Domain-Specific Metacomputing
for Computational Science

Steven T. Hackstadt

CIS-TR-97-08
November 1997

Department of Computer and Information Science
University of Oregon

Domain-Specific
Metacomputing for
Computational Science:

Achieving Specificity Through Abstraction

Oral Comprehensive Exam Position Paper
September 1997

By Steven T. Hackstadt

Department of Computer & Information Science
University of Oregon, Eugene, OR 97403

Copyright 1997 by Steven T. Hackstadt.

All rights reserved.

ABSTRACT

A new area called domain-specific metacomputing for computational
science is defined. This area cuts across the larger areas of parallel
and distributed computing, computational science, and software
engineering in search of techniques and technology that will better
allow the creation of useful tools for computational scientists. The
paper focuses on how metacomputing, domain-specific environments, and
software architectures can be employed as key technologies to this
end.

Keywords: metacomputing, heterogeneous computing, domain-specific
environments, DSE, software architecutre,domain-specific software
architecture, DSSA, computational science

Contents

CHAPTER 1

CHAPTER 2

The “Big” Deal with
Computational Science 7

Computational Science Research: An Evolution of Computer Science 8
Solving “Big” Problems 9

Delivering “Big” Performance 11

Building “Big” Software 12

The “Big” Picture: A Research Challenge 14

Characterizing Domain-Specific Metacomputing for
Computational Science 17

Requirements 18
High Performance Heterogeneous Computing 18
Software Design and Development 21
Domain-Specificity 24

Technologies 25
Metacomputing 25

Contents

CHAPTER 3

CHAPTER 4

Software Architeciure 28
Domain-Specific Environments 30

Conclusion 32

Foundations in Parallel and Distributed Computing

The Convergence of Parallel and
Distributed Computing 33
Heterogeneous Computing 35
Metacomputing Challenges 38
Metacomputing Rescarch 39
The First Metacomputer: The NCSA Metacomputer 39
Metacomputing From Existing Technology: PVM and HeNCE 41
A Metacomputing Toolkit: The Globus Project 43
Distributed Object Metacomputing; The Legion Project 46
Issues and Challenges 50
A Metacomputing Testbed 50
Real-Time System Information 52
Application Scheduling 55
Global Name Space 59

Conclusion 64

Supportive Research In
Software Engineering 65

The Software Crisis in Parallel Computing 65

Primitive Forms of Sofiware Engineering 68

Object Orientation 70
Object-Oriented Languages And Message Passing Libraries 71
Farallel Object-Oriented Class Hierarchies 73
Object-Oriented Systems For Parallel Computation 75

Software Architecture 78

Domain-Specific Software Architectures 80
Domain Modeling 81

33

Donmain-Specific Software Architectures for Computational Science Problems 82

Conclusion 84

Contents

CHAPTER 5 Supportive Research In Computational Science 87

Problem-Solving Environments 87
Multi-Component Modeling 88

Multidisciplinary Problem-Solving Environments 89
Domain-Specific Environments 91

A Domain-Specific Environment for Environmental Modeling 93
A Domain-Specific Environment For Seismic Tomography 97

Conclusion 100

CHAPTER 6 Synthesis 103

Overview 103

The Role of Nonfunctional Requirements in Software Design 104
The Role of Frameworks in Software Implementation 107

The Role of Abstraction in Software Use 111

Specificity Through Abstraction 115
Design: Identifying the Domain and Nonfunctional Requiremenis 116
Implementation: Using Frameworks or Software Architectures 117
Use: Creating Appropriate Abstractions 118
Evaluation 119

Open Problems 121
Design 121
Implementation 122
Use 123

Conclusion 124

Contents

CHAPTER 1

The “Big” Deal with
Computational Science

The most incomprehensible thing about the world is that it is
comprehensible.
- Albert Einstein
(1879-1955)

SCIENCE CARES little about philosophical conundrums—even if proposed by one of
its greatest contributors. Incomprehensible or not, science is in a relentless pursuit
of comprehensive knowledge, constantly striving to characterize the unknown,
understand the mysterious, and explain the obvious. Mankind’s scientific knowl-
edge, while relentlessly pursued, is far from comprehensive even though in almost
every discipline, scientists have at their disposal a vast array of technology to assist
them. But science and technology, while ofien equated, have a complex relation-
ship, for it is often the case that science results in technology that is of essential use
to other science. And while technology certainly has broad implications and appli-
cations outside of science, the self-perpetuating relationship between the two is
central to mankind's relentless pursuit of the incomprehensible.

Chapter 1: The “Big” Deal with Computational Science

Computational Science Research: An Evolution of
Computer Science

Without question, ane of the greatest technological achievements of this century
has been the computer. With simulation now an adjunct to experimentation and the-
ory as paradigms of science [NCO96], scientists increasingly need to use the com-
putational power of high performance computers to work on very large problems.
To the scientist, though, computers are only as good as the problems they can solve
or address. The area of computational science is primarily concerned with facilitat-
ing scientists’ ability to solve or simulate large scientific problems with computers.

Recent advances in computing techniques and technology, coupled with new mod-
els for scientific phenomena, are fueling a revolution in the way science and engi-
neering are performed. The impact of this revolution is still in its infancy, though, in
part because access to high performance computers is relatively scarce and because
few people (among scientists, in particular) possess the skills to use such machines
[NSE93]. Thus, computational science may be described as a combination of com-
puter science and traditional physical sciences, with the expected side-effect that
scientists become more computer-savvy and computer scientists become more sci-
ence-savvy. In the computer science community, two trends have been instrumental
in motivating the focus on computational science research.

First, during the past century, society has benefited so significantly from scientific
achievernents that the nature of science is, as Rice declares, shifting from “science
for science’s sake, 10 science for society’s sake™ [Rice95). That is, government is
increasingly expected to ensure that the research it funds with taxpayers’ dollars
will generate useful results. In this atmosphere, social and government concerns for
health, education, security, environment, economics, etc. are becoming the motivat-
ing factors in funding decisions.

Second, computer science is a relatively new “science.” As such, it has been build-
ing its own foundations. Rice argues that those foundations are now laid, and that
computer science must now become more “outward looking” and challenge itself
with solving real problems [Rice95].

These trends are having a profound effect on the nature of computer science. The
new focus on computational science will contribute greatly o the benefit that com-
puter science will have on society in the next century.

Solving “Big" Problems

Solving “Big” Problems

Compulational science spans a broad range of scientific areas, including computa-
tional fluid dynamics, geology, material science, mathematics, mechanics and
structural analysis, molecular modeling and quantum chemistry, and physics. Prob-
lems represented by these areas are “big,” as characterized across several dimen-
sions. Problem size, simulation complexity, and required execution time each
impact the computational requirements of a given application. The following appli-
cation descriptions exemplify these requirements.

Mechanies and Structural Analysis. One application of supercomputers in
this area is to analyze automobile crashworthiness. Models consisting of
100,060 to 250,000 unknowns that require 20 hours of Cray C90 computer
time to solve often prove too coarse to generate accurate predictions, requiring
verification by actual vehicle crash tests [NSF93]. Indeed, computational
requirements are often so large that resolution and consideration of important
physical phenomena are omitted in exchange for faster results,

Molecular Modeling and Quantum Chemistry. Computer models are used
to understand the effects of carcinogens on the structure of DNA. In one simu-
lation, it can take a Cray Y-MP nearly six days to model the interactions of
3,500 water molecules and 16 sodium ions for just 200 trillionths of a second
[NSF93]. Hence, problems are often so complex that even the briefest simula-
tion can take an inordinate amount of time to complete.

Computational Fluid Dynamics. Numerical equations of mass, momentum,
and energy simulate the evolution of fluids. Such a simulation would typically
take place in three dimensions, each divided into, say, 1,000 cells. If each cell
requires 100 floating point operations per time step and the simulation were to
last 25,000 time steps, the entire simulation would require 2.5 quadrillion (2.5
x 10'5) floating point operations. And if a scientist requires the results in two
hours, the computing system must sustain 300 billion (3 x 10'?) floating point
operations per second (commonly expressed as 300 gigaflops) [NSF93]. Thus,
applications with strict time requirements can rapidly drive up the performance
requirements of the computing hardware.

Many problems in these areas and others have been designated Grand Challenges,
which are computation-intensive, “fundamental problems in science and engineer-
ing with broad economic and scientific impact whose solution can be advanced by

Chapter 1: The "Big” Deal with Computational Sclence

applying [high performance computing and communications] technologies”
[NCO96).

A major question facing application and computer scientists is how best to apply
such technologies to these problems. The computer science community has long
envisioned problem-solving environments {PSEs). Gallopoules, Houstis, and Rice
[GHR94] describe a PSE as “a computer system that provides all the computational
facilities necessary to solve a target class of problems... [including] advanced solu-
tion methods, automatic or semiautomatic selection of solution methods, and ways
1o easily incorporate novel solution methods....” While the technology of problem-
solving environments holds promise for well-defined, well-understood problems
with standardized solutions, it does not adequately address the leading-edge, exper-
imental nature of most Grand Challenge problems [GHR94]. Even so, the general
concept of a comprehensive computational environment is appealing as a means of
improving scientists’ access to high performance computing systems.

More recent work [CDHH96, BRRM95] has taken a different approach. Rather
than provide a specific computational capability that potentially spans many com-
putational domains (e.g, solving partial differential equations), domain-specific
environments {DSEs) seek lo provide comprehensive computational abilities within
a single domain. That is, a DSE seeks to address “requirements that are unique to [a
particular] application domain” through a collaboration between application and
computer scientists {CDHH96]. While their approaches are orthogonal to each
other, DSEs and PSEs share many of the same motivations and characteristics. Cen-
tral to both technologies is achieving high performance through the use of parallel
computing systems.

Pancake points out that while parallel computing has been around in various forms
since the mid-1970s and current systems are “undeniably powerful,” the large-scale
transition to parallel computing has been slow because of a lack of software support
[Panc®1]. The relatively recent appearance of PSE and DSE software that supports
paralle! computing capabilities with the scientist in mind at first appears to corrobo-
rate this claim. But it is slightly more complicated than that because today's propo-
nents of PSEs claim that while attempts to build PSEs in the 1960s and 1970s were
thwarted because “technology could not yet support PSEs in computational sci-
ence,” today's “high-performance computers combined with better understanding
of computing and computational science have put PSEs well within our reach”
[GHR94]. Essentially, each blames the other. That is, parallel systems were not
adopted because adequate software support was not available, but those software
environments could not be developed, in part, because machines did not offer
enough performance. We are simply considering different sides of the same coin,

10

Celivering “Big” Performance

implying that achieving good application performance requires both robust soft-
ware and high performance machines. Pancake explains the nature of that coin fur-
ther [Panc91]:

The audience for high-performance computing is not the computer science com-
munity, but scientists, engineers, and other technical programmers whose compu-
tational requirements exceed the capacities of even our fastest sequential
machines. They have turned to parallel processing because their problems are too
big, or their time constraints too pressing, for conventional archilectures. As Ken
Neves of Boeing Computer Services puts it: “Nobody wants parallelism, What we
want is performance.”

Delivering “Big” Performance

As computer systems offer more performance potential, they become more appeal-
ing to scientists with “big"” problems 1o solve. According to the United States
Department of Energy, if current trends in high performance computing (HPC) con-
tinue, sustainable teraflop performance (that is, a trillion floating point operations
per second) will be achieved by the year 2002, but machines capable of sustaining
hundreds of teraflops will not appear until roughly 2025 {DOES6). With computa-
tional science and Grand Challenge problems already rapidly approaching teraflop-
level performance, the U.S, Government has launched the Accelerated Strategic
Computing Initiative (ASCI) to address the *full system, full physics” problems
surrounding virtual testing and prototyping capabilities for nuclear stockpile stew-
ardship [DOE96]. This program has stimulated U.S. high performance computer
manufacturers to create more powerful machines. A teraflop system is already in
place at Sandia Naticnal Laboratory, and systems capable of more than three tera-
flops each will be sited at Lawrence Livermore and Los Alamos National Laborato-
ries within the next two years. Sustainable performance of hundreds of teraflops is
expected by 2003, bucking current trends by more than twenty years.

For many computational science problems, a machine is rarely too powerful. Being
able to perform longer simulations on larger problem sizes at higher resolutions is
certainly not considered a bad thing among scientists. The primary issue, though, is
cost-effectiveness, Together, the first three ASCI systems will cost a total of about
$250 million.! Obviously, cost-effectiveness is not the primary goal of the ASCI
program. But, cost-effective performance is now an important goal for the business-
oriented computing market. And cost-effectiveness is a motivating factor behind
other trends in high performance computing.

11

Chapter 1: The “Big” Deal with Computational Science

In particular, researchers feel there are additional ways of significantly improving
application performance. For example, by using existing resources more efficiently
and increasing access to spare computational cycles, researchers claim that tremen-
dous amounts of computing power can be harnessed [BP94, GNW95, SK592,
ZWZD92]. Headed in this direction is the area of heterogeneous network compui-
ing, which has as its goal the use of a collection of autonomous computers to solve
one or more computational tasks concurrently ({Esha96], p. 4). Work in metacom-
puting extends this notion in both scale and overall system cohesiveness, These
areas are discussed in considerable detail later. The most successful approach will
undoubtedly be the one that can offer cost-effective increases in performance and
simultaneously take the greatest advantage of existing, stand-alone, high perfor-
mance systems. In fact, the ASCI program recognizes this and is ultimately looking
to university research to develop the long-term solutions needed to bridge the gap
between the individual teraflop systems being built today and the hundred-teraflop
system expected by 2003,

Building “Big” Software

Unfortunately, raw machine performance figures are, for all intents and purposes,
unattainable by real applications.? The input/output, synchronization, and commu-
nication costs of parallel and distributed programs can degrade real application per-
formance significantly. Consequently, achieving “big” performance requires more
than just bigger, faster computers. Concerted efforts at improving the performance
of application codes, algorithmic kernels, and system software are also required.
The ASCI project, for example, expects a tenfold performance increase from
improvements in system software alone. Similar improvements in the application
codes themselves are also expected [DOES6].

Constructing the software systems for the ASCI platforms is challenging enough;
tuning and optimizing them for performance is even harder; but uniting the three
teraflop systems (and others) into a cohesive metacomputing environment eventu-
ally capable of sustaining hundreds of teraflops is no less than a monumental under-
taking., Such a system must support application development, debugging,

I. According to corporale press releases, the first three systems delivered as part of the ASCI program cost $46 mil-
lion {Inte), $93 million (IBM), and $110 million (SGI/Cray), respectively; the entire ASCI budget is nearly $1 bil-
lion over the neat ten years,

2. The ASCI performance requirements are based on benchmark results rather than theoretical machine performance;
even 50, the performance of real opplications will likely be less (and in some cases significantly so) than the bench-
mark performance figures.

12

Building "Big" Softwars

performance evaluation and tuning, archival data access, and a host of other appli-
cation- and programmer-oriented services-—all with performance being paramount
[SDA96). This is “big"” software. And while ASCI may be at one extreme of the
high performance compulting spectrum, there are numerous other research labs, uni-
versities, and companies seeking more moderate increases in performance simply
by improving the utilization of their existing computational resources in a similar
manner.

Big software must be designed and built in a methodical, organized manner. How-
ever, among the parallel and distributed computing research community, software
has largely been built on a very ad hoc basis [Panc91, Panc94}. Furthermore, the
tools and environments that have been produced, with a few notable exceptions,
have gone largely unused by programmets and scientists, Finally, history has shown
that industry simply can not be relied upon to produce high-quality, useful tools and
environments for parallel and distributed systems [Panc94), in part because the
market is just too small compared to the massive personal computer software mar-
ket. Pancake claims that just one in fifty research tools and one in twenty commer-
cial tools can be deemed “successful ">

What, then, is going to happen as researchers begin extending the computational
software environment to include, for instance, metacomputing? Fortunately, the
groups carrying out the preliminary efforts in this arca appear to have at least some
understanding of the more general software design and development issues posed
by these “bigger” systems [FK96, GW96]. Grimshaw recognized this point in the
early days of his work in this area [GNW95];

The issue is not whether metasystems will be developed; clearly they will, Rather,
the question is whether they will come about by design and in a coherent, seamless
system—or painfully and in an ad hoc manner by patching together congeries of
independently developed systems, each with different objectives, design philoso-
phies, and computation models.

True to those words, current implementations appear to be emphasizing, to varying
degrees, the use of “frameworks” [AM94, DGMS93, Sund96] and *toolkits™
[FK96], “object-oriented” design [GW96, ABCH95], and building sofiware from
“components” [BWFS96].

Interestingly, these terms and concepts are more often seen in the field of software
engineering than high performance computing. While the: techniques of software

3. Pancake defines “success” based on the “frequency and significance of tool use” [Panc94],

13

Chapter 1: The “Big"” Deal with Computatioral Science

engineering are often embraced by business and industry, other areas of computer
science have seemed less inclined to adopt them. Perhaps this is changing as the
HPC community is increasingly faced with building “big" software like that
required for metacomputing environments. Indeed, this represents an interesting
research challenge.

Software engineering has a fair body of work that could benefit the HPC commu-
nity in this regard. For example, software composition studies how software can be
built as a collection of individual components [AB96, GAO95, NM95]. Other work
explores issues of interoperability among independent pieces of software [Heil95,
Mano935, PSW91, Purt94). Object-oriented approaches have been highly touted as
improving productivity [MN96]. Many of these topics are encompassed in the
emerging area of software architecture [SDKRS5, SG96].

According to Shaw and Garlan [SG96], software architecture “involves the descrip-
tion of clements from which systems are built, interactions among those elements,
patterns that guide their composition, and constraints on these patterns.” One arca
in particular, domain-specific software architectures (DSSAs), may hold particular
promise in constructing metacomputing support for computational science prob-
lems [HPLM95, TTC95]. The core idea of this area is to tailor the organizational
structure of the software to a particular family (or “domain™) of applications. While
the topic of software architecture is resumed later, it is important to note at this
point that a fundamental requirement for a domain-specific software architecture is,
of course, a domain. That is, DSSAs apply to classes of applications that share con-
cepts, terminclogy, data types, computational structures, etc. It is not surprising,
then, that DSSAs potentially have much in common with domain-specific environ-
ments. Their commonality lies in a pervasive consideration of the nature of the
problems to be solved by the software environment. While DSSAs focus on an
appropriate design and development methodology, DSEs tend to focus on meeting
functional, nonfunctional, and implementational requirements. As we discuss later,
a combined approach holds particular promise.

