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Research in TIBBIT(Timing Insensitive Binary to Blnary Translation) proposed
a methodology to provide timing equivalence as well as semantic equivalence in binary-
to-binary translation of real-time applications by inserting synchronization at regular
intervals. However, the timing equivalence of programs generated by TIBBIT is
not guaranteed. In this dissertation, we provide a method to guarantee the timing
equivalence of the generated target binary programs.

We use an interval-based approach, first invented by Allen and Cocke, to test
timing equivalence of a translated target binary program with respect to a source
binary program. We introduce the concept of timing sensitivity, the maximum timing
difference between the source and target programs, to judge how closely the target
program will mimic the source program’s timing,.

We say that a target program is executable with timing equivalence if the timing

sensitivity can be reduced to zero, and with timing invariance if the timing sensitivity
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can be bounded by a constant. We have discovered necessary and sufficient conditions
to provide timing equivalence and invariance {for target programs.

If a target program is executable with timing equivalence or invariance, it must
be enforced by a synchronization scheme. When the target program is executable
with timing invariance, the timing sensitivity depends on how and where the target
program is synchronized. We use a local synchronization scheme that removes local
timing error to provide timing invariance. We develop a static method to measure
timing sensitivity with the local synchronization scheme. We also develop optimiza-
tion techniques to minimize timing sensitivity.

In summary, the main research contributions of this dissertation are 1) necessary
and sufficient conditions for timing equivalent and invariant translation 2) an algo-
rithm to find timing sensitivity of the target program and 3) techniques to minimize

timing sensitivity of the target program.
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CHAPTER I

INTRODUCTION AND RATIONALE

The goal of this thesis is to investigate timing issues in Binary-To-Binary Trans-
lation (BBT) of real-time applications. While BBT provides a means of smooth
migration of legacy software to newer architectures, it does not handle real-time
applications properly. In real-time applications, it is often the case that doing some-
thing too quickly is as unacceptable as doing it too slowly. Thus, the translation of
real-time applications must preserve timing equivalence of all visible events as well
as semantic equivalence of the source application programs. The TIBBIT (14, 13|
(Timing Insensitive Binary to Blnary Translation) project introduced the problem of
providing timing equivalence in binary-to-binary translation of real-time applications.
The TIBBIT system delays the execution of the target program at regular intervals
assuming the target machine is faster than the source machine. However, the TIBBIT
system does not guarantee timing equivalence of the generated target binary programs
when some instructions take more time on the target machine. This thesis provides a
method to guarantee the timing equivalence of the TIBBIT-generated target binary

programs. Major questions this thesis answers include:

* How to guarantee timing equivalence of the TIBBIT-generated target binary

programs.
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o What are the necessary and sufficient conditions to guarantee timing equivalence

of the generated target programs.

¢ How to convert a target binary program that is not timing equivalent into an

equivalent one.

e How to minimize timing differences between source and target programs.

Binary-to-Binary Translation

Binary-to-binary translation (BBT) is a method that takes a binary executable
program (source binary) for a machine (source machine) and translates it into another
executable program (target binary) to run on another machine (target machine),
without referencing the original source program(51, 5]. The translated target binary
program is a sequence of target machine instructions that reproduces the behavior of

the source binary program. Figure 1 depicts the binary-to-binary translation scheme.

Target
Bina BBT Binary

I Target
Machine

Source

Machine -

Figure 1: Binary-to-Binary Translation

The main advantage of this approach is that it is not necessary to have access
to the original source program in order to perform the translation. A complicated
application includes many software components developed using many different tools

and compilers. One example of this is Microsoft Word, which is partly written in its
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own macro language, with other portions written in C and assembly language. Port-
ing this complicated software to a new architecture requires all tools and compilers
available on the target machine before one starts. BBT provides a method to avoid
this complication. The BBT technique has been used by many companies such as
IBM [50], DEC [51], Tandem[5], and Apple.

The translation of a binary code involves two program translations. One is the

application binary code translation and the other is operating system code translation

as shown in Figure 2.

Program Target
Translation Binary Program
Source
Binary Program Translated OS
Source OS / Target OS
e Translation Target
Machine Machine

Figure 2: Components of Binary-to-Binary Translation

Translation of operating system code involves many complicated issues as dis-
cussed in {50]. We concentrate on real-time embedded-systems where the operating
system and application binary program are combined together.

The main disadvantage of the BBT approach is performance degradation. In
general, for the given set of instructions on the source machine, finding an optimal
set of instructions on the target machine that reproduces the behavior of the source
instruction set is a difficult problem. Also, some conditional statements must be added

to make sure the architectural differences between the two machines are handled



correctly. Detailed discussion on these issues can be found in (50].

Binary-to-Binary Translation of Real-Time Applications

Previous Binary-to-binary Translation (BBT) approaches provide only semantic
equivalence between source and translated target programs where the optimization
goal is reducing the total execution time of the program on the target machine.

For real-time applications, however, the translator must preserve the timing
equivalence as well as semantic equivalence of the source binary program. In this
case, the goal of optimization is to reduce the timing difference between source and
target programs. Figure 3 depicts the problem of preserving the timing equivalence

of all visible events (i/o events).

Source Target
Bina Binary

TIBBIT

Source

Target

Machine

Machine

Equivalent
I/O Timing

Figure 3: The Problem of Providing The Timing Equivalence Between Source and
Target Programs

The TIBBIT project [14, 13) addressed this timing issue, i.e., the problem of
preserving the timing equivalence between source and translated target programs. In
TIBBIT, the time required for each basic block on the source machine 1s computed.
While running on the target machine, the TIRBIT system compares source and target

timing at regular intervals and adjusts the execuiion of the target program. The
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translated target program executes faster than the source on the target machine, but

is periodically delayed.

Source Timeline

\

Progress of translated application
Target Timeline
ifo
o

Figure 4: TIBBIT Algorithm to Provide Timing Equivalence

The example shown in Figure 4 depicts the algorithm used in TIBBIT. A node v
in the control flow graph has an extra node that contains the execution time required
on the source machine Mg, denoted by { EzecTime(v, Ms)). A limitation of TIBBIT
is that it generates timing equivalent target binary programs only if all basic blocks

take less time on the target machine.
Rationale

To provide timing equivalence in binary-to-binary translation, it is important
to know the processing speed difference between the two machines, source and target.
At minimum, the target machine must be faster than the source machine. However,

the concept of processing speed difference of two machines is ambiguous. Modern
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processors, such as RISC-based architectures, achieve their speedup over old proces-
sors through optimization of the most frequently used instructions while paying some
penalty for less frequently used ones. On average, these newer processors are faster
than older ones, but some instructions are actually slower than those of corresponding
instruction sequences in the old processors.

