normal form is an ideal. Given
a partial order (B, <), a subset I of B is an ideal iff (i) I is non-empty, (ii) I is directed: Va,b €
IdceI,a < cand b<e, (iii) I is downward closed: Vee I, if3de B,d < cthende I.

PROPOSITION 10.16. Given an ARS with ordered information content {(A, =, <),w, (B, <)). If =
is confluent up to =< then Inf(a) is an ideal.

PROOF. Inf(e) is non-empty and downward closed by definition; it is directed from confluence up
to and monotonicity. £

REMARK 10.17. As pointed out in the above proposition, we do not require =+ to be confluent for
the infinite normal form to be an ideal. We require instead monotonicity {which is embedded in the
definition of an ARS with ordered information content) and confluence up to.

Confluence up to < is sufficient but not necessary for the infinite normal form to be an ideal.
For example, if we have a =+ b, a =+ ¢ with 2 < § < c then Inf{a) is still an ideal, but the rewriting
system is not confluent up to <. However, confluence up to = is a sufficient and necessary condition
for the uniqueness of infinite normal forms, as expressed in the next lemma.

LeEmMMA 10.18. Gliven an ARS A with ordered information content ({4, =, <), w, (B, <)). = 15 con-
fluent up to < iff A has the unique infinite normal form property.

PROOF. (=) Trivially Inf(b) C Inf(a). Let a' € Inf(a) be given. There exists an a” such that a—#a"
with a’ € w(a"). By confluence up to =< there exists ' such that b~»b' with e < ' and therefore
a' < w(t') so o’ € Inf(b). (<) Trivial. O

LEMMA 10.19. Given an ARS with ordered information content ((A,—, %),w, (B, <)). Let (4,<,4)
be en ARS. If (A, <a) commutes with (4, =), and <4 is monotonic with respect to < then

a <44 == Inf(a) C Inf(a") .

PROOF. Suppose a—»b then (assuming w.l.o.g. that <, is transitive} by commutativity we have
that there exists a b’ € A such that a' =)' and b <4 I'. Because <, is monotonic with respect to <
we have that b <. O

In the following two sections we are going to give two applications of the use of confluence up to
information content. We start by studying Ro™ (given in Table 4, and not to be confused with Ry
given-in the previous part) and then we return to Ao} .. In both cases we will use the technique
described in Section 10.2.

11. Tree unwinding as an infinite normal form

In this section we consider the rewriting system Ro™, as defined in Table 4. We first define the
information content of a term. The notion of information content is similar to the apprezimate
normal form of Wadsworth (Wad71}, also called direct approzimation by Lévy [Lév78], but considers
substitution redexes rather than J-redexes. Thus, we obtain a form of unwinding of the term rather
than a Bohm tree. As described in [Lév78], the information content is obtained by first replacing the
redexes by (1, and then sending compatible redexes to (1. A compatible redex is not a redex, but could
become so by replacing € with some other term. For example, in lambda calculus QM is a compatible
redex because it could become a -redex by replacing £ with a lambda abstraction. In our setting, we
do not send all redexes and compatible redexes to {1, since that would mean sending every term that
contains an £} to Q. In fact, suppose a term N is of the form C[{], then by induction on the context

Lambda Calculi plus Letrec 60

N could be £ or one of the following M C'[Q], C'[Q) M, Az.C'[Q2),{C'[Q)] | D), (M | z = C'[Q}], D).
By induction hypothesis we would obtain:

MQ,Q M \.0,(Q| D), (M|z=92,D) .

Now, the first three terms are compatible lift redexes, the others compatible merge redexes. Hence,
the information content of NV is (.

Even though, in general, giving every term the same information content makes the system an
ARS with ordered information content that is confluent up information content, it does not tell us
anything useful because every term is equated.

In deciding what is the information content of a term, we first divide the reduction rules in two
subsets: the rules that are administrative in nature and those that do the real work. Since in here
the final goal is to compute the possible infinite unwinding of a term, the only rule that corresponds
to an increase in information content is the external substitution rule. However, we still need to be
careful. Consider the reduction

(z |z =dy.z) = Mz |z =Ay.z) = Ay Ay.z |z = dy.x) = - -

If we send all external substitution redexes to {1 then every term in the sequence would be sent to
0. Instead, we want the above reduction to correspond to the following increasing chain:

Q<R <Ay dy <o

This can be accomplished by sending to € all the occurrences of the variables that could be replaced in
an external substitution step, and then removing all the inaccessible equations from the environment.
This leads to the following definition.

DEFINITION 11.1. Given M £ Ac. The Ro " -information content of M is the normal form of M
with respect to the rule:

Mz =M, -, 20 = Mn) 55550 Mz :=Q,--+,zq =1 .
We denote this normal form by strip(M).

The strip function maps cyclic terms to plain lambda calculus terms that include the constant §2.
We still denote this set of lambda terms by A. We order these lambda terms and also cyclic lambda
terms with the order <gq, which is generated by the axiom £ <q M, for every term M. We can also
describe the order <gq by the single rule rewriting system M - Q, i.e, M <q N iff N-z# M. Given
a set of (cyclic) terms S, (5, <q) is a partial order.

We now have a set of terms Ae (which includes 2 as a constant), a rewriting relation induced by
the rewriting system Ro™ (written as ——), a function that computes information content (strip)
and an order to compare information contents (<gp). Together they form an ARS with ordered
information content:

ProprosiTION 11.2. ((Ao,E&,jnﬂ),strip,(strip(/\o),Sn)) is an ARS with ordered information
content.

PRrRoOF. Trivial. O

To prove confluence up to information content for Ro™, we use the technique of Section 10.2. We
start by introducing the notion of standard reduction, which is complete with respect to information
content. The idea behind standard reduction is that we take a simple subset of the rewriting system,
such that only standard steps can increase information. Common features of all notions of standard
reduction defined in this paper are that a standard redex is never duplicated or destroyed by any
other redex and that only a standard redex can create a new standard redex.

Lambda Calculi plus Letrec 61

DEFINITION 11.3. Given M, N ¢ Ao. M standard rewrites to N (written as M = N) if:

M = E|(Efz] | z = M, D)] 2 E{(E[M] |z = M,D)] = N

where
E::=D|EM|ME|A::.E[(E|D).

A non-standard step cannot change the information content:

LEMMA 11.4. Given M\N € Ao. If M ot IV then M and N have the same information, i.e.,
strip(M) = strip(N).

PROOF. For all redexes except external substitution the result is trivial. If we have a non-standard
external substitution step

Ci[{Calz] | = = M, D)) o=+ Cy[(C2(M] | z = M, D))

then either C or C; is not an evaluation context. That is, either C; or C, is of the form C* KP |
y = C", D'}]. For both cases we obviously have that the information content does not change. O

Before studying the interaction between standard reduction and normal reduction, we make the
following observation.

ProrosiTION 11.5. (C[{(M | D)) |z ={M | D), D) =5t (CM]|z=M,D,D').

PRooF. By an induction similar to the proof of Lemma 8.1 we can prove that
C{M | D)) 5> (C[M) | D) .

We then have

(CIM]| D) |z =(M|D}),D) = ((C[M]|D)|z=M,D,D
o (C[M]]D,:L':M,D,D')
(CiM}|z=M,D, D)

ep

O

LEMMA 11.6. (REDUCTION LEMMA) We have the following two diagrams:

Ro) Ro
—_— — o
T T
Ro : Ro Ro : Ro

dJ H’ s H ‘_’u

Re ° ‘ 3 Re o ¥
—— i) ——— e +—

Ro Re Ro Re

PROOF. We reason by cases on the top step. For simplicity we omit the subscript Ro from the
reduction relation.

- Left diagram for internal and external substitution. The result follows from the following dia-
grain:

o5
[
|
|
¥

-—

Lambda Calculi plus Letrec 62

We can prove this diagram by tiling with the elementary diagrams below:

T
1
I
!
— ...__;..v

These elementary diagrams cover all cases of interaction between a standard step and a sub-
stitution step: The top step could be disjoint from the standard step (middle diagram), could
be the same (left diagram) or could be nested inside the term substituted by the standard step
(right diagram). This last situation is depicted below:

E[(Elz] | = Clyl,y = M, D)] —— E[(E[s] | z = C[M],y = M, D)]

E[(E[Cly]] | = = Cly)y = M, D)]

Even if £ = y we can close this diagram by reducing to E[{E[C[C[z]] | z = C[Clz]), D)].

Right diagram for internel and external substitution. The result follows from the fact that a
non-standard reduction does not increase information content (Lemma 11.4) and the following
claim:

— (11.1)
|
|

-_—— — —ov

Before we can prove this claim we need to introduce some auxiliary notions. First, we must
distinguish between two kinds of substitution rules: cyclic substitution (cs) and unnested sub-
stitution (us). Second, we need to define complete developments of disjoint sets of cyclic and
unnested substitutions.

A cyclic substitution is an internal substitution of the form
(M| z=Clz],D} = (M |z =C[C[z]], D) -

Two cyclic substitution steps are disjoint if the involved equations are syntactically disjoint,
e.g., in {z | £ = zy,y = y) the underlined variables refer to disjoint cyclic redexes. Instead,
in {z | £ = zz,y = (Cly] | z = Ci[z])) the two underlined variables = refer to two non-
disjoint cyclic redexes, the same holds for the underlined variables y and z. A parallel cyclic
substitution step (||cs) is the reduction of a set of disjoint cyclic substitution redexes.

An unnested substitution step is a substitution step {either external or internal) of the form
(M |z=Clyl,y=N,D)— (M |z=C[N],y=N,D) ,

where r £ y. Two unnested substitution redexes are disjoint if the redexes do not occur in the
terms we substitute, e.g., in (M | z = C[y],y = C[z], z = P) the underlined variables y and =
denote two unnested substitution redexes that are not disjoint since redex z occurs in the term
we substitute for y. In {y | ¥ = z,w = z £,z = z) the underlined variables = and y form a set
of three disjoint unnested substitution redexes. A parallel unnested substitution step (||us) 15
the reduction of a set of disjoint unnested substitution steps. Every single substitution step is
cither a cyclic substitution step or an unnested substitution step.

Lambda Calculi plus Letrec 63

The claimed diagram 11.1 then follows from the following diagrams:

llcs lics fies llus

2 . (11.2)
I !
I {
I [
¥ ¥

] - - -0~ =0 - ——
[[= Iles fies Jlua {lus

These diagrams follow from analyzing the interaction between parallel cyclic substitution,
parallel unnested substitution and standard substitution:

- The relation between a parallel cyclic substitution and a standard substitution step can
be one of the following:

- The redexes are disjoint. Trivially we fall under the first diagram of 11.2.

- The standard redex replaces « with M and some of the cyclic redexes occur inside
M. Because the replacement of z is a standard step (i.e., it never occurs in the
right-hand side of an equation) it cannot happen that the copy of M, made by the
standard step occurs inside the IV of a cyclic substitution redex y = N. That is, the
following rewriting would not happen

Wly=(zlz=Clyh = wly={(Cly]|z=C[y))) .

Note that the descendants of the cyclic redex y with respect to the above rewriting
are not disjoint. However, the descendants of cyclic redexes with respect to a standard

reduction are disjoint. Therefore, they can be contracted in a single parallel step. So
again we fall under the first diagram of 11.2,

- We have a term of the from C,[(Cs[z'] | z = C;[z?), D)], where the z superscripted
with 1 is the variable replaced by contracting the standard redex and the z super-
scripted with 2 is a variable replaced by one of the cyclic steps. This means that
to close we have to do the standard substitution step, another substitution step and
then the parallel cyclic substitution step. This falis under the second or third diagram
of 11.2, depending on the extra step being standard or not. Le.,

{z |z = Ay.(\y.x)) - (z|=z : Ay.z)

!
v
{My.z |z = Ay.z)
T
t
. B
(M-(Ay.z) | = Ay (My.z)) = - = (Ay.(Ay.z) | = dy.z)

- Given a parallel unnested substitution step consisting of only non-standard steps and a
standard step we are in one of the following cases (see the last diagram of 11.2):

- The standard step replaces a variable z with a term M and some of the unnested steps
replace variables inside M. The descendants of the unnested redexes with respect to
the standard reduction are still disjoint redexes, and thus we may close the diagram
by first doing the standard ones and then in one parallel step the non-standard ones.

- The standard step can be added to the set of disjoint unnested redexes and we close
like in the previous rase.

Lambda Calculi plus Letrec G4

- DBoth diagrams for the remaining rules. The result follows from the fact that none of these
steps can increase information content (Lemma 11.4) and from the following claim:

N
[
[
~ _y

where we do not have substitutions in the horizontal direction. This claim follows from the
following two elementary diagrams:

T T
| |
) |
= ginpai¥ oz ¥

For all rules, except internal merge, these diagrams follow from the fact that there are no
critical pairs, and that the rules in the horizontal direction cannot duplicate a standard redex.
A critical pair between internal merge and standard substitution is shown below:

(Cle] |z = (M| D),D') (Clz] |z = M,D,D')

| |

(CUM | D)) | = = (M | D},D') - - = (C[M] | z = M, D, D)

The bottom conversion follows from Proposition 11.5.

O

LEMMA 11.7. Given ((Ao,'ﬁ,jno),strip,(strip(/\o),Eg),-ﬁi).

i) ==+ is complete up to <n..
Ro

(ii) v commutes with o up to ZRo.
Proor. From Lemmas 11.6 and 10.10. O
THEOREM 11.8. Given ({Ao, 4=+, <o), strip, (strip(A), <q)). =+ 15 confluent up to <.
PRroOOF. Follows from Lemmas 11.7 and 10.6. O
COROLLARY 11.9. {{Ao, 5=, =%n.), strip, (strip(A), <p)} has the unique normal form property.
PRrROOF. From the above theorem and Lemma 10.18. O

In Section 15, we will define unwinding of cyclic terms to the terms of the infinitary lambda calcu-
lus, and show that the unwinding of any cyclic term M is the least upper bound of the infinite normal

form computed with respect to {{Ao, o Ro), strip, (strip{A), <q)) (written as Infr.~(M)).

Lambda Calculi plus Letrec 65

Po:
(Az.M)N e’ (M|z=N)
Ezternal substitution:

{Clz}|z=M,D) — (C[M]|z=M,D)

Liﬁ; eval
(M| D)N wart (MN|D)

Table 5. Evaluation calculus: Aogyq

12. Basic properties of the cyclic lambda calculus

We now turn to the rewriting system Ao™. As in the previous section, we show that o™ is an
abstract reduction system with ordered information that is confluent up to information content. We
will prove the latter by defining a notion of standard reduction that is complete and commutative
up to information content.

As for Ro™, in computing the information content of a term we do not send all redexes to).
Bo and the occurrences of variables that correspond to external substitution redexes are sent to Q.
As in lambda calculus, M is also sent to Q. The inaccessible equations are then removed.

DEeFINITION 12.1. Given M, N € Aoc. The information content of M is given by the function w, which
given M returns the normal form of M with respect to the following rules (also called w-rules):

(Az.M)N — Q fuw
{Clz}|z=M,D) — (C[Q]|z=M,D) esw
QM — 0 Qw

M|D) - M D1 M gCw

We define M <,ame N if w(M) <p w(N).

The w-function is well defined due to the termination and confluence of the w-rules (due to
Newman’s lemma). Termination of the w-rules follows from counting the number of non-{2 symbols
in every term. Local confluence follows from a simple check.

Examples: w({dz.yz [y = 1)) = Az, w({z |z =) = Q, w({zy | ¥ = Nz) = (zQ)z, and
w({zz | T = I)) = Q. Note that even though {zy | y = I}z is a lift redex, its information content is
not £,

PropPosiTION 12.2. .

(i) Given (Ao, <q, <name). <a is monotonic with respect {0 <name.
(ii) Given (Ao, = <name)- ot 15 monotonic with respect to <zame.