The “Big” Picture: A Research Challenge

The previous sections have sketched a unifying path through the areas of computa-
tional science, parallel and distributed computing, and software engineering. Along
this path, a variety of “technologies” that hold promise in addressing the require-
ments of “big” computational science problems have been mentioned. The nature

14

The *“Big” Picture: A Research Challenge

FIGURE 1. Domain-specific
metacomputing for computa-
tional science is defined as
the confluence of three major
areas of computer science.

of this path and the dependencies among the technologies encountered along it are
central to the focus of this paper. Figure 1 depicts these relationships.

Starting with the area of computational science, we discover domains like computa-
tional fluid dynamics and material science with large problems that require
increased performance to be solved or simulated. In search of performance, we look
to the area of parallel and distributed computing. Evolving technologies like scal-
able clustered computing, heterogeneous network computing, and metacomputing
can potentially offer substantial, cost-effective increases in application perfor-
mance. Building software for these domains and computing systems requires
improvements over the existing, ad hoc methods of software design and construc-
tion used in this community. Looking to software engineering, we find emerging
technologies in the area of software architecture that might aid in this endeavor. By
defining the software in terms of components and interactions, we are better able to
consider its overall structure and topology. But defining a completely generic model
might constrain our ability to meet other nonfunctional requirements such as per-
formance or resource utilization. As a result, restricting software development to
specific domains is often advantageous, which leads us back to computational sci-
ence, an area replete with problem domains in search of software solutions.

Need for
improved)
Cr software h/
Q-;? construction '%(
& <,
& o
3 Q.
& 0,7
= 2.5
& ol e D
& < i 2.2
' ()
g - . R T A
4@ ., (] %
o DOMAIN-SPECIFIC N
@ EIIETAG.DgIFIi’-U‘l’INEi' <
COMPUTATIONAL
SCIENCE
Need for Need for
targst increased
domains . performance

COMPUTATIONAL SCIENCE

15

Chapter 1: The “Big" Deal with Computational Science

Collectively, the technologies from each of these areas constitute a new, crosscut-
ting area which we term domain-specific metacomputing for computational sci-
ence. Each technology seems to contribute to the common goal of high
performance computing for computational science, though no one technology fully
addresses the scope of the problem. Thus, these three foundational areas—compu-
tational science, parallel and distributed computing, and software engineering—
yield a number of technologies that appear promising to the area of domain-specific
metacomputing for computational science. To better understand this new area, we
must identify the areca’s basic requircments, determine how the emerging technolo-
gies may best address those requirements, and explain how those technologies have
evolved and converged to form the area of domain-specific metacomputing for
computational science.

16

CHAPTER 2

Characterizing Domain-Specific
Metacomputing for
Computational Science

THE AREA of domain-specific metacomputing for computational science crosscuts
computational science, parallel and distributed computing, and software engineer-
ing. Part of the goal of this paper is to show how select technologies from each of
these areas can be used to address certain requirements of this new area, We have
already informally introduced and motivated those requirements and briefly men-
tioned the technologies. The goals of this chapter are to describe more explicitly
what those requirements are and the relationship they have to the technologies. This
chapter provides the context within which later ones will describe more formally
how the area of domain-specific metacomputing for computational science is
grounded in three core areas of computer science. In short, we seek to characterize
the area of domain-specific metacomputing for computational science.

It should be noted that to improve readability, we occasionally shorten the verbose
title *“domain-specific metacomputing for computational science” to just “domain-
specific metacomputing,” “metacomputing for computational science,” or just
“computational science metacomputing.” A shoriened title is used only where it
sufficiently suggests the aspects of the area most relevant to the discussion at that

point.

17

Chapter 2: Characterizing Domain-Specific Metacomputing for Computational Science

Requirements

The three requirements to be presented are high performance heterogeneous com-
puting, software design and development, and domain-specificity.

High Performance Heterogeneous Computing

The first requirement of metacomputing for computational science, high perfor-
mance heterogeneous computing, arises from three different perspectives: limited
financial resources to address increasing performance requirements, a desire to
increase the utilization of existing resources, and the need to support muitiple types
of parallelism within a single application.

A large number of computational science problems take the form of simulations,
now a respected companion to scientific theory and experimentation [NCO96]. In
general, simulations have four dimensions by which they can be characterized: size,
resolution, complexity, and length. For example, a simulation of ocean currents
might consider a cubic kilometer (size) of ocean at a time, where one of these cube
is decomposed into a large collection of small, 1-meter cubes (resolution). The sim-
ulation might consider gravitational effects and water temperature, but neglect sur-
face temperature and windspeed (complexity). Finally, when the simulation is
finished, it might result in a portrayal of ocean currents over a period of one hour
(length).

Each of these parameters has a direct effect on the performance of the simulation as
a whole. Increasing size, resolution, complexity, or length automatically increases
the amount of work that needs to be done. As described in Chapter 1, computa-
tional requirements for these problems are, in fact, rapidly increasing. Faced with
this situation, three courses of action come to mind.

The first approach is simply to make scientists wait longer and longer for the results
of their simulations by not making any improvements to the computational environ-
ment they use; the second course of action is to buy new, more powerful supercom-
puler systems and to port the applications or simulations to them; and the third
solution is to better utilize as many of the computational resources available as pos-
sible. Of course, a fourth course of action is to buy new machines in addition to har-
nessing unused, existing computational power. The ASCI program [DOES6] is
doing this in a staggered manner, first investing in new machines, and eventually
requiring their use in a collective manner.

18

Requirements

FIGURE 2. The hypothetical
execution on various systems
of a code with multiple types
of embedded parallelism.
(Figure adapted from
Khokhar et al. [KPSW93).)

It is safe to assume that for a large number of problems, the first option is not via-
ble. Furthermore, repeatedly resorting to the second option results in tremendous
expense and a collection of different (Le.,, heterogeneous) machines, while simulta-
neously failing to improve the versatility of the system as a whole [KPSW93].
However, as Notkin et al. [NHSS87] point out, “heterogeneity is often unavoid-
able... as evolving needs and resources lead to the acquisition... of diverse hard-
ware...." Eventually, the hardware investment and the cumulative performance
potential become large enough that a more general solution is necessary, a solution
that makes better and more flexible use of the available resources.

Consider, for example, that many problems exhibit more than one type of parallel-
ism. The image understanding Grand Challenge problem described in [KPSW93]
consists of coarse-grained, MIMD-like tasks at a high level with fine-grained,
SIMD-like operations applied at a low level. Alternately, different subtasks of a
problem may be better suited to different machine architectures [SDA96]. Consider
an application, as depicted in Figure 2, that has four distinct phases, each exhibiting
a certain type of parallelism. Let us assume the entire execution time on a serial

Special
Vector MIMD SIMD Purpose

] Total time =
Sompute 100 units
Vector
Total time =
Computer 50 units
Communication time
Total time =
Heterogeneous 4 units +
System ¢ communication
1111 overhead

computer to be 100 units, When the code is executed on a (homogeneous) vector
processor, the time required for the vector phase is, of course, drastically reduced,
but the times for the other phases see only moderate improvements, If a heteroge-
neous system consisting of a vector machine, a MIMD systemn, a SIMD computer,

19

Chapter 2; Characterizing Domain-Specific Matacomputing for Computational Science

FIGURE 3. A heterogeneous
computing environment con-
sisting of vector and paralle!
processors, servers, and
workstation clusters. The
components are connectad
by a high-speed networking
infrastructure.

and a special-purpose parallel machine is available, we could potentially optimize
the total execution time of the code by executing each phase on the most appropri-
ate machine. The trade-off, as noted in the figure, is that we incur a certain amount
of communication overhead as we move data between the independent systems,
The amount of that communication, of course, can vary widely. The important point
is that a given homogeneous system (ie., one or more machines of the same type),
by definition, can not necessarily address the diverse requirements of complex com-
putational science problems.

Hence, heterogeneous computing is desirable from financial, utilitarian, and techni-
cal perspectives. A depiction of a possible heterogeneous computing environment
is shown in Figure 3, and Khokhar et al, [KPSW93] offer the following definition.

Heterogeneous computing is the well-orchestrated and coordinated effective use of
a suite of diverse high-performance machines (including parallel machines) to pro-
vide superspeed processing for computationally demanding tasks with diverse
compuling needs.

Workstation Clusters

E i @
A
1

v 4 4 :f Database/File Server

L

MIMD Processor _ W}

—— " Highi
| Speed
Al Network:

Vector Processor
SIMD Processor

The solutions to supporting heterogeneous computing reside in both hardware and
software. In terms of hardware, a collection of different computing systems is obvi-

20

Requirements

ously required, In addition, most researchers agree that a high-speed network con-
necting the machines is also fundamental [KPSW93, SC92, BM95]. According to
Khokhar et al. [KPSW93], such a network must have bandwidth capabilities on the
order of 1 gigabit/sec lo betier match computation and communication speeds.

With respect to software, the needs are more diverse. Siegel, Dietz, and Antonio
[SDAS6] survey the software support needed for heterogeneous computing, They
identify several areas requiring software solutions, including code development and
generation, debugging and performance tools, operating system support for task
manipulation, intermachine data transport, performance monitoring, and adminis-
tration. In addition, a recent workshop [BM95] concluded that defining a *‘perfor-
mance-oriented interface layer between application programs and target systems”
could significantly advance the ares. Such a layer would enable a similarly broad
range of services, including dynamic scheduling, application queries about system
state, prediction and measurement, and monitoring and checkpointing. Many of
these topics will be explored in more detail in the next chapter. The next section,
however, contains a higher-level view of the software development requirements
for domain-specific metacompulting.

Software Design and Development

Page through the software and tool environments sections of some recent parallel
and distributed computing conference proceedings, and many of the papers have a
couple features in common, Almost inevitably, the papers have some kind of dia-
gram of the architecture of the proposed tool or environment. Such diagrams typi-
cally consist of labelled boxes connected by lines or arrows; occasionally some text
is included to explain what the symbols mean. The other common feature of these
papers is a prose description of the structure or architecture of the system. Exam-
ples of such diagrams and descriptions are recreated in Figure 4.

Indeed, diagrams and descriptions like those in Figure 4 are common in many areas
of computer science. And despite being almost completely informal, they can be
surprisingly effective. But the labels assigned to the features of a diagram are typi-
cally unique to the particular system being described. Furthermore, the terms for
general architectural patterns are casually defined (if at all) and are used differently
by different authors. Shaw and Garlan [SG96] characterize the situation as follows:

Unfortunately, diagrams and descriptions are highly ambiguous, At best they rely
on common intuitions and past experience (o have any meaning at all.

21

Chapter 2: Characterizing Domain-Specific Metacomputing for Computational Sclence

FIGURE 4. The “architec-
tures” of tools and environ-
ments are often depicted as
box-and-fine diagrams which
are occasionally accompa-
nied bﬁ some descriptive
text. These examples each
describe visualization tools
for parallel computing envi-
ronments.

GRASPARC
Managemant System

ication '

ﬂpllcatlon
nagar J¢

anagar

The GRASPARC Architecture

DPYV Application
Level
External App. Frameworks
Module Manager Module
Programmier T . =
| vswiztonmodves | Level The visualization
side of DPV is
’ Shine’ Ry \ designed using a
| vos appication Contex \ layered software
M ”
ShapeElement Shapelist Internals architecture....
Other Derlved Classes Lave!
I List MessagePipaline Database \
Layered Architecture Overview
Figure and text adapted from Wagner and Bergeron [WR95),
User Interface | Legend:
History Tr — .
Manipuliator | — d3ia channel “The next step has

been to define a basic
system architecture,
comprising a frame-
work into which dif-
ferent components or
tools can be inserted.”

“The architecture
allows the compo-
nents to be distributed
across different pro-
Cessors....”

Figure and text adapted from Brodlie er al. [BPWB93).

As we will soon see, the implications of this statement have a profound effect on
providing metacomputing support for computational science.

Because the performance demands of computational science problems are so great,
collaborations between scientists and expert paralle]l programmers are essential, As
mentioned earlier, a main goal of computational science is to train “hybrid” scien-

22

Requirements

tists with expert knowledge in both areas. But, until computational scientists are
more numercus, personal collaborations between these previously disjoint commu-
nities will be required to get the best application performance. When faced with
building entire metacomputing environments for compulational science, the suc-
cess of these collaborations is even more crucial.

In light of Shaw and Garlan’s claim that the diagrams and descriptions so com-
monly used to communicate about software rely on “common intuitions and past
experience to have any meaning at all,” we must be concerned with the ability of
such collaborations to produce robust and useful software. To what extent do phys-
ical scientists and computer scientists have the required common intuitions and past
experiences to understand each other with respect to this goal?

This is not to say that these two communities should have any common intuitions
and past experiences. But it does strongly suggest that a common “domain of dis-
course” [ASWB95] is needed if research collaborations to support metacomputing
for computational science are to be successful. The software engineering commu-
nity has so far relied on folklore, informal models, and unproven theories about
software architectures [$G96]). However, even among that community there is a
perceived need for more formal definitions and representations of software archi-
tecture. Compared to the relatively new community of scientists and computer sci-
entists faced with building domain-specific metacomputing environments together,
software engineers are a tightly-knit group. Accordingly, the benefits of improved
software design and development techniques to these software projects seem both
more imperative and more promising.

Improved software design and development support must include several features.
For example, it has long been desirable among software engineers to build systems
from so-called “reusable parts,” but doing so has proved very difficult [AB96,
GAQ95, NM95]. Garlan, Allen, and Ockerbloom [GAO95] contend this is because
of “mismatches” in the “assumptions a reusable part makes about the structure of
the application in which [it} is to appear.” Nonetheless, using reusable parts to
instantiate different domain-specific metacomputing environments buiit from a
common collection of basic parts is a desirable goal. In addition, building systems
from “frameworks” is complementary to using reusable parts, A framework essen-
tially defines a class of applications (or environments) sharing a common architec-
ture and built from a set of generic components [NM95]. Still another goal is to
facilitate a high degree of interoperability between the components of a metacom-
puting environment. Heiler's work [Heil95] seeks to ensure that “a common under-
standing of the meaning of the requested services and data” exists between the
requester and provider. Manola [Mano95] essentially advocates that the use of

23

Chapter 2: Characterizing Domain-Specific Metacomputing for Computational Science

domain-specific knowledge is central to achieving interoperability. Finally, Purtilo,
Snodgrass, and Wolf [PSW91] describe a “software bus,” an abstract software layer
through which heterogencous application (components) exchange data and control.

Cne of the most primitive manifestations of many of these features is the software
library. But, as Rice [Rice96] explains, the software library “still requires a level of
expertise beyond the background and skills of the average scientist and engi-
neer...."—a case of lacking common intuitions and past experiences. Furthermore, a
software library is subject to the “mismatches” described by Garlan et al. [GAQ95].
A higher-level, more comprehensive methodology that simultaneously facilitates
the collaboration between scientists and computer scientists is required.

Domain-Specificity

The last general requirement of domain-specific metacomputing for computational
science is domain-specificity itself. Some view a domain-specific approach to soft-
ware as a “compromise” position [TTC95]. That is, while not purporting to be a
fully general approach, it does avoid the poor software reuse that results from
*point solutions” [FGNS96, TTC95] (a particularly prevalent problem in the paral-
lel and distributed computing community). Thus, a domain-specific approach seeks
to build families of related systems.

Domain-specificity is characterized by a deep consideration in the design and
development of a software system for the context and type of problems to be
addressed. While domain-specificity is a somewhat more qualitative requirement
than the others mentioned so far, the reasons for it are no less apparent. For exam-
ple, Springmeyer, Blattner, and Max {SBM92] express its importance with respect
(o software functionality:

Domain specific knowledge plays an important role in improving the functionality
of software. A designer can apply knowledge of how domain activities are actually
practiced to improve the effectiveness and usability of software tools....

Domain-specificity also offers a way to improve the collaboration between scien-
tists and compuler scientists, as expressed by Taylor, Tracz, and Coglianese
[TTCY5]:

The domain-specific approach affords greater opportunity for user involvement,
analyst/developer cooperation, and concern for manageability, productivity, and
cost-effectiveness.

Technologles

Central to the requirement of a domain-specific approach is the development of a
“domain model,” the goal of which is to standardize the terminology of the problem
domain and the descriptions of specific problems to be solved in the domain. Taylor
et al, [TTC95] claim that domain models “enable effective communication between
the developers of a system and those procuring it." In other words, a domain model
begins to build up the common intuitions required for effective collaboration
between scientists and computer scientists,

Orienting software development around particular domains has the desirable effect
of limiting the scope of the software so that a general solution is neither required or
attempted. Simultaneously, it increases software reuse, improves software function-
ality, and facilitates the collaboration between scientists and computer scientists.

In summary, domain-specific metacomputing for computational science has three
main requirements: high performance heterogencous computing, a software design
and development methodology, and means for achieving domain-specificity. These
requirements and the preceding discussion begin to characterize more formally the
area of domain-specific metacomputing for computational science. But require-
ments are made explicit so that they may be addressed. The next section continues
the characterization of the area by describing three core technologies and how they
address the requirements just presented.

Technologies

The purpose of this section is to identify the enabling technologies for domain-spe-
cific metacomputing for computational science and to explain how they address the
requirements set forth in the previous section. Each technology primarily addresses
one requirement and has a secondary correspondence to a another requirement. Fig-
ure 5 depicts these relationships and will be explained in the following sections.
Each technology will be described in extensive detail in the next chapters; this
chapter serves only to outline the technologies and their relationships to the area
requirements.

Metacomputing

The first core technology that addresses metacomputing for computational science
is metacomputing itself. The literature proposes a variety of definitions for meta-
computing. The presence of multiple definitions is indicative of the technology’s

25

Chapter 2: Characterizing Domain-Specific Metacomputing for Computational Scienca

FIGURE 5. The require-
ments and technologies for
domain-specific metacom-
puting for computational sci-
ance.