Also, some translation overhead exisis. As mentioned, it is a difficult problem
to find the optimal corresponding set of target machine instructions for the given set
of source machine instructions. In addition, there exists runtime overhead added to
target binary programs. Scme information that is available to higher-level translators
is not available to a binary-to-binary translator. Thus, even when all corresponding
instructions in the target machine take less time than the source machine instructions,
some basic blocks in the translated target binary program may take longer on the
target machine, simply because of transiation overhead.

For these two reasons, the current TIBBIT system is not sufficient. When there
exist some basic blocks that take a longer time on the target machine, the execution
time difference between source and target program cannot be maintained by delaying
the program execution (synchronization) on the target machine.

Consider the example given in Figure 5. We assume that the time required
to execute a given basic block is computable for both source and target machines.
We also assume that the required execution time for all i/o instructions remain the
same on the target machine. Each node v in the control flow graph has an extra
field containing the execution time required on both source and target machines
for the node v, represented as (ExecTime(v, Ms)/ExecTime(v, Ms)). The target

machine is faster than the source machine on average. However, one basic block
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takes a longer time on the target machine. When executed on the target machine,
the application may execute faster or slower depending on how often this slow basic
block executed at the particular execution. When the application executes faster on
the target machine, inserting synchronizations on the target program provide timing
equivalence. However, when the application executes slower on the target machine,

inserting synchronization does not provide timing equivalence.

o

Source Timeline

N\

Progress of translated application

=

Target Timeline

Figure 5: Timing Equivalent Translation with Slower Instructions

Considering these factors, the goal of this research is to develop a method that
analyzes a program to determine if it is always possible to execute a program timing
equivalence.

Here, we are to test if the maximum timing difference between source and target
(the maximum drift) can be bounded by a constant. The maximum drift between
source and target applications is shown in Figure 6. In the graph, the timing difference

between source and target is bounded by a constant denoted by the distance between



two dotted lines.

=

Source Timeline

Target Timeline

Figure 6: Timing Difference Between Source and Target Applications Limited by a
Constant

This dissertation answers the following questions.
e When is the maximum drift bounded by a constant?
¢ How to find the maximum drift (the constant) if it is bounded?
e How to ensure that bounds exist?
e How to reduce the maximum drift?
To answer these questions, we assume the following.

® The control flow graph of the translated target program is given with execution

time required for each basic block on both source and target machines.

o Environments, such as networks and i/o devices, remain the same, i.e., only the

processor and possibly part of the memory system are replaced.



Related Work
Binary-to-Binary Translation

Many commercial companies use binary-to-binary translation schemes to pro-
vide a speedy upgrade path to newer architectures. Most of these binary-to-binary
translation schemes have been developed with a particular source and target platform
in mind. The optimization goal of these binary-to-binary translators is to minimize
total execution time on the target machine. Issues of providing timing equivalence

for real-time applications are completely ignored.
DEC

Kronenberg [37] and Sites [51] at Digital Equipment Corporation (DEC) use
binary-to-binary translation techniques to port VAX VMS, MIPS Ultrix, and 80x86-
based programs to the Alpha architecture. They successfully ported a large number of
applications to the new architecture in minimal time. Because the Alpha architecture
was designed with binary translation of MIPS code in mind, the performance of binary

translated programs are comparable to that of native compiler generated programs.

IB

Silberman and Ebcioglu at International Business Machines (IBM) developed
a binary-to-binary translator that supports migration of system code as well as self-
modifying code [50]. Applications are represented in both “migrant” and “native”
forms, and a hardware-assisted “migrant engine” is used to execute sequences of code

when the native engine fails due to either untranslatable or self-modifying code.
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Tandem Non-Stop Svstems

‘Tandem Non-Stop Systems used a BBT system [5] to upgrade all of its vendor
and user software from a proprietary stack-based CISC architecture to new R3000-
based RISC machines. Both the operating system and applications were ported, and

relied upon a combination of static translation and run-time interpretation.
Hp

Bergh 7} at Hewlett Packard relies on a combination of object code translation
and emulation to execute HP3000 software on the HP Precision architecture family,

using a "compatibility mode” environment in the target operating system.

Hunter Systems

Hunter Systems developed a system called XDOS [25] for binary-translating
DOS applications to UNIX environments. The system was intended to be used
by developers as an aid to porting, and relied upon a combination of human- and

machine-translation techniques.
Decompilation

Decompilation is a process that reads a binary executable program and trans-
lates it into an equivalent program in a high-level language. Decompilation techniques
are useful in understanding the binary code during the maintenance process [8] and
in verifying compiled binary programs for safety-critical systems {52, 46]. All of these
systems ignore timing issues thai occur in many real-time systems. One exception

is the original version of the TIBBIT translator which takes an executable binary



11

program and generates C' code that is both semantically and temporally equivalent

to the binary code.

Breuer and Bowen

Breuer and Bowen [8] describe a method to decompile programs generated by
a simple Occam-like compiler. They construct an abstract syntax tree from the
executable binary code and generate an equivalent program in the logic programming

language, Prolog.

Spector and Pave

NASA used a decompilation technique [52] to verify the program called System
Management (SM), which is used in their space shuttle. The decompiler decompiles
the memory images generated by the SM preprocessor and compare the results with
the original inputs.

Pavey and Winsborrow [46] also used a decompilation technique to compare the
source code and PROM contents of a safety-critical system used in the UK nuclear

industry.