PRrROOF.

(i} Let us write N oM and N—»w(N). If we can show that —* commutes with —» then there
exists an M’ such that w(N)g#M' and M—»M'. From M'—»w(M) it then follows that
w(M) <q w(N). Commutativity follows from the following diagrams:

Q. Q. 0 0

| I] i
ﬂw[| fu,@w,= esw | esw,= Qu | Ow,= ECw | gow, =
v ' ' .

Q.= ,= .= .=

Lambda Calculi plus Letrec 66

where a comma between labels means or.

(ii) If the reduction is non-standard then the result is obvious. Otherwise, let M = C[R] vz [R'] =
N.If R is a lift redex then M ~;ame N. For R a fSo-redex or an external substitution redex
we have w(M) = w(C[f]} and C[Q) <q N, the result then follows from the first item.

O
PRoPOSITION 12.3. {(Ao, 5=*, <name), w, (w(Ao), <q)) is an ARS with ordered information.

Proor. Follows from the previous proposition. O

Next, we present a standard reduction strategy that is complete with respect to information
content. We restrict the system to the evaluation system of Table 5. We need Sc and external
substitution because those two rules potentially increase information content. We need lift to expose
fo-redexes that are implicit. We then restrict the standard redex so that it cannot occur in the
internal part D of a construct (M | D). We also disallow reduction of redexes that could be moved
into an environment by contracting a fo-redex. This guarantees confluence of the standard reduction.

We illustrate the basic idea behind the formal definition of standard reduction through an exam-
ple. Let us consider the term Az.({z | y = y}({Aw.w | y = y)z)). We start by looking for a standard
redex at the outermost position. Since we find a lambda, we look inside it and find a lift redex,
which we could neglect since the redex is not obstructing a fo-redex. Assuming we do neglect it,
we next look at the left argument of the application. Since variable z is a lambda bound variable,
it can never become a redex, so we start looking in the right-hand side of the application. We again
find a lift redex. This time we must reduce it because it is obstructing a fo-redex. This informal
discussion points out how we split lift redexes into two categories: those redexes that (will in the
future) obstruct a fo-redex (e.g., ((Az.M) | DIN and {(y | D)N | y = Az.M)), and those that never
will (e.g., {y | D)M). The redexes in the first category must be reduced and the other ones can be
delayed.

DEFINITION 12.4. Given M, N € Ao. M standard rewrites to N (written as M w— N) if:
M = E[R] -2 E[R =N,
where R and R’ stand for a Acgw-redex and its contractum, and E is defined as follows:

E Ar.E | (E I D) |APP[U-MI:"‘Mi—11ErMi+h'":Mn] | App[:]le?‘"aMn]
App O | AppO | (App | D)

where the ¥ must be bound by a lambda or {ree in the final expression.

il i

ExAMPLE 12.5. Az.({z | y = y)({Mw.w | y = y)z)) is partitioned as Ey[({z | y = p)({ww |y =
y)z))|, where E, is Az.0, or as Ey[{Aw.w | y = y)z|, where By is Az{z |y = 9)0. (z | z = y)y is
partitioned as Ea[z], where Ej is (O | z = y)y. The redex IT in {z | z = y}({I) is not a standard
redex, since (z | z = y)O 3 E[Q]. To make it standard, an external substitution step must first take
place.

PRrROPOSITION 12.6. Standard reduction is confluent,

Proor. Suppose the term M can be factored into two different evaluation contexts and redexes:
E\[R1] and E;[R;). We will use structural induction on the context E; to show that the two redexes
commute in precisely one step:

- Ey = Az.E| or E, = (E] | D): The context E; must be of the same form and we can use the
induction hypothesis.

Lambda Calculi plus Letrec 67

- E, = Applz, My, ---,E{, -+, Mp]: Now E; must be of the form App[O, Ny, -, Ny or of the
form App{z, Ny, -, E4, -+, Ny]. In the first case, R; is a lift-redex that commutes in one step
with Ry. In the second case, let i be the index where E} occurs and let j be the index where
E; occurs. If i = j we use the induction hypothesis. If i 3 j then the redexes are disjoint and
commute in one step.

- Ey = App|0, My, -+, My): The context E; must be of the form App[D, N, ,- --,N,] or of
the form App[x, N1,---, E, -+, Ny). In the first case, we know that R, or R, is a lift-redex
and that they commute in one step. In the second case, we know that R, is a lift-redex that
commutes in one step with Hs.

0
PROPOSITION 12.7. Given M, N € Ao. IfMowN then M ~pame N.

PROOF. All of the rules, except So and external substitution, only modify the environment or where
the environment occurs. Since all environments will eventually become garbage and then be removed,
we have that M =ame NV in those cases. To deal with Go and external substitution we first describe
each context C[0] as follows:

C u= App[D!Mr!M] | Az.C | (C|D> | (MI"E:C?D) IAPP[I,M,,C,,A’[]
| Apprz.M,M,---,C,--- ,M] | App[Az.C,M,,---, M,)
App == O} AppQO| {App| D)

where in the last production of the first clause n > 1.
Since the redex reduced in the reduction from M to N is non-standard it means that M is of
the form C[C"], where C’ is one of the following;

-C'={M|z=C",D)

- C'= Applz, M, ---,C",- -+, M|, where z is an external substitution redex
- C'= Applhz. M, M, .-, C",-.. | M]

- C' = ApplAz.C"', My, -+, My)], where n > 1.

In the first case, the redex only modifies the environment, so the information content does not change
because the w-rules throw away all environments. In the other cases, the w-rules will send CIC'|P]]
to C[Q?], for any P. Therefore, the information content of M and N is the same. O :

Next, we study the interaction of standard reduction with full reduction.

LEMMA 12.8. (REDUCTION LEMMA) We have the following two diagrams:

Ao T A T
|
Ao Aol Ao Ao
o I ° |
LI ° V Asm = » Y
- _A:‘— Aa = —4\0_ Aw

Moreover, in the left diagram the number of fo /es-steps in the right standard reduction 1s not greater
than the number of fo /es-steps in the left standard reduction. The number of Bo fes-steps in the right
standard reduction is smaller if a descendant of the top fo, es or is-redez is contracted in the standard
reduction.

PRroor. We will prove these diagrams by cases on the top step.

Lambda Calculi plus Letrec G8

- Left diagram for fo. Given any So-redex and a standard fo-redex we have that these redexes
commute in at most one step by descendants. A standard lift redex will commute in exactly
one step with any given Bo-redex. A standard substitution step could duplicate a Bo-redex if
the redex is inside the term that is substituted. Moreover, the descendant of a standard redex
along a ffo-redex is going to be a standard redex again. Hence, we have the following diagrams:

Ao

fo

T
I

lift | i
Y

o
o
i

- Right diagram for fo. The result follows from the fact that a non-standard step does not
increase information (Proposition 12.7) and the following claim:

e

= (12.1)

T

|

|

|

¥

-—— = -
Ba

Due to the non-standardness of the top step we are able to find a redex on the right-hand side
whose descendant is the given step. We can then reuse the local diagrams from the previous
case to obtain:

fo Ao
LN
T

| i
Beo | Bo life I lift es

So far however we do not know if the bottom steps are standard or non-standard. Since we

need non-standard steps at the bottom to tile with these local diagrams, we further analyze
the diagrams and get:

So Po
-

Ba
————
T

| | |
Geo flo lift (RH o8

Lambda Calculi plus Letrec

69
o o)
fél
A ———) ——n S ——)
T T T
fo es cs
fo v es Y es U
T T T
Ao Bo Po
= ¥ = Y v

- — - — -

fo
Diagram 12.1 follows by applying the decreasing diagrams theorem (Theorem 10.12) with the
ordering: Jes> g0 >4 g0, hiirt-

- Left diagram for internal and external substitution. The result follows from the following claim:

©8,is T
|
|
|
¥
—— —"—:.-
es,is
This claim follows from the following diagrams:
es o8 8 es
T T T
I I |
Ao 180 fift 1 hift es |es s =
! I |
Y ¥ Y —
T T e T T e T T e T =
is is is
T T T
| | |
Bo 180 lift 1 life es | es
| I {
o ¥ _wmy ¥
is is is
€8, 1. is is
T T T
I I |
1) | es [] | o3 es les
I I I
v ¥ ¥
Tes Tes Tis s Tes s

- Ri_éht diagramn for internal and external substitution. The result follows from the fact that a
non-standard step does not increase information (Proposition 12.7) and the following claim:

es,is

(12.2)

This claim follows from the following four diagrams

Lambda Calculi plus Letrec 0

is,es is,es es is,es
fo

es fo

T T
l v
| T lift
€8
B _OV v

tsles is,es is,c8

Il
4
|
|

- — = =
) l
~
[y
]
]
A

The first diagram of 12.3 can be proven by applying the proof strategy of the corresponding
case in the proof of Lemma 11.6. There we defined the notions of parallel unnested and cyclic
substitution steps and proved the diagrams in 11.2. We can prove the diagrams in 11.2 for the
current version of standard substitution by the same arguments as were used in that proof.
These diagrams may be combined to prove the first diagram of 12.3.

The other diagrams of 12.3 reflect that we can reorder any standard fo/lift step and any
substitution step. They also reflect that as a result of the reordering the substitution step can
only become standard if the other step is a So step.

By tiling we can then prove diagram 12.2. Note that it is vital that the standard reduction on
the left of the first diagram of 12.3 is a multi-step reduction. Without it we would not be able
to show termination of the tiling procedure.

Both diagrams at the same time for all other rules. In all diagrams for this case we have that
substitution and o do not occur in the horizontal direction. The result follows from the fact

that only So and the substitution rules can change the information content and the following
claim:
(12.4)

To prove this claim we first introduce the extended S-rule:
(- QAzM|Dy)---Da} N5 (- ((M |2 =N)| D1} Da) .

We also consider a different standard reduction consisting of 8* and external substitution in
an evaluation context. We denote this reduection by

The claim 12.4 trivially follows from the following diagrams:

—es — . (12.5)
i I \ \
i I \ \
o] | \ A
v ¥ a 4 d X

- —— = i - — e — - — — = S5 i i s ¥ B

We will first prove the first two diagrams. Apart from the situation where the top and left
step commute by descendants we have the following critical pairs:

(-+-(A2.M | D1y Da)N ——— (- (Az.M | Dy)+- Dy)N | D)

I I

(M |z =N) [D1} Da)= = = = (- (M |z = N) | Dy)--- D)

Lambda Calculi plus Letrec 71

(+-{Az.M | Dy)---Da}(N | D)

I

(M |z=(N|D))| D1} Dp) === {{- (M |z =N) | D1)---Dy) | D)

((+-(Az.M | Dy)--- Dn)N | D)

(- {Az(M | D1, Do) | D3)---Da)N

(- (Az(M | Dy} | D2)---Du)N

|

(-((M| Dy, Da) [z =N | Dg)+ Do) = = = {-++({M | D) |z = N | D) - Dy)

(Al AzM D) D} I} | DY) oo D)N ————— (- {(--+ (Az.M | D1} .-~ Da} | Di}--- DLIN

Al UMz =N [D) Da) DI DAY - Ds) = = = (oA ((M |z = N) | D1}~ Do} | Dy} D)

(A M| Di}---Di} | Digr) - Da) N (- (=MD} Di D) - Da) N

5

(UM z= N Di} o Di) | Digr} - Da) = = = (- {(M | 2= N) | D1} --- Di, Diga} -~ Da)

{Cle] |z = (M | D}, D') —— (C[z] | z = M, D, D)

| |

(CUM | D)) |z =(M | D}, D'} = - = {C[M] | = = M, D, D")
The bottom conversion follows from Proposition 11.5.

The third diagram of 12.5 is constructed as follows. Given a standard reduction we build a
staircase: If the step is also a modified standard step we draw it in the downward direction

otherwise we draw it in the left direction. We then fll in the staircase with the first two
diagrams of 12.5. For example if we have

A P T

then we construct:

- G o =

The fourth diagram follows from the simple fact that if M 1w N then M «» N.

Lambda Calculi plus Letrec 72

We now prove the moreover part of the statement. The result that in the left diagram the number
of fo/es-steps in the right standard reduction is not greater than the number of Bo/es-steps in the
left standard reduction follows immediately from the earlier diagrams. The fact that the number of
Bofes-steps in the right standard reduction is smaller if a descendant of the top So, es or is-redex is
contracted in the standard reduction, can be proven by induction on the number of steps. O

LEMMA 12.9. Given {(Ao, 5=, Zname), w, (w(A0), <n)).

(i) =5t 15 complete up to <pame.

(ii) 5ot commutes with — up to Zpame.
ProoF. From Lemmas 12.8 10.10. O
THEOREM 12.10. Given ({Ao, 527, Zname), w, (w(Ao), <q)). =3 is confluent up to <name-
Proor. Follows from Lemmas 12.9 and 10.6. O

REMARK 12.11. Note that the counterexample of confluence given in Example 9.8 does not con-
stitute a counterexample of confluence up to information content, since both terms (*) and (**)
contain the same amount of information, namely, §}. The term M has a well defined infinite normal
form, which is Az.Q.

Confluence and standardization up to information content allow us to relate the equational
reasoning to the operational behavior.

COROLLARY 12.12. Let an answer A be a Ao term of the form
Auv=A M| (A|D)|zd - M, .

Given a term M € Ao and an answer A. If o - M = A then there exists an answer A' such that
M T—I»A‘ by doing leftmost outermost steps.

PROOF. By Propositions 10.4 and 9.7 we know that there exists M; such that:
MﬁMl and A '_<name Ml -

It then follows that there exists an answer 4, such that M;—=»#4;. From completeness up to
information content of v (Lemma 12.9(i})) it follows that there is a term Ms with A; <pume M2
such that M w——» My. This M, is either of the form ({---{Az.M | D1} | ---} | Dy} or it is of the form
Applz, My, ..., M,). This last term is not necessarily an answer so we do all standard lift redexes to
normal form to obtain an answer.

So we have that there exists a standard reduction from M to an answer. Every leftmost outermost
step is a standard step, but not the other way round. So we will show by induction on the length of
this standard reduction that there is a leftmost outermost reduction to an answer.

Given M +—» A. If M is already an answer then we are done, otherwise M must be either of the
form App|R, My,...,M,], where R is the redex that is contracted in the first step, or of the form
Applz, My, ..., My)]. In the first case, we do leftmost outermost redexes until we have done R (The
leftmost outermost redex is either R or a lift redex and since lift reduction terminates eventually we
must do R.) If we commute this leftmost outermost reduction (which is still a standard reduction)
with the standard reduction we get a shorter standard reduction that ends in an answer and by
induction hypothesis we are done. (Remember from the proof of Lemma 12.6 that standard steps
commute in one step.) In the second case, we can just leftmost outermost reduce the term to lift
normal form to obtain an answer. O

Lambda Calculi plus Letrec 73

13. Semantics of the cyclic lambda calculus

We have shown that = is confluent up to information content. Hence, by Lemma 10.18 the infinite
normal form of any cyclic term M, written as Infy,(M), is well defined and unique. Next, we
want to show that the infinite normal form defines a congruence, i.e., Infyo(M) = Infy(N) =
Inf o (C[M]) = Infre(C[N]), for all contexts C. To that end, let us first show that the infinite normal
forms of a cyclic term computed with respect to oh e (written as Infsq) and s {written as

Infevar) are the same. By the infinite normal form of a cyclic term computed with respect to -, we
mean the infinite normal form computed with respect to {(Ao, & Zname), W, (w(Ao), <q)}.

PROPOSITION 13.1. Given a term M & Ao. Infyy(M) = Infea (M) = Infy.(M).