Software Design
and/Development

¥ L

Metacomputing

Requiremants . Technologies

relative youthfulness. Consequently, the definition proposed here is a combination
of those found in the literature [KPSW93, SC92, FK96]:

A metacomputing environment is a program execution environment which, prima-
rily through software, supports and simplifies the coordinated use of heteroge-
neous computing systems, high-speed networks, and other computational
resources, possibly located at different geographic sites and in different adminis-
trative domains.

Khokhar ef al. [KPSW93] restrict metacomputing to ‘“‘computations exhibiting
coarse-grained heterogeneity in terms of embedded parallelism.” At the other
extreme, Smarr and Catlett [SC92] define it very generally as “a network of hetero-
geneous, computational resources linked by software in such a way that they can be
used as easily as a personal compuler.” Somewhere between these is the definition
by Foster and Kesselman [FK96], which defines metacomputers as “execution eavi-
ronments in which high-speed networks are used to connect supercomputers, data-
bases, scientific instruments, and advanced display devices, perhaps located at
geographically distributed sites.” Certain characteristics of each of these definitions

26

Technologies

are reflected in the definition we propose, the key aspects of which are that (1)
metacomputing is largely a software solution, (2) diverse, distributed computational
resources are supported, and (3) the environment is well-integrated and simplifies
aceess 1o the available resources,

In addition to the obvious goal of improved performance, metacomputing seeks to
increase accessibility to supercomputing capabilities and to enable unique comput-
ing capabilitics not otherwise possible [FK96]. These two goals roughly correspond
to the requirement of more cost-effective and flexible heterogeneous computing. To
that end, metacomputing primarily addresses the requirement of high performance
heterogencous computing. Metacomputing and heterogeneous computing share an
emphasis on utilizing heterogeneous hardware resources such as workstations and
parallel/vector supercomputing systems, but metacomputing broadens this some-
what by including other resources like database servers, scientific instruments,
graphical displays. In this regard, metacomputing addresses the hardware require-
ments associated with helerogeneous computing.

But metacomputing is concerned with more than just hardware. In fact, metacom-
puting emphasizes software as a key, if not the central, part of the solution by focus-
ing on the construction of robust, comprehensive, higher-level environments that
support computation and tool construction. For example, Foster and Kesselman
[FK96] employ a “toolkit” approach which attempis to integrate a collection of
modules, each of which supports higher-level services through well-defined inter-
faces, Grimshaw and Wulf [GW96], on the other hand, are building an object-ari-
ented class hierarchy and runtime environment to better facilitate customization,
extension, and replacement of system functionality by users. The POOMA frame-
work [ABCH95] uses an object-oriented approach to address portability and retar-
getability requirements. Finally, both POOMA and POET [AM94] utilize
frameworks and an object-orientation to facilitate the mapping between a given
physical phenomenon and the algorithms and data structures used to model it.
While the best approach may not be immediately evident, such efforts are (or soon
will be} addressing the software requirements for heterogeneous computing, More
generally, these efforts are trying to improve the software design and development
process for metacomputing capabilities.

Thus, metacomputing technology primarily applies to the requirement of high per-
formance heterogeneous computing, but also shares a secondary focus on software
design and development needs. This relationship is illustrated in Figure 5 in which
the area of metacomputing is overlapped mostly by high performance heteroge-
neous computing and to a lesser extent by software design and development.

27

Chapter 2: Characterizing Domain-Specific Metacomputing for Computational Sclence

Software Architecture

The area of software architecture attempts to formalize the description of the struc-
ture and topology of a software system, and to “clarify structural and semantic dif-
ferences among components and interactions™ [SG96). According to Garlan and
Shaw [SG96], software architecture “found its roots in diagrams and informal
prose,” like those discussed previcusly and appearing in Figure 4. They amive at
this claim after identifying three design levels for software; architecture, code, and
executable. They argue that the code and execution levels are now well-understood
as evidenced by the evolution of higher-level languages from machine language,
symbolic assemblers, and macro processors. They contend that the architecture
level, however, is currently understood mostly in an intuitive manner and lacks uni-
form syntax and semantics to reason about the diagrams and accompanying prose.
Software archilecture, as an area, seeks to improve both the understanding and the
precision of the architecture level of software design.

A good starting place for software architecture is to consider the variety of organi-
zational styles that software exhibits, such as client-server, pipe-filter, object-ori-
ented, or dataflow. Garlan and Shaw [SG96] make the following observation:

Systems often exhibit an overall style that follows a well-recognized, though infor-
mal, idiomatic pattern.... These styles differ both in the kinds of components they
use and in the way those components interact with each other.

They define a common framework within which they can compare the different
styles. The framework consists of components (e.g, clients, servers, filters, data-
bases), conneclors (e.g., procedure calls, events, protocols, pipes), and a set of con-
straints that determine how they can be combined. The unique aspect of this model
is that it treats the interactions between components (Le, the connectors) at the
same level as the components themselves. At least part of the goal of this technique
is to avoid the “mismatches” between components of software [GAO95]. If one
abstractly views a metacomputing environments as a collection of interoperating
entities (which may be objects, modules, tools, machines, or applications depend-
ing on the design and implementation of the particular system), the potential bene-
fits of a design methodology that models both the components of the system as well
as the interactions between them become apparent.

The technology of sofiware architecture has been most successfully applied in
building domain-specific software architectures (DSSAs) [HPLM95, TTC95]. A
DSSA provides an organizational structure for a family of applications (e.g., avion-
ics, mobile robotics, or user interfaces) such that new applications or products can

28

Technologies

often be created very easily or even automatically [SG96). DSSAs provide a soft-
ware engineering methodology that is tailored to a particular domain. In this way, it
partially addresses how domain-specificity can be manifested within a software
system. With respect to what areas may be amenable to domain-specific architec-
tures, Taylor et al. [TTC95] claim

[The] existence of a large amount of code that is typically successfully scavenged
is an indicator that the domain may be mature enough for attempts to regularize it
and apply the DSSA approach. Similarly, well-developed and well-used libraries
are indications of mature domains.

Clearly, many computational science domains (e.g, computational fluid dynamics,
mechanics and structural analysis, etc.) fit these requirements, as evidenced by the
large number of scientific software libraries available. Thus, in theory, DSSAs
could be created for these areas. Taylor e al. [TTC95] outline a five-step process
for engineering a DSSA which will be discussed in more detail later, Suffice it to
say here that the process includes a high degree of interaction between “domain
experts, systems analysts, software engineers, and potential customers™ [TTC95].
That interaction is largely facilitated by agreeing upon the terminology, concepts,
and requirements of the domain. In other words, domain-specific architectures can
aid in addressing the requirement of domain-specificity.

Surprisingly, these and related ideas have not gone completely unexplored in the
parallel and distributed computing community., For example, Cuny et al
[CDHH96] propose the idea of “domain-specific environments” based on the con-
tention that “solving a particular computational science problem... involves a com-
bination of several technologies with 28 domain-specific purpose.” Their approach
emphasizes the collaboration between application scientists and computer scien-
tists, With respect to technology, they seek solutions exhibiting programmability,
extensibility, and interoperability to better facilitate the experimental nature of lead-
ing-edge scientific applications. In other work, Armstrong and Macfarlane's PGET
system [AM94] “captures the basic communication paths and the structural aspects
of the computational algorithm that are necessary to implement a paralle! version of
patticular scientific problem classes,” Concern for application design and a varia-
tion of domain-specificity is evident in their approach. In addition, Anglano,
Schopf, Wolski, and Berman [ASWBY5] propose an abstract, graphical notation for
describing heterogeneous applications. Their notation and accompanying annota-
tions are well-defined and precise. But more importantly, this notation acts as a
“domain of discourse” between scientists and computer scientists. In essence, they
provide a primitive domain-specific software architecture for heterogeneous com-
puting applications.

29

Chapter 2: Characterizing Domain-Specific Metacomputing for Computational Sclence

FIGURE 6. Problem-solv-
ing environments provide
comprehensive support for a
single computalional service
that is applicable across
many domains. Domain-spe-
cific environments pick a sin-
gle domain and may provide
a collection of diverse com-
putational support.

In summary, the technology of software architecture provides ideas and concepts
that can improve the overall sofiware design and development process. In addition,
the sub-area of domain-specific software architectures offers methods that could be
useful for achieving domain-specificity within a metacomputing environment for
computational science applications. The few manifestations of these concepts
within the parallel and distributed computing community are of particular interest
and will be discussed in more detail later.

Domain-Specific Environments

The last tcchnology central to domain-specific metacomputing for computational
science is domain-specific environments, As described earlier, domain-specific
environments (DSEs) and problem-solving environments (PSEs) have a unique
relationship. Whereas a PSE provides a specific computational capability (e.g., solv-
ing partial differential equations) that has potential application in many domains
(e.g., structural mechanics, chemical engineering}, a DSE seeks to address all of the
computational requirements within a single domain. Their relationship is an orthog-
onal one, as illustrated in Figure 6.

-

SUPPORT

@-._Domain-specific
Environments

Problem-solving
Environments

COMPUTATIONAL

s

APPLICABLE
DOMAINS

The main problem in applying PSEs, as originally defined by Gallopoulos et al.
[GHR94], to large computational science problems, particularly those designated as
Grand Challenges, is that the methods and solution techniques are not necessarily
well-understood and standardized yet. Similarly, experimental applications typi-
cally consist of several component phases that may not be well-integrated. For
example, an environment to support seismic tomography [CDHH96] consists of
seven distinct steps, each with its own domain-specific requirements. Recently,
however, the lerm “problem-solving environment™ has been applied more generally
to indicale a well-integrated, comprehensive computational environment, In partic-
ular, the ASCI program calls for the development of problem-solving environments

30

Technologies

that support code development, application execution, and results analysis in a
“unified computing and information environment” [DOE96]. This vision of PSEs
transcends the original, and bears a greater resemblance to domain-specific envi-
ronments than to traditional problem-solving environments.

Terminology aside, we consider the creation of domain-specific environments, as
characterized below, to be the most relevant example of domain-specific high per-
formance computing support. The GEMS system [BRRM95] seeks broad, compre-
hensive high performance computing support for the Grand Challenge area of
environmental modeling. GEMS is clearly not a problem-solving environment in
the original sense of the term; it does not provide a specific computational capabil-
ity applicable to many domains. Rather, it provides a comprehensive set of capabil-
ities targeted to the domain of environmental modeling, including data
management, analysis, visualization, and performance monitoring. The GEMS sys-
tem was developed through an intense collaboration between software developers
and domain experts. The development team concluded that “to produce high-qual-
ity software the organizational approach must encourage coordination between the
developers [computer scientists] and clients [application scientists] throughout the
entire process” [BRRM95]. The work by Cuny er al. [CDHH96] has created a sim-
ilar environment for seismic tomography through a similar collaborative process.
Their work focuses on addressing the evolving requirements of experimental scien-
tists as well as building systems in the face of ever-changing computational tech-
nology. They conclude that to build DSEs, researchers needs to “develop methods,
tools, and infrastructure that utilize capabilities of programmability, extensibility,
and interoperability” [CDHH96]. These characteristics are central to the unique
role that domain-specific environments play in supporting experimental science. In
particular, as scientists develop new ideas about how to solve their problems, new
requirements for the DSE arise, Later, we will show in more detail how program-
mability, extensibility, and interoperability are central to addressing this need.

Domain-specific environments provide the best technology for achieving domain-
specificity in the functionality of domain-specific metacomputing environments for
computational science. DSEs make two major contributions in this regard. First,
they advocate an intense collaboration between computer and application scientists
so that the resulting software systems not only address the scientists’ needs but do
so in a meaningful and useful way. Second, DSEs reveal promising ideas and meth-
ods for integrating high performance heterogeneous computing into the experimen-
tal process. While this and other sections focus primarily on how problem-solving
environments relale to domain-specific environments, we in no way intend to
neglect the independent successes of problem-solving environments. Their compre-
hensive environments, transparent access to high performance computing, and

3

Chapter 2;: Characterizing Domain-Specific Metacomputing for Computational Science

attention to good software engineering practices address aspects of cach of the
requirements previously identified. The topic of PSEs is raised in the remaining
chapters where relevant

In conclusion, when the three technologies of metacomputing, software architec-
ture, and domain-specific environments are examined collectively, they fully
address the requirements of high performance heterogeneous computing, software
design and development, and domain-specificity. Furthermore, the unique, overlap-
ping manner in which each pair of technologies fully addresses a particular require-
ment suggests the completeness of these requirements and technologies for
domain-specific metacomputing for computational science and positions the area as
one with many research challenges.

Conclusion

The focus of this chapter has been on establishing a relationship between the
requirements and technologies for domain-specific metacomputing for computa-
tional science. While the focus of this paper is primarily on the motivation, charac-
terization, and foundations of this area, it also provides a “case study,” if you will,
of the more general problem in science—and society—of how technology is under-
stood, applicd, integrated, and vsed.

As we have seen in this chapter, it is often the case that a given technology does not
fully address a single requirement, Furthermore, a single technology may have
varying degrees of relevance to multiple requirements. Finally, it may take the com-
bination of multiple technologics to address a single requirement. In the case of
computational science metacomputing, the collection of technologies and require-
ments form an interlocking cycle. In general, one can not expect such a nice pattern
to arise. And the identification of such patterns, as in this case, may take consider-
able thought and organization as well as a deep understanding of the requirements
and technologies involved.

The next three chapters describe the technologies of metacomputing, software
architecture, and domain-specific environments in more detail. Chapter 3 explores
the foundations of metacomputing in parallel and distributed computing. Then, sup-
porting research in the areas of software engineering and computational science is
described in Chapters 4 and 5, respectively. We conclude in Chapter by synthesiz-
ing domain-specific metacomputing for computational science as a research prob-
lem and speculating on how it might be pursued.

32

CHAPTER 3

Foundations in Parallel and
Distributed Computing

THE FOUNDATIONS of domain-specific metacomputing for computational science
are in parallel and distributed computing. This chapter seeks to motivate the devel-
opment of metacomputing technelogy, to identify its key challenges, and to evalu-
ate the major contributions in this areca. Our comments primarily focus on
metacomputing from the systems and performance perspectives, though we also
discuss software organization and implementation methodologies where applicable.

The Convergence of Parallel and
Distributed Computing

Parallel computing and distributed computing have, in the past, been mostly distinct
areas of research and development. Parallel computing, characterized by the devel-
opment of closed hardware systems containing multiple processing units, the soft-
ware and tools for using such systems, and efficient parallel algorithms, has had the
exclusive goal of performance. Distributed computing, on the other hand, has been
primarily concerned with the sharing of resources among a set of interconnected
computers for purposes of performance, reliability, scalability, and security
([CDK94], p. 30). Whereas parallel computing has (argeted computationally-
intense, numeric applications, distributed computing has focused more on interac-

33

Chapter 3: Foundations in Parallel and Distributed Computing

tive, multi-user computing environments that support a broad range of computing
actlivities.

The advent of high-speed networks and more ubiquitous parallel computing, how-
ever, is driving a convergence of parallel and distributed computing, making it
increasingly difficult to distinguish between the two. For example, as network
speeds increase, clusters of single-processor workstations and personal computers
have become a viable platform for parallel computing, Conversely, multiprocessing
is evolving from an esoleric technology for achieving high performance on expen-
sive, high-end machines to a more wide-spread, mainstream technology for achiev-
ing berter performance in distributed computing environments., An excellent
example of this convergence is the rising popularity of shared-memory multipro-
cessors (SMPs) for general purpose computing. While they are clearly paraliel
computers, SMPs are commonly used as server machines in distributed systems
([CDK94], p. 45-46). The modest parallelism of most SMPs allows these servers to
respond simultaneously to multiple service requests, reducing the likelihood that
the service becomes a bottleneck. Furthermore, SMP's support of shared-memory
allows the efficient implementation of interprocess communication and processor
allocation on such machines. While advantageous for distributed systems, shared-
memory multiprocessors also have tremendous performance potential. In fact, the
3-teraflop system solicited by the Accelerated Strategic Computing Initiative
(ASCI) program will be a cluster of SMP machines [Wood96, LLNL97].

While parallel and distributed computing each maintain their own, unique research
directions, their convergence gives rise to many new research challenges. One of
these challenges, metacomputing, is the focus of this chapter. Foster and Kesselman
[FK96] effectively describe some of the relationships between metacomputing and
parallel and distributed computing:

Metacomputers have much in common with both distributed and parallel systems,
yet also differ from these two architectures in important ways. Like a distributed
system, a networked supercomputer must integrate resources of widely varying
capabilities, connected by potentially unreliable networks and often located in dif-
ferent administrative domains. However, the need for high performance can
require programming models and interfaces radically different from those used in
distributed systems. As in parallel computing, metacomputing applications often
need to schedule communications carefully to meet performance requirements.
However, the heterogeneous and dynamic nature of metacomputing systems limits
the applicability of parallel computing tools and techniques.

Thus, while metacomputing can certainly build on the foundations of parallel and
distributed computing, significant advances in infrastructure, methods, and tools are

34

The Convergence of Parallel and Distributed Computing

still required. Because our agenda is somewhat broad, it is beyond the scope of this
work to explore all of the research challenges posed by metacomputing. We seek to
reveal and describe the imporiant role that metacomputing can play in computa-
tional science. To this end, we briefly provide some foundations for the area and
then survey representative examples of work most relevant to domain-specific
metacompuling for compultational science. This is followed by discussions of some
specific parallel and distributed computing issues.

Heterogeneous Computing

Heterogencous computing (HC) exists at the convergence of parallel and distrib-
uted computing and provides many of the foundations of metacomputing. As
defined previously, heterogeneous computing seeks to coordinate the execution of a
collection of diverse computers to execute computationally demanding tasks. HC
inherits parallel computing's concern for performance, but it must also exhibit a
strong consideration for certain distributed systems issues. For example, if the
proper task allocation for the program in Figure 2 in Chapter 2 is not made, little or
no performance gain is realized.