Gough and Cifuentes

Gough and Cifuentes [11, 10] describe issues in decompiling 80x86 binary pro-
grams. Many optimization techniques that have been used in optimizing compilers are
used in their decompiler. Their goal is similar to that of binary-to-binary translation

but it also provides portability.
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Cogswell and Segall

A version of the TIBBIT translator {13] takes an executable binary program
and generates C' code to provide portability. The generated C code can be compiled
for any target machine. This version of the TIBBIT translator computes execution
times on the source machine for each basic block. For each basic block, the translator
inserts €' code that accumulates the execution time of basic blocks in a global counter
that accumulates these execution times. The TIBBIT-generated target C program is
compiled by a C compiler on a specific machine. The TIBBIT system interrupts the
execution of the target binary program at regular intervals and delays the execution

if it runs too fast.
Timing Analysis

For a real-time program, we must be able to predict the computation time of
the program on the target machine. There are a number of techniques that predict
the execution times of programs written in both low-level and high-level languages.

In our analysis, it is assumed that the execution time required for any basic
block on both source and target machines is computable. In Chapter IX, we discuss

how to deal with instructions that have non-constant execution time.

High-level Languages

Shaw [49, 45] describes a method to predict the execution time of high-level lan-
guage statements. The method takes a program written in a high-level language (C),
and bounds for each loop, and predicts the upper and lower bounds on execution time

of each source level construct. The method decomposes programs into basic blocks
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and predicts the implementation of each basic block. The execution time of each
basic block is determined for a specific target machine. The accuracy of the predicted

execution time is dependent on how accurately it can predict the implementation.

Low-level languages

Most older processors have a constant execution time for each instruction. If
we know the bounds of each loop, it is not difficult to compute the execution time
of programs written in low-level languages such as assembly language. However, the
execution time of instructions on a newer processor with pipelines and cache is not
constant. Issues of computing tight worst-case execution time of instructions for these
machines are discussed in [40, 19, 60).

Zhang [60] presents a method to find worst-case execution times of instructions
on pipelined processors.

Caches are extensively used in most recent computer systems to improve per-
formance of the system. While caches improve performance of the system on average,
they impose significant difficulties on timing analysis. Min [40] describes an analysis
technique that accurately predicts the worst-case execution times of programs in the
presence of caches.

Most timing analysis techniques are machine dependent. Since machine archi-
tectures evolve rapidly, developing a retargetable timing analysis method is important.
Harmon [19] describes a portable timing analysis technique called micro-analysis. It
predicts best and worst-case bounds for point-to-point execution times, based on a
pattern matching scheme that uses a machine description and a set of timing rules.
This scheme is capable of taking into account the architectural characteristics of the

target processors and their effect on instruction execution time.
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Translation of Real-Time Programs

Translation of real-time applications must preserve both functional and tem-
poral requirements specified in the source programs. Temporal requirements are
specified either implicitly or explicitly depending on the language used in the source
program. Some source programs are written in higher-level languages with real-time
constructs in which case all temporal requirements are expressed explicitly. Other are
written in assembly language in which cases all temporal requirements are expressed

implicitly.
RT-ASLAN

RT-ASLAN [6] is a real-time programming language which allows programmers
to express timing constraints explicitly in a program. The kind of systems specifiable
in RT-ASLAN are loosely coupled systems communicating through formal interfaces.
From RT-ASLAN specification, performance correctness conjectures are generated.
These conjectures are logic statements whose proof guarantees the specification meets

critical time bounds.

Real-Time Euclid

Real-Time Euclid (33} does not allow some general programming constructs,
including while(), recursion, and recursive data structures. The schedulability an-
alyzer of Real-Time Euclid computes the worst-case execution time of a task by

assuming the execution time of each instruction is constant,
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Modechart

Mok [27} describes a real-time specification language called Modechart. The
semantics of Modechart is given in terms of RTL (Real Time Logic) [26] that is
amenable to reasoning about the timing of events. The translation of a Modechart
specification intc RTL formulas results in a hierarchical organization of the result-
ing RTL assertions. This hierarchical organization allows filtering of assertions that

concern lower levels of the abstraction.

Flex

In many hard real-time systems, obtaining an approximate result before the
deadline is more desirable than obtaining an exact result after the deadline. Flex [31]
is a real-time programming language that allow computations to return imprecise
results. This provides the flexibility needed to guarantee all important events meet

their deadlines under all circumstances.

TCEL

In most real-time programming languages, timing constraints can be specified on
blocks of code. In most real-time applications, however, these timing constraints are
imposed on observable i/o events. TCEL [17] allows a programmer to express timing
constraints between i/o events. In TCEL, unstructured constructs such as goto
are not allowed. The compiler takes programs written in this high-level language
and generates binary executable target programs. The compiler tests if the real-
time scheduler can schedule the program so that the timing constraints expressed

in the program can be guaranteed. If not, the compiler decomposes the program
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into reference blocks and constraint blocks. By moving code in reference blocks, the
compiler improves schedulability of the program. If the program is not schedulable
with a single processor, the compiler schedules it with multiple processors. If worst
case timing of the control structure in the constraint blocks does not meets its timing
requirements, it is not schedulable.

Since the compiler takes a program written in a high-level language and does
not allow unstructured constructs, the control flow of the program is known and all
control flow in constraint blocks is well structured.

Since we take binary executable programs as input, control flow of the programs,
which may be unstructured must be determined. We use interval analysis to find the
control flows in the program. The timing requirements also have to be found by
analyzing the control flow of the program. The model we use here is more general
than that of TCEL in the sense that timing requirements do not have to be expressed

explicitly between constraint blocks.

TIBBIT

The TIBBIT system is a binary-to-binary translator for real-time systems. In
binary source codes, timing requirements are implicitly expressed. Thus, the TIBBIT
system must analyze the timing of all insiructions in the binary source code and
generate a target binary code which mimics its timing behavior. It assumes that

execution time for an instruction on the source machine is constant.
Frogram Analysis

Program analysis is to facilitate optimization of programs where the meaning of

optimization is subjective. Tc optimize programs, a compiler must perform some sort
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of program transformation based on the information obtained through the analysis
of source programs. Typical two analyses a compiler performs are control flow and

data-flow analysis.

Control Flow Analysis

Control flow analysis [2, 1] is used to find the control structure of a program so
that the information can be used for optimizing transformations and other analysis. In
control flow analysis, the most important goal is finding loops. One way to find loops
is to find strongly connected regions (SCR) as discussed in [53). While this methods
finds all cycles in a control flow graph, it does not reveal hierarchical structures of
the program.