PRooF. Because —»C = € 5 we have:

Infsg(M) C Infevar(M) C Infao(M) .
Because —+ is complete for 5= up to information content we have that

Infre(M) C Infyg(M) .
]

This result allows us to prove that the infinite normal form computed with respect to full reduc-
tion (i.e., 5=*) is a congruence, by showing congruence of the infinite normal form computed with
respect to the evaluation calculus. Congruence with respect to the evaluation calculus is easier to
prove, since that calculus is confluent by using the complete development method.

We follow the proof strategy described in [Lév78]. We first prove monotonicity:
LEMMA 13.2. Given M,N € Ao. If M <q N then Infoyn (M) C Inform (V).

ProoF. From Proposition 12.2(i), <q is monotonic with respect to <pame. We claim that (Ao, <)
and {Ac, —) commute so by Lemma 10.19 we are done. The claimed commutativity follows from
the following diagrams:

Be fo lift cs es os

- —

-t — - PR S — - - — — e o —

[.

REMARK 13.3. The use of the evaluation calculus in the previous proof was necessary, because —=
does not commute with <q. See for example the following two critical pairs:

Qz=2zz) =—(Q}) Arfy |y =) —— Qzy|) |y = Q)
€a <n
(z|z=z1z2) ? Azy |y =z z) ?

PROPOSITION 13.4. Given g termm M € Ao and u contezt C.

Lambda Calculi plus Letrec 74

(i) If C[M)/#N then there ezists an My such that M -t My, (M) P without reducing
any redez inside M, (writien as —55#) and N—3»P.
1

(ii) If C[M] N then Clw(M)]—#Ny with N =pame N1.
(iii) Infeva(Clw(M)]) C Infeval (C[M]).
PRroor.
(i) Follows from the confluence of Aevai by complete developments.

(ii) The computation of information content can be captured by three rules:

Bw : (Az.M}N = Q
7 (M|$1=N],---,In= n) — M[I] = Q‘...’g_-n ;-—,_-Q]
Quw - QM o 0

The result follows from the following three diagrams:

ClM] —3— N ClM) —F—~ N ClM] —F— N

16 | s o | oo o | e
ClM) - F-= N’ CM] - = Cla] - -~ N'

where || r means a complete development of redexes of type r.

(iii) If M — N then cither N <q M or the w-step is a garbage collection step. The result then
follows from monotonicity of Infeva with respect to <q (Lemma 13.2) and uniqueness of the
infinite normal form.

O

REMARK 13.5. In general w-reduction does not commute with reduction:

(Az.y)z — (yle = 2)

|

Q ?
THEOREM 13.6. Given M,N ¢ Ac and a contert C. Then
Infre(M) = Infro(N) = Infso (C[M]) = Info(C[N]) .

PRroor. Same as in [Lév78). O

14. The cyclic lambda calculus and the traditional lambda
calculus

As it was done in [Ari96] for the first-order case, we can use the model to relate Ao to the traditional
lambda calculus. We show that cycles can be explained in terms of their expansions, which are finite

lambda calculus terms. To define expansion, we introduce the notation M GK_(es)}" N, which denotes

n steps of the Gross-Knuth strategy applied to the external substitution redexes occurring in M (i.c.,
all external substitution redexes are performed). If M does not contain any external substitution

redexes we still write M TR N. Recalling the definition of the strip function {Definition 11.1)

we define:

Lambda Calculi pius Letrec 75

DEFINITION 14.1. Given M € Ao.

i) The n'® unfolding of M, written as My, is given by M ————" M,,.
GK{es)

(ii) The n'® expansion of M, written as M™, is the term strip(M,).
We will build towards the main result with two lemmas. The first lemma relates suitable Bofes-
reduction sequences on graphs to f-reduction sequences on lambda calculus terms. The second

lemma. relates each piece of information derivable from a cyeclic term to information derivable from
an expansion of that term.

LEMMA 14.2. Given M, My, M, € Ao, If ME»Ml <* M2 such that My—»M, is a complete devel-
opment of all the esternal substitution redezes created by the fo-steps then strip(M)?»strip(Mg).
PRrooF. We distinguish cases by the number of fo-steps n:
n = 1. Given
P = C[(Az.M)N] T CliM|z=N)C[(Mlz:=N]|z=N)=Q .
We will prove by structural induction on C[O] that either strip(P) - strip(Q) or strip(P) =

strip(@).
- C = 0: Working from both sides we get

strip((Az. M)N) = (Az.strip(M)) strip(N)

aad strip({Mfz := N] |z = N)) = strip(M[z := N])
strip(M [z := strip(NV)])

strip(M)[z := strip(N)] .

It then follows that

strip((Az.M)N) — strip((M[z := N] |z = N)) .

- C = My.C': Follows from the fact that strip(Az.M') = Az.strip(M’) and the induction
hypothests.

~C=C"Mand C =M C": Follow from the fact that strip(M' N') = strip(M’) strip(N')
and the induction hypothesis.

-C={(C"|z1 =Ny, -+, T = Np): Follows from the fact that

strip((M' | z, = N1,---, 2z, = Np2)) strip(M'[zy :=Q,- -,z 1= Q))

strip(M"){z, :=Q, .-+, 2, := Q)

and the induction hypothesis.
-C={M'|y=C' 2y = Ny, ,z, = Np): We have the following simple situation:

strip(P) = strip(Q) = strip(M')[z; :=Q,---,z,:=0Q] .

n > 1. We will reorder the —a* =* subsequence into an equivalent {?;} —*)7T sequence. We

use induction on the number of Bo-steps. If we are given a single Bo-step we are done. If we
are given more than one, there must be an outermost fo-redex. We reorder the f[o-sequence,

Lambda Calculi plus Letrec 76

preserving it's length in such a way that this step is at the end. Let M ——}M <3 My, we

then construct the es-sequence contracting all created es-redexes in M, and we commute this
sequence with the last fo-step and the original es-sequence. What we obtain is:

P

fo es

The single Bo-step at the bottom follows the fact that all the es-steps on the left occur disjoint
from the Bo-redex or inside it.

O

LEMMA 14.3. Given M, N € Ao. If M—-#N then there exists an n and P € A such that M“—»P
and N <pame P.

PRrRooF. Without loss of generality M r=* V. Let us first find the n,

We divide the es-redexes contra{.ted in a reduction sequence into two categories: those created
by a Bo-step and those created by es-steps or already present in the first term of the sequence.
We remind the reader that So created es-redexes cannot create new es-redexes. Let N = Ny. Let
the construction have proceeded up to M; Ho# Ni. If the sequence from M; to N; contracts only
Po-created substitution redexes then we take n = i, otherwise by Lemma 12.8 we can find an Ny,
such that M;yy =# Niyy and N; Xpame Nig1. Moreover, the fact that the sequence M; ot N; does
at least one es-redex present in M; implies that there are less fo/es-steps in My ~» Niy, than in
M; +» N;. Therefore the construction terminates and we have found an n such that M, —s N, by
doing only es-steps created by Bo-steps.

Let us now find term P. We show that starting with the reduction M,—»N, we can find a
reduction of the form

M lirk” Ao _5;» lift” fo lift Q b

where the external substitution multi-step sequences following the multi-step Bo-steps do precisely
the created redexes and where N, <uame Q. To prove this we group the reduction sequence from M,
to IV, into a sequence of fo, lift and es multi-step reductions. We assume these multi-step reductions
consist of at least one redex. We proceed by induction on the number of these multi-steps. The head
multi-step can be a lift multi-step or a So multi-step. In case of a lift reduction we apply the induction
hypothesis to the tail. In case of So-reduction we construct a new sequence by reducing all newly
created es-redexes to norinal form. This reduction is finite. Then we commute this es-reduction with
the tail. Observe that the head multi-step of the new tail cannot be a non-empty es-reduction. By
induction we are done. In a diagram:

Bo
| | |
es| es | es | e8|

2 A

The result then follows from Lemma 14.2 and the fact that if M
O

==+ N then strip(M) = strip(N).

lift

Notation: Infy (M) denotes the infinite normal form of a lambda term M computed with respect
to {{A, 5, Zname),w, (w(A), <p)) (as described in {Lév78)).

Lambda Calculi plus Letrec 7

THEOREM 14.4. Given M € Ao. Then Inf(M) = |J{Inf,(M*) [i > 0}.
PROOF.

"2" Let i be given. Because —» C <= we have that Infy(M?) C Inf(M’). The result then follows

from monotonicity with respect to the Q-ordering (Lemma 13.2) and uniqueness of the infinite
normal form.

"C” Follows from Lemma 14.3.
O

15. The cyclic lambda calculus and the infinitary lambda cal-
culi

In this section we study the relation of Ao with the infinitary lambda calculi of Kennaway et al.
[KKSdV95]. To disambiguate a reduction in Ao from a reduction in the infinitary lambda calculus
we will sometimes subscript the latter with A. Reductions in A*® can be of transfinite length.
Reductions consisting of either finitely many or at most w steps are written as —»<v, Kennaway et
al. {KKSdV95] define infinite reductions as strongly convergent reductions, i.e., reductions in which
the depth of the contracted redex tends to infinity. Based on different depth measures, they developed
eight different infinitary calculi. More precisely, given the three contexts: Az.[], [¢, and ¢), the
different depth measures result from assigning different depths to the hole. A depth measure of 0 » ¥,
+0+, and * %0, where the symbol * stands for either 0 or 1, signifies that the depth measure does not
increase by going through a lambda-node, the left branch, and right branch of an application node,
respectively. For example, in the term Az.z{zz)w which is displayed below:

the depth of z according to 001, 101 and 111-calculiis 0 +0+1+1=2 140+1+41= 3 and
1+ 1+ 1+1 =4, respectively. Among the eight calculi, there are three, namely the 001, 101 and
111-calculi, that are confluent if the calculi admit next to the S-rule the following L-rule:

s .+ Q2 if 5 is O-active
where O-active means that s always has a redex at depth 0. The meaning of a term is then its unique

infinitary normal form.

We define the unwinding of cyclic terms to infinitary terms as follows:

DEFINITION 15.1. Given a term M e Ao, the (possibly infinite) tree unwinding of M, written as
M*® is defined as

M*™ = lim M" .

n—+00

A® denotes the set {M*> | M e A®}.

Note that both the 001 and 101-calculi do not contain all terms that could arise from unwinding
cyclic terms, e.g.,, {z | z = Az.z)* is illegal in 001 (but legal in 101) and {z | ¢ = z2)* is

Lambda Calculi plus Letrec 78

illegal in 001 and 101. The reason is that these terms cannot be reached with strongly convergent
reductions starting from finite lambda calculus terms. To relate Ao to these calculi, we could define a
different notion of unwinding or an equivalence relation on Ao terms in such a way that the canonical
representative of each class corresponds to a 001 or a 101-term. However, this would complicate our
system with further rules. The only calculus that relates to e is the 111-calculus, with respect to
which we prove soundness and a weak notion of completeness, namely, if M % —=*s then each finite
prefix of s can be obtained in Ao by reducing M. For the completeness result to hold the evaluation
calculus (see Table 5) suffices.

We have now introduced three notions of unwinding:
- The unwinding of a graph to an infinite tree,
- The Ro™ infinite normal form of a cyclic term.
- The unwinding of a cyclic term to an infinitary term.
We will now show that these notions are the same, in the sense that they yield isomorphic objects.
The relationship between the first and last notion established in the following proposition is useful
in establishing the soundness of Ao with respect to A.

PROPOSITION 15.2. Given a term M in Ao. Then M™ is isomorphic to p(M)".

PRrooF. The set of infinite trees is a complete metric space when we define d(g, h) = 277!, where p is
the shortest path exposing a difference between g and h. We have that M is the limit of M, M2,

We also have that p(M)¥ = p(M)* = p(Ma)}* - - -. From the fact that d(p(M;)*, M*) == 0 it then
follows that p(M)* = M. O

PROPOSITION 15.3. Given M € Ao. We have | |(Infro~(M)) = M.

PROOF. From the fact that for each i we have that M* € Infro~(M) it follows that M <g
|J(Infro~ (M)). From the fact that if M w=—» N then there exists an i such that strip(N) <q M" it
follows that | |{Infre— (M)) <q M= O

We continue by relating one g-step in the infinitary calculus to a reduction sequence in the cyclic
calculus. Let us first show that rewriting is continuous. Notation: If ¢ is a tree, " denotes the finite
tree truncated at depth n. s —E+ t denotes a reduction in the infinitary lambda calculus of redex

located at path r.

LEMMA 15.4. Given an ascending sequence (8;)%, C A with limit 5. If s 23 t then there exists

ann such that t =lim {¢; | s; -%} 73 3

PROOF. Let p be the depth at which the redex contracted in the step s —E) t occurs, i.e., the length

of path r. By definition of limit there exists n from which onward the sequence s; does no longer
change at a depth less than p + 2. For this n it is obvious that at least the application and the
lambda of the redex in s are exposed and therefore can be contracted. The existence of the limit
and equality of the limit to ¢ is best shown using proof by picture. Assume that s = (Az.s;)s,. In the
following picture we show what happens when you take the prefix of depth p + 2 in the left-hand
side and transport it to the right-hand side and compare it to the prefix of depth p.

Lambda Calculi plus Letrec 79

depth n +2

It follows from the picture that when s' <g s <g 5 and s —=* t' and 5" =+ t" then
t' <q t" <q t. Moreover, we have:

Yrdme¥m > mg 1 1™ <q tym .
From these two observations and the fact that ¢; <q t the final result follows. O

LEMMA 15.5. Given a term M € Ao. If M™ Ft then M-;—'»N such that N> =,

PROOF. Let r denote the redex contracted in the step from M to t. Due to continuity of the infinitary
lambda reduction (Lemma 15.4) there exists an n such that :

t = lim{; | M '-E} f.,‘}?_f_n ;

By an analysis of stripping, the following diagrams holds:

M
GK(es) R
Ao ~
kift . 7 ’ N es
N
P N
M, N
Fa
Fd
strip g)!‘/ strip
i MT O oy

Now we need to show that for the V defined by the diagram above
- Jim N™ =lim{t; | M' B 1)32,
By induction on i we show the following:
Yi>n,t; =N
i = n. Trivial.
i 2 n. Let us assume it for ¢ and we prove it for 7 + 1. That is, we want to prove

tigr = Nitl-n

Lambda Calculi plus Letrec 80

We have the following diagram:

ME——;
strip Bo strip
| Ao N
ift I T es
[i
M; GKfes) | les \\ Nin
: : \ GK(es)I
AY
v B ¥ i
GK(es) AT TN A lGl‘{(cs)
lift . | - ~es
- .
- I ANy
My | strip Nit1-n
i -
-~
strip ¥ ,_'_’ strip

: fe)
Ml+l ‘\m‘ ti+1

The solid arrows are known. To prove the existence of the dashed arrows let us remark that
external substitution and lifting commute without destroying or creating external substitution
redexes. -reduction commutes also without destroying redexes, but it may create some new
redexes. Doing the descendants of the redexes contracted from M; to Mi,, plus doing the
newly created redexes is 2 GK step. Since doing the newly created redexes in M; does not
create new ones, the resulting steps from M; to Mi; form a GK step. The M;,.; created this
way strips to t;41 because a lift step does not change the stripped term and because doing
a f3 followed by the newly created substitution redexes followed by stripping is the same as
stripping first and then doing a S.

O

Since reductions in A consist also of L-reductions, before proving the main result we need a
further lemma.