To better distinguish between the different types of HC, various characterizations
and taxonomies have been proposed. Heterogeneity can manifest itself in many
ways, Temporal heterogeneity occurs when a system can execute in different execu-
tion modes (e.g, SIMD, MIMD) at different times, while spatial heterogeneity
occurs when different machines in a system execute in different modes at the same
time [ETM95). In an attempt to capture the distinction between these two types of
heterogeneity, Eshaghian ([Esha96], p. 2-4) proposes the taxonomy in the upper
part of Figure 7. In system heterogeneous computing (SHC), a single multiprocessor
computer executes one or more tasks in both SIMD and MIMD modes. In multi-
mode SHC, SIMD and MIMD execution can take place simultaneously, but in
mixed-mode SHC, the execution mode of the whole machine is switched between
SIMD and MIMD. SHC machines tend to be specialized systems {e.g., the Image
Understanding Architecture ([Esha96], p. 67-97)) and are not intended for general
purpose numerical computation. On the other hand, network heterogeneous com-
puting (NHC} consists of a collection of interconnected machines that can execute
one more tasks concurrently. When all the machines in the system are identical, it is
called multimachine NHC. When at least one of the machines is different, mixed-
machine NHC occurs.

Unfortunaiely, Eshaghian’s classification is not complete. For example, how does
one classify a heterogeneous system that consists of several identical workstations
and a single multimode computer that supports simultaneous SIMD and MIMD

35

Chapter 3: Foundations in Parallel and Distributed Computing

FIGURE 7. The relalionship
between Eshalgi1 an’s taxon-
omy and the EM*” taxonomy
of heterogeneous computing

E Heterogeneous Computing
% /\
3
= System Heterogeneous Network Heterogeneous
.é Computing {SHC) Computing (NHC)
5 /\
% Muttimode Mixed-mode ~Multimachine Mlxed-rnachlne
& e o | \
Multimode SHG'W. lM | N
m'ﬁ‘sw NHC;SESM lNHc;m%M
. Gl Ehda
Slngle Multiple Single Multiple
Machine Machine Machine Machine
Model Models Model Models
{(MESM) (MEMM) (SESM) (SEMM)

N7

Multiple Execution
Modes

N 7

Single Execution
Mode

EM?3 TAXONOMY

\/

Heterogeneous Computing

computations? The problem is that the classifications within SHC and NHC con-
sider different features, In particular, NHC considers machine type, but neglects the
number of execution modes supported. SHC does the exact opposite.

The EM? taxonomy [ETMS95] offers an improvement over Eshaghian’s approach by
independently considering two dimensions of a heterogeneous computing system:
execution modes and machine models. Execution mode represents the type of paral-
lelism supported by a machine (eg., vector, SIMD, MIMD), while machine model
considers the architecture and performance of the machines in the HC system. In
the spirit of Flynn's Taxonomy ([HP90], p. 572), each dimension is classified as
either single or multiple, yielding the categories shown in the lower part of Figure

36

The Convergence of Parallel and Distributed Computing

7. To improve the comparison with Eshaghian’s taxcnomy, the EM? taxonomy has
been arranged as an inverted tree (instead of a simple 2x2 grid),

In the EM?® taxonomy, SESM systems consist of a single machine architecture
which support a single execution mode. SESM systems include uniprocessors as
well as parallel or distributed systems that support a single execution mode and are
composed of identical processors or machines. SEMM-class systems include, for
example, networks of different workstations that each support the same execution
mode. Finally, MESM and MEMM systems consist of machines that individually
can support multiple modes of parallelism. MESM-class systems consist of a single
machine type, while MEMM-class systems are composed of different types of
computers,

The relationships between the Eshaghian and EM? taxonomies is shown in the mid-
dle of Figure 7. While Eshaghian’s taxonomy does identify how multiple execution
modes are manifested within a single machine (ie., multimode or mixed-mode), the
resulting classes of machines do not fully address the range of possibilities in a het-
erogeneous system. The Eshaghian taxonomy makes two (implicit) assumptions
that limit its usefulness. First, it assumes that if a HC system is composed of a sin-
gle machine, that machine must exhibit multiple execution modes. Second, it
assumes that if multiple machines are used in a HC system, none of the individual
machines are capable of multiple execution modes. The first assumption is at least
partially valid in that without it, non-heterogeneous systems are possible (e.g., a sin-
gle workstation or a shared-memory multiprocessor). However, the second assump-
tion is clearly limiting in that it certainly omits valid heterogeneous systems. In
particular, MEMM-class machines do not have an obvious classification in
Eshaghian’s taxonomy.

Yet, MEMM-class systems (i.e, heterogenecus systems that support multiple exe-
cution modes on multiple machine types) represent the most flexible metacomput-
ing environment for computational science, Metacomputing is less concerned with
specialized architectures capable of supperting multiple modes of parallelism. Such
machines are usually research prototypes ([Esha%6], p. 34-43) and require non-
standard, specialized programming languages ([Esha96), p. 43-49). These charac-
teristics are not consistent with the goals of metacomputing. Rather, metacomput-
ing seeks to support multiple forms of embedded parallelism by allocating tasks to
an appropriate machine if available. Furthermore, support of a unified program-
ming model is simplified when the machines that make up the heterogeneous sys-
tem support standard programming languages, system libraries, and tools,

37

Chapter 3: Foundations in Parallel and Distributed Computing

Metacomputing Challenges

Earlier, metacomputing was distinguished from heterogeneous computing as pro-
viding larger-scale and more cohesive computational support. Thus, metacomput-
ing faces all of the same challenges as heterogeneous computing. While general
consideration of heterogeneity dates back to 1987 {NHSS87) and specific methods
(e.g., remote procedure call) for accommodating heterogeneity date back much fur-
ther, it was not until the early 1990s that the potential advantages of heterogeneous
computing came to light, Many of those advantages have already been discussed in
earlier chapters.

But along with those advantages come several challenges. Khokhar er al
[KPSW93] identify several that are part of the process of heterogeneous computing.
First is algorithm design. Heterogeneous computing opens up unique opportunities
for algorithms. Designers must consider the types of machines available in a given
heterogeneous system, alternate solution methods to application subproblems, and
the cost of network communication. Next, code-type profiling attempts to identify
the types of parallelism (eg., vectorizable, SIMD/MIMD parallel, scalar, etc.)
exhibited by the phases of an application and (o estimate the execution time of each,
Once profiled, analytical benchmarking indicates which machines are most appro-
priate to each phase of the code. Following this, the code must be partitioned and
mapped onto the heterogeneous system. Matching code types to machines and deal-
ing with code and data conversions among different machines complicate these
tasks. An appropriate selection of machines must then be made. (A given applica-
tion doesn’t necessarily use all the available machines.) Scheduling of the applica-
tion modules takes place at several levels (e g, whole system, jobs, active sets, and
processes). During execution, issues of synchronization must be addressed, includ-
ing coordination between the senders and receivers of messages and controiling
access to shared objects. Attention must be given to interconnection requirements
so that computation and communication speeds are matched. Finally, programming
environments must support poriable and parallel languages, cross-parallel compil-
ers, paralle! debuggers, configuration management, and performance evaluation.

Siegel et al. [SDA96] identify a similar three-stage process for building applica-
tions for a heterogeneous system. The process begins by comparing the computa-
tional requircments of the application with the machines available in the HC
system. Next, task profiling and analytical benchmarking break the application into
homogeneous subtasks (with respect lo their compultational requirements) and
quantifies how each of the machines may perform on the tasks. In the third stage,
execution times for each task are derived, including consideration of potential com-
munication costs, system load, and network traffic, The tasks are then assigned to

38

Metacomputing Research

machines according to an execution schedule, In the last stage, the application is
executed. As the system is monitored, rescheduling or relocating certain tasks may
be necessary.

These characterizations of heterogeneous computing are intended to act as a back-
drop for the remainder of this chapter as the major contributions to metacomputing
are surveyed, In addition, we revisit some of these topics when we discuss particu-
lar issues and challenges for metacomputing later in this chapter.

Metacomputing Research

The First Metacomputer: The NCSA Metacomputer

The notion of metacomputing was first popularized by Smarr and Catlett in a 1992
article [SC92]. Oddly enough, their article appeared among a collection of work
appearing at the ACM SIGGRAPH '92 Annual International Conference on Com-
puter Graphics and Interactive Techniques. What, one may ask, does metacomput-
ing have to do with computer graphics? Smarr and Catlett were primarily
concerned with the use of scientific visualization in networked environments for
purposes of compulational steering and remote collaboration. The conference
showcased a collection of projects representing the “state of the art in networked
visual computational science” [Hart92]. Among those systems was the NCSA
metacompulter.

System Description. Smarr and Catlett envisioned a metacomputer that could be
used as easily as a personal computer (PC) and supported this vision with a simple
analogy. One can think of a PC as a “minimetacomputer” consisting of a general
purpose processor, a floating-point processor, an I/O “computer,” audio and graph-
ics chips, etc. “Like the metacomputer, the minimetacomputer is a heterogeneous
environment of computing engines connected by communication links” [SC92).
Khokhar ez al. [KPSW93] take a similar view of heterogeneous computing in gen-
eral, also noting the development and subsequent widespread use of specialized
processors for /O and floating-point processing. Woodward [Wood96], too, sug-
gests a macro view of clustered SMPs where a single SMP and its shared memory
play the roles of a CPU and a CPU cache, respectively. The replication of such
views is certainly suggestive of the evolution of a new level in the computing hier-
archy.

39

Metacomputing Research

were supported. In fact, this reveals one of metacomputing’s distinguishing factors.
Whereas heterogeneous computing integrates a collection of diverse computers,
melacomputing environments seck more comprehensive computational support by
providing access to file systems, mass storage, visualization, and other 1/0Q devices.
The NCSA metacomputer was one of the first to exemplify this notion.

Furthermore, the NCSA metacomputer was instrumental in both identifying the
importance of software support for metacomputing and providing an example of
such support. But NCSA built their software environment primarily from existing
software technology like Parallel Virtual Machine (PVM) [DGMS93, Sund96].
PVM is discussed in more detail in the next section, but as earlier chapters pre-
dicted, the use of existing software technology proved difficult. As a result, current
metacomputing projects appear to be less ambitious in this regard [FGNS95,
FK96). Some projects originally had the intention of using existing technology
[GN'W95], but eventually abandoned that goal altogether [GW96]. Even the origi-
nal developers of PVM have found it necessary to build higher-level software to
better support appropriate metacomputing abstractions [DGMS93, BDGMB96,
Sund96]. We explore this issue in more detail as we survey each of the projects
below.

Metacomputing ¥From Existing Technology: PVYM and HeNCE

Parallel Virtual Machine, better known simply as PVM, is an imporiant exception
to the trend of unadopted tool technology in the parallel and distributed computing
community [Panc94]. FVM is largely responsible for bringing network-based par-
allel computing to the masses. That is, PVM was one of the first software systems
that allowed a heterogeneous collection of machines, including a simple collection
of workstations, to work together on a single computational task. Moreover, it is a
relatively small system that is easily installed by the user [DGMS93]. Originally
released in 1991, PVM has been consistently updated and improved.

System Description. PYM is essentially a message-passing system. An application
consists of several tasks, each of which can exploit the machine architecture best
suited to its solution. (An example of this approach appeared earlier in Figure 2.)
Each user creates their own virtual machine from the available computational and
network resources. Logically, this virtual machine is a single, large distributed
memory computer, and the tasks running on the virtual machine must communicate
with each other through messages with explicitly typed data, PVM handles all data
format conversions that may be required between two machines that use different
data representations. In this way, PYM supports heterogeneity at three different lev-
els: application, machine, and network [DGMS93].

41

Chapter 3: Foundations in Parallel and Distributed Computing

With respect to application-level heterogeneity, tasks can be assigned to computa-
tional resources in one of three ways. In the transparent mode, PVM attempts to
locate tasks on the most appropriate machine. In architecture-dependent mode, the
user assigns an archilecture type to a task and relies on PVM to find an appropriaie
machine of that type to execute the task. Finally, in machine-specific mode the user
actually assigns particular machines to each task. PVM routines also support pro-
cess initiation and termination as well as various communication and synchroniza-
tion primitives (e.g., broadcast, barrier, rendezvous),

Thus, PVM provides many of the low-level mechanisms necessary for heteroge-
neous computing, but it falls considerably short of supporting the vision of meta-
compuling for computational science. The developers, of course, recognize this. In
an effort to “make network computing accessible to scientists and engineers,” they
are constructing the Heterogencous Network Computing Environment (HeNCE) on
top of PVM.

The goal of HeNCE is to simplify the tasks of “writing, compiling, running, debug-
ging, and analyzing programs on a heterogeneous network” [BDGM96]. HeNCE
consists of several tools: compose, configuration, build, execute, and trace. Each of
these is briefiy described here. Using the compose tool, the user specifies the paral-
lelism in their application as a graph, where nodes represent subroutines and arcs
represent control and data flow. The configuration tool is used to create the virtual
parallel machine by indicating which hosts are to participate, with what priority,
and for which tasks. The build tool generates the parallel program, compiles it for
each node type in the virtual machine, and instails the executables on each machine,
The execute tool starts up PVM and runs the program, allocating tasks per the infor-
mation given to the configuration tool. Finally, the trace tool provides some rudi-
mentary visualizations of network status and the graph representation of the parallel

program.

Obviously, the environment has fairly limited capabilities in lerms of the range of
parallel programs it can create, and for the most part, the successful application of
HeNCE to experimental computational science problems seems unlikely. Nonethe-
less, the developers have done something fairly unique by creating a higher-level
abstraction to parallel computing in a heterogeneous environment. The programmer
(scientist?) need only write the core subroutines for a computation or simulation.
The rest of the application logic is specified through the graph abstraction, hiding
the underlying PVM calls and much of the program’s control structure implementa-
tion from the user.

42

Metacomputing Research

Evaluation. As mentioned earlier, PVM was among the first sofiware enabling any
form of network computing. In part, it can be credited with establishing network-
based computing as a valid alternative to dedicated supercomputers. It remains a
practical, immediately available solution that targets small- to medium-scale heter-
ogencous systems typically consisting of less than one hundred hosts. In many
ways, PVM has revealed the limitations that must be addressed by larger-scale sys-
tems (like those described below). For example, PVM requires the user to manage
message-passing explicitly, to know what machines are available and what their
characteristics are, and to have login privileges on each of them.

PVM places an emphasis on practicality and on providing useful technology now.
That spirit is shared by HeNCE, which clearly can not solve all application devel-
opment problems for PVM, though it may provide an incremental improvement for
a certain class of programmers. To their credit, the developers of PVM and HeNCE
do not claim lo provide metacomputing capabilities. Including their work in this
discussion is, perhaps, to overstate their goals. Nonetheless, PVM is representative
of a software framework that is successfully following the evolution of high perfor-
mance computing. More recent work is extending PVM to support threads, client-
server compuling, remote procedure call, agent-based computing, and web-based
computing [Sund96]. In general, PYM’s interface has become a de facto standard
for message-passing and, ironically enough, will likely be supported by future
metacomputing systems [GWS6].

A Metacomputing Toolkit: The Globus Project

In the discussion so far, a number of implicit issues have been raised that are impor-
tant 10 metacomputing. Among those are resource location, resource allocation,
and authentication. Resource location is the determination of what computational
and network resources are available in the heterogeneous computing environment.
Resource allocation is the assignment of machines to tasks. And authentication is
the verification of access privileges to a given machine.

In the NCSA metacomputer, all of these were addressed directly by the user. The
resource set was fixed; resource allocation was done manually for each application;
and access to each resource was assumed. PVM and HeNCE provide an incremen-
tal improvement in the area of resource allocation by supporting transparent and
architecture-dependent task assignments, but resource location and authentication
are still assumed. The limited functionality in these areas is, in some cases, accept-
able for small-scale heterogeneous systems, but for systems with more than ten or
twenty hosts, keeping track of what each host is named, which haosts are operable at

43

Chapter 3: Foundations in Parallel and Distributed Computing

any given time, and the login names and passwords for each host becomes burden-
some. In general, we refer to these issues as part of the configuration problem,

The issues identified by Khokhar er al. [KPSW93] and Siegel et al. [SDA96]
described earlier do not necessarily dictate how such requirements should be
addressed. They simply claim that such issues must be addressed. The vision of
supporting metacomputing environments with access to hundreds or even thou-
sands of machines certainly implies that the user can not be relied upon to address
issues of configuration. To provide such support is the responsibility of, indeed the
very reason for, a full-scale metacomputing environment.

The Globus project is one of two national-scale metacomputing projects. The other
project, Legion, is discussed later. Together, these two projects provide the best
examples of metacomputing environments, though both are still under active devel-
opment at the time of this writing. Even so, much of the design and some imple-
mentation has been described in the literature. We present an overview of these
projects as well as comments about their strengths and weaknesses. Additional
cbservations about these projects are made as we discuss specific metacomputing
issues and challenges later.

System Description. The goal of Globus is to confront directly the problems of
configuration and performance optimization by first creating a “metacomputing
infrastructure toolkit” that provides a set of basic capabilities and interfaces in these
areas [FK96]). These components define a “metacomputing abstract machine™ upon
which a range of higher level services, tools, and applications may be built. By def-
inition, their approach results in a software layer best classified as middleware,
leaving the creation of higher-level services to future work, Central to Globus is
consideration of the potentially unreliable nature of metacomputing environments.
To this end, they view applications that run in metacomputing environments as pos-
sessing the ability to configure themselves to a given execution environment and
then to adapt to subsequent changes in that environment. But clearly, the function-
ality to accomplish this is not the application programmer’s responsibility; it must
originate from within the metacomputing environment iiself. Later, we discuss one
component system working toward this goal,

Foster and Kesselman [FK96] make five general observations about future meta-
computing systems, including Globus. Even though most experiments have been on
small-scale environments with the largest consisting of machines at 17 different
sites [FGNS96], environments must support both scale and selection. When widely
deployed, metacomputing technology will support access to hundreds or thousands
of machines; users will want to select from those machines based on criteria such as

44

Metacomputing Research

connectivity, cost, security, and reliability. Metacomputers must handle heterogene-
ity at multiple levels, including physical devices, network characteristics, system
software, and scheduling and usage policies. Whereas traditional applications could
make assumptions about machine and network characteristics, metacomputer appli-
cations must be able to handle the unpredictable structure of diverse and/or dynam-
ically constructed metacomputing environments. Similarly, dynamic and
unpredictable behavior may be caused by sharing of metacomputing environments,
making guaranteed quality of service and exclusive, predictable access to resources
difficult. Finally, security and authentication are complicated by metacomputing
resources residing in multiple administrative domains. Foster and Kesselman point
out that all of these issues have & common requirement of real-time information
about the system structure and state. A metacomputing system must use that infor-
mation to make configuration decisions and be notified when the information
changes. Meeting these real-time system information requirements is one of the
challenges we address below.