Another way to analyze the structure of a control flow graph is interval analysis,
which finds hierarchical structures in the control flow graph. Interval analysis, as
formulated by Allen and Cocke, provides a way to solve data flow equations more
efficiently. There are a number of quite different proposals in defining intervals [3, 2,
20, 18, 4, 48]. In general, an interval is a special form of loops. The specific definition

of interval we use is the one defined in [18).

Data-flow Analysis

Data-flow analysis [43, 30, 20, 21, 23] is used to find where variables (data) are
defined and used. Data-flow information is required for many optimization techniques.
We use similar analysis methods to find how the timing differences between source

and target machines flow over the control fiow graph.
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Comparison to Previous Work

All of the binary-to-binary translators and decompilers discussed above ignore
timing issues required in translation of real-time applications. Most translators for
real-time programs deal with programs written in a high-level language, where timing
constraints are explicitly expressed. We are dealing with binary programs where
timing constraints are expressed implicitly.

The current TIBBIT [13] system prcvides some degree of timing equivalence
in binary-to-binary translation of real-time applications. The condition required to
make the TIBBIT approach work is that every basic block takes less time on the
target machine. This condition is stronger than the conditions presented here for
timing equivalent translation. Even with stronger conditions, the TIBBIT system
does not provide timing equivalence since it uses a dynamic synchronization scheme,
e.g., synchronize every 10 ms. We present necessary and sufficient conditions for
timing equivalent and invariant translation even in cases where some basic blocks
in target binary are slower than corresponding block in the source binary program.
When the timing equivalent translation is not possible, we provide the worst case

timing error.

TIBBIT Project Overview

This research has been conducted as part of the TIBBIT project. An overview
of the TIBBIT project is depicted in Figure 7.

ASTRA is a program that takes the description of source and target OS’s and
machines and generates a TIBBIT translator. This thesis describes partially the

Timing Validation and Feedback part of the project. New algorithms are added to test
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Figure 7: The Overall Structure of TIBBIT

if the generated target binary program is timing equivalent with respect to the source
binary program. It also provides methods to reduce the maximum drift between the

source and target programs.

Summary of Contributions

The goal of this thesis is to investigate timing issues in binary-to-binary transla-
tion of real-time applications. For the translation of real-time applications, preserving
both semantic and timing equivalence are important, where others require preserva-
tion of semantic equivalence only. With the given source and translated target binary
applications, the necessary and sufficient conditions that can guarantee timing equiv-
alence have been found. Also, a number of optimization techniques which reduce the

timing difference between the source and target applications are applied. The major



contributions of this dissertation include the following:

e A framework to analyze timing equivalence between source and target programs.

Necessary and sufficient conditions for timing equivalent and timing invariant

translations.

Relevant timing sensitivities for “real-world” usage.

A method to find timing sensitivities of the given target program.

Optimization techniques for timing equivalence.

Thesis Organization

The rest of this dissertation is organized as follows. In Chapter 2, we define
real-time system terminology and provide necessary background on real-time sys-
tems. In Chapter 3 we define basic terminology for compiler-related concepts to be
used throughout this dissertation. In Chapter 4 we define timing equivalence between
source and target systems. In Chapter 5 we present an analysis algorithm for tim-
ing equivalence testing. In Chapter 6 we present two synchronization schemes which
enforce timing equivalence. In Chapter 7 we present algorithms that find timing
sensitivities for the given source and target programs. In Chapter 8 we present algo-
rithms that minimize the timing difference between the source and target programs.
In Chapter 9 we discuss a number of implementation issues. Finally, in Chapter 10

we summarize our result and provide future research directions.



CHAPTER II

BACKGROUND

This chapter presents necessary background on real-time systems. We first
define terminology related fo time and events. We then present issues on real-time

languages, programs and translators of them.
Timelines and Fvents

A timeline is a progression of time from the past to the future. An event, E, is
an occurrence at a point in time, i.e., a happening at a cut of the timeline, which itself
does not take any time. These terms are borrowed from Koepet and Ochsenreiter
[36]. The time value of an event(E), deroted by TV(E), is the value of the time at
the event £. The time duration of two events E; and £y, denoted by TD(E;, Eiyq),
is the time interval between these two events, i.e., the section of the timeline between
the two events. T D(E;, E;4q) is defined as Equation I1.1. Figure 8 depicts timeline,

events and time duration between two events.

TD(Ei, Fip) =| TV(Eiz1) — TV(E)) | (IL1)

Real-Time Systems

An application is a program running on a specific machine. A real-time appli-

cation is an application that interzcts with the external world in a way that involves
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Figure 8: Timeline, Events and Time Duration Between Two Events.

time-related conditions. A real-lime system is a more general term to refer to a
combination of software and hardware that deals with outside events that have time
constraints. The main characteristic of real-time programs is the existence of temporal
(or timing) requirements in addition to functional requirements. Temporal require-
ments specify timing constraints for sequences of events, while functional requirements
specify required transformations of inputs to produce outputs of the system. Typical
real-time systems are control systems (manufacturing systems, robotics), monitoring
systems (patient monitoring, air traffic), and communication systems. The poten-
tially high cost associated with incorrect operations of these systems has created a
demand for rigorous testing and implementation for both functional and temporal

requirements.

1/O Events

An application generates i/o events to communicate with outside systems, i.e.,
receives inputs and generates outputs. All observable events from outside the system
are ifo events. Most systems generate these i/o events by reading and writing data
from/to one or more of the system ijo ports. Since i/o events are generated by a
computer, every i/o event takes some time to complete. Thus, every i/o event io has

two events associated with it, starf(io,) and finish(io;). The time duration of an i/o
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event to0, denoted by T D(io,,i0s) or T D(io) for short, is the time interval between
t0, and 0. An ifo event is represented by its start event. Thus, the time duration of
two i/o events, 70; and 70;41, is the time interval between start events of io; and 10;41-
An application P has two special events, Program Stari(Ps) and Program Finish( Pr)
events, which are not i/o events but we treat as ifo events. Both Ps and Py events

take no time to complete. Figure 9 shows two i/o events io; and io;; with program

start and finish events.

start
start
Program . ) Program
& finish finish

Start A Finish
| () L |

— { >  Timeline
[ L : |
/ ’ TD(iO i ’ioi-l—l)

ioi io,
Figure 9: Timeline, I/O Events and Duration Between Two 1/0 Events.