LEMMA 15.6. Given s,t e A®. If s-5pot then there exzists a t' ¢ A™ such that sﬁ»t" and t <q t'.
PROOF. Let us first observe that if we have a S-reduction step from p to ¢ and we replace some {2’s
in p by some term to obtain p' we can still do a single A-step to obtain ¢’ and this ¢' can be obtained
from ¢ by replacing some (s by some term. Pictorially:

Note that it is possible that we may have to replace infinitely many Q’s. With the above observation
in hand we will proceed with a proof by ezample. Suppose we have a sequence of # and 1 -steps:

TTFTTTE

We can put this sequence into two dimensions by doing § from left to right and L from bottom to

Lambda Calculi plus Letrec Bl

top. The next step is to tile the diagram with the elementary diagram the observation provides:

O
THEOREM 15.7. Given a term M € Ao, If M®<=#t then for all finite s <q t, M—»N,s <q N,
PROOF. From the compression lemma of the infinitary lambda calculus we get:
<
Mo =t
Let’s now study the reduction sequence:

00 —m 3 b 3
M® =+ = 151 =" tn 3=t -t

By definition of infinite reduction sequence for all finite s <gq ¢, there exists an i such that for all
7 2 i, t; > 5. The result then follows from the previous two lemmas. O

We can now prove that Ao is sound with respect to the 111-infinitary lambda calculus.
THECREM 15.8. Given M,N € Ao. Then
<
M—-aN = M”H»—WN"" !

PRoOOF. Once we have proven the result for a single step the result for multiple steps follows from
the compression lemma of the infinitary lambda calculus.

If M — N by any step other than fo then by Theorem 6.12 M and N represent graphs that have
the same unwinding. Therefore by Proposition 15.2 M = N®_ If M < N then we will construct
a t such that Mmﬁ»s“’t and t = N, :

To define ¢t we denote by M the term M with the lambda of the redex contracted in the step
from M to N underlined. If there are no underlined redexes in A* then we define t = M, this
may happen if the So-redex is garbage collected during the unwinding. If M™ contains an infinite
numbef, of underlined redexes it means that the Jo-redex in M lies on a cycle. That is, it must have
a name associated to it, say z, i.e., M contains an equation of the form = = (Ay.P)Q. If P =z or
P =y and Q = z, then it is not the case that M °°—ﬂ-»5“’N * because the depth of the contracted

redex at each step remains 0. Consider the following two examples:

(@lz=Quy)z) (zlz={y|y=1z))
and
(zlz=(Ay.2)0} 52 (x|z=(z|y=0)) .
However, the following holds:
ClOw-P)™p=UCI® = C[(P |y = Q)] .

In the other cases we define ¢ by doing a complete development of all the underlined S-redexes in
M=, which is now well defined.
The next step is to show that t = N,

Lambda Calculi plus Letrec 82

N® £q t.

We show that YN', with N—» N', strip(N’) <p ¢. We first construct' M’ as follows: Let M,
be M and let N be N'. If all of the external substitution redexes in the sequence M;—»N;
are created by a Bo-step in that sequence then there is no M;,.;. Otherwise we take all es-
redexes in M; that have a descendant contracted in the sequence to N;. The result of doing a
complete development of these redexes we denote by M;,, and we denote the common reduct
by descendants by Ni;. The sequence sequence of M;'s constructed in this way must be finite
and we denote the last element M,, by M'. Thé sequence from M, to N, starts with several
Bo-steps. By N" we denote the unique result of contracting in N, all the es-redexes that these
Po-steps created and that are still present in N,,.

From Lemma 14.2 it follows that strip{M ‘)—ﬂ»strip(N "). If we follow the underlining we must
conclude that all of the redexes contracted in the reduction from strip(Af ')?strip(N") are
underlined. This means that M -t such that strip(N") <q ¢’ and ¢/ —»t. From the fact that

strip(N"') does not contain any underlining and the fact that if the argument of an underlined
fo-redex shows up in a stripped term the underlined lambda itself must also be present it
follows that also strip(N") <q t. (The second condition is necessary to rule out a situation
like 21 <q (Ay.0)1, where (Ay.0)1 = 0 but Q1 £q 0.) Because N'—#N" we also have that

strip(IN') <q strip(V") and therefore strip(N') <q t.

t <q N,

o

Let M =ty = t; 2 ty = ---i. For all n > 0, by definition of limit, there is an m such that
for all £ > m we have that (¢;)” = t*. By Lemma 15.5 we have a reduction M- M" with

tm = M"". We can unwind this M” to a term M’ that satisfies t* <gq strip(M’). Let N’ be
the common reduct of M’ and N. We have that M' —ﬂ;»N' by doing underlined So-redexes

and N WN‘, This follows from the fact that the reduction from M to t,, only contracts

underlined redexes, implying that the sequence from M to M’ only does underlined o, es and
lift redexes. Since {" contains no underlining, the redexes contracted from M’ to N’ can be
reachable only by paths longer than n steps. This means that t" <p strip(N'). It also follows
that t* <g N'®. Because es and lift steps preserve the unwinding we have that N® = N'®
50 1" < N2,

The semantics of o as provided by the 111-calculus differs from the term model developed in

the previous section in that it distinguishes between 2M and . Since we distinguish Az.Q from
1 and equate M to 2, our model corresponds to the infinitary normal form in the 101-calculus
extended with 111-terms. The relationship between our model and the 111-normal form (denoted
ni(t), for every t} is given by the following proposition:

ProposITION 15.9. Given M & Ao. Then | J(Inf(M)) <q nf(M).

PROOF. We have to show that for every a € Inf(M) we have that a <q nf(M). Suppose M —» N. We
have that w(N) <g strip(V). Because strip(N) € Infr,(N) it follows that w{N) <q | |(Infr,{(N)).
By Proposition 15.3 it then follows that w(N) <q N, Because of soundness of Ao with respect to the
infinitary lambda calculus (Theorem 15.8) we have that M= —»<¥ N, Because of the confluence
of the infinitary lambda calculus this means that nf(M®) = nf(N°°). It is easy to show from
N®—pZwnf(N*) = nf (M) that w(N) <q nf(M*). O

Lambda Calculi plus Letrec 83

16. The cyclic lambda calculus and an explicit substitution
calculus

Our cyclic calculus does not follow the tradition of the explicit substitution calculi [Les94, Ros92,

ACCL91], since the substitution is not a local operation. In this section we introduce a cyclic explicit

substitution calculus and show that the associated rewriting system produces the same infinite
normal form.

DEFINITION 16.1. The cyclic explicit calculus (Aoexpiici) has the following axioms.

Bo:

(e M)N = (M|z=N)
Substitution:
(z|z=M,D) = (M|z=M,D)

(z|D) = =z Diz

Distribution:

(M N|D)y = (M|D)(N|D)

(Az.M | D) = Az{M | D) z not free in D

The rewriting relation associated with the calculus is obtained by orienting all axioms from left to

right and is denoted by TS

Next, we are going to show that Aogepiicic defines an abstract reduction system with ordered
information content. In computing the information content, instead of sending explicit substitution

redexes to £, we replace the entire letrec by . This is so since the presence of a letrec stands for
work to do.

PROPOSITION 16.2. ((Ao, ——=, Zaxplicit), Wexplicits (Wexplicit(A0), <)) is an ARS with ordered in-

explicit
formation content, where wur,’,;;c.-g returns the normal form of a term with respect to the following
rules:
(M | D)
(Az. M) N
QM

Wexplicit

Wenplicit

Wexplicit

and M jcxplicit N 'f wcxplicit(M) <a L"'c:x|;:licit.(-1|\r)-

ProOF. All requirements except monotonicity of ErTTT with respect to =esplici are easy. Let

M T N be an instance of a rewriting rule. We have that Wexplicit (M) = Q and 50 M Zexpiicie N.

By a simple induction on the context C one can prove that if M Zexpiicit NV then C[M] Zexpiicic C[V).

The rewriting system g is confluent on the set of acyclic terms, but not necessarily on cyclic

terms. For example, we may rewrite {(Az.(y |y =y z2))0|z=1) toboth ({{y [y =y z 2) |z =
0)| z=1) and {Az.(y |y =y = 2} | 2= 1) (0| z = 1}, which have no common reduct. However, the
call-by-name and explicit substitution infinite normal forms are the same. To prove this we develop
the necessary machinery to show that for every cyclic term M, Infy.(M) = Infexpricit (M).

PROPOSITION 16.3. wexpticit(A0) = w(Ao).

Proor.

Lambda Calculi plus Letrec 84

"C" From the fact that for every M € Ao we have that Wwexplicit(M)) = wexplicit (M) it follows
that

w(Wexplicit(A0)) = Wexplicit(Ao) .

From the fact that wexplicit(Ao) C Ao it follows that
W(wexplicie(A0))} C w(Ao) .
Hence
wexplicit{Ao) C w(de) .
"D" Symmetric argument.

O
PROPOSITION 16.4. Given M, N € Ao. If Aogxplicit - M = N then do - M = N.
ProoF. Trivial except for distribution over an application:

(M | DXN | D) (M| D){N'| D'}y a-conversion
(M{N'| D'}y | D} Ilift
(M N'| DY | D) lift

(M N'| D', D) merge
(M N | D) copy

]
COROLLARY 16.5. Given M,N € Ao. If M———»N then Info(M) = Inf o (V).

explicit

PRrRoOOF. Trivial from the previous proposition and the uniqueness of call-by-name infinite normal
forms. O

LEMMA 16.6. The subsystem containing the distribution rules and the garbage collecting rule (second
substitution rule) is terminating.

PROOF. See [AK96b). O
We denote the distribution/garbage collection normal form of any term M by nfy,.(M).
PRroPOSITION 16.7. Given M & Ao.

(i) wexplicit(M) <a w(M)
(ll) wcxplicit(nfdgc(M)) = w(nfdgc(M))
(iii) w(M) = winfyg.(M))

Proor. Trivial. O

LEMMA 16.8. Given M, N € Ao. If M v N then M ———#N' with w(N) = w(N'}.

explicit

PROOF. Let 3 denote convertibility with respect to lift, merge, garbage collection and copying.
The result then follows from the following diagram:

(16.1)

%
Ao \ explicit

—

Lambda Calculi plus Letrec 85

As in the proof of the last case of Lemma 12.8, we use the extended fo rule #* and the modified
standard reduction. We recall from equation 12.5 the following diagrams:

- ——e (16.2)
| | \
¥ | de Ao | Ao Ao Ao
| | Y
s e R | A

- —— — e

Diagram 16.1 follows from these diagrams plus the diagram below:

\\
5 —
Ao \ explicit
\

=

We prove this diagram by case analysis on the modified standard step:

- If the standard step is a " we have:

(“-(/\J:.fl(leﬂ ‘Dp) N

-~

fid ™~ explicit
T
(-(M 2= N)[Di)-+-Da)= = = = = = ={(--+(M | D) - Dy} | z = N)

The explicit reduction consists of n lambda distribution steps followed by a So step and the
bottom conversion consists of 2n merge steps.

- If the standard step is a substitution we have:

M
Sy
=~ explicit
= Wy
X,
M- "nfdgC_(M)
T \\explicit
es e “
; ¥ - \.\
- = = e

The top triangle follows from the fact that for every term M we have that M nfgge (M) (see
the proof of Lemma 16.4 to convince ourselves that no other rules other than lift, merge and
copy are used). The square follows from the left two diagrams of 16.2. The bottom triangle
follows from the fact that if nfag.(M) v— M’ then we must have that M = Cl{z |z = N,D}

and M’ = C[(N | z = N, D}, which is also a legal step in the explicit substitution calculus.
(]

THEOREM 16.9. Given a term M € Ac. Infexpiicie(M) = Infyo(M).
Proor.

C Given a € Infexpycie(M). By definition there exists an N such that M WN and ¢ <q
Wexpticit(/N'). By Proposition 16.7(i) we have that wexplicit(V) <a w(N), hence a <q w(N). By

Proposition 16.3 it means that a is in w-normal form, hence a € Inf ro(N). The result then
follows from Corollary 16.5.

Lambda Calculi plus Letrec 86

2 Given a € Infyo(M). By definition there exists an N such that M ~» N and a <q w(N). By
Lemma 16.8 we can find an N' such that M T ' with w(N) = w(N’). Using Proposition
16.7(ii,iif) we may conclude that wexpiicit(nfage{N')) = w(N'), hence a <q Wexplicit (Nfage (V).
Since by Proposition 16.3 a is in Wexplicic-normal form we conclude that a e Infexphicie (M).

(]

ProrosITioN 16.10. Given ((AO: e_xp'm"': '_(explicit): Wexplicits (anplicit(Ao}n <n)). _c;p_h-xw s conflu-

ent up o Sexplicit-

Proor. From Corollary 16.5 and the previous theorem it follows that the explicit substitution
calculus has unique infinite normal forms. Hence, by Lemma 10.18 it follows that e is confluent

up to Zexplicit- a

In practice, explicit substitution calculi tend to have more axioms about substitutions. For ex-
ample, they have (a suitable restriction of)

((Mlzl :Ml:”')zn =Mn)|D)=(M|:L'1 =(M]ID),"‘,:E" e (Mﬂ !D)) -

All those additional axioms preserve the tree unwinding, thus we can derive them in Xo. It then
follows easily that adding those axioms to our explicit substitution calculus does not change the
infinite normal form of a term.

Lambda Calculi plus Letrec 87

Part III

The sharing calculi: strictness vs
non-strictness

17. The cyclic sharing calculus loge

So far we have developed a precise connection between terms of the lambda calculus extended
with letrec and the class of well-formed cyclic lambda-graphs. On the set of cyclic terms we have
defined an axiom system (called the representational system) that equates terms that represent the
same cyclic graph and terms that give rise to the same possibly infinite tree. The representational
axiom system combined with a notion of A-reduction constitutes our axiomatization of cyclic lambda
structures. A drawback of this ¢yclic lambda calculus is that it does not support sharing adequately,
since it allows reductions that duplicate work. For example, in the following reduction:

(MzNz | 2 = Qy.y) Ay y))H{M ((Ar) Qyg))N (Qv1) Oy9) | z = Op)(Awy))

the So-redex has been duplicated. Current implementations of functional languages such as Haskell
[HPJW*92] and Id [Nik91] do not allow these kinds of reductions. Therefore, we develop a variant of
the cyeclic calculus that takes sharing into consideration. We emphasize that we are only interested in
capturing the sharing present in current implementations (lazy and lenient) of non-strict languages.
We do not study the sharing present in optimal (in the sense of Lévy (Lév78]) implementations of
lambda calculus. Since the emphasis is on sharing and not on a specific reduction strategy, we call
the calculus the sharing calculus (Aosnare), because call-by-need normally implies lazy evaluation.
The sharing calculus is obtained by restricting the operations that cause duplication, such as
substitution and copying, so that only values are duplicated, where a value is either a variable or a
lambda-abstraction. The restriction on the copy axiom forbids the following equalities:

(zlz=zz)=(z|z=yyy=zz) :
(zz|z=(rzz2) (Az.z2) ={zy|z=(Az.z 2) (Az.z 2),y = (Az.z 2) (Az.z 2))

because it would require = and y, which are not bound to values to be identified by the variable

mapping. The following are legal instances of the copy axiom:
Flz=dz{u|lu=za))=(z|z=Az{u|u=yy),y=Az{v|v =1 z))
(zzlz=2)=(zy|o=sy=y) .

Also, the lambda-lift axiom has to be restricted to lift values only, since lifting unevaluated expres-
sions out of a lambda-abstraction has an impact on the amount of sharing captured.

We add the two following syntactic clauses of values and value declarations

1’4
VD

z | o.M

Ty =W, . zp =V,

[

to the ones of Definition 3.1.

DEFINITION 17.1. The cyclic sharing calculus (Aoghare) has the following axioms.