The Globus toolkit is comprised of a set of modules. Each module defines an inter-
face through which higher-level services gain access to the module’s functionality.
Currently, six modules have been conceived: resource location and allocation, com-
munications, unified resource information service, authentication interface, process
creation, and data access [FK96]. Additional details about some of these modules
appear below.

Evaluation. It is difficult to evaluate a system that is still under active development.
Consequently, our comments here relate more (o the design and implementation
approach being used by Globus. This is still constructive, though, since we have
identified software design and development methodologies as a key contribution of
metacomputing technology.

Compared to PVM, the Globus project is taking a very different approach to the
metacomputing problem. PVM and HeNCE are concerned with extending an exist-
ing system originally intended for a somewhat different purpose (i.e, computing in
stnall- to medium-scale helerogeneous environments). Globus, on the other hand, is
building a “metacomputing toolkit” and addressing the metacomputing problem in
a bottom-up manner by developing low-level mechanisms and support that can be
used to implement higher-level services [FK96]. The Globus pruject uses existing
technology where applicable, extends it when practical, and builds their own ser-
vices when necessary, Most low-level services appear to require new implementa-
tions, though some mid- and higher-level services will likely be more compatible
with existing systems.

45

Chapter 3: Foundations in Parallel and Distributed Computing

A notable aspect of Globus that distinguishes it from other projects is the desire to
let potential metacomputing applications drive the identification of, and solutions
to, technical problems. Through the use of targeted testbeds (one of which is dis-
cussed later), the Globus project is hoping to improve their ability to predict the
requirements of future metacomputing applications.

What remains to be seen is whether the low-level toolkit components currently
being built will be able to address these yet unknown requirements, This reveals
one of the potential problems with a bottom-up approach: the resulting system may
not be sufficiently general. This is particularly important since Globus is trying to
build just that—a general metacomputing environment. In the next section, we see
how the Globus approach compares to the design of the Legion metacomputing
system.

Distributed Object Metacomputing: The Legion Project

The object-oriented computing paradigm promotes such characieristics as modular-
ity, abstraction, reuse, and programming-in-the-large [RT96]. In many cases, it can
reduce the amount of work that a programmer has to do and result in increased pro-
ductivity [MN96]. The object-ariented paradigm has more recently been extended
to the realm of distributed applications in hopes of thwarting the so-called “soft-
ware crisis” [Cox90].

The rapid increase in internetworked computers during the 1990s has resulted in
challenging new requirements for information processing in the areas of intercon-
nection and interoperability [NWM93]. In response to this challenge, distributed
object systems such as CORBA [OMGY5] and DCE [0G96] have emerged, and
object-orientation has proven itself a desirable means of managing the complexity
of large-scale distributed systems [NWM93]. However, most of these systems do
not target high-performance computing and do not support parallel programming
[GW96]. In an effort to bring the advantages of distributed objects to metacomput-
ing, the Legion project is attempting to build an infrastructure capable of supporting
high-performance access to millions of hosts based on a solid, object-oriented con-
ceptual model [GW96]).

System Description . The Legion vision is nothing less than grandiose, and it
forces one to consider seriously how future metacomputing environments will actu-
ally manifest themselves and be used, Grimshaw and Wulf [GW96] describe
Legion as follows:

46

Metacomputing Research

Our vision of Legion is of a system consisting of millions of hosts and trillions of
objects co-existing in a loose confederation tied together with high-speed links....

It is Legion’s responsibility to support the abstraction presented (o the user, to
transparently schedule application components on processors, manage data migra-
tion, caching, transfer, and coercion, detect and manage faults, and ensure that the
user’s data and physical resources are adequately protected.

One may argue that the Legion vision of computing is actually a fairly simple con-
ceptual extension to the current state of internetworking. With millions of comput-
ers connecled to the global Internet, it is not a big conceptual leap to imagine those
computers participating in a global pool of computational resources. But, as we
have argued previously, this relatively small conceptual jump requires enormous
advances in software technology. The Legion project recognizes these requirements
perhaps more than any other metacomputing project, though this was not always
the case. Legion started as an effort to extend the Mentat parallel programming lan-
guage to a “campus-wide virtual computer” [GNW95]. Now, the researchers are
designing “from the ground up so that the resulting systemn has a clean coherent
architecture, rather than a patchwork of modifications based on a solution for a dif-
ferent problem™ [GW96]. This realization does not bode well if the developers of
PVM and HeNCE have any real intentions of supporting large-scale metacomput-

ing.

In this spirit, the Legion object model is guided by the philosophy that the develop-
ers can not design a system that satisfies the needs of every user. To this end, the
Legion team is not attempting to provide specific solutions to all of metacomput-
ing’s problems. Rather, “users should be able, whenever possible, to select both the
kind and Ievel of functionality, and make their own trade-offs between function and
cost” [GWS6). The goal of Legion, then, is primarily to specify functionality, not
implementation, As the developers slate, “the [Legion] core will consist of extensi-
ble, replaceable components” {GW96]. Legion provides base implementations of
core functionality, but users can replace them at will. Object-oriented classes and
inheritance provide a natural means of supporting this goal [LG96].

As mentioned above, a key challenge for Legion is to deliver high performance.
Performance has not been a primary objective for distributed object systems, and
this is part of the reason that the Legion object system was (re)designed from
scratch—so that performance considerations could influence the development of
the system. The authors point to two methods for achieving high performance.
First, load-distributing {SKS92] and load-sharing [ZWZD92] systems can be used
lo exploit resources throughout the metacomputing system. Second, Legion sup-
ports parallel execution. As a project emerging from the parallel processing com-

47

Chapter 3: Foundations in Parallel and Distributed Computing

munity, parallelism is a major focus of the project. Four means of achieving
parallelism are available: wrapping existing parallel codes in Legion object wrap-
pers, supporting parallel method invocation and object management, exposing the
Legion run-time interface to parallel language and toolkit builders, and by support-
ing popular message-passing APIs like PVM.

Evaluation. The goal of the Legion project is to provide a cohesive middleware
system for metacomputing environments that supports a wide variety of tools, lan-
guages, and computation models, while simultaneously allowing diverse security,
fault-tolerance, replication, resource management, and scheduling policies. The
project is very large-scale in its goals and broad in ils vision of future computing
environments.

The primary strengths of the Legion system follow a common theme that spans
from high-level design to low-level implementation. At the highest level, Legion's
greatest strength is its philosophy toward addressing the metacomputing problem.
At the heart of that philosophy is the tenet that they “cannot design a system that
will satisfy every user's needs” [GW96]. Adherence to this principle will result in a
system that can grow with the relatively young area of metacomputing. Along with
this philosophy, the group has identified several constraints that restrict how the
higher-level design can be mapped to lower-level implementations of the system.
These include not replacing host operating systems, not legislating changes to inter-
connection networks, and not requiring Legion to run with special privileges. Like
the Legion philosophy, these constraints go a long way toward creating a flexible
and usable system. At the next level, the Legion group has adopted a framework
approach to implementing their system. A framework specifies the interfaces to
core components of the sysiem and may provide default components that can be
easily replaced. Finally, Legion takes an object-oriented approach to the actual
implementation of the system. Object-orientation provides excellent mechanisms
for abstracting machine-specific, operating system-specific, and network-specific
characteristics of the computational resources within the metacomputing system.
Simultaneously, it provides a robust model on which new components and services
may be built. In summary, the main strength of Legion is a thorough appreciation of
the need for a flexible and adaptive system. This appreciation is present from the
high-level philosophy guiding the project all the way down to the low-level imple-
mentation of its objects.

Ironically, the primary weaknesses of Legion can be derived from the very proper-
ties that give it strengths. Consider the Legion philosophy that the project cannot
possibly build a system to satisfy every user's needs. The Legion builders have
actually stated that “the Legion project cannot... build all of ‘Legion'” [Grim96]. In

48

Metacomputing Research

some ways, this is a fundamental flaw—albeit an unavoidable one perhaps—in the
Legion project. That is, as they seek to maximize the generality and flexibility of
the system, they simultaneously minimize what they can actually implement and
even specify in the form of interfaces, which in turn complicates the user's ability to
customize the system to their own needs. Similarly, in the same way that they can
not anticipate every user’s needs, the constraints they have identified will likely
prove insufficient as the field of metacomputing evolves. While object orientation
has some clear advantages, it also has some potential disadvantages. With respect to
usability, much of the system is left up to other developers and/or users to imple-
ment. Are users willing to write their own security modules? Their own scheduling
objects? With respect 1o performance, it is unclear how much overhead object rep-
resentations and interactions impose on Legion applications. Similarly, delivering a
high-performance global name space is a very challenging problem. Finally, it
remains to be seen whether metacomputing will thrive at the scale envisioned by
the developers. Do we need support literally capable of managing millions of hosts
at once? Or will metacomputing practically be applied in a more modest fashion? In
summary, the weaknesses of the Legion system are derived from its extremely gen-
eral approach and broad scale.

In comparing Globus [FK96] and Legion, two major differences are apparent. First,
with respect (o determining the requirements of metacomputing, the Globus project
recognizes the importance of testbeds as a means of discovering and learning about
metacompuling. Legion, on the other hand, is more concerned with building a
totally flexible system that maximizes its ability to adapt to future requirements,
whatever those may be. In design, Globus is taking a bottom-up approach and ry-
ing to use, or at least incorporate, existing technology when possible. Legion's
object-oriented view of metacomputing is naturally top-down, and almost all func-
tionality must be reimplemented for that environment.

Clearly, the decisions that the Legion team have made in the design and implemen-
tation of their system have trade-offs. This is not surprising. Legion is attempting to
tackle a very large problem, and it has already made significant contributions to the
consideration, design, and implementation of metacomputing software infrastruc-
ture, It has also spurred research into several more refined and focused areas like
resource discovery and scheduling.

49

Chapter 3: Foundations in Parallel and Distributed Computing

Issues and Challenges

From the comments above, it should be clear that metacomputing is a young area.
The software that is currently available to support metacomputing-like functionality
(eg., PVM and HeNCE) falls short in many respects. At the same time, those
projects that are attempting lo address the metacomputing problem more com-
pletely (e.g., Globus and Legion) are still under active development. Nonetheless, in
examining the current state of metacomputing, we have touched upon several more
specific issues and challenges that metacomputing must address. Many of those
issues are being addressed by other research groups and have close ties to more
general research in parallel and distributed computing. This section discusses some
of these efforts. We begin with a brief description of a metacomputing testbed. This
is followed by sections discussing real-time system information, application sched-
uling, and global name space.

A Metacomputing Testbed

Both Legion and Globus have recognized that they cannot fully predict the potential
applications and requirements of future metacomputing environments, Interest-
ingly, each group has responded in a different way. Legion is starting from scratch
with a completely object-criented approach to facilitate replacing and/or extending
default implementations with customized ones. In this way, unpredicted functional-
ity can be more casily incorporated into the system.

The Globus team of researchers has taken a very different approach. To improve
their ability to predict the future, they are creating a series of large-scale testbeds.
From these, they hope to learn more about the applications, technical problems, and
open issues that must be addressed so that the area can continue to evolve. The first
of these testbeds, the I-WAY, was created in 1995 and focused on exploring the
types of applications that might be deployed in a metacomputing environment.!

The I-WAY. The Information-Wide Area Year, or I-WAY, was a metacomputing
testbed “in which innovative high-performance and geographically distributed
applications could be deployed” [FGNS96]. The organizers hoped that by focusing
on applications, the I-WAY would reveal the “critical technical problems” that must

1. The second testbed, Globus Ubiquitous Supercomputing Testbed (GUSTO), was scheduled to begin in late 1996,
but no litcrature on the project has yet appeared. Foster and Kesselman [FK96) suggest that this testbed will focus
more on the computer science problems of metacomputing, such as suthentication, scheduling, communication,
and information.

50

Issues and Challenges

be solved and allow researchers to “gain insights into the suitability of different
candidate solutions” [FGNS96].

Essentially, the I-WAY was a huge experiment in metacomputing. The subjects of
the experiment were the more-than-60 applications selected by competitive pro-
posal. These applications fell into three categories: immersive virtual environments
coupled with remote supercomputers, databases, or scientific instruments; multiple,
geographically-distributed supercomputers coupled together; and virtual environ-
ments coupled with other virtual environments [FGNS96]. This experiment was
conducted on a wide range of equipment, including high-end display and virtual
reality devices, mass storage systems, specialized scientific instruments, and at
least seven different types of supercomputers at 17 different sites in North America.
The network connecting all of these components was also heterogeneous, using dif-
ferent switching and networking technologies [FGNS96].

A unique aspect of the I-WAY experiment is the use of I-WAY Point of Presence (I-
POP) machines at each participating site. An I-POP machine is basically a worksta-
tion front-erd to a computational resource. By using the same machine running the
same operating system, I-POP machines provided a “uniform environment” for
management and security of I-WAY resources {FGNS96]. Each I-POP machine
also ran a suite of software tools called I-Soft that supported scheduling, security,
parallel programming, and a distributed file system. It should be noted, however,
that this support was at a relatively low level compared to that currently envisioned
by the Globus project; in many cases, I-Soft was the first atiempt at providing such
functionality.

Discussion. The authors point 1o several successes of the I-WAY, including the
novel idea of point-of-presence machines and preliminary steps toward an inte-
grated software environment for metacomputing. However, the I-WAY also illus-
trated the acute nature of certain metacomputing problems. For example, the use of
point-of-presence machines is clearly not a scalable solution. Perhaps for a small
number of well-coordinated sites, this approach works. But on a larger scale,
imposing specific standards on the machine and operating system required 1o inter-
face with the metacompuling system is both unreasonable and difficult to enforce.
We suggest that the need for I-POP machines will be obviated by advances in soft-
ware technology for metacomputing.

The I-WAY environment was also constrained in many ways, For instance, primi-
tive scheduling software limited applications to executing only on predefined, dis-
joint subsets of I-WAY computers. Similarly, with respect to security, each user had
to have a separate account on each site to which access was required. As we have

51

Chapter 3: Foundatlons in Paraliel and Distributed Computing

suggested, these limitations are largely due to the experimental nature of this envi-
ronment. The authors explicitly recognize this and state that none of the user-ori-
ented requirements were “fully addressed in the I-WAY software environment...”
[FGNS96]. More importantly, they recognize the important role of software engi-
neering, claiming that “system components that are typically developed in isolation
must be more tightly integrated if performance, reliability, and usability goals are to
be achieved” [FGNS96].

Real-Time System Information

As motivated by Foster and Kesselman [FK96], the effective use of a metacomputer
is largely dependent on being able to know the state of the system resources. This
information can include network activity, available network interfaces, processor
characteristics, and authentication mechanisms. The information plays an important
role in nearly every stage of metacomputing, For example, it indicates which
machines are currently operable; it assists in determining which machines may be
used to execute an application; it helps in creating a performance efficient schedule
for executing the application; and it can be used to determine if rescheduling the
application or relocating a task is necessary.

Providing current information only addresses part of the problem, though. Foster
and Kesselman [FK96] note that high-performance applications have traditionally
been developed for a specific type of system—or even a specific systern—with
well-known characteristics. Similarly, scheduling disciplines for distributed sys-
tems typically assume exclusive access to processors and networks [FK96)], The
shared nature of metacomputing environments effectively invalidates both of these
assumptions. It is not necessarily known which types of systems will be used to run
a given application (or paris of an application) at a given time, and applications
encounter contention for network and processor resources from other programs.
Therefore, the load and availability of the resources—and hence, the performance
that can be delivered to an application—varies over time [Wols96, WSP97]. In
order to improve task assignment and scheduling decisions, a prediction of the
future system state is also desirable.

Network Weather Service. Wolski {Wols96] describes a “distributed service that
dynamically forecasts the performance various networked resources can deliver to
an application.” His system, the Network Weather Service (NWS), is being built to
operate as a component within a metacomputing environment like Globus, NWS
itself follows a modular design with the main components being the sensory, fore-
casting, and reporting subsystems. Together, these components must sense the per-

52

Issues and Challenges

formance of the metacomputing resources, forecast the future performance of each
resource, and disseminate the forecast to higher-level services [Wols96, WSP97].

Network performance and CPU avatlability sensors exist as a server process that
execules on each machine in the metacomputer. These servers periodically conduct
communication experiments with onc another to determine latency and throughput
values. Similarly, each server regularly determines how much CPU time is available
to applications. An internal database records these readings locally on each
machine,

NWS supports a framework within which any number of forecasting methods can
be vsed. Wolski describes eleven different predictive methods in his initial work,
ranging from a simple running average to a more sophisticated autoregressive
model [Wols96]. Each predictor uses a history of previously sampled data to fore-
cast future values, However, experiments have shown that different predictors work
better at different times [BWFS96). To assist in choosing the best predictor, NWS
records the error between the forecasts for each predictor and the sampled data.
NWS actually tracks both the mean square prediction error and the mean percent-
age prediction error and for each, reports the predictor with the lowest error. Wolski
notes that it is unclear which etror indicator ultimately yields the best predictions
and that in general, “the fitness of each forecasting technique may be application-
specific” [Wols96), Rather than dictating a single solution, NWS leaves it up to the
higher-level service to decide which values to use.