Suppose an application PS is running on a machine Ms. The application time
value (ATV) of an ijo event(PSE) in P§, denoted by ATV(PSE, Ms), is a function
that returns the time duration from the point of the Program Start(PSs) to PSE.
The ATV(PSs, Ms) is zero and ATV{PSr, M) is equal to the total execution time
of PS on Ms. The ATV(PSp,Ms) is oo if the application never finishes. Now,
suppose the application PS is translated into PT so that it can be executed on a
machine Mr. The ATV(PTs, Mr) is zero and ATV(PTr, M7) is equal to the total
execution time of PT on Mr. Here, ATV(PSs,Ms) = ATV(PTs,Mr) = 0 but
ATV(PSF, Ms) is not necessary equal to ATV (PTr, My).



Machine Models

Suppose a real-time application (source application) running on a specific ma-
chine (source machine) is translated into another application (target application) so

that it can run on another machine (target machine) as shown in Figure 10.

Source Target
Application Translation Application

~

Source Target

Machine

Machine

Figure 10: A Source Application for Source Machine and a Translated Target Appli-
cation for Target Machine.

To provide timing equivalence on the translated target application, the target
machine must be at least as fast as the source machine. However, it is not so clear
what we mean by “a machine is faster than the other.” We thus define the meaning
of faster and slower machine mere clearly.

Let the sets I+ and I be instruction sets of machines M7 and Ms, respectively.
Let OCIS be an ordered combination of instructions, where every element ocis €
OCIS is in Is. Also, let OCIT be an ordered combination of instructions, that is
functionally equivalent to OCIS, where every element ocit € QCIT is in Ir. The
execution time required for an ordered combination of instructions OCTI on machine
M is written as EzecTime(OCI, M). We say machine My is definitely faster than

machine Ms if for all OCIS, there exists a functionally equivalent set of instructions
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OCIT such that OCIT takes less time than OCIS, i.e.,

(VOCIS)[AOCIT 5 EzecTime(OCIT, My) < ExecTime(OCIS, Ms)].  (IL2)

Machine Mr is said to be average faster than machine Ms if for any large n,

Lizy LzecTime(OCIT;, My) > Li=y LzeclTime(OCIS;, Ms)
n - n ’

(11.3)

Synchronization

Suppose source and equivalent target applications are running on source and
target machines, respectively. The goal of synchronization is the elimination of timing
differences between the two systems. Synchronization of the target application with
respect to the source application can be always achieved by delaying the execution
of the target application when the target machine is definitely faster than the source
machine.

While synchronization can be performed at any time/place in the target appli-
cation, the timing of i/o events is significant for real-time applications. The reason
is that only i/o events are observable from the outside. Thus, we are only concerned
with timing differences between corresponding i/o events on source and target appli-
cations. A target application that is semantically equivalent to the source application
said to be timing equivalent if all i/o events in the target application are synchronized
with respect to the corresponding ifo events in the source application.

Figure 11 shows such an example. An i/o event is represented as 1. There are
two i/o events, SE; and SE,, in the source application. The application time value

of these events on the source machine are ATV(SE;, Ms) = 6 and ATV (SE,, Ms) =
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Figure 11: Synchronization of Corresponding 1/0 Events

20. The application time value of corresponding events, T'Ey and TE,, on the target
application are ATV(TE;, M7) = 4 and AT V(T E;, Mr) = 14. Through synchro-
nization, these two applications are timing equivalent, i.e., ATV(STE,, M7t) = 6 and
ATV(STE;, M7) = 20.

The same synchronization also can be viewed as shown in Figure 12. Synchro-
nization can be performed either statically or dynamically. Dynamic synchronization
methods decide synchronization points at run-time. The TIBBIT system [14] uses a
dynamic synchronization method. In TIBBIT, the target application is synchronized
at regular time intervals, every 10ms for example. Static synchronization schemes
decide synchronization points statically over the control flow graph so that synchro-
nization is performed every time the particular point in the control flow graph is

executed. One simple static synchronization method is synchronization of all ifo

nodes.
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Figure 12: Synchronization of Source and Target Programs

Real-Time Languages and Programs

In real-time programs, temporal requirements must be expressed in addition
to functional requirements. These temporal requirements can be expressed either
explicitly or implicitly in the program. Most older real-time programs are written in
assembly languages because of lack of suiiable real-time programming languages and
compilers. Timing requirements in this case are expressed implicitly in the program.
Programmers must embed timing requirements in the program implicitly by inserting
some delay code. More recently, real-time languages are proposed and developed
to allow programmers to express timing constraints explicitly in the program by
providing timing constructs in the programming language. Language constructs to
express timing requirements are discussed in {15, 33, 6).

Figure 13 shows an example of a real-time program written in a high-level
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real-time programming language. This example has three i/o nodes, i.e., one input
(receive()) and two outputs (send()). In this program, the timing requirements
are explicitly specified in the program with special timing constructs, every (stime)

do. In this specification, timing constraints are imposed on blocks of code.

every 10ms do
receive(Sensor, &data)
cmdl = nextCmd(state, data, s1);
cmd2 = nextCmd(state, data, s2);
state = nextState(state,data);
send(Actuatorl, cmdl);
send (Actuator2, cmd2);

enddo

(1]

Figure 13: A Simple Real-Time Program

In most real-time applications, however, these timing constraints are imposed
on observable i/o events. More advanced real-time programming languages called
event-based real-time programming languages are proposed to allow the programmer
to specify timing constraints between observable events. One such real-time program-
ming language is Time-Constrained Event Language (TCEL)[17). Figure 14 shows the
same example of real-time program written in TC E L (also see related work section in
Chapter I). In this program, the timing constraint are specified between i /o events.