Lambda Calculi plus Letrec 88

(Az.M)N -5 (M |z=N)
(Clz] |z =V, D) = (ClVl|z=V,D)
(M|z=Clmlz=V,D) 4+ (M|z=C[V)z =V,D)
(M| DN = (MN|D)
M{N | D) T (MN | D)
Az.{M | D,VD) Slic {(Az.(M | D} | VD} D1 VD, VD #{}
and z not free in VD
((M | D) | D) - {(M|D,D)
(Ml:c:(NlD)!Dl) m} (M|$=N,D,D])
(M| D,D') = (M |D) {}#D',D' L (M| D)
(M) — M
M =5 N Jo:V—>V,N°=M and
Yz # z',0(z) = o(z'),0(z)
bound to a value in A
Caate[M N) = Cuare[{z | 2 = M N)] z a new variable
Clare is given by:
Caate = C'|CAz.C’]|C[C" M]|C[M C'] .
C' == O|{C'|D)
Table 6. The rewrite relation for the sharing calculus T
Po:
(Az.M)N = (M|z=N)
Substitution:
(Cla] | = = V, D) = (ClV]|z=V,D)
(M|z=Clz)],zy =V, D) = (M|z=C[V],z; =V,D)
Lifi:
(M| D)N = (MN|D)
M(N | D) = (MN|D)
Az.{M | D,VD) = {(Az.{M | D) | VD) D 1 VD and z not free in VD
Merge:
(M|z=(N|D),Dy) = {M|z=N,D,D,)
((M | D) | D') = {M|D,D")
Garbage collection:
(M| D,D') = (M| D) D' L (M| D)
(M) - M
Copying:
M = N do: V= V,N" =M and
Vz Zz',0(z) = o(z'),o{x)
bound to a value in M
Naming:
M = {r|z= M)} T a new variable

The rewrite relation o associated with the calculus is given in Table 6.

Note that the sharing calculus adds the naming axiom, since it is no longer derivable. However,
in the rewriting system naming is only included for applications and is restricted to safe contexts.

Aoshare €xtends the cyclic calculus (Apeea) presented in [AFM*95, AF97), since reductions may

Lambda Calculi plus Letrec 89

occur when they are not needed, e.g., Aeed disallows the following reduction:
(@ |z =dwzr,w=Azz)»(z |z = My.(Az.2)z)H{z |z = Ay.z) .

Moreover, in [AFM*95, AF97], the soundness and completeness of Ayeeq With respect to traditional
lambda calculus were limited to the acyclic case.

The rewriting system and the calculus identify the same terms. This is formalized in the following

proposition.
L]

PROPOSITION 17.2. Given M,N € Ao. Then M A T— N iff Aoghare F M = N.

Proor. All rules and axioms are in 1-1 correspondence, except naming. The non-trivial part is
showing that if = is a new variable then C[M] «—— C[(z |z = M). We can do this by a case

ADyuiue

analysis on M and C, as in the proof of Proposition 4.6. [J

17.1. Soundness and completeness of Ao, with respect to Aopame

Soundness of Xoahme follows from the fact that the sharing theory is a subset of the call-by-name
theory. In [AFM*95, AF97], we proved the completeness of (acyclic) Apecd with respect to lambda
calculus using a simple invariant:

M—=sN =3P, N' M

name

#P,N—=N' N' < P .

need

The ordering < was a syntactic ordering capturing the amount of sharing in a term. To show
completeness of Aogpare this invariant is too strong. We need to compare information content. In-
tuitively, we want to say that if M reduces to N in A%pame, then the information contained in N
can be obtained by reducing M in Aognare. However, this does not hold. Consider the reduction
(z|z= yy)-m»yy. Since yy is stable information, we would expect to get that information in
Aognare. But this information is not reachable in Aogyq.e since ¥y is not a value. This shows that if we
want to compare Ao and Aogpare, we need a new notion of information content for the sharing cal-
culus which we call printable information. This notion, as opposed to the call-by-name information
content, can be infinite. Consider the term {z | z = Ay.yz). Its information content is (1, whereas
its printing value is the sequence Ay.yQ, y.y(Ay.y0), Ay.y(Ay.y(Ay.yQ)),---. Both the information
content and the printable information of (z | z = z(\y.y)) are .

DEFINITION 17.3. Given M € Ao.
(i) The printable information of M, written as print(M), is

where the downward closure is with respect to w(As) and <q.
(i) M Zshare N if print(M) C print(N).

(iii) The infinite normal form of M in the sharing calculus is defined as:

Infsnare(M) = | J{print(M,) | M——=»M,} .

share

Our invariant becomes: each finite information obtained by reducing a term M in Aojame can be
obtained by reducing M in Acghare and then printing the result.

LEMMA 17.4. Given M € Ao. If M——»N then therc ezists a term P such that M-T»P and
w(N) € print(P),

Lambda Calculi plus Letrec o0

ProoF. Because standard reduction is complete up to information content (Lemma 12.9) we may
assume that M ~-# N. We will now prove the statement by induction on the number of fo/es-steps
in the standard reduction M ——» N.

Given a standard reduction M o* NV with n fo/es-steps we can reduce M to some left lift and
internal merge normal form M’. By Lemma 12.8 there exists an N’ such that M’ +* N' in no more
than n Bo/es-steps and N =,.me N'. Now there are two possibilities:

- The sequence M’ ——» N' contracts only es-redexes. We are done with P = M’,

- Some non-es-redex is done in M’ r—» N'. Because M’ is in left lift/internal merge normal

form we must have that the sequence M’ * N' is of the form M’ = & r-:\-‘r!;} Q2 ¢ N,

where each step in M’ Ho* @1 is a substitution of an application and where R is the first
redex that is not a substitution of an application. This redex R can only be a substitution of a
value or a fo-redex. In both cases the step R is the descendant of a sharing redex R' in M'. If
we denote by M" the result of contracting R’ in M’ then by Lemma 12.8 there exists an N*
such that M" ==+ N" in less than n fo/es-steps and N’ <name N". By induction hypothesis
we can find a P with M"m»}’ and N" <. ame P.

|

THEOREM 17.5. Given M e Ao. Inf(M) = Infoyare(M).
Proor.

e .Foliows from Lemma 17.4.

" 2" Obvious.

a

REMARK 17.6. Note that even though {(Ao, Toh Zshare), print, (print{Ae), C)) is an ARS with
ordered information content, Sy is not confluent up to =gpare. Consider the following two re-

ductions:
LS (x I’ T =Az.z nLy= 4\2'-2' (x Z')) L L (f\Z.z y l ¥y = AZ’.Z' ((/\Z.Z y) zf))
o (Azzyly=222 (Fy) = M,

and
Mzs@Eiz=Azyy=X'Z(22) = Elz=dzz (A2 (z2')) =M, .

We have that print(M,} = Infsnare(Mn), because the only redexes in M, and any of its reducts are
value substitutions, which are done by the print function. However, there cannot exist M3 such that
My ——~—#My and print(M)) € print(M;) because print(M,) is infinite whereas the print of any
reduct oi‘ M3 is finite. The problem is that in the unwinding of 3 we have an infinite number of
O-redexes. When we rewrite M into M; we do all of those redexes and when we rewrite M into A,
we destroy the opportunity to do them one step.

This does not contradict Proposition 10.18, since the sharing infinite normal form is not defined
as in Definition 10.15.

Not all the axioms of the sharing calculus are needed for evaluation. In Table 7 we present a set
of axioms that is sufficient and necessary for evaluation. We then define the sharing infinite normal
form based on this shared evaluation calculus by:

Infivay* (M) = | J{print(N) | M ——»N} .

evaly

Lambda Caleculi plus Letrec

91

Bo:
(Az.M)N

Lift:

(M| DN

External substitution:
{Clz] | z =V, D}
Internal substitution:

Internal merge:
(M |z=(N|D),D)

(M |y =C[z],z=V,D)

s (M |z=N)

prerm {(MN | D)

W (C[V]lI:V,D)

= (M]y=ClV)z=V,D)
e (M|z=N,D,D")

Table 7. Sharing evaluation calculus: Aogyq),

Values: v
Answers A
Dependencies: D[z, z,]

Lazy Evaluation context: Ej,y

Eazy[(Az.M)N)

Eazy[{Brazy[z] | z = V, D))
Erazy[{Brazy[2] | D[z, Z5), 20 = V)]
Elazy[(A | D)N]

Bissy[(Brazylz] | z = (A | D), D1)]

e HE -

Az M
Az.M | (4] D)
T = Elazy[:cl], Ty dn-t = Elnzy[zn]: D

(1] Brazy M | (Blazy [D} | {Biazylz] | z = Erazy, D)

(E|ny[::] | D[:I:,J:ﬂ],zn . Elazy)

iy Bazy[{M [z = N))
Yot Blazy[(Blagy[V] | 2 = V, D))

Hazy? Bazy((Biazy(z] | Dz, V], 20 = V)]
=t Einzy[(AN | D))

Hee? Blazy[(Brazy[z] | = = A, D, Dy)]

Ei&!Y[(EIMY[m] I D[I!Iu]lxﬂ = (A | D))] oo EIMY[(EIM)'[xl I D[E:In]vzﬂ = A’D)]

azy

Table 8. Lazy evaluation.

PRrROPOSITION 17.7. Given M € Ac. Then

Infsha.re(M) = Inf:};‘f“(M).

PROOF. Same as the proof of Theorem 17.5 with the additional observation that the reduction
sequence constructed in the proof of Lemma 17.4 only uses steps from the shared evaluation calculus.

a

17.2. Lazy and lenient strategies of Aog.re

Aoghare captures the essence of lazy languages, such as Haskell [HPIW+92), and of the functional core
of lenient languages, such as Id [Nik91, AMNS97] and Parallel Haskell [AAH*93]. We substantiate

Elcnicnt

n= {] I Eleniem.ﬂf I MElenient, | (Eleniunt | D) ' (M | I = ElenientrD:‘

Table 9. Lenient evaluation context.

Lambda Calculi plus Letrec 02

our claim by showing that both the lazy and lenient strategies are complete with respect to different
observations. The lazy strategy (written as e Table 8 for corresponding evaluation context

and rules), as described by Launchbury [Lau93], only allows one to reach the top stable information.

The lenient strategy (written as eniene”: 5ee Table 9 for corresponding evaluation context) allows

reduction of any redex as long as it does not occur under a lambda. Thus, it allows one to reach
more information. For example, given z(I(12.Q)), the lazy strategy produces z and the lenient
strategy produces z(Az.Q2). We will prove next two theorems stating the capabilities of the lazy and
lenient strategies, but first we introduce some machinery.

DEFINITION 17.8. A term M & Ao is called a black hole if it is of the form {EVazy [2]| D[z, z]) or of
the form {Ejq.y[z][D[z,], Dly, y]}-

LEMMA 17.9. Given a term M € Ao, M is either an answer or there exists a unique evaluation
context Einzy such that M = Ejzy[N), where N is a reder or a black hole, or M = Elazy(z], where
z 15 a free variable.

PRooF. We will argue by structural induction on the evaluation context. For simplicity we omit the
subscript lazy.

M = z: The consequence holds with E = [).
M = Az.N: Here M is an answer.

M = M M,: By the inductive hypothesis, either M; is equivalent to an evaluation context filled
with a redex or a black hole or a free variable, or it is an answer:

M, = Ey[N], where N is a redex: The claim is true with E = (E) Mas).
M, = E{[N], where N is a black hole: The claim is true with £ = (E; M,).
M = Ey[z) : The claim holds with E = (B, M;).

M, is an answer: This sub case demands another case analysis, depending on the nature of

M1:
M) = (Az.M]): M is a Bo-redex; hence, the claim holds for E = [}.
My = (A | M) : M is a lift-redex; hence, the claim holds for E = [].

M = (M, | D}: M, is an answer: M is an answer.
M, = E,[N), where N is a redex: The claim is true with E = {E, | D).
M; = E;[N], where N is a black hole: The claim is true with £ = (E, | D).
M, = E\[z2] : If z5 is not defined in D then the claims holds with £ = (Ey | D).
- If D = xy = My, Dy then if

M is an answer: Depending on M, being a value or not M is an external substitution
redex or a box elimination redex.

My = E,[N], where N is a black hole or a redex: The claim is true with
E= (El [Ig]l:l’.‘g = E),Dz)

M, = Es[z;]: If 23 = z2 then M is a black hole and £ = []. If z3 not defined in D,
then the claim is true with E = (E, [z9)|za = E;, Ds) If 23 is defined we have that
M = (Ey[z2]|lz2 = Ea[zs], %3 = M;, Dy) and we go into a loop: If M = (B, [z,]|z =
Esza),..., a1 = Eyoy, 3 = My, Dy} then if

Lambda Calculi plus Letrec 93

M, is an answer: Depending on M, being a value or not M is an internal substitution
redex or a box elimination redex.

M, = E,[N], where N is a black hole or a redex: The claim is true with £ =
(Er[x2]|D[z2, zp), 22 = E,)

M, = E;[Tn41]: U 2a41 is not defined in D then the claim is true with
E = {E:[z]| Dlza, 2,), 22 = E,)

else if T4 is equivalent with one of the variables z,...,, then M is a black
hole else repeat the loop.

This loop must terminate because D is finite.

O

PROPOSITION 17.10. Given a lazy evaluation contert Ejazy and a black hole N we have that
Inf(Biaay [V]) = {0} .
PROOF. By a simple analysis we can prove the following two claims:
- (Biazy [N)) = 0
- If Ejazy[N] i5— M then M = E]_ [N'] for a black hole N’

Suppose that @ # a € Inf(Eja,y[N]). Then by Lemma 12.9 it follows that Eja.,[N] ———» M,

Afgame

where @ <q w(M). However from the earlier two claims it follows that w(M) = Q. Contradiction. O

THEOREM 17.11. Given M & Ao. If Az.Q € Inf(M) (z---Q e Inf(M)) then AN € Ao, M P
N with Az.Q <p w(N) (z9---Q € print(N)).

ProoF. We know that M To* P with Az.Q <g w(P) (zQ--- <q w(P)). By Lemma 17.9 we
are in one of the following cases:

M is an answer: We have that Az.Q) <q w(M).

M = Ejy[N], for a black hole N: Impossible due to Proposition 17.10 and the fact that A
standard reduces to a term with information content larger than Q.

M = Eja,y(z], for a free variable z: A simple analysis shows that z2.--Q ¢ print(AM).

M = Ejay|R), for a redex R: If R is a substitution or a f-redex then analysis shows that until a
descendant of R is reduced the standard sequence must maintain information content €. Since
the information content of the last term in the standard sequence is more than 2 this means
that a descendant of R has been contracted and therefore the bottom standard sequence is
shorter. Hence, by iteration the result holds. If R is a lift-redex or an internal merge then we
Just iterate until we are in one of the other cases, which must happen because lift and internal
merge together form a terminating system.

a

THEOREM 17.12. Given M € Ao. For all a & Inf(M) that are in normal form with respect to the
rule Ax.M = Az.Q there ezists N € Ao, M —— N with e ¢ print(N).

lenient

Lambda Calculi plus Letrec o4

ProoOF. We have a reduction M v P with a X;3me P. We will prove the statement by
induction on the number of fBo/es-steps in the sequence M > P.

name

Given a standard reduction M o—* P with n fo/es-steps. First reduce M to normal form
with respect to all left lift and internal merge steps allowed by the lenient strategy to obtain M'.
By Lemma 12.8 we can find a P’ such that M’ *e—_* P' in no more than n Bo/es-steps and
P =name P'. We can reorder this sequence to obtain a sequence M' + » Q o * P, where

" Ahame

the sequence M’ e r— @ only does redexes above a lambda and Q Ho——* P’ only does redexes
below a lambda. This follows from the fact that P, Fv— Py o P53 where the first step

is below a lambda and the second one is not then we can reorder these two steps because the
second step is the descendant of a redex present in P, and from the fact that this swap operation
is terminating. A simple analysis shows that Q »,ame a. If the sequence M' ——» @ does only

A%ame
substitution steps we are done with N = Q. Otherwise, the reduction M’ o r— ¢ must be of the
form M' S — Qo Q2 o——* @, where R is the first redex that is not a substitution of

an application. Let us analyze the possibilities for R:

- lift redex: Impossible. A lift redex cannot be created by a substitution of an application so
R would be present in M, but M’ has no lift redexes above lambda’s and B must be above
lambda.