Discussion. Wolski's Network Weather Service [Wols96] has a couple shortcom-
ings. First, the right for a NWS server to conduct an experiment is controlied by a
single token that is passed from server to server at a rate determined by an external
administrative client. Controlling this rate controls the periodicity of communica-
tion measurements. While this may be advantageous as a means of minimizing the
impact of NWS upon the computational environment, it does not scale to large-
scale metacomputing environments. Second, an interesting question about NWS
concerns the use of more computationally expensive prediction methods. One
might expect a trade-off between the rescurce consumption of a predictor and the
accuracy of the forecast. But there is no guarantee that more computation will actu-
ally yield a better prediction. NWS supports a means of dynamically choosing the
best predictive method, but in order to do this, each method must be computed. So,
one may pay the price of a more expensive method, but get no return on that invest-
ment. Practically, there is little NWS can do (o solve this problem. At best, careful
consideration of which predictors are actually computed is necessary.

53

Chapter 3: Foundations In Parallel and Distributed Computing

In their overview of load distributing, Shivaratri, Krueger, and Singhal [SKS592]
identify the main components of load-distributing algorithms. Among these is the
information policy, which decides when, from where, and what state information is
10 be collected. While NWS is not a load-distributing system per se, it may ulti-
mately be used as the information policy component of such a system in a meta-
computing environment. Shivaratri et al. conclude that periodic policies, like NWS,
often result in fruitless work when system load is high because the benefits from
load distributing in general are minimal when all processors in the system are fully
loaded [SKS92]. Consuming resources to collect information under these condi-
tions can actually worsen the situation, Even though NWS is initially targeting the
scheduling problem, a similar argument applies.

To counter such problems, the NetSolve system by Casanova and Dongarra [CD96]
prefers to “take the risk of having a wrong estimate than to pay the cost for getting
a constantly accurate one.” This state-change-driven information policy [SKS92)
only broadcasts information when it has “significantly changed” [{CD96]. This
approach avoids repeatedly reporting values that don't change, which in turn
reduces the computation and communication load imposed by the monitoring sys-
tem,

Clearly, both approaches have desirable and undesirable characteristics. The work
by Zhou, Wang, Zheng, and Delisle [ZWZD92] seeks to leverage the strengths of
both approaches while simultaneously avoiding their weaknesses. Their load shar-
ing system, Utopia, largets large-scale distributed systems consisting of hundreds
or thousands of hosts. Zhou er al. [ZWZD92] make several observations about
large-scale distributed systems. First of all, they note that such systems are typically
structured as clusters of machines, each used by a particular group of people, Fur-
thermore, the machines within such clusters usually share resources extensively.
Finally, they claim the following [ZWZD92}:

It is highly unlikely that all the hosts in the system are needed for receiving tasks
from far away (in terms of network distance and delay). To achieve optimal perfor-
mance on a host, typically only other hosts in its local cluster and a select number
of remote, powerful hosts, which we call widely-sharable hosts (be they ones with
fast CPU, large memory, high /O bandwidth, or special hardware/software}, are
needed.

Thus, within a cluster, Utopia employs a centralized, periodic information policy
where a server on a single resource acts as a master, receiving system information
from all of the other servers, This information is then used to place tasks within that
cluster. However, between clusters, a different information policy is used. In this
case, system information collected within each “1arget cluster” (i.e, & cluster possi-

54

lasues and Challenges

bly receiving tasks from another cluster) is sent to the “source cluster” (i.e, the clus-
ter looking 1o place a collection of tasks) so that a placement decision can be made.
“Virtual clusters” of the “widely-sharable hosts” mentioned above “make it possi-
ble to share load on widely dispersed hosts in a large scale system, without ‘infor-
mation pollution’ and undue overhead” [ZWZD92). This distributed, selective
policy is what gives the system desirable scalability properties.

Providing comprehensive, reliable information within clusters and simultaneously
avoiding flooding the network with mostly useless information appears to strike an
appropriate balance for large-scale systems. It should be noted, however, that while
Wolski’s work could benefit in terms of scalability from these results, Utopia does
not provide any predictive support like Wolski's system.

In general, these types of services for metacomputing environment illustrate the
tension between providing specific, useful functionality and remaining sufficiently
general and flexible enough to address the dynamic nature of the environment.
Even though Wolski provides a general framework capable of supporting almost
any forecasting method, he still makes certain assumptions about how the system
operates that may limit the system’s applicability and performance. Should the
NWS information policy, for example, also be a framework that is controllable by a
third party? Or is it sufficient just to improve the scalability of the information pol-
icy?

The former would certainly result in a more general tool, but would the responsibil-
ities (ie, the interfaces) for using the system subsequently become too complex?
And while the latter appears to address the problem of scalability, might there be
other scenarios that demand still a different information policy? There are no obvi-
ous answers to these question.? While we generally advocate the use of frameworks
to address many of the requirements of domain-specific metacomputing for compu-
tational science, the extent to which such techniques should be applied remains an
open question. This relationship will be explored in more detail in Chapter .

Application Scheduling

It should be clear by now that an important client for metacomputing system state
information is a scheduling tool. As Berman ef al. [BWFS96] state, “despite the
performance potential that distributed systems offer for resource-intensive parallel

2. More recently, Wolski [WSP97] has proposed an idea similar to the hierarchical information policy used by
Zhou et al. [ZWZD92} in the Utopia system.

55

Chapter 3: Foundations in Parallel and Distributed Computing

applications, actually achieving the user’s performance goals can be difficult”
Indeed, scheduling is central to achieving high application performance on a meta-
computer,

However, performance is often user- and application-specific. Furthermore, a sys-
tem's notion of performance is different than that of the application. For example,
whereas a system scheduler might seek to maximize processor utilization or mini-
mize load imbalance, an application-level scheduler might try to optimize some
other measure of performance like execution time, speedup, or cost. As Berman and
Wolski [BW96] note, “distinct users will attempt to optimize their usage of [the]
same metacomputing resources for different performance criteria at the same time.”

Application-Level Scheduling. Despite these issues, application programmers
have been creating performance-efficient schedules for their helerogeneous parallel
and distributed applications for many years. These efforts have largely been “indi-
vidual and unrelated” despite commonalities in the techniques used [BW96]. To
assist and enhance this process in a metacomputing environment, Berman et al.
propose application-level schedulers (AppLeS) [BW96, BWFS96]. Application-
level schedulers represent the “generalizable structure™ of the otherwise intuitive
and experiential practice of custom application scheduling on heterogeneous dis-
tributed systems {[BW96). In other words, Berman et al. seek to provide a frame-
work within which metacomputing scheduling can be supported.

The primary difference between application-level schedulers and other scheduling
environments is that “everything about the system is experienced from the point of
view of the application” [BWFS96]. For example, given a fixed metacomputing
system, if the candidate resources for an application are lightly loaded, then the sys-
tem as a whole appears lightly loaded, This can result in two applications {with dif-
ferent resource requirements) making completely different judgments about the
state of the system on which they are going to run. Such a situation does not occur
in system-level schedulers.

An AppLeS scheduler consists of several components that correspond to the sched-
uling process. The Resource Selector considers different combinations of machines
for execuling the application; the Planner develops possible schedules for each
combination of machines; the Performance Estimator evaluates the predicted per-
formance of each schedule in terms of the user’s performance metric; and the Actu-
ator executes the best schedule using the target resource management system (e.g.,
Globus or Legion). All of these components are managed by the Coordinator and
have access to an Information Pool that consists of performance models, user pref-
erences and constraints, an application description, and the Network Weather Ser-

56

lssues and Challenges

vice (described earlier). In the spirit of Legion, AppLeS’ components are meant to
be replaceable. For example, custom performance models, planning algorithms, or
resource selectors could be used in place of default implementations.

AppLeS essentially generates a “customized scheduler for each application”
[BWFS96]. Moreover, since it is at the application-level, the scheduler is essen-
tially an “integrated extension of the program being scheduled” [BWFS96). That is,
the customized scheduler and the application become part of the same execution
instance. Berman et al. note that these techniques differ from much of the work
described in the scheduling literature. In addition, the AppLeS system distinguishes
between application-specific, system-specific, and dynamic information used dur-
ing the scheduling process, It is in this way that Berman et al, have parameterized
the general scheduling problem [BWFS96].

Discussion. Since AppLeS operates at the application level, it is able to consider
and provide information more meaningful to the application programmer. In fact,
Berman et al. have taken this to something of an extreme, requesting a wealth of
information from the user. Some of this information, such as cost constraints and
performance objectives, is critical to making appropriate scheduling decisions. But
much of the information is excessively detailed, requiring the programmer to indi-
cate, for example, how many megabytes of data is required at input and generated at
output. The user must also indicate the number and size of data structures, amount
of computation and communication per data structure, the communication patterns
exhibited by the application, and information about data conversions [BWFS96]. If
a user is willing to collect all of that information, it is arguable that with just a little
more effort they could manually create a significantly better custom schedule.
Mechanisms for determining such information automatically would be far more
desirable,

Even though preliminary results are promising, to evaluate AppLeS based solely on
the performance of the schedules produced by the prototype system is to miss the
larger contribution the project is making to the area of metacomputing. The primary
contribution that AppLeS makes is to provide a framework for scheduling on heter-
ogeneous distributed systems. This framework will eventually support any number
of scheduling algorithms, including ones provided by the user. It supports access to
different types of information (e.g., application, system, and dynamic) relevant to
the scheduling process, And it works with metacomputing resource managers like
Globus [FK96] and Legion [GW96]. In the same way that a comparison between
the Network Weather Service and a particular predictive method would be mean-
ingless, a rigorous comparison between AppLeS and specific scheduling algorithms
is also irrelevant.

57

Chapter 3: Foundations in Parallel and Distributed Computing

But this is not to say that performance is irrelevant. What we are suggesting,
though, is that the importance of performance is not necessarily absolute. In light of
the increasing complexity of both applications and the systems that run them,
achieving high performance is often at odds with other important criteria like porta-
bility, extensibility, ease of use, and generality.

Consider, for example, the NetSolve system by Casanova and Dongarra [CD96].
The system places great emphasis on ease of use and flexibility as it supports inter-
faces to programming languages like C and Foriran, analysis packages like MAT-
LAB, interactive command shell, and the World Wide Web, The authors also claim
that NetSolve can use any scientific linear algebra package available on the plat-
forms on which it is installed. Of course, performance is also important, but even
the authors admit to using a “simple theoretical model™ that is “less accurate and
always optimistic...” [CD96].

Contrast with this the attempts by Mechoso, Farrara, and Spahr [MF594] (o achieve
superlinear speedup running a climate model in a heterogeneous, distributed com-
puting environment. Performance is the exclusive goal in this work, and the authors
go to great lengths to achieve it, carefully optimizing the task decomposition, over-
lapping computation and communication as much as possible, and manually creat-
ing custom schedules for their codes.

On the other hand, problem-specific environments are often capable of achieving
high performance simultaneously with usability, flexibility, and other more subjec-
tive criteria. But, by definition, these environments lack the generality that an envi-
ronment such as AppLeS attempts to support. For example, Hui et al. [HCYH94]
provide a vertically integrated environment for scheduling solutions to partial dif-
ferential equations on networks of workstations, Their environment is interactive,
portable, and scalable, yet it also provides highly-tuned, novel methods for achiev-
ing maximal performance. They are able to achieve better performance, in part, by
using knowledge about the domain. At the cost of being problem-specific (ie, the
environment can only be used to solve time-dependent PDEs [HCYH94]), they
have been able to achieve a desirable combination of the other criteria.

This trade-off between performance and other nonfunctional requirements (e.g.,
extensibility, generality, portability) is a theme we will return to later. AppLeS is a
good example of a system that tries to balance these varied concerns. It does so
through a frameworks-based approach that is less concerned with providing spe-
cific functionality that meels certain requirements, and more concerned with pro-
viding an infrastructure within which a range of functionality can be instantiated.

58

Issues and Challengea

Global Name Space

A metacomputing environment made up of hundreds or thousands of hosts requires
an efficient, general, and usable means for addressing the hosts and other entities
(e.g., distributed objects, remote processes, files, users, ete.) in the system. This
capability, generally known as naming, is a fundamental requirement of distributed
systems ([CDK94], p. 254). Coulouris er al. point out that since users, program-
mers, and system administrators all regularly refer to the components and services
of a distributed system, names must be “readable by and meaningful to humans”
([CDK94], p. 255). For example, IP addresses (e.g., 128.223.8.39) provide a low-
level name space for computer hosts (or, more precisely, for network interfaces),
but are not general enough to handle all of the other objects mentioned above, Fur-
thermore, IP addresses are awkward and difficult for most humans to remember.
The use of logical IP names (e.g., foo.bar.edu) that are mapped into IP addresses is
an inprovement in this regard, and they also provide a degree of transparency. That
is, a given IP name can, over time, refer to several different machines. But, name
lookup operations can have a significant impact on system performance [CM89].

A system which translates a name into the attributes of a resource or object is called
a name service ([(CDK94), p. 253). One of the most widely vsed name services
today is the Internet Domain Name System (DNS). DNS is a distributed service
that responds primarily to queries for translating IP names into IP addresses. The
DNS database is distributed across a collection of servers, and data is widely repli-
cated and cached to address problems of scale ([(CDK94], p. 271). DNS supports a
name space that is tree-structured and partitioned both organizationally (e.g., .com,
.edu, and .gov suffixes) and geographically (e.g, .us, .uk, and .fr suffixes).

While DNS provides a good example of a robust name service, it does not fully
address the needs of a metacomputing environment. In particular, DNS only assists
in locating physical hosts; metacomputing environments contain many other enti-
ties that require names. Thus, support of a global name space for melacomputing
environments is an important consideration, yet surprisingly little effort has gone
into this area. Many projects are adopting the now-common naming system used on
the World Wide Web known as Uniform Resource Locators {(URLs). URLs define a
name space that is more generic than DNS (although, it uses DNS in many cases).
This section proceeds by describing in more detail the name space defined by
URLs. This is followed by a broader discussion of global name spaces and URL-
based naming schemes as used in melacomputing projects.

Uniform Resource Locators (URLs). Since 1990, Uniform Resource Locators
(URLSs) have been the primary means of addressing—or, naming—information on

59

Chapter 3: Foundations in Parallel and Distributed Computing

the World Wide Web [BMM94], A URL is a textual name composed of twe main
parts: the scheme and the scheme-specific part. These two parts are delineated by a
colon. The scheme typically specifies a network protocol, the most common of
which is Hypertext Transfer Protocol (HTTP). The scheme-specific part differs for
each scheme. In the case of HTTP, it typically indicates the IP name of a web server
and the directory path to a specific web document on that server. Many other
schemes are supported. For example, the “file” scheme typically takes a directory
path to a local file; the “mailto” scheme looks for an email address in the scheme-
specific part; and the “news” scheme takes the name of an USENET newsgroup
[BMM94]. New schemes are easily added to this system, For example, schemes for
television ("tv"} and telephone ("phone”) are under consideration [Zigm96].

The URL system is layered upon other name services and network protocols, For
many schemes (e.g., hitp, news, ftp, telnet), DNS must be consulted to translate an
IP name into an address. Once the target host is known, the transaction is carried
out according to the designated protocol. For instance, the URL <ftp://foo.bar.edu/
pub/readme.txt> first results in a DNS Iookup of “foo.bar.edu.” Once the network
address is known, a connection to that machine using standard File Transfer Proto-
col (FTP) ensues. This is followed by a FTP request for the file named “readme.txt”
located in directory “pub.”

This functionality is largely consistent with the role of a name service. As Cou-
louris et al. ({CDK94], p. 256} point out, the ability to unify the resources of differ-
ent servers and services under a single naming scheme is a major motivation for
keeping the naming process separate from other services. URLs provide this capa-
bility and further introduce the notion of a “universal set of names” [Bern94). Bern-
ers-Lee defines a member of this set as a Universal Resource Identifier (URI); a
URL is then more specifically defined as a URI “which expresses an address which
maps onto an access algorithm using network prolocols” [Bern94]. More recently,
attempts to define Uniform Resource Names {UURNs) would result in a name space
that is complementary to URLs. URNs would provide a name space (and resolution
protocols) for persistent object names [SM%4]. Whereas URLs point to specific
documents on a specific web server, a URN would have 1o be “resolved” {much like
an IP name) to determine where the desired document resides. That is, URNs would
provide a layer of abstraction over relatively low-level URLs,

Discussion, Given the wide acceptance of URLs in the context of the World Wide
‘Web and the emphasis that metacomputing places on internetworking, it is not sur-
prising that several metacomputing projects are attempting to leverage the ubiquity
of URLs. The focus of this discussion will be to compare URL-based naming
schemes for metacomputing environments with other possibilities. In particular,

60

Issues and Challenges

URLs will be compared to the global name service proposed by Cheriton and Mann
[CMB9].

Notable among the metacomputing systems currently using URLs in some form are
Globus [FK96] and Atlas [BBB96]. The Atlas metacomputing project [BBB96]
uses URLs to support a global file system. Atlas integrates a runtime library for
scheduling and communication with Java, a programming language that has
extended the limited fetch-and-display capabilities of web browsers to include the
ability to perform computations, While few details are available, Atlas supports a
global file system by providing special versions of standard Unix file I/O routines
like fopen() that accept URLs as file names. The URLs are then translated into
either local or remote file system accesses. The preliminary work only supports a
read-only file system, but a coherent read/write version is planned for the future
[BBB96). The use of Java and URLs suggests a possible future integration with a
web-based environment.

As we have described earlier, the Globus project has identified several component
modules. Currently, the communication module exists as a system called Nexus
[FKT96, FGKT97]. Nexus is a multithreaded communications library that supports
an abstract communication model based on nodes, contexts, threads, communica-
tion links, and remote service requests [FKT96]. Contexts and nodes roughly corre-
spond o processes and processors, respectively, and a context consists of
potentially many threads. In Nexus, communications {i.e., remole service requests)
occur between contexts, Higher-level services can manipulate these abstractions
through the Globus communications interface.