Once a program is written, it is the compiler’s duty to translate the real-time
program into target machine code which preserves both temporal and functional

requirements specified in the source program.



every 10.0 ms do
receive(Sensor, &data)
start after 1.0 ms finish within 5.0 ms

begin
cmdl = nextCmd(state, data, s1);
cmd2 = nextCmd(state, data, s2);

state = nextState(state,data);
send (Actuatorl, cmdl);
send (Actuator2, cmd2);
end
enddo

Figure 14: A Simple Real-Time Program with Event-Based Timing Constructs

Program Translation

In general, program translation can be viewed as a process that converts a pro-
gram executable on one machine model to an equivalent program that is executable
on another machine model. Consider a program written in a higher-level program-
ming language. This program can be viewed as a program that is executable on the
conceptual machine, which is described in the language specification. A translator
(or compiler) converts this program into another program that is executable on a
specific target machine. A translator takes source program and source and target
machine descriptions and generates a target program which is an executable on the
target machine. Figure 15 depicts such a translator.

A program translation can be formulated as a function as shown in Equa-
tion 1I.4, where TP is target program, SP is source program, SM is source machine, TH

is target machine and F is a translation function or translator.
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Figure 15: Translator

TP = F(SP, SM, TM). (11.4)

The characteristics of the translator depend on a number of categories: equiv-
alence between source and target programs, “optimality” of the generated target

program, and input and output languages.
Equivalence

While the equivalence test of two programs in general is an undecidable prob-
lem, two programs are said to be “equivalent” if all transformations performed by
the translator are sound and complete within the boundary of “equivalence.” Every
translator must provide some degree of equivalence between source and target pro-
grams. We consider two different categories for the equivalence: functional (semantic)
and temporal {timing) equivalence. For most systems, only semantic equivalence is

required.

Definition 2.1

A translator F preserves semantic equivaience, denoted by TP ¥ SP,if SP

and TP are semantically equivaient. 0O
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In this case, all functional requirements specified in the source program (SP) are
preserved in the target program (TP). All compilers or translators must preserve the

semantic equivalence. For real-time applications, however, preserving timing equiva-

lence is also important.

Definition 2.2
A translator F preserves timing equivalence, denoted by TP i SP, if SP

and TP are semantically equivalent and for all corresponding i/o events

i0, and to;, ATV{ioy, M7) = ATV (io,, Ms). O

In this case, both functional and temporal requirements specified in the source

program (SP) are preserved in the target program (TP).
Optimality

The goal of optimization may vary depending upon system requirements. In
most cases, the goal of optimization is to reduce the total execution time using fewer
resources (performance optimization). Performance optimization has a long history
[1, 3, 39]. However, the major goal of optimization for real-time systems is to meet the
timing requirements specified in the source program, i.e., providing timing equivalence
between two programs, source and target. One such example is TCEL [17, 16, 24].

The TCEL compiler optimizes target programs to comply with the timing constraints

specified in programs.
Input and Output Languages

Both input and output can be anything from binary object code to programs

written in high-level languages such as C or Proleg. In TCEL, like most other com-
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pilers, input programs are written in a higher-level programming language and the
output is binary executable code. Decompilers [8] takes binary executable codes as
input and generates high-level codes such as C or Prolog. A binary-to-binary trans-
lator {51] takes binary executable code for a machine and generates another binary

code which is executable on another machine.
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CHAPTER III

THEORETICAL TERMINOLOGY AND NOTATION

Most compilers use a form of control fiow graph, an intermediate representation
of programs, to analyze and optimize programs. This chapter explains our control
flow graph used in timing analysis. We first provide some mathematical notations to
define control flow graphs. We then define the control flow graph and spanning and
dominator trees for it. A table providing a summary of notations is given at the end

of this chapter.
Set

A set S is a collection of distinct objects. An element s is a member of set S,
written s € 5, if s is an object that is in the set S. The cardinality of a set |S| is the
number of elements in the set S. A set is empty, written 0, if |S| = 0. A set is an
infinite set if |5| = co. A set S is a subset of T, § C T, if every element of S is also
an element in T'. A set S can be partitioned into k nonempty disjoint subsets whose

union is equal to S.

Directed Graph, Paths and Trees

A directed graph G = (V, E) consists of a set of nodes V and a set of edges E )
where each edge € € E is an ordered pair of nodes, written (vy, vs), and vy, v, € V.

An edge e also can be denoted as v; — vy. If the edge v; — v € E, the node v,
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is called tail and v, is called head of the edge. If v; — v, is an edge of & then v is
the predecessor of ve and v is the successor of v;. The set SUCC(v) is the set of all
successors of v and the set PRED(v) is the set of all predecessors of v. The in-degree
of a node v is the number of edges of the form u — v, and the out-degree of v is the
number of edges of the form v — w. A node is a source if its in-degree is zero and a
sink if its out-degree is zero. A graph H is a sub-graph of G if Viy C Vg and Ef C Eg
such that an edge in Ey has both the tail and head nodes in Vy.

A path p of length k is a sequence of nodes {ao, ..., a;) such that there is an edge
(@i, aiy1) for all i = 0,..., k-1. We say a node v supports a path p if v appears in p. A
path (ao, .. .,a) can be divided into smaller paths called sub-paths. A particular sub-
path (ao, . ..,ak_1) of pis denoted by p°. We say a sub-path (a;,...,q;} of {ao, ..., ar)
supports the path (ao,...,ar). A trivial path is a path of length zero, i.e., a single
node. A path is simple if ail nodes in the path are distinct. A non-trivial path p from
z to y is a cycle if z = y and is a simple cycle if it is a cycle and p° is simple. An
edge (v1,vy) is called a self looping edge if v; = vy. For a given two nodes z,y € G,
there may exist many distinct paths which are denoted by the set p(z,y). The set
p(z,y) can be infinite if there exist cycles between two nodes. The set of all simple
paths from z to y is denoted by o(z,y).

A directed acyclic graph (DAG) is a directed graph with no cycles, i.e., any path
between two nodes in a DAG is simple. A directed graph is cyclic if it is not a DAG.
A tree of a directed graph is a DAG with the following three properties: There is a
single source node, called root which has zero in-degree; every node in the tree except
the root has in-degree of one; and for every node in the tree, there exists a simple

path from the node root. If there is a path from u to v in the tree i.e., u = v, then
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u is an ancestor of v and v is descendant of u. The node u is proper ancestor of v
and v is a proper descendant of u if u # v, i.e., v &+ v. The node u is an immediate
ancestor of v and v is an immediate descendant of u if the length of the path is one,

le., u — v.