- substitution redex, other than of an application: R must be a value substitution. The substi-
tuted term cannot be a letrec, because that would mean that M’ had an internal merge redex
above lambda. We also have that R is the descendant of a value substitution redex R' in M".
Let M" denote the result of contracting R' in M'. By Lemma 12.8 we can find an N" such
that M" ~——» N" in less than n fo/es-steps and N’ <pame N”. By induction hypothesis

A%narma

we can find an N such that M" q——» N and a e print(N).

- Po-redex: R is the descendant of a Bo-redex ' in M’. We conclude as in the previous case
using the induction hypothesis.

18. The cyclic call-by-value calculus Aoy,

Both the call-by-name cyclic calculus and the sharing calculus can be used to reason about non-
strict functional languages. However, they are unsuitable to reason about strict functional languages
such as SML [Har86]. Therefore, we develop another variant of the cyclic calculus, namely a cyclic
call-by-value calculus. This calculus is derived from the sharing calculus by restricting the notion of
value declaration to the set VDy C VD, such that VDy # {z1 = 22, -, 24 = 21, VD}. The garbage
collection and the lambda lift axioms are then restricted to work with VDy instead of D and VD,
respectively.

DEFINITION 18.1. The cyclic call-by-value calculus (Aovalue) has the following axioms.

Lambda Calculi plus Letrec 95

{(Az.M)N - (M|z=N).
(Clz] [z =V, D) = (ClVllz=V,D)
(M |z =Clz1],z1 =V, D) =+ (M|z=C[V]z =V,D)
(M | D)N W (MN|D)
M(N | D) Tt (MN|D)
Az.(M | D,VDy) vt (Az(M | D) | VDy) D LVDy,VDy # {}
and z not free in VD
{(M | D)} D) - (M|D,D')
(M|z=(N[D,Di) —> (M|z=N,D D)
(M| D,VDy) = (M|D) {}# VDv,VDy L (M | D)
(M) - M
M e N Jo:V = V,N° =M and
Vz #z',0(z) = o(z'), o(z)
bound to a value in M
Ciare[M N] 7 Carl[l{z|z=M N} T a new variable
Ciafe is given by:
Cuate == C'|C[Az.C']|C[C' M]|C[M C] .
C¢' = 0O|{C'|D)
Table 10. The rewrite relation for the call-by-value calculus ot
Bo:
(Az.M}N = (M|z=N)
Substitution:
(Clz] |z =V, D) = (C[V]|z=V,D)
Mlz=Cn],z;1 =V,D) = (M|z=C[V],z; =V,D)
Lift:
(M| D)N = {(MN|D)
M({N | D} = (MN|D)
Az. (M | D,VDy) = {(Az.(M | D) | VDv) D L VDy and z not free in VDy
Merge:
(M |z=(N|D),D) = (M|z=N,D,Dy)
((M | Dy| D') = (M|D,D)
Garbage collection:
(M | D,VDy) = (M|D) VDy L (M | D)
(M) = M
Copying:
M ' = N 7 : V= V,N° = M and
Vr Zz',0{z) = o(z'),o(x)
bound to a value in A
Neming:
M = {(z|z=M) z a new variable

The rewrite relation oot associated to the calculus is given in Table 10.

The rewriting system and the calculus identify the same terms. This is formalized in the following
proposition.

ProprosiTionN 18.2. Given M,N e Ao, Then M A T N iff dovae F M = N,

Lambda Calculi plus Letrec 96

(M[D}N T (MN|[D)

M(N | D) e (MN | D)

{(M|D)| D" == (M|D,D)

(M |z=(N|D),D) = (M|z=N,D,D))

(M) T

Chate|M N ams? Ceare[{z |z =M N)| z anew variable

Ciare is given by:
Caare == C'|C[Az.C']|C[C' M]|C[M] .
C' == 0O|{C'|D)
Table 11. The kernelizing system X

{Az. MIN — 0
(M |z =y,D) —p (Mlz:=y)[Dlz:=y)) zZ5D#{)
(M| z=y) 2 Mlzi=y] s#y
{M|z=uD) — 0
M|z =29 My, ,2q =34 My, D) — Q0
(M | z = Ay.N, D) g (M| D)z = 2.0 D#{)
(M| z = Ay.N) - Mlz:=2y.0)
QM - 2
MGQ - Q
(1| D) - 9
{M|z=0Q,D) —= 0

Table 12. The call-by-value w-rules

PROOF. Same as the proof of Proposition 17.2. O

With respect to the sharing of computations, the sharing and call-by-value calculi are the
same. This points out that call-by-value, call-by-need and lenient implementations support the
same amount of sharing, i.e., the argument of a function is not copied before it is reduced to a
value. The difference between the two calculi is that in call-by-value the equations D of a term
(M | D} do not only represent sharing, they also tell us that if one of the terms in D does not
produce a value, the complete term should not either. Consider the term {dr.x |y = Q). Its an-
swer according to the sharing calculus is Az.z. According to the call-by-value calculus, it must be
£2. This means that in call-by-value we have to be careful in eliminating inaccessible equations. In
the acyclic case, a similar point was made by Maraist et al. [MOTWS95). In (Az.x | y = z) and
(Az.z | y = Az.z) it is safe to eliminate the binding for y, and instead in (Ar.r | ¥ = y) and
(z | y = wz) it is not. The proviso on the garbage collection axiom guarantees that these equations
are not removed. A similar restriction is imposed on the lambda lift axiom. This is to guarantee that
Wly=2Az{z|z=1x)) # {y | y = Az.z,z =), since the first term evaluates to Az.} while the
second one evaluates to (1.

18.1. Basic properties of the cyclic call-by-value lambda calculus

To compute the call-by-value information content we send Bo-redexes to). However, unlike the call-
by-name calculus we do not send to £ the substitution redexes and then remove all the inaccessible
equations. This would introduce a non-confluence problem. That is, if we let N be {(Aryly=12zz=
Aw.w), then we have the w-reductions N = (Az.y)y =) = Qand N — (M| 2 = hww) —

Lambda Calculi plus Letree a7

Az.(l. Instead, if a variable z is bound to a variable y or to a lambda-abstraction Ay.P, then each
occurrence of z is replaced with y or Ay.Q, respectively, and then the binding gets removed. The
information content of N thus becomes Az.\w.(). Bindings of the form z;, = z, My, vz =3 M,
are treated in the same way as bindings of the form z = z, that is, they cause the entire term to be
sent to {1 In addition, we must be able to handle terms such as (Az.z | z = Az.z) y and (z)z=
(Az.z | z = Az.z)), which contain an obstructed fo and value substitution redex, respectively. Thus,
we need to add the left lift and internal merge rules. Moreover, we want to equate terms such as
T z z and (y x| y = = z} because they represent the same graph. The solution is to first normalize
a term with respect to a suitable subset of e~ We call this subset the kernelizing system (X).

K is given in Table 11,

DEFINITION 18.3. Given M ¢ Ao. We define (M) as the normal form of M with respect to the
kernelizing system XK. We define the set AKX as X(Ao).

DEFINITION 18.4. Given M ¢ AK. The kernelized information content of M is given by the function
wx, which given M returns the normal form of M with respect to the call-by-value w-rules (given
in Table 12).

From here on we assume that the constant (2 is also a call-by-value term. Q is not a value; nor
is legal to rewrite (to (x | z =) with the naming rule. We denote the reduction relation induced
by the union of the w-rules and system K by —

REMARK 18.5. We can also define AK as the subset of Aoyy,e that satisfies the specification:

M 2= Vo|(Va|D)
Va o= z|Az.M|Q
D = z=Vyl|lz=Vq Vu|D,D

DEFINITION 18.6. Given M, N € Aoc. The call-by-value information content of M is given by the
function wyaiye, which given M returns the normal form of M with respect to -z We define

M =alge N if Uvalue(M) <n f-'-’value(-l'\f)-
PROPOSITION 18.7. Given M € Ao. Then wyae(M) = wie(K(M)).

Proor: Given a term M we are free to reduce to K(M) first in computing wyaiue(M). When we
reduce K(M) to wiae(M) afterwards we only use w-rules. Hence the equality. O

We want to consider the cyclic call-by-value calculus as an abstract rewriting system with ordered
information content. To that end we first need to show monotonicity:

LEMMA 18.8.

(i) Given (Ao, <q, Zvave). < is monotonic with respect to <yuiye.

{(ii) Given (Ao, o < value) - T is monotonic with respect to =yajue.

ProoF.

(i) A simple check yields that —cx locally commutes with —. From this and the fact that

Lambda Calculi plus Letrec 98

—7ra 18 terminating we get by Newman'’s lemma that:

wikC, KK
N = ‘-'-’value(-N }
]
|
Y RY]
|
¥
_____ § '
M wiC, K = A{
|
wiC, K |
|
¥
wvaiuc(M)

The wK, K-reduction from M’ to wya1ue(M) is also an -reduction: Because wyajye (V) contains
no more equations of the form £ = V and none of the other steps can create such an equation
we never have to use the w/C-rules for a value substitution. Because wyalue (V) is a K-normal
form and because an Q-step cannot create a K-redex, we do not need any K-steps.

(i} If Cl[(Az.M) N] = C[(M | z = N)] then ww(C[(Az.M) N]) = Wyatye(C[8Y]), which is
less then wyae(C[{M | z = N)]) because C[Q] <q C[{(M | £ = N)] and the first part.
If Clz] = ClAy.M) then wyae(C[2]) = wyatue(CMy.0]), which using the same argument as
before is less than wyae(ClAy.M]). E M = Clz) = Cly) = N, or M —+ NN then obviously
M ~pue N.If M — N by application of value lift or value garbage collection then by
rewriting to normal form with respect to the value binding rules the bindings in the VDy
involved one can show that M =~ N. Finally, if M - N then by proving commutativity

of the unification rule and the value binding rules and the black hole rule for z = z we get
M =gy N.

O

We now have that the function wya,. defines a proper notion of information content for ACyalne:

PRrRoPosITION 18.9. ((Ao,Tm—),-_<m|ue),w‘m|ue,(wmme(A_u)‘SQ}} is an ARS with ordered infor-
mation content.

Proor. Trivial. O

Next, we want to show that —— is confluent up to <,uu.. We do not prove this directly,
p lue p

instead we introduce a kernelized reduction (ﬁ"] and prove confluence up to information content
for that reduction relation.

DEFINITION 18.10. Given M, N ¢ AK. We say that M rewrites to N in the kernelized system AK
(ﬂ/f a_JC} N) if M AT'—} P and ’C(P) = N.

If the Aoyaye-step taken was a fo-step then the corresponding AK-step is a B -step. Similarly a
lambda lift step is denoted liftA". The labels for copy and substitution don't change because those
steps preserve kernelized terms.

Because we want to derive a property of call-by-value reduction from kernelized reduction we
need to relate reductions in the two systems.

Prorosrrion 18.11.

Lambda Calculi plus Letrec 99

(i) We have that € o

ASvaluc

(ii) Given M,N ¢ Ao. If Mm»N then K(M)—z#K(N).
PROOF.
(i) Trivial.

(ii) In this proof we denote rewriting to K-normal form by —=¢- The result follows from the
definition of —+ and the diagrams below. '

ECV,CPv,isy jesy o liftkl. . others
| | |
K:nl' :xnf an :x:nf JC"' :PC"'
| | |
_____ ¥ e _ __V = Y
E_év.cpv,isv.elv Bo liftkC oot -

0

From this relation we immediately obtain that the kernelized calculus is also an ARS with ordered
information content, when using the same notion of information content.

CoROLLARY 18.12. {(AK, T Svalue), Wi, (Wi (AK), <q)) is an ARS with ordered information con-
tent.

Proor. From the previous proposition, Proposition 18.9 and Proposition 18.7. O

The proof of confluence up to information content for the kernelized system again uses the tech-
nique of Section 10.2. The notion of standard reduction for AKX differs from the standard reduction
for call-by-name because we now have to develop the environment too. The idea of standard reduc-
tion is to do redexes that are needed and to avoid non-confluence (of the standard reduction) by not
reducing needed redexes that can still be copied by a reduction step. This means that in

(y|z=refy |y = (Azz)2))

although both the substitution redex and the So-redex are needed, the So-redex cannot be standard
because the substitution redex copies (the result of) the o-redex. This principle rules out any redex
inside the V' of an equation x = V, because such a redex is not needed or it(s result) is copied later
on. However, not every redex inside a value may be ruled out. In

Az{z |y = (Az.2)z)
the fBo-redex is needed and will not be copied so it must be standard. Formally we have:
DEFINITION 18.13. Given M e AK. A reduction step M ¢ IV is standard (written as M = V)
! M = Eg[R} - Ex[R'|= N

where R and R’ stand for a Bo or value substitution redex and its contractum, and Ex is defined as
follows:

Ex == O|(Ex|D)|Az.Bx |[{(V{z=05D)|{(Vi|z=0V;,D)|(V |z =y Ex,D)

where:

Lambda Calculi plus Letrec 100

- Op means that a substitution redex is not allowed in that context

- The occurrence of y in the clause (V | z = y Ex, D) in the main term M leads to a variable
that is either free or bound by a lambda. A variable z leads to another variable yifz=yorif
z =z P and z leads to y or if z = z and z leads to y.

LEMMA 18.14. Given terms M, N e AK. IfMowN then M =~ ue N.

PRrooF. If the redex is not a o or substitution redex then the claim is obvious. If we have a fo or

substitution redex in a non-standard context then the redex and its contractum are deleted by the
wkK-rules, no matter what the redex or the contractum is. OJ

LEMMA 18.15. (REDUCTION LEMMA) We have the following two diagrams:

AKC AK

B ——————]

L

AK o K

T e

AKX : AKX AKX : AK
¥] ¥

AK AK Y

AL AKX

Moreover, in the left dingram the number of steps in the right standard reduction is not greater than

the number of steps in the left standerd reduction and smaller if one of the standard redezes is a
descendant of the top step.

Proor. We first investigate the local commutativity. All the possible diagrams are given by cases
on the top step.

- If the top step is any step from left to right.

¥ y ¥
T T
|]
x 0 B x 1 Ix x 2 | x
| i
i ¥ _ v
- Ty T 2
N itk
T T
l [
BK A 18K oy B By
! [
- ¥ g Y
= lifek epv

- If the top step is a non-standard step from right to left then, as before, we have to turn to
complete developments of unnested and cyclic substitutions to obtain decreasing diagrams.
That is, we introduce unnested substitution of values (usy) and cyclic substitution of values

(csv) as for the call-by-name case and by use disjoint complete developments of these redexes
(lusv and [|csv)

T x

Lambda Calculi plus Letrec 101

¥ lifk liftk
’ T T) T
| x | 1
¥ ! : :
o R S I T I
1y [[
¥ _ ¥ ¥
- —-——— = ——
¥ cpv lifeko
llusv lleav llesv
T T il
I x [ol
Y - lesy, 5 14
= c' T le:: D' |$:: ?:: E T
o i o
¥ ¥
- ——— — - = ——p = — - = = -0
(lusy llesv Jlusv lesv
More precisely, we have:
X | B vy’ Eev’ GRE v OB Tovw, “luey’ CEev’ °TRE o
T 01 1 1 1A 1 11" 1’ C’ 211 1A I’
T 1,2 0,12 12 12B 1 2 rpE . 2 12p 1
When we order the reduction steps by ||csy > |Jusy Sraviet T meay > PK gov, IiftK, cpy we

obtain that all diagrams are decreasing. This means that we can complete the tiling process. Because
a non-standard step cannot increase information content (Lemma 18.14) and because reduction is
monotonic (Lemma 18.8(ji)) we have that the two diagrams we need to prove hold. It is obvious
from the diagrams that the length of the reduction does not increase for the left diagram. By tracing

descendants in the diagrams we can conclude that if a descendant of the top step is contracted then
the length decreases. O

LEMMA 18.16. Given ((AKZ,w,jm“),ux,(w,c(MC),gn)). Then

(i) +5z is complete for % P L0 Xualue-

(ii) e commutes with Sz uP to Xvalue-
ProoF. From Lemma 18.15 and Proposition 10.10. O

Having proven these properties of the kernelized reduction system we can now go back to call-
by-value reduction to prove that it is confluent up to information content.