For two contexts (i.e, multithreaded processes) to communicate, one of them must
“attach” to the other [FGKT97, FT96]). The name space of Nexus contexts is
accessed through Uniform Resource Locators (URLs). Thus, the Nexus URL
<x-nexus://foo.bar.edu:1234/> indicates that there is a Nexus server runaing on
host “foo.bar.edu” and listening on port 1234. Nexus URLs define a global name
space for Nexus contexts. While the translation of these names is performed by
Nexus itself, by standardizing on URLs to define this name space, Nexus function-
ality can more easily be integrated into web-based environments. In fact, in an
effort to support “ubiquitous supercomputing” similar to the “universal access”
supported by the World Wide Web, Foster and Tuecke [FT96] are integrating Nexus
with Java. The Atlas project mentioned earlier has a similar goal. Nexus' robust
support for multiple communication methods greatly extends Java's limited capa-
bilities in this area and creates the possibility of using Java for high-performance,
heterogeneous computations [FT96].

61

Chapter 3: Foundations In Parallel and Distributed Computing

In addition, Globus uses a separate URL scheme in its remote file and data access
module [FK96]. URLs for remote file access are of the form <x-rio://
foo.bar.edu:5678/home/user/file.ext> where “x-rio” is the name of the scheme,
“foo.bar.edu:5678" indicates the host and port number for a remote file server, and
the rest of the URL is the directory path to a file (on the remote host). So, Globus
uses two separate URL schemes to support one global name space for contexts and
another global name space for files.

Thus, Nexus and Atlas demonstrate that a primary reason for using URLs is the
prospect of increasing ubiquity by integrating metacomputing into the World Wide
Web environment. But if any metacomputing project seeks ubiquity, it is the Legion
project [GW96). Yet, Legion is not embracing the URL mechanism to support its
name space(s). As we have seen, Globus uses separate URL schemes for inter-con-
text communication and for remote (parallel) file sysiem access via the respective
Globus modules; Atlas uses URLs to support a global file system and a completely
separate (runtime) mechanism for interprocess communication, But Legion, with
its pervasive object-orientation, is providing a significantly more unified approach
where everything—processes and files alike—are objects. Grimshaw and Wulf
[GW96] note that files are simply objects that reside on a disk. To this end, the
Legion project is building its own global file system that will support a high-perfor-
mance, object-based interface to files.

We stated previously that a key goal of naming is unification ([CM89], p. 256).
Through its object-oriented approach, Legion essentially supports an even higher
degree of unification than URLs can. That is, whereas Nexus URLs clearly distin-
guish the type of object being accessed (ie., by the scheme and syntax of the URL),
Legion names may not. One interacts with a Legion object in the same way (i.e, by
invoking methods) whether it is bound to a file, a process, another user, or some-
thing clse in the system. While the available methods may differ across object
types, the syntax for naming them does not.

Legion's ability to provide a higher degree of name unification over URLs is a
product of its object-orientation. Object-orientation facilitates the creation of a glo-
bal name space through its properties of abstraction, inheritance, and encapsulation.
URLSs, as mentioned above, do not provide these capabilities, and efforts to provide
more abstract name services (e.g., URNs) are underway [SM94]. The URL system
has other shortcomings which can be revealed through a comparison with the nam-
ing system proposed by Cheriton and Mann [CM89].

Cheriton and Mann [CM89] propose a decentralized, global naming service that
attempts to provide both performance and fault tolerance. The naming architecture

62

Issues and Challenges

FIGURE 8. A comparison
betwaen the name spaces
supporied by Cheriton and
Mann's naming service and
commonly used Uniform
Resource Locators (URLs).

consists of three levels: global, administrational, and managerial. As we will see,
these levels have a desirable correspondence to the organization of metacomputing
environments that span multiple administrative domains. The global level repre-
sents the organizations and groups of organizations that are covered by the naming
service. Next, entries at the administrational level are owned and managed by a par-
ticular organization. Finally, managerial entries correspond to actual objects (e.g.,
directories, files, processes, people, etc.} and are called “object managers” [CM89].
Names in this system follow a simple, consistent syntax. Figure 8 contains an
example of this syntax, labels the levels in the naming hierarchy, and shows the
(approximate) corresponding URL.

Cheriton and Mann's Uniform Resource
Narming Scheme Locators (UAL)
%edu/uoregon/csfusers/ired http://cs.uoregon.edu/users/fred
+— managerial T A +
administrational
global

Reolative Position in Name Space

Immediately, an advantage of this scheme (and a shortcoming of URLS) is revealed.
In particular, it provides a higher-level abstraction to naming. Whereas URLs con-
tain the names of explicit host machines, this naming scheme abstracts away from
particular machines and creates a logical, top-down approach to naming. A related
advantage is that the naming syntax is consistent at all levels of the hierarchy. URLs
(under the http and several other schemes) are designated in two different formats
(i.e, the hostname element is represented in dot notation while directory paths are
in path notation). Finally, URLs also include a separate designation for “protocol”
(e.g. hup, ftp, etc.) Because Cheriton and Mann's global naming system is object-
oriented, protocol designation is not necessary (making it similar to Legion in that
respect); object managers support a common, method-based interface for request-
ing the information they manage [CM89].3

3. A full comparison between Cheriton and Mann's scheme and URLs is somewhat irrelevant since URLs define only
o hame space and Cheriton and Mann describe a complete name service. The comparisons we have made rely pri-
marily on the nature of the name space defined by Cheriton and Monn.

63

Chapter 3: Foundations in Parallel and Distributed Computing

In summary, the potentially dynamic nature of a large metacomputing system
requires a consistent and robust global naming service. Comparing the URL sysiem
with Cheriton and Mann's system reveals some of the potential problems that meta-
computing implementers may encounter. Efforts to augment the URL naming sys-
tem with more persisient, abstract names (eg, URNs) may someday provide
metacomputing with a reasonable compromise between achieving ubiquity and the
quality, transparency, and consistency of more robust naming systems,

Conclusion

The convergence of parzallel and distributed computing has created many new, chal-
lenging research areas. Many of these challenges exist in the area of heterogeneous
computing. To understand those challenges is to understand many of the challenges
of metacomputing. Perhaps more revealing, though, is a survey of past and current
efforts. The NCSA metacomputing effort was clearly instrumental in defining the
vision of metacomputing and actually building an early system. That system,
though, lacked the extensive software support that is now widely recognized as
being required. Current efforts at creating that support are varied. While the PVM
and HeNCE effort is building on proven, existing technology, the Legion project is
creating a completely new system from the ground up. In between these two, Glo-
bus is using a modular approach that incorporates existing technology where appli-
cable, and creates new functionality when necessary, Regardless of the
methodology, a survey of these systems reveals a number of challenges, many of
which are being addressed by the metacomputing community. Building metacom-
puting testbeds, collecting real-time system information, scheduling applications,
and supporting a global name space are just a few of the challenges metacomputing
faces. These specific challenges often have firm roots in parallel and distributed
computing. By comparing the efforts of the metacomputing community with other
projects and related research, we gain insight into the nature of metacomputing and
the extent of the challenges it faces.

64

CHAPTER 4

Supportive Research In
Software Engineering

CERTAIN RESEARCH topics in software engineering have particular relevance to
domain-specific metacomputing. The goal of this chapter is not a comprehensive
review of software engineering—a major undertaking by itself—but rather, to iden-
tify topics of research that may contribute 10 the area of domain-specific metacom-
puting for computational science. Earlier chapters provided some motivations as to
how and why software engineering may contribute; we begin by reviewing those.
This is followed by a brief look at how software engineering is currently applied in
the parallel and distributed computing community. The last two sections focus on
the software design and development problem from two perspective: user and
developer. For the user (L&, the application scientist), we explore how object-orien-
tation facilitates application development. For the developer (ie, the builder of a
metacomputing system), we discuss how software architectures—and domain-spe-
cific software architectures, in particular—provide guidance for constructing more
useful systems for application scientists,

The Software Crisis in Parallel Computing

The “software crisis” of the 1960s led to the first use of the term software engineer-
ing. Since then, and despite numerous advances in approaches, tools, and educa-
tion, that crisis is still with us today ([Somm8&9], p. 3). Today’s software crisis

65

Chapter 4: Supportive Research In Software Engineering

challenges the software engineer 1o produce high quality software in a cost-effec-
tive manner. Sommerville proposes four criteria for high quality software
([Somm89]), p. 4):

Maintainability: Software changes should not result in undue costs.
Reliability: Software that fails or produces faulty results is not useful.
Efficiency: Software should not waste system resources.

Usability: Software user interfaces should accommodate their intended users.

The extent to which each criterion is individually addressed has a direct impact on
the cost of software. But these criteria are interrelated, which makes minimizing
overall cost and maximizing individual criteria difficult. For example, incorporating
a better user interface may reduce efficiency. Subsequently attempting to improve
efficiency, though, may make the software more difficult to change, thus decreasing
maintainability. In general, maintainability, reliability, efficiency, usability, and
other similar nonfunctional software requirements represent trade-offs for software
engineers. It is achieving a balance among such criteria that makes producing
high-quality software so challenging.

Software engineering is composed of many subdisciplines. Ramamoorthy and Tsai
[RT96] identify seven of them: development process, requirements engineering,
design, programming languages, testing, reliability and safety, and maintenance. Of
these subdisciplines, four are of particular relevance to this chapter:

Development Process. As applications grow larger and their domains become
more complex, the software development process must keep pace. To this end,
object-oriented techniques enable modularity, abstraction, reuse, and program-
ming-in-the-large. Software development traditionally ignores the end users’
views. More effective software systems combine a developer’s technical
knowledge with end users’ domain knowledge,

Requirements Engineering. End user needs and knowledge are recorded so
they may be used during system development. Software prototypes and simula-
tions help users and developers to understand development problems and pos-
sible solutions.

Design. Object orientation plays a key role in the area of design. Object-ori-
ented systems are loosely coupled but highly cohesive, with design activities

66

The Software Crisis In Parallel Computing

carried out at two levels: the high level focuses on the system architecture and
decomposition, while the low level focuses on algorithm, data, and code
design.

Programming Languages. The evolution from low-level machine code and
assembly languages to high-level languages like Fortran, C, and object-ori-
ented languages is characterized by increases in level of abstraction and modu-
larity. These characteristics facilitate development, improve maintainability,
and reduce costs.

Chapter 2 suggests several ways in which software engineering could help realize
the goals of domain-specific metacomputing. In building “big” melacomputing
software environments, like those described in Chapter 3, it is often desirable to
reuse existing software (eg, communication packages, numerical libraries) and
simultaneously support a high degree of flexibility and extensibility so that unpre-
dicted applications of metacomputing technology can be supported in the future.
Conversely, the potentially diverse resources and capabilities of metacomputing
environments may greatly complicate the creation of the applications which ulti-
mately use them. Thus, from the area of software engineering, domain-specific
metacompuling may potentially benefit from research in software design and devel-
opment, software reuse, and interoperability.

However, in the parallel and distributed computing community, techniques from
software engineering have not been widely embraced. Application and tool devel-
opment has been carried out in a largely ad hoc manner, resulting in what some
consider 1o be yet another crisis [Panc91, Panc94]. Chandy identifies four unique
aspects of parallel software that have contributed to this state of affairs [Chan94).

Rate of Change. The relatively rapid emergence of parallel computing
demands that a large number of parallel applications be developed in a rela-
tively short amount of time. (Software costs)

Correctness. Nondeterminacy and muitiple threads of control make formal
reasoning and debugging difficult. (Reliability)

Performance. Architectural diversity and the range of factors that can affect
performance (e.g., communication latency, data distribution) complicates opti-
mization and efficiency. (Efficiency)

67

Chapter 4: Supportive Research In Sofiware Engineering

Absence of Standards. Inconsistent and inadequate tools hinder productivity,
and the lack of hardware standards and only a few software standards limits the
development of CASE tools. (Maintainability)

Parallel computing’s rapid rate of change results in high software costs and makes
software development in this area a risky endeavor. Chandy’s other observations are
largely consistent with Sommerville’s criteria for well-engineered software
([Somm89], p. 4). In particular, correctness has direct bearing on the reliability of
software; performance and efficiency are inextricably linked; and an absence of
standards certainly complicates maintainability. Usability, the fourth of Sommer-
ville’s crileria, is, unfortunately, often an afterthought in light of the other daunting
challenges faced by parallel software developers [Panc91). Each of these chal-
lenges ultimately affects the productivity of the parallel tool or application devel-
oper. Yet, to date, just two relatively simple forms of “software engineering” have
been applied.

Primitive Forms of Software Engineering

The most common forms of “software engineering” employed within the parallel
and distributed computing community are code scavenging and software libraries.
Both of these techniques facilitate the reuse of programs and code, though at a rela-
tively low level [TTC95].

Code scavenging occurs when pieces of source code are copied from one applica-
tion for use in another. While common, code scavenging is less a software engi-
neering “technique” and more a natural by-product of informal code development.
A software library, however, is a compiled collection of specific procedures and
data structures that supports some particular functionality and is accessible through
a procedural interface,

Software libraries can support a wide range of functionality. One of the most preva-
lent types, mathematical software libraries, have been around since the 1960s
{Rice96]. Examples incilude LINPACK, LAPACK and ScaLAPACK [DW95] for
linear algebra; ODEPACK [Hind83ode] for differential equations; and FFTPACK
[Swar82] for performing fast Fourier transforms. Software Iibraries for specific sci-
entific areas also exist. For example, CFDLIB solves a wide range of computational
fluid dynamics problems [John96). These types of libraries most commonly support
the application developer by providing pre-packaged, generic, and widely applica-
ble functionality. However, the tool developer also benefits from libraries that sup-

68

Primitive Forms of Software Engineering

port tasks like constructing and managing user interfaces {e.g, XForms [Z097]),
sharing and communicating data with other processes (e.g., Nexus [FKT96]), and
interacting with databases {e.g, POSTGRES [YC95]).

But, as Chandy [Chan94] describes, software libraries have several limitations with
respect to parallel computing. First, libraries are language- and architecture-spe-
cific. It is not possible to develop libraries for every combination of paralle! pro-
gramming language and parallel architecture. Second, software libraries for parallel
computing carry a risk of commitment because so few standards exist. The chance
that a given parallel language and architecture may not be supported in the future is
much greater than in sequential computing. Finally, composition and data mapping
complicate the creation of parallel software libraries. In sequential programming, a
single data space and a single type of functional composition simplifies the issues
of composition and data mapping. But in parallel programming, library procedures
may have certain expectations for data layout (e.g., with respect to the distribution
among processors) but also be expected to cooperate in parallel execution.

In addition, other researchers [TBSS93] expose an inherent limitation on the scal-
ability of sofiware libraries, pointing to a phenomenon called “feature combinato-
rics” as the primary cause. As software libraries achieve broader use, a broader
range of features must be supported. “The implementor of the component library
must laboriously enumerate every permutation of feature selections” or possibly
fail to meet the needs of a particular application [TBSS93].

Finally, Rice [Rice96] comments on the generally usability of software libraries:

Although the software library provides some form of abstraction and a facility for
reusing software parts, it still requires a level of expertise beyond the background
and skills of the average scientist and engineer....

Thus, for parallel and distributed computing (and ultimately, metacomputing) soft-
ware libraries pose difficulties for both the developers and potential users. This sug-
gests that software libraries, as a mechanism for software reuse, may not be
adequate. In the remainder of this chapler, additional software engineering tech-
niques that may benefit software design and development of, and within, metacom-
puting environments are presented.

We do not intend to single out a “best” solulion, but rather we seek to identify the
potential advantages and disadvantages of each approach, recognizing that for a
given situation, the best approach depends upon a number of criteria, including the

69

Chapter 4: Supportive Research In Software Engineering

application, the programmer, project goals, and functional and nonfunctional
requirements.

Object Orientation

Proponents of an object-oriented approach to software development claim many
advantages, including data abstraction, reuse, extensibility, and fexibility
([CABDY4], p. 7). Data abstraction occurs since the implementation of an object is
hidden behind the interface (inethods) through which other objects access function-
ality. Reusability is facilitated because objects encapsulate both methods and data
structures into a single entity that can more easily be applied in different contexts.
Extensibility is supported through object inheritance and sub-classing,

While the potential benefits are numerous, object technology has not been as
widely adopted as expected [Panc95]. Certainly, part of the reason for this has been
the relatively steep learning curve incurred by programmers switching from other
programming paradigms [Panc95, FT95]. Other factors include the requirements of
new tools, languages, meltrics, and software development processes [FT95]. Norton
el al. [NSD95] summarize the apprehension among scientific programmers:

Although valuable progress continues, until these methods become commonplace,
as demonstrated by supercomputer manufacturer support and standards commit-
tees, most developers may remain apprehensive about adopting new languages.
Thus, the future of scientific programming will depend on establishing standards
and recognizing educational trends in software design.

From this standpoint, we still consider object oriented computing a “technology”
that may potentially benefit metacomputing for compuiational science. But, we
must note that compared to the other technologies examined in this chapier,
object-oriented computing is more advanced, more thoroughly researched, and
more widely applied.

Attempts to apply object-oriented technology within the parallel and distributed
computing communities have followed three primary techniques. The most basic
approach is to use an object-oriented language (typically C++) combined with a
standard message-passing library (such as MPI). In this case, the application devel-
oper must manage parallelism explicitly. Among those attempts to support more
general, portable, and automatic object-oriented parallel computing (e, object-ori-
ented parallel Janguages), a common theme has emerged: parallelism is supported

70

Object Orlentation

through specialized class hierarchies and/or language extensions that interface with
complex runtime systems supporting task andfor data parallelism. Norton et al.
[NSD95] identify several examples: ACT++, C**, Charm++, Compositional C++,
Concert, Concurrent Aggregates, Concurrent C++, COOL, DC++, DCE++,
HPC++, Mentat, Parallel C++, pC++, POOL-T, and POOMA. In this case, the
application developer adopts one of these language systems (and the abstractions it
supports) to implement their application. Finally, higher-level programming and
problem-solving environments built on an object-oriented foundation support a
range of features 10 assist scientists and/or application developers. The following
sections briefly describe examples of each approach 10 integrating object-oriented
technology with parallel computing.

Object-Oriented Languages And Message Passing Libraries

The most rudimentary means of parallel object-oriented computing is to use an
object-oriented language such as C++ and a message passing library. An example
of this technique is the work by Norton et al. [NSD95], They describe their experi-
ence porting a Fortran 77 plasma particle in cell (PIC) simulation code to C++ and
Fortran 90 (which also supporis some object-oriented concepts). They seek a
high-performance, cross-platform solution capable of executing on Intel Paragon,
IBM SP1/SP2, and Cray T3D distributed memory parallel computers, while simul-
taneously taking advantage of the improved design, development, and maintenance
characteristics of the abject-oriented paradigm.