Control Flow Graphs

Our control flow graph is a directed graph G with a set of nodes and edges.
A node represents a basic block, where a basic block can be either an i/o basic
block (denoted by a rectangle) or computation basic block (denoted by an oval). A
computation basic block contains a sequence of instructions in which the flow of
control enters at the beginning and leaves at the end, without halt or possibility
of branching except at the end. If any instruction in a basic block is executed, all
instructions in that basic block will be executed. An ifo basic block contains an i/o
function call but nothing else.

Assume Ms is the source machine and My is the target machine. For each
node v € V, the execution time on source and target for v, denoted by EST(v), is
an ordered set (ExecTime(v, Ms), ExecTime(v, M7t)). This ordered set is denoted
as (EzecTime(v, Ms)/ EzecTimelv, Mr)) in the graph. We assume that our control
flow graph is obtained from the translated target program, where it may contain some
nodes that are not in the control flow graph obtained from the source code. If v € V
is not in the control flow graph obtained from the source code, EzecTime(v, Ms) = 0.
The required execution time difference between source and target machine for a node
v €V, STD(v), is defined as EzecTime(v, Mr) — EzecTime(v, Ms).

An edge represents potential flow of control between basic blocks. Conditional

branches are represented by nodes with two successors. A control flow graph G can
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be represented as a triple G = (V, E, Entry), where

¢ V is a set of nodes, where each node can be either an i/o node or a computation

node;
o F is a set of edges which is subset of V x V;

e The Entry is a node in V with zero in-degree (source).
o (Vv e V)[Entry = v].

A node v € V with zero out-degree is called an ezit node. There may exist
multiple ezit nodes in G. The set of all i/o nodes in G is denoted by I0(G).

A complete path(cp) of G is a path from the Entry to an ezit node. The set of
all complete paths of G is denoted by CP(G). A cp is a complete simple path(csp) if it
is simple. The set of all complete simple paths in the graph G is denoted by CS P(G).
A cp € CP(G) that is not a member of CSP(G) contains a esp € CSP(G). The set
CP(G) is roughly equivalent to all execution instances of the program represented
by the graph G. A node v € V may support a cp € CP(G) many times if it is in
cycles in G. The set INST(v,cp} = {ivy,...,iv,} represents instances of v on cp,
where iv; is an execution instance of v in cp. We denote a complete path cp over a
specific control flow graph G as {iEntry,,...,iEzit,}, where i Entry, abd i Lxit; are
the only instances of Entry and Ezit nodes, respectively.

A complete path c¢p € CP(G) is denoted by cps if it is running on the source
machine. The set of all complete paths on the source machine is denoted by C P§ (G).
A complete path cp € CP(G) is denoted by cpt if it is running on the target machine,
while set of all complete paths on the target machine is denoted by CPT(G). An

instance cpy; on cp has corresponding instances on both cps and cpt, which are epsv;
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on cps and cptv; on cpt. Here, cp is a conceptual path defined in the graph G while
cpt is the execution of cp on target machine and cps is the execution of cp on source
machine. Also, the path cpt can be viewed as a translated target path from cps by a
translator.

The set SC(G) is the set of all simple cycles(sc) in G. A path is repeatable if it
is in a cycle and non-repeatable if it not in a cycle. The number of executions for a
repeatable path is not generally known statically while the number of executions for
a non-repeatable path is at most one. A repeatable path is simple if it is in a simple
cycle. Any repeatable path can be sub-divided into simple repeatable paths. Suppose
a simple cycle sc is given. The mazimum simple repeatable path of sc, denoted by
msrp(sc), is sc°.

The set of all maximum simple repeatable paths in G is denoted by M S RP(G).
Any cp € CP(() is decomposable with a csp € CSP(G) and multiple instances
of msrp € MSRP(G). In a cp, nodes that support a csp or msrp may not be in

consecutive order.

Example 3.1

Figure 16 shows a control flow graph G. In this graph, the Entry node
is labeled with a. Each node v € V has another oval which is labeled
with £ST(v). The node g is the only ezit node in G and the set 10(G)
is {a,d, g}. There are many complete paths in & including;

(taq,1by, c1,ie1,101),

(fa1,tby, €1, f1,1b2,1c0, 761, 201),

(ia1,¢b1, ¢1,1f1,1by, iy, 1 fo, 13, ica, te1, igh), etc...
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Figure 16: An Example of a Control Flow Graph

The set CP(G), in this case, is infinite.
The set CSP(G) is {(ial,ibl,icl,iel, igl>, (iﬂ],ibl,idl,ie]_, lgl>}.

The set SC(G) is {{b,c, f,b),(b,c,e, f,b),(b,d,e, f,b)}. Thus, the set
MSRP(G) is {(b,c, f),{b,c,e, f},(b,d,e, f)}. Consider a complete path
(iay,iby,ic1,1f1,iby,1co, i f2, b, ica, i€y, ig;) over the graph G. The first
node ia, is an instance of node a and is a part of a esp. The maximum
simple repeatable path (b, ¢, f) is repeated twice after ia;. The rest of the

complete simple path {(ibs,1c3,7e;,1g,) finishes the cp. mi

Suppose a path p = (a1,...,ax_1,a;) in G is given. The execution time re-
quired for a path p on a machine M is represented as EzecTime(p, M) as defined in

Equation 1IL.5.
k
ExecTime(p, M) = Y (ExecTime(as M)) (I11.5)

1=1

For the given path p, ST (p) is ((EzecTime(p, Ms), ExecTvme(p, Mr)). The
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execution time difference between source and target machine for the path p, ST D(p),
is defined as Ezeclime(p, Mr) — ExecTime(p, Ms). Consider two nodes z,y € V.
A o; € o(z,y) is a simple path from z o y. The function Maz EST(z,y) returns the
EST(0,) such that

STD(op) = max (STD(oi(z,y))). (I11.6)

oi€o(z,y)
The function MinEST (z,y) returns the EST(o,) such that

STD(o,) = min (STD(oi(z,y))). (I11.7)

oiCo(z,y)

Example 3.2
Consider the control flow graph given in Figure 16, again. The set (b, f)
is {{b,c, f), (b, c,e, f), (b,d, e, [}
EST((b,c, [)) = (14,4), EST((b.c,e, f)) = (16,14), and EST((b,d, e, f))
= (11,13).
STD({b,c, f)) = -10, STD({b,c,e, f})) = -2, and STD({b,d, e, f}) = 2.