THEOREM 18.17. Given ((AO,W,jva|ue),wmm,(uvam.,(Ao),Sn)). S r— is confluent up to

jvaluc .

Proor. From Lemmas 18.16 and 10.6 and Proposition 18.11(ii). O

18.2. Semantics of the cyclic call-by-value lambda calculus

We have shown that BTy is confluent up to information content. Hence, by Lemma 10.18 the

call-by-value infinite normal form of any cyclic term A, written as Infiawe (M), is well defined and
unique. To prove that the infinite normal form is compositional we return to the kernelized reduction

system. We denote the infinite normal form with respect to the kernelized reduction system by Infx.
We first prove the following relation between Inf,aue and Infi:

Lambda Calculi plus Letrec 102

LEMMA 18.18. Given M ¢ Ao. Then Infoaue(M) = Infic(K(M)).
PRrRooOF. Simple corollary of Proposition 18.11. O

For the call-by-name and call-by-value calculi, given a context C and term M, C[M] is a legal
term. For the kernelized calculus this does not always hold, e.g., (z |z =0)[{z |z =z)) = (z |z =
{(z | z = z)). Thus, instead of considering all possible contexts we only consider a subset of them.
We can then follow the usual pattern to prove that Infy is continuous in the limited set of contexts
and use that fact to show that Inf,,,. is compositional.

DEFINITION 18.19.
- A lambda context C} is any call-by-value context of the form C[\z.0).
- For the K-rules O is considered to be a value.
- A kernelized context Cx is a lambda context in X-normal form.

These contexts have the following property:
ProrosITION 18.20. Given ¢ lambda context C», end M & Acyae. Then
K(CAIK(M)] = K(CA[M]) .
Proor. Trivial. O
LEMMA 18.21. Given terms M, N € AK. If M <q N then Infx(M) C Infx(N).

Proor. We have that
ﬁx,csv,iSy

8K c8v,isv
From this fact, Lemma 10.19 Lemma 18.16(i) and Lemma 18.8(i) the result follows. O
PROPOSITION 18.22. Given a kernelized contert Cx and a term M e AK.
(i) If Cx[M] et IV then there exists My such that M —z» M), Cx[M] »—‘,‘ﬁ—b Ny without reducing
any redex inside M, (uritten as —:ﬁl—») and N <iaue N1

(ii) If Cx[M] g N then Ciclwe(M)] r N' with N yai4e N'.
(iii) Infx(Cx[wx(M)]) C Infe(Cx[M]).
IPROOE.
(i) We do this by induction on the number of steps in the standard reduction. Assume we can

find M, and N, if the length of the given standard reduction is less than n and assume we are
given a reduction of length n.

If Cxc[M) »%—» N we can take M) = M and N; = N. Otherwise there is a first standard step
that does a descendant of a redex in M. If we do this redex in M and obtain M, then we get
the following diagram:

Cx[M)—=2E N

A I Lemma 18.15 e

Lambda Calculi plus Letrec 103

(ii) It is easier for this proof to have the following rules for black holes:

(M|z=z,D) -+ (M|z=Q,D)
(M |21 =22 My, Tp =23 My, D) = (M |21 =9, - 2, =Q,D)

These rules are equivalent in the presence of the propagation rules, but make the proof work
smoother by keeping changes local. One of the properties of the wk system is that we can delay
the propagation rules until and first rewrite to normal form with respect to the other rules.
Because of the fact that the given standard reduction does not do any redex that is rewritten

by wK and cannot touch the black holes of M we have the following diagram:

A '
wk :ut
¥
kS
When we consider the wi-rules dealing with the propagation of 0 we have the following
diagrams:
AC A AK AK
[’ | A |
[I 1 L
wi | Wi wk [kl wi lwk wiC A
| ! I ke
o I =l | - |
AK - A o

(iii) If we view the lambda-substitution w-rule as a sequence

(M |z=2y.N,D) 5 {M | z = \y.Q, D) ——(M[z := \y.Q] | D[z := Ay.Q))

esv.i5,,5C
then the proof of Proposition 13.4(iii) is applicable.
g
LEMMA 18.23. Given M e AK and a kernelized contert Cx.. Then
Infx(Cx[M]) = [J{Infc(Cx[a]) | a € Infic(M)} .
Proor. Follows from Lemmas 18.22 and 18.21. 0
We_ are now able to prove that Inf,uue defines a model:
THEOREM 18.24. Given M, N € Ao and a context C. Then
Infratue(M) = Infuaye(N) = Infraiue(C[M]) = Infiaiue(C[N]) .
Proor. .We distinguish cases for C' being a lambda context or not.

- If C is a lambda context we have:

Infoaue (C[M]) Infx (K{(C[M]))) Lemma 18.18
Inf (K(C)[K(M)]) Lemma 18.20
(H{Infc(K(C}[a]} | @ € Infx(K(M))} Lemma 18.23
{Infc(K(C)a]) | @ € Infiaye(M)} Lemma 18.18

Similarly we have:

Infuatue(C[N]) = | {Infx(K(C)[a]) | & € Infrmiue(V)}

The result then follows easily.

Lambda Calculi plus Letrec 104

- If C is not a lambda context then let = and y be new variables. define C), = Cl(rz.0} (Ay.y)).
By the previous case we then have that Inf,u.(Ca[M]) = Infiarue(CA[N]). Because z and y
are new we have for P = M, N that C, [P]-m»C{P]. Hence, by uniqueness of the infinite
normal form, we conclude that

Infyalue(C[M]) = Infraine(C[N]) .
0

18.3. The cyclic call-by-value lambda calculus and the cyclic sharing cal-
culus

We relate the call-by-value infinite normal form to the sharing infinite normal form. To do this we
must print the call-by-value observations because they contain sharing while the observations in
the sharing calculus are trees. On call-by-value observations the print function has the following
property. Given a € wyajye(Ao). Then

I_l print(e) = a™ .

This property ensures us that when we print a call-by-value observation we do no loose any infor-
mation. Thus the following comparison is meaningful:

THEOREM 18.25. Given M ¢ Ao. Then
(_{print(a) | @ € Infyanue(M)} C Infanare(M)

Proor. Follows from the fact that for every P € Ao we have that print{twyaie(P)) C print(P) and
the monotonicity of print. O

EXAMPLE 18.26. The inclusion in the theorem above is sometimes strict. For M = Az.z we have
equality but for for M = (Az.z | y = y} we have strict inclusion.

Next, we show that the call-by-value and sharing calculus have the same evaluation calculus.
First we define the call-by-value infinite normal form generated by the evaluation calculus of Table
7 as:

Infeoal®(M) =] {wvatue(N) | M —#N} .

cvaly
PROPOSITION 18.27. Given M € Ao. Then
_ Infanus(M) = Infe (M)
PROOF.
"C" Given a € Infiaue(M). By Lemma 18.16(i) we have that K(M) et V with a <g wane(N).

—
This means that A ﬁo_es’:.-:;» N. (The superscript 5 denotes reduction modulo) The

result then follows from the fact that P e Q = P =~ @ and the claim that

Mo—® N Me—— 43N .

Bo,esy isy Bo,esy,isy l5im [+
The claim can be proven by proving

K K

[o5 iae

ﬁt.cs-.iuol

Oe,080 i ﬂo.us-.is-‘

- — - R —

Lambda Calculi plus Letrec 105

M o= V|NV
V o= z|dzM
NV 2= letz=MinN|MN
Bv : (Az. M)V = M[z:=V]
v Az.V z = Vifz ¢ FV(V)
id : letz=Minz = M
comp : letr=lety=MinNinP = lety=Minletz=Nin P
lety : letz=Vin M = Mz :=V]
let; : NVM=1letz=NVinz M
lety : VNV =letz=NVinVz

letc : letz=Minlety=Nin P lety=Ninleta=Min P

it z ¢ FV(M,N) y ¢ FV(M, N)

Table 13. Commutative Moggi’s computational lambda calculus:),

where

(- {OeM)| D) Du) N 3 (-+{(M |z = N) | Dy)--- D)

-

(Clz)]|z={(--(V|D1)-- Dy}, Dy — (Clz] |z =V,Dy,---,Dy, D)

ess

(M|y=C[I],-’B=('--(V|D1)°-~Dn),D) -t (M|y=C[a:],x=V,D1,---,D,,,D)

19w

"2" QObvious.
O

18.4. The cyclic call-by-value calculus and Moggi’s computational lambda
calculus

We use the infinite call-by-value normal form to relate our calculus to the commutative version
of the computational lambda calculus of Moggi (A.) [Mog88), given in Table 13. Since Moggi's
calculus is acyclic, we first need to relate a cyclic term to the acyclic terms approximating it, as
we did for the call-by-name calculus. However, this relation only works for a subset of the set of
terms. For example, the answer of (z | z = yz) is the term itself. Instead, the answer of any of its
approximations is (). If we consider only internal merge normal forms then the restriction is that if
several declarations are mutually recursive then all those declarations must only involve values. For
example, (y | ¥ = z,z = Az.y) and {y | y = Az.z,z = Az.y) are good terms, but {z | = My.z,z =
z z) is not. An arbitrary term is good if its internal merge normal form is good. We denote the set
of good terms by Aoyaiye. The set of good terms is closed under rewriting, but a bad term may be
rewritten into a good term. For example, (z |z =(y |z=z)y s {z|z=(yy|z=1=z z) and
(@lz=(uly|z=a)w) > @2 ={{y|2=2) | y = w)).

To define call-by-value expansions, we introduce the notation M m—r“ N which denotes

n-steps of the Gross-Knuth strategy applied to acyclic value substitution redexes occurring in M.
The notion of acyclic substitution redex is taken from [AK96b}. An acyclic value substitution redex
is any value substitution redex that is not of the form (M | z = Cly],y = V, D), where = and
y are mutually recursive. In {(z | ¢ = Az.y,y = Azaw,w = Azy), the underlined z and y are
acyclic value substitution redexes, and the underlined w is not. Since a value substitution redex can
be obstructed by an environment, we first compute the internal merge normal form of a term M
denoted by nfij,(M).

Lambda Calculi plus Letrec 106

DEFINITION 18.28. Given M & Aoyye. The ntt call-by-value expansion of M, written as M3, is
the term stripv (M) such that nfi, (M) Wﬂ MY and stripy(N) is the normal form of N with
respect to the rule:

(MII1=3:2:""$TL=$1)D) —+ (MI:E[:Q,"',I,;‘ZQ,D)
(M|z=A.N,D) = (M|z=Xxy.Q,D) NZ0O

For instance, given theterm M S {(z z |z =y y,y = (Qz.y | z = Az.2)), MY is stripy({z z | x =
yypy=Azyz=Az))=@z|z=yyy=rz,z=2020), M}, =(z z |z = (Az.y) Qz.y),y =
Az.Q, z = Az.Q). We have that every M{, is an acyclic term. Because only value declarations can be
mutually recursive, every cycle is broken by the strip-rules. This is not completely obvious because
there may be equations of the form z = y left, but every cycle that only uses that type of equation
gets broken by the first strip rule and every cycle that has at least one lambda on it gets broken by
the second rule.

THEOREM 18.28. Given M ¢ Aowuue. Infraise(M) = U{Infuaue(M) | i > 0.
Proor.

2 The strip function and kernelization satisfy the following property:
Infx (K(M3)) = Infc((K(M))}) (18.1)
Frgm Lemma 18.21 we get that for every P e AK:
Infx(stripy (P)) C Infx(P) .
The result then follows from Lemma 18.18.

G Given M ———N we have by Lemma 18.11 that X(M)—z#K(N). By Lemma 18.16(i) we have

that X(M).lﬁ—» Qo with K(N) =vawe Qo. Let Py = K(M). We apply the following recursive
construction: If for some 1 we have that P, e? @i contracts a descendant of an acyclic
substitution step in P; then we define F;;, by P"GK_m)»P""'l' By Lemma 18.15 there exists a
Qi+1 such that Py v Qi41 in less steps than P et Qi with Q; Zvaiwe Qiv1-

Let P, and @Q,, be the last P; and @; constructed like this. Because the standard sequence
P, H* @n does not contract any descendant of a substitution redex in P, we have that there
exists a Q' with stripv (P)@ with Qn =vae Q'- Hence wyaiyo(N) € Infc((K(M))}).
From 18.1 and Lemma 18.18 the result follows.

Let [M] denote the translation of the acyclic term M into a single-equation term by application
of the letp-rule, given by:

(M |2y =My, -z, = M,;)) W(u‘(ﬂfﬂml =MY |z, =M, ifn#l .

Let Ac\nv denote A without the 5y-axiom and let Ao™¥"® denote the Aoyyye where all left and
value

right-hand sides of axioms have been restricted to acyclic terms. As before for good terms, the set
of acyclic terms is closed under rewriting, but a cyclic term may rewrite to an acyclic term.

THEOREM 18.30.
(i) Given termns M, N e Ac. If \c\nv = M = N then doyue - M = N.

Lambda Calculi plus Letrec 107

(if) Given acyclic terms M, N € Aoyye. If Ao::j'::ic FM =N then A \nv + [M] = [N].
Proor.
() We can derive every axiom in the restricted commutative Moggi system:

- By: From left to right do a fo-step, followed by an esy-step for every occurrence of z.
Then apply garbage collection twice to first remove the equation and then remove the
box.

- id: This is naming written right to left.

- comp: Apply internal merge to the left-hand side and external merge to the right-hand
side to obtain (P |y = M,z = N).

- lety: From left to right apply esy for every occurrence of x and then apply garbage
collection twice to first remove the equation and then remove the box.

- let) and let;: From left to right apply naming and lift.

- letc: Apply external merge to both sides.

(ii) Instead of provable equality we will consider conversion, which also for acyclic terms is the
same as provable equality. We turn Moggi’s calculus into a rewriting system by orienting the
axioms from left to right. We will prove the following diagram:

Avaiue

M2y (18.2)

lebng letas
(M1~ o - = [V)

where an arrow — denotes reduction to normal form. The construction of diagram 18.2
consists of two steps. In the first step we transform the Ao, conversion into a A\nv fletas-
conversion on Aoygye, In the second step we transform that conversion into a Ac\nv-conversion
on A.. This conversion is then the proof of {M] = [N] in A.\nv. When we apply the axioms
of Ac\nv to Aoyae then we count bindings. E.g., we can only apply id to a letrec with exactly
one declaration. In particular NV does not include letrecs with multiple bindings.