Two requirements are immediately evident. First, the target parallel architecture
must have a C++ compiler available. Second, a message passing library such as
PVM or MPFI that is compatible with the compiler must also exist for the target
architecture. Once these basic requirements have been met, it is up to the program-
mer to carry out the design and implementation of the application. This includes
designing and implementing the required class hierarchy (usually from scratch),
managing decomposition and concurrency, and dynamically balancing processor
loads at runtime (if necessary), Of course, with respect to metacomputing, all of the
shortcomings of basic message-passing libraries {(e.g, PVM) as discussed in Chap-
ter 3 also apply. In addition, though, this low-level approach to parallel object-ori-
ented computing has other limitations.

For example, a main reason for adopting the object-oriented paradigm is reuse. But
as Pancake [Panc95] notes, it is rarely known what functionality may actually be
amenable to reuse:

71

Chapter 4: Supportive Hesearch In Software Engineering

Typically, it is only after an [object-oriented] application is complete that the
developers understand which objects might have broader use. Those objects then
must be restructured through a process known as generalization, that in tum may
require revisiting several earlier stages of object design....

Norton et al. [NSD95] confirm this through the refinement of their particle simula-
tion class hierarchy:

Unfortunately, hierarchies are nearly impossible to design correctly on the first
attermnpt. Moreover, when the design is poorly organized, it is difficult to modify it
without triggering something close to a complete redesign.

While they claim to have reused much of their code during the refinement process,
they recognize that “if the new class hierarchy cannot be defined with clean inter-
faces, the best approach is to redesign it from the beginning” [NSD95].

In addition to limiting reuse, a low-level parallel object-oriented approach also lim-
its code portability, especially where machine-specific message passing libraries
and compilers are involved, Norton et al. [NSD95] use different communication
libraries and compilers for each architecture.! This resulted in numerous problems,
including five months of lost development time from compiler inconsistencies
alone.

But perhaps the largest barrier preventing wide-spread adoption of C++ (and other
object-oriented languages) in the parallel computing community is performance.
Norton e al. [NSD95] report C++ execution times that are 53-110% slower than
same-sized problems implemented in Fortran 77, depending on the architecture and
message-passing library used. Even for their sequential computations, C++ per-
forms about twice as slow as Fortran 77. This loss of performance is partly due to
memory overhead and data access costs, Also, whereas Fortran allows arrays to be
passed directly as message-passing parameters, C++ requires the use of intermedi-
ate buffers [NSD95). In general, object-oriented computing has overheads associ-
ated with it that decrease performance, or at least make optimization more difficult.

Similarly, efforts 10 develop efficient computational kernels and components for
one compiler/library/machine combination do not necessarily translate into effi-
cient execution on other platforms. For example, Norton et al. [NSD95] observe
that “designing efficient and portable C++ code is difficult due to differences in

1. The Inte] Paragon used the NX message-passing library and the GNU g4+ and Intel C++ compilers; the IBM
machines used the MPL communications library and the IBM xIC compiler; and the TID used o modified version
of PVM and Cray C++ [NSD95].

72

Object Orientation

compiler implementations.” In addition, they designed and built a separate class
that supported a virtual parallel machine. This class encapsulated all the machine-
and library-specific details needed for parallel execution. While clearly a good
example of how the object-oriented paradigm can be used to enhance portability,
the reusability and generality of that class is subject to the problems previously
described. Such a class could be applied to a broad range of other applications, but
to do so might require significant modification to the original implementation.

Norton et al. also identify the major design improvements over Fortran 77 (and
similar languages). An object-oriented approach allows program classes to corre-
spond directly to the “physical and computational constructs” of the simulation
[NSD95]. They also note that in comparison (o Fortran 77, object-orientation “pro-
vides a programming perspective that reflects the problem domain” [NSD95).
Thus, object-orientation holds particular promise as a means of facilitating
domain-specificity. We explore this topic in more detail later.

Object-oriented languages provide a good example of the trade-offs associated with
nonfunctional requirements. In terms of Sommerville's criteria for well-engineered
software ([Somm89], p. 4), object-oriented languages facilitate maintainability as
well as some degree of reusability, but efficiency {or more specifically, perfor-
mance) suffers. In the context of parallel scientific computing, reliability and per-
formance are typically the most critical nonfunctional requirements. Does this
mean object-oriented languages have no place in computational science? Certainly
not. What is needed are more compelling reasons for using object-oriented lan-
guages. That is, the nonfunctional benefits of object-oriented languages must be
brought to bear on the open challenges in domain-specific metacomputing for com-
putational science.

Parallel Object-Oriented Class Hierarchies

An eventual outgrowth of the approach taken by Norton et al, [NSD95] is a general
framework within which different types of parallel particle simulation codes may
be deployed. Indeed, the development of parallel object-oriented class hierarchies
can result in improved reuse. Furthermore, hierarchies focused on a particular
domain may provide an effective means for achieving domain-specificity. As we
have shown, however, the creation of such a framework requires careful consider-
ation in the design and implementation of the constituent classes. Thus, for the
developer, all of the challenges of the lower-level approach remain since essentially
the same task is being carried out, But the application developer who can adopt
such a framework gets all the advantages of the end product without incurring the
cost of developing it. The disadvantages to the end-user are (1) a possible lack of

73

Chapter 4: Supportive Research In Software Engineering

familiarity with the hierarchy’s implementation which could hinder major changes,
and (2) encountering the situation where the framework provides most of the
desired functionality, but is missing one or more application-critical features or
components, thus preventing adoption of the framework as a whole. A framework
designed in conjunction with application scientists could avoid these problems.
Essentially, this approach decouples the design and development of a class hierar-
chy from its actual use,

Parallel Object-Oriented Methods and Applications. The Parallel Object-Ori-
ented Methods and Applications (POOMA) Framework attempts to support a flexi-
ble environment for scientific programs that can exploit data-parallel semantics
[RHCAS7). In fact, POOMA was originally conceived to support the same domain
(ie., particle in cell simulations) as the work by Nerton et al. [NSD95]. Not surpris-
ingly, there are major similarities in the object-oriented abstractions (appropriate to
PIC simulations) each system supports. But whereas Norton ef al. construct a class
hierarchy as a side-effect of porting an application from Fortran 77, POOMA seeks
first to construct a comprehensive class hierarchy that can subsequently be used by
a range of applications in the given domain.

POOMA is a comprehensive C++ class hierarchy for the data-parallel development
of classes of scientific applications. POOMA actually targets several related
domains, including plasma physics, molecular dynamics, computational fluid
dynamics, rheological flow, vortex simulations, porous media, medical imaging,
and material science [ABCH95, RHCA97]. This is accomplished through a
five-layer class hierarchy and a variety of data types appropriate to the application
areas. In addition, POOMA provides a portable, high-performance, serial/parallel
programming model.

The PGOMA system provides an example of a framework, which is discussed in
more detail in Chapter . Reynders er al. [RHCAS7] explain the positive implica-
tions of this approach:

Computer scientists and algorithm specialists can focus on the lower realms of the
FrameWork, oplimizing computational kernels and message-passing techniques
without having to consider the application being constructed. Meanwhile, applica-
tion scientists can construct numerical models with objects in the upper leaves of
the FrameWork, without knowing their implementation details.

This separation is possible because of POOMA’s object-orientation. Parallelism
and application science are encapsulated within different objects, helping to prevent
the interlacing of message-passing commands and computational algorithms within

74

Object Orientation

the application code [RHCA97]. Not only does this improve the understandability
of application code, it keeps orthogonal aspects of the hierarchy code separate from
one another. This, in turn, improves the generality and extensibility of the hierar-
chy.

This separation manifests itself in the five layers of the class hierarchy. At the high-
est level, the Application Layer represents “abstractions directly relevant to applica-
tion domains” [RHCA97). The Components Layer contains the building blocks
from which the Application Layer is constructed, including solvers, FFTs, and par-
ticle operations. This layer represents reusable components that can be used to
compose applications [ABCH95]. Next, the Global Layer defines the abstract data
types (fields, particles, matrices, etc.) that are used by the Component and Applica-
tion Layers to create domain-specific structures. The Parallel Abstract Layer imple-
ments the key abstractions of parallel simulation and programming, such as data
layout, communication, and load balancing. Finally, the Local Layer contains
node-local instances of Global Layer data structures.

POOMA is a language target for the Accelerated Strategic Computing Initiative
(ASCI) described earlier [DOE96]. Thus, its operation in larger-scale, heteroge-
neous environments is of concern, Reynders et al. [RHCA97] indicate that they are
investigating how POOMA might support more coarse-grained, task-parallelism.
POOMA already provides abstract representations for key metacomputing require-
ments like load balancing, data distribution, and communication. It remains to be
seen whether the POOMA researchers will expand these capabilities to provide a
comprehensive metacomputing programming environment, or whether they will
make attempts to interface with external objects, tools, and resource managers like
Globus and Legion and have POOMA operate as a component within a larger envi-
ronment,

In summary, object-oriented class hierarchies still require substantial programming
efforts to create real applications. The reusable abstractions are available, but the
science (in the form of algorithms) still has to be expressed. On the other hand, per-
haps this approach strikes an effective balance between allowing a high-degree of
software reuse while still retaining full programmability of the application.

Object-Oriented Systems For Parallel Computation

We describe an object-oriented system for parallel computation as a software sys-
tem built with object-oriented technology and which supporis or facilitates
higher-level access to parallel computing capabilities. The object-oriented nature of
the system’s implementation may be present in varying degrees in the user’s experi-

75

Chapter 4: Supportive Research In Software Engineering

ence with the system, and the level of access to paralle] computing capabilities is
assumed to be something higher than that required when using a predefined class
hierarchy. We describe only one example in this section, but other systems also fit
this description. For example, the problem-solving environment PDELab
[WHRC94] (Chapter 5) and the program archetypes concept [Chan94] are other
examples of object-oriented systems for paralle} computation.

Parallel Object-Oriented Environment and Toolkit. Armstrong and Macfarlane
[AM94] describe the Parallel Object-Oriented Environment and Toolkit (POET).
At first glance, POET has several striking similarities to POOMA [ABCH95,
RHCADY97]: the researchers describe it as a framework; it is implemented in C++; it
provides domain-specific abstractions useful for a class of problems; and parallel-
ism and data movement is encapsulated within objects. Indeed, at first glance,
POET appears to be yet another parallel object-oriented class hierarchy.

But Armstrong and Macfarlane are careful to distinguish their work in this regard.
For example, unlike most who use the term, they define their use of the term frame-
work: “an object-oriented style of programming where a pre-existing environment
provides a top-level object or objects within which all others are nested” [AM94].
While we regard the term much more generally (eg, we do not limit it to an
object-oriented style of programming), this definition notably excludes C++ (and
hence, POOMA) as a framework because “the user must provide a main program
that is itself not an object” [AM94]. Even though it is written in C++, the POET
toolkit provides a top-level object from which the user “will instantiate, modify, and
‘frame’ together objects provided by the toolkit to create a numerical application”
[AM94].

In addition, whereas class hierarchies act as components within a larger calculation
or simulation, POET provides a top level (application structure) and a bottom level
(parallelism, data movement, and communication) between which the user code is
inserted. “Put succinctly: a class library is designed to be driven by user code while
a frame-based system [like POET] is designed to drive the user code” [AM94].
Thus, similar to what might be done when using an user interface construction kit,
the programmer/scientist fills in “stubs” in template objects [AM94]. POET pro-
vides the main control structure (like the user interface event loop that handles key-
board and mouse events) and also manages low-level details such as
communication and load-balancing.

POET “frames™ are essentially domain-specific abstractions that capture “the basic
communication linkages that are necessary to implement a parallel version of par-
ticular scientific problem classes...” [AM94].

76

Object Orientation

A specific framed object represents a complete algorithm. The stubs within an
object can be replaced by user-defined, science-specific objects or methods. (In
addition to C++, POET supports callbacks to C or Fortran routines.) Then, POET
uses such objects as it solves the problem. Parallelism and other artifacts of the
computational environment are encapsulated within the lower levels of the frame-
work.

POET is fundamentally a template-based approach, except that it supports multiple
languages [AM94]. Its object-oriented basis provides the encapsulation of
high-level program structure and low-level implementation details, and also allows
user code to be inserted in between. Creation of domain-specific POET frames is
currently done on an individual basis; the environment does not support this pro-
cess. (Work in the area of domain-specific software architectures addresses this
issue and is discussed later in this chapter.)

What initially appears to be a subtle change in the perspective of control (i.e, who
provides the application control structure} is actually a significant paradigm shift
that represents support for paralle] computation at a higher-level than class hierar-
chies. In this way, POET is similar to the HeNCE/PVM environment (discussed in
Chapter 3), in which scientists expressed algorithms using a graph-based paradigm
and only filled in code for an application's core procedures and functions. Creation
of the program control structure (i.e, the top-level) and the underlying calls to PVM
(ie., the low-level) were generated automatically. The main problem with HeNCE
was the potentially limited set of applications it could generate, With respect to pro-
viding multiple frames, POET is an improvement. Within a particular frame, how-
ever, POET is actually more restrictive than HeNCE. But that is the very point: by
limiting the programmer/scientist to providing only the algorithmic support unique
to the science they are pursuing, they can—for a class of problems—be more pro-
ductive. As Armstrong and Macfarlane state, “the frame-based approach is useful
because it is restrictive” [AM94]. In other words, POET achieves of a high degree
of (domain-)specificity through (frame-based) abstraction.

Carried to an extreme, this approach may ultimately result in something very simi-
lar to a problem-solving environment (PSE), such as PDELab [WHRC94]. A prob-
lem-solving environment similarly provides the top-level structure and low-level
implementation details for solving the problem, and may allow user-defined func-
tionality to be inserted in between. In a more limited case, the user might only be
allowed to specify values for parameterized objects or algorithms. PSEs go beyond
a system like POET, though, in that they typically try to emulate the entire prob-
lem-solving process (eg, from initial brainstorming to inlerpretation of results)
[WHRC94]. As we have mentioned previously, though, PSEs transcend

77

Chapter 4: Supportive Research In Software Engineering

domain-specificity by focusing exclusively on a single problem. Nonetheless, the
goal is still to facilitate high-level access to high performance computing for solv-
ing specific types of problems. As in the case of PDELab, these systems are often
built on an object-oriented foundation which exiends, to varying degrees, into the
user’s interaction with the system.

In summary, object-orientation is a major software engineering technology that can
assist in supporting access to parallel and distributed computing capabilities. Fur-
thermore, parallel object-oriented computing can take on a range of forms, from an
object-oriented language combined with a message passing library to parallel class
hierarchies to object-oriented systems that facilitate high-level access to parallel
computing capabilities. Indeed, the Legion metacomputing project [GW96] recog-
nizes the potential benefits of this approach as its researchers are constructing a
completely cbject-oriented metacomputing environment. Object-orientation pro-
vides some fundamental mechanisms for achieving software reuse which, in turn,
can result in increased productivity (by creating less work for the application scien-
tist [MN96]). Furthermore, properties of the object-oriented paradigm facilitate the
creation of domain-specific abstractions such as application data structures with
clear relationships to the physical phenomena being modeled.

Software Architecture

In this section, we shift our attention from the application scientist’s view of soft-
ware development to the challenges faced by the developers of the systems used by
application scientists. The application of object-orientation technology to parallel
computing reveals an important theme in using high performance computing to
solve computational science problems:

To increase scientists’ productivity when trying to use high performance comput-
ing, they must be able to interact with the computing environment in a way, and at
a level, that is meaningful to them.

For parallel class hierarchies and object-oriented systems for parallel computing,
developers make efforts to tailor the systems to specific scientific or computational
domains. We can observe the evolution of this trend in the systems previously
described.

As we move from parallel class hicrarchies (e.g., POOMA [RHCA97]}, to program-
matic object-oriented systems for parallel computing {eg., POET [AM94]), to

78

Software Architecture

object-oriented problem-solving environments (e.g., PDELab [WHRC94]), increas-
ing efforts to specialize and refine the end user’s view of the system are made. In
POOMA, for example, the focus is on creating meaningful objects and methods
that the application scientist can use in developing code. POET extends this by pro-
viding computational templates which begin to limit the amount of code required
from the user. Finally, PSEs like PDELab need virtually no code from the user and
present an encompassing environment exclusively built to solve a single type of
problem.

The construction of these systems demands an increasing amount of effort to detes-
mine, design, and implement the domain-specific concepts to be supported. Recent
work in software engineering attempts to address this problem. The area of soft-
ware architecture seeks to represent and reason about the structure and topology of
software systems. Its motivations and goals were covered in Chapter 2. Our goal in
this section is to explore how the area may apply to parallel and distributed comput-
ing as well as domain-specific metacomputing.

Software architecture is concerned with the variety of organizational styles for con-
structing software that have emerged over time. Systems like POOMA [ABCH95,
RHCA97] and POET [AM94] clearly exhibit the style of an ebject-oriented system.
We naturally use this and similar terms throughout our discussion of object-orienta-
tion. Indeed, as we argued earlier, software architecture has evolved from intuition,
diagrams, and informal prose—a sort of folklore, if you will, that has been built up
over several years. A similar term, layered system, is also prevalent in parallel and
distributed systems, particularly in the context of networked communications
([SG96], p. 25). A layered system is organized in a hierarchical manner such that
each layer provides services to the one above. Despite it being built with object-ori-
ented methods, the PDELab problem-solving environment is primarily built as a
“layered architecture” [WHRC94]. Hence, programming style does not necessarily
imply architectural style. That POOMA and POET exhibit an object-oriented style
results from the manner in which the systems are constructed, not because of the
languages in which they are implemented. (Though, in this case, an object-oriented
language greatly facilitates the use of an object-oriented architectural style.)

The use of architectural styles is one technique for software reuse. If common soft-
ware architectures are identified and formalized, then perhaps reusable, modular,
style-specific