Thus, Maz EST (b, f) returns (11,13) and MinEST(b, f) returns (14,4).

O

Spanning Trees and Edges

A spanning tree of G = (Vg, Eg, Entryg,) is a tree ST = {(Vr, Er, Rootr} such
that Vr = Vi, Er C Eg and Rooty = Entryg. In general, ST of a G is not unique
by definition. Two different spanning irees of @ have two different subsets of edges
from Eg. Given a spanning tree ST of a graph G, edges in G are partitioned into

four groups.
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e Tree edges are edges (vy, v3) in G that are also edges in ST.

o Forward edges are edges (v;,v;) in G that are not in ST but v, is a descendant
of v; in ST.

® Retreating edges are edges (vp,v,) in G such that v = vy or v, is an ancestor of
Uz in ST.

o Cress edges are edges (vi,m;) in G such that v; is neither an ancestor nor a
descendant of v, in ST.

Example 3.3

S
5N

Figure 17: A Spanning Tree of The CFG Shown in Figure 16

Figure 17 shows a spanning tree ST of the control flow graph G given in
Figure 16. For the given ST, d — ¢ is a cross edge, ¢ — f is an advancing

edge and f — bis a back edge. (=
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Dominators and The Dominator Tree

POAM

A node z dominates node y, denoted by £ "= y, if every path from the Entry

to y includes z. If bopm y, then any path Eniry — y can be split into two parts:

Entry 5 z and © = y. A node z strictly dominates y, denoted by = SDoM y, if

z#yand x boM y- A node z immediately dominates y, denoted by x 1bom y, if

¢ S2QM y and there is no node z such that z 2 z and » P2M y. It s easy to see
that each node has a unique immediate dominator if it has any [41]. The dominator
tree (DOM iree in short) of a control flow graph G = (Vg, Eg, Entryc) is a tree
DT = (Vr, Er, Rootr), where Vo = Vi, Rootr = Entryg and Er is the set of edges
of the form z "29M y. The DOM tree of a G is unique since every node has a unique
immediate dominator [41]. A node u is a proper ancestor of v if v *29™ ». An
algorithm to find dominator relationship can be found in [41, 54]. A more efficient
algorithm is shown in [38]. A back edge in G is an edge {v1,v;) such that v, is a

predecessor of vy in the DOM tree. A back edge also defines a loop which is different

than that defined by a retreating edge in a spanning tree.

Example 3.4

Figure 18 gives the DOM tree of the control flow graph shown in Figure 16.

There is only one back edge in G, which is f — b.



Figure 18: The

In this chapter, we

tions, we defined our control flow graph. The definitions of spanning trees and the

dominator tree of a control flow graph are also provided. A summary of notations is

shown in Table 1.

Dominator Tree of The CFG Shown in Figure 16

Summary

provided some mathematical notations. Using these nota-

l Definition Description

P° A sub-path {aqg,...,at_1) of p = (aqy,...,ax)

plz,y) Set of all paths from z to y

o(z,y) Set of all simple paths from z to y

EST(v) (EzecTime(v, Ms), ExvecTime(v, Mt))

ST D(v) EzecTime(v, Mt) — ExecTime(v, Ms)

CP(G) Set of all complete paths in G

SC(G) Set of all simple cycles in G

MSRP(G) Set of all maximum simple repeatable paths in G

MazEST(z,y) | EST{o,(z,y)) such that ST D(o,(z,y)) =
MaXy,(zy)eaiz (ST D(0i{z, y)))-

MinEST(z,y) | EST(0,(z,y)) such that STD(o,(z,v)) =
Mily,(z ) eo(zp)(ST D(oi(z, ¥))).

Table 1: A Summary of Notations
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CHAPTER IV

TIMING EQUIVALENT TRANSLATION

A real-time translator must preserve temporal equivalence as well as functional
equivalence. This chapter defines temporal equivalence of the translated target pro-
gram. We first define two timing sensitivities, absolute and relative timing sensitiv-
ities, of a given complete path. These timing sensitivities extend to the program.
Using these concepts of timing sensitivity, three different levels of temporal equiva-
lence, equivalence, invariance and divergence, are defined. The problem of deciding

timing equivalence for a target program is discussed in Chapter V.

Execution Instances and Complete Paths

In Chapter III, we introduced an abstract model to represent possible flow of
control in a program called a control flow graph. The control flow graph abstraction
does not exactly model the flow of control in  program. Consider the program given
in Figure 13. The control flow graph of this program is shown in Figure 19. There
is only one execution instance for the given program which executes the loop every
(10ms} do forever. However, there are an infinite number of complete paths in the
control flow graph but every given complete path is of finite length. In fact, any
control flow graph that has cycles has an infinite number of complete paths.

In general, this abstraction is acceptable since for many loops the number of

iterations to be executed is not known statically. Since the contro} flow graph does
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Covery)

receive

send

send

Figure 19: The Control Flow Graph for The Program Shown in Figure 13
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not contain this information, it is assumed that any loop (cycle) may execute in-
finitely, and thus can generate infinite many complete paths. One advantage of this
assumption in our timing equivalence analysis is that it is easier to distinguish tim-
ing differences accumulated by the repeated execution of a loop. These accumulated
timing differences by loops are too big to be accepted for most real-time systems even
though the difference is limited by 2 constant. For any loop where the number of
iterations is not known, it is covered by the infinite number of complete paths for
the graph G. Thus, for our timing equivalence analysis, complete paths of a control
flow graph are used instead of an application which is an execution instance of the

program.

Global Virtual Clocks and Svnchronizations

Two global virtual clocks, source and target, are maintained throughout the
analysis. These global clocks are used to keep track of execution times of complete
paths. The source clock, accumulated source time (ASTime), and the target clock,
accumulated target time (AT Time), are increased as the path progresses along nodes
in the control flow graph by the time required for these nodes on the source and
target machine, respectively. The source and target clocks are obtained by inserting

the following two statements on every v € V — { Entry}. Both ASTime and ATTime

are initialized to zero at the Entry node.

ATTime <= ATTime + EzecTime(