- For the first step we derive every axiom in Aoygjye. We can derive the Bo-axiom as follows:

(Az.MIN (Az.M)letz=Ninz id
lety=letz =N inzin (Az. M)y let,

letzg=Ninlet y==zin (Az.M)y comp

= let z =N in (Az.M)z lety
let z =N in M ﬁv
In diagrams that means:
Bo

[

id etz OMP lety Gy

To deal with the application lift axioms we use a simple trick. We rewrite the left and

Lambda Calculi plus Letrec 108

right-hand sides of the axioms to letjs normal form and then find a As \ nyv-conversion:
Using the abbreviation L = let z = N in we get:

(L1 -+ LM) (L} --- L\ N)
= (Ly--+Lmlet z= M inz) (L} --- L. N)
= lety=L,:--Lyletz=Minziny (L} :--L.N)
= L---Lmlety=letz=Minziny (L, --- L, N)
= Ly--Lplety=letz=Minziny (L} ---L\let u= N in u)

= Ly---Lynlety=letz=Minzinletv=L---L'letu=Ninuvinyv
= Ll---Lmletyzlatx=MinminL'l---Lf,,letu:letuzNinuinyv
= Li---LpLy---Lilety=letz=Minzinletv=1letu=Ninuiny v

= Ly---LyL} - - L' (M N)
This proves the following diagram:

lift

lebng : letps

- —

Ae\flv

For the other axioms we may derive:

esy sy A-lift em
| | [| | |
! | i | fetae |
tetar | | {etps letpr | | {etas | | fetas
I | | I letar [
Yy oo Y N ¥ . Y
_ e — - oz — =
lety lety lety lely
im name cpv
_—
1 |
lelag |
Y . o
i I letps E = = =
letps !
l’___-____Y - -
comp id 23y ,isy esy,isy

- To finish diagram 18.2 we first reduce every term in the conversion to let py normal form.
Because letys does not work on single binding let's, the letps rule and all the Moggi rules
are orthogonal. Since letys cannot duplicate redexes we get:

Ac\’TV R

letar

Because all axioms in A \7v preserve single binding terms we can deduce from this
diagram that:
Adnv

tetns

Lambda Calculi plus Letrec 109

Identity {zlz=M) = M z ¢ FV (M)
Associativity (N |y=(M|Dy),Ds) = (N|y=M,Dy,Ds) Dy #{}
{((M|Dy) | D) = (M| Dy,Ds) Dy # {}, D2 # {}
Commutativity (M|DyN = (M N|D) D #{}
M (N|D) = (M N|D) D #{}
B (AzM)N = (M|z=N)
Oy M|z=Vy=C[z],D) = (M|z=V,y=C[V],D) z#y
(Clz] |z =V, D) = (C[V]{z=V,D)
Mlz=V) = M z ¢ FV(M)U FV (V)
1o Azyz =y

Table 14. Hasegawa's call-by-value calculus

We now have a series of A;\ny-conversions separated by lets-conversions. We can fill in
those gaps with the following diagram:

a

Recently, Hasegawa [Has97] proposed a cyclic extension of Moggi’s calculus, see Table 14. There
are three major differences between Hasegawa’s calculus and our own: (i) Hasegawa uses simply
typed terms and treats values differently depending on them being cyclic or acyclic, (ii} he does

not have lifting of values out of a lambda as an axiom T, and (iii} he restricts garbage coliection
to acyclic values only. There is one minor difference and that is that environments are always non-
empty. Unfortunately, Hasegawa does not study the rewriting aspects of the calculus. But in a sense,
his calculus is complete with respect to our calculus:

THEOREM 18.31. Given M € Ao, such that there is no subterm (N |}. We have that:
Infeae(M) =| {wvate(NV) | Hasegawa \ng - M = N} .
PROOF:
"2" Obvious from the fact that every axiom in Hasegawa \ ng is derivable in Aoypye.
"C" From Lemma 18.16(i) and the following two facts:
v Hasegawa - M = X(M) and P = @ = HasegawaF P = .
(]

REMARK 18.32. The 7-axioms present in Moggi's and Hasegawa's calculi are not sound in our
model, e.g9., Az.y z and y, (M |z = z) and (M | z = Az.z z) do not have the same infinite normal
forms. The latter example shows that simply adding n-expansion or reduction to the w-rules is not
a possible way of adding the n-axiom to our calculus.

t For acyclic values the axiom is derivable from substitution and garbage collection. The case for cyclic values is
not derivable.

Lambda Calculi plus Letrec 110

19. Extensions to data structures

We can extend the previous calculi with data constructors by encoding cons and the related de-
structors as functions and then deriving the associated rewriting rules. For example, in Aoppme, We
have:

cons(M,N) = AppMN
head(M) = M(A.’E[Ig.ﬂ?l)
tail{M) = M{\xz9.72) .

This entails the following set of rules:

head(cons(M,N)) — M head({M | D)) — (head(M)| D)
tail(cons(M,N)} —+ N til((M | D}) = (tai(M)|D) .

In the development of the model for call-by-name we did not impose any restriction, i.e., we allow
reduction under lambda and our results alse apply to open terms. Thus, the model construction for
the extended calculus is a trivial extension of Aoyame.

In Aoghare, we encode cons(M, N) as (Az,zop.px)2:)MN. This encoding is interesting, since it
points out that, before substituting a term of the form cons(cons(L, nil), nil), a name is associated to
the head and tail, as the following example shows:

(z | = = cons(cons(1, nil), nil)}) = (z | = = {cons(z1,z2) | z1 = cons(1, nil), z2 = nil)) =
(z | = = cons(z1, 23), z) = cons(1, nil), z3 = nil) — {cons(zy, ;) | = = cons(z,z2),) = -+ -

Apparently, we need the following axiom for cons:
cons(M, N} = {cons(zy,z2) | 71 = M,z2 = N) .

However, this axiom leads to an infinite computation, which is not preserved by the encoding. This
suggests that we need a new constructor indicating that both head and tail are variables. This
constructor is cons(z,, z2), encoded as Ap.pzyz; . We have the rules:

cons(M, N} =+ {cons(zy, z2) | 21 = M,z = N)
head(cons(M,N)) = M
tail{cons(M,N)) —= N

head({M | D}) — (head(M) | D)
tail((M | DY) — (tail(M) | D) .

We extend the class of values V to include cons z; 5.

With respect to the lazy strategy, data constructors behave the same as functions. Instead, the
lenient strategy distinguishes them. The lenient strategy of the extended calculus is defined by adding
the following clauses to the definition of evaluation context of Table 9:

Etenient == - | head(E) | tail(E) | cons(E, M) | cons(M, E) .

Note that reduction can occur under a cons but not under a cons. This is necessary to guarantee
confluence. Otherwise, (z | x = cons(z, z)) will lead to

(z | = = cons(cons(z,), z))

and
(x| = = cons(z, cons(r, x))) |

which are clearly out of synch.

Lambda Calculi plus Letrec 111

20. Conclusions

We have developed a precise connection between the terms of the lambda calculus extended with
letrec (cyclic terms) and the class of well-formed cyclic lambda graphs. We have given this con-
nection in the form of an axiom system, called the representational calculus, that is sound and
complete. We have extended the axiom system to handle well-formed graphs up to garbage collec-
tion and alternative scoping. The extension to garbage collection is sound and complete, but the
extension to alternative scoped graphs is only complete with respect to garbage free graphs. We also
have extended the axiom system to be sound and complete with respect to unwinding of graphs. We
have concluded the investigation of representations of graphs by discussing.briefly several possible
variations of the representational axioms. Finding an axiom system that is sound and complete for
alternatively scoped graphs with garbage is part of further research.

The axiom system for tree unwinding combined with a notion of S-reduction constitutes our
axiomatization of cyclic lambda structures. The presence of cycles and lambda-abstraction causes
confluence to fail. Thus, instead of showing confluence, we have shown that our cyelic calculus satisfies
an approximate notion of confluence. This notion guarantees uniqueness of the infinite normal form
of a cyclic term. The infinite normal form, being compositional, provides a tool to reason about
correctness of optimizations. The soundness of our cyclic calculus is shown with respect to the
lambda calculus and the infinitary lambda calculus. Our cyclic lambda calculus can be used to
show correctness of a wide range of evaluation calculi with respect to the infinitary lambda calculus.
We however cannot capture optimal implementations since we do not have the ability to represent
irregular infinite lambda terms.

To reason about the optimization and execution of non-strict functional languages we have de-
veloped a variant of our cyclic calculus that takes sharing into consideration. The new calculus is
obtained by restricting the operations that cause a duplication, such as substitution, copying and
lambda-lifting, to duplicate values only, where a value is either a variable or a lambda-abstraction.
We show that these restrictions do not change the infinite normal form of a term. Next, it would be
interesting to extend the sharing calculus with a notion of assignment. This is to provide a frame-
work for reasoning about the correctness of the Haskell implementation of the monadic operations,
which use updates in place.

To reason about strict languages we have developed yet another calculus, the cyclic call-by-value
calculus. This calculus is obtained by restricting the sharing calculus to garbage collect values only,
instead of arbitrary terms. This caleulus is related to Moggi's computational lambda calculus.

In summary, we have developed three calculi: Aepame, Aoshare and A9atue- These calculi cor-
respond to the parameter-passing techniques of call-by-name, call-by-need and call-by-value. The
ability to define mutually recursive objects makes these calculi more suitable then lambda caleulus
(Bar84], Ancea [AFM™95, AF97] and Ay [Plo75] to express the operational semantics, compilation
and optimization of current functional languages.

References

AA9S Z. M. Ariola and Arvind. Properties of a first-order functional language with sharing.
Theoretical Computer Science, 146:69-108, 1995.

AAH'93 Arvind, L. Augusston, J. Hicks, R. S. Nikhil, S. Peyton-Jones, J. Stoy, and W. Williams.
pH: A Parallel Haskell. Technical report, MIT Laboratory for Computer Science,
September 1993.

AB97 Z. M. Ariola and 8. Blom. Cyclic lambda caleuli. In Proc. TACS 94, Sendai, Japan,
1997,

Lambda Calculi plus Letrec 12

ACCL91

AF97

AFM*95

AK94

AK9Ga

AK96b

AKK*94

ALS4

AMNS97

Ari96

Bar84

BL89

BLR96

BvEG+87

D.J90

Har86

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of
Functional Programming, 4(1):375-416, 1991.

Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. Journal of Functional
Programming, 7(3), 1997.

Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. The call-by-need
lambda calculus. In Proc. ACM Cenference on Principles of Programming Languages,
pages 233-246, 1995.

Z. M. Ariola and J. W. Klop. Cyclic lambda graph rewriting. In Proc. Ninth Symposium
on Logic in Computer Science (LICS’94), Paris, France, pages 416-425, 1994.

Z. M. Ariola and J. W. Klop. Equational term graph rewriting. Fundamentae Infor-
maticee, 26(3,4):207-240, 1996. Extended version: CWI Report CS-R9552.

Z. M. Ariola and J. W. Klop. Lambda calculus with explicit recursion. Technical Report
CIS-TR-96-04, Department of computer and information science, University of Oregon.
To appear in Information and computation, 1996.

Z. M. Ariola, J. W. Klop, J. R. Kennaway, F. J. de Vries, and M. R. Sleep. Syntactic
definitions of undefined: On defining the undefined. In Proc. TACS 94, Sendai, Japan,
1994.

A. Asperti and C. Laneve. Interaction systems I: The theory of optimal reductions.
Mathematical structures for computer science, 4:457-504, 1994,

Arvind, J-W. Maessen, R.S. Nikhil, and J. E. Stoy. A,: an implicitly parallel A-calculus
with letrec, synchronization and side-effects. Technical Report 393, MIT Laboratory
for Computer Science, 1997.

Z. M. Ariola. Relating graph and term rewriting via Bohm models. Applicable Algebra
in Engineering, Communication and Computing, 7(5), 1996.

H. P. Barendregt. The Lambda Caleulus: Its Synter end Semantics. North-Holland,
Amsterdam, 1984.

S. Billot and B. Lang. The structure of shared forests in ambiguous parsing. In Pro-
ceedings of the Twenty-Seventh Annual Meeting of the Associat ion for Computational
Linguistics. Association for Computational Linguistics, 1989,

Z. Benaissa, P. Lescanne, and K.H. Rose. Modeling sharing and recursion for weak
reduction strategies using explicit substitution. In PLIP’96, 1996.

H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, J. R. Kennaway, M. J.
Plasmeijer, and M. R. Sleep. Term graph rewriting. In J. W. de Bakker, A. J. Nijman,
and P. C. Treleaven, editors, Proc. Conference on Parallel Architecture and Languages
Europe (PARLE '87), Eindhoven, The Netherlands, Springer-Verlag LNCS 259, pages
141-158, 1987.

N. Dershowitz and J. P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Hendbook of Theoretical Computer Science, volume B, pages 243-320. Elsevier - The
MIT Press, 1990.

B. Harper. Introduction to Standard ML. Technical report, ECS-LFCS-86-14, Labora-
tory for the Foundation of Compuicr Science, Edinburgh University, 1986.

Lambda Calculi plus Letrec 113

Has97
HPJW+92

Hue80
KKSdvos

Kligl

KV94

Lafo0
Lau93

Les94

Lév7s

Mac94
Mog88

MOTW95

Nie96
Nik91
P87

Plo75

M. Hasegawa. Recursion from cyclic sharing: traced monoidal categories and models of
cyclic lambda calculi. In Proc. Conference on Typed Lambda Calculi and Applications,
April 1997.

P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, K. Hammond,
J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and J. Peterson. Report
on the programming language Haskell. ACM SIGPLAN Notices, 27(5):1-64, 1992.

G. Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems. JACM, 27(4), 1980.

J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Infinitary lambda calculus.
In Proc. Rewriting Techniques and Applications, Kaiserslautern, 1995.

P. Klint. A meta-environment for generating programming environments. In Algebraic
Methods II: Theory, Tools and Applications. Springer- Verlag LNCS 490, pages 105124,
1991.

P. Klint and E. Visser. Using filters for the disambiguation of context-free grammars. In
G. Pighizzini and P. San Pietro, editors, Proc. ASMICS Workshop on Parsing Theory,
pages 1-20, Milano, Italy, October 1994. Tech. Rep. 126-1994, Dipartimento di Scienze
dell’Informazione, Universita di Milano.

Y. Lafont. Interaction nets. In Proc. ACM Conference on Principles of Programming
Languages, San Francisco, 1990.

J. Launchbury. A natural semantics for lazy evaluation. In Proc. ACM Conference on
Principles of Programming Languages, pages 144-154, 1993.

P. Lescanne. From Mo to Av a journey through calculi of explicit substitutions. In
Proc. 21st Symposium on Principles of Programming Languages (POPL '94), Portland,
Oregon, pages 60-69, 1994.

J.-J. Lévy. Réductions Correctes et Optimales dans le Lambda-Celcul. PhD thesis,
Universite Paris VII, October 1978.

I.C. Mackie. The geometry of implementation. PhD thesis, University of London, 1994.

E. Moggi. Computational lambda calculus and monads. Technical Report ECS-LFCS-
88-86, Edinburgh University, 1988.

J. Maraist, M. Odersky, D. Turner, and P. Wadler. Call-by-name, call-by-value, call-
by-need, and the linear lambda calculus. In Proc. of Mathematical Foundations. of
Programming Semantics (MFPS), 1995.

J. Niehren. Functional computation as concurrent computation. In Proc. ACM Con-
ference on Principles of Programming Languages, pages 333-343, 1996.

R. S. Nikhil. Id (version 90.1) reference manual. Technical Report 284-2, MIT Labora-
tory for Computer Science, 545 Technology Square, Cambridge, MA 02139, 1991.

S. L. Peyton Jones. The implementation of Punctional Programming Languages.
Prentice-Hall International, Englewood Cliffs, N.J., 1987.

G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical Com-
puler Science, 1:125-159, 1975.

Lambda Calculi plus Letrec 114

Ros92

Sel96

SM93

Tom85

v094

Wad71

K. H. Rose. Explicit cyclic substitutions. In M. Rusinowitch and J. L. Rémy, editors,
Proc. 3rd International Workshop on Conditional Term Rewriting Systems (CTRS-92),
Pont-d-Mousson, France, Springer-Verlag LNCS 656, pages 36-50, 1992.

P. Selinger. Order-incompleteness and finite lambda models. In Proc. Symposium on
Logic in Computer Science (LIC5°96), 1996.

D. Sangiorgi and R. Milner. Techniques of “weak bisimulation up to”. Technical report,
1993.

M. Tomita. Efficient Parsing for Natural Languages. A Fast Algorithm for Practical
Systems. Kluwer Academic Publishers, 1985.

V. van Qostrom. Confluence for Abstrect end Higher-Order Rewriting. PhD thesis,
Vrije Universiteit, 1994,

C. Wadsworth. Sementics and Pragmatics of the Lambda-Calculus. 1971. PhD thesis,
University of Oxford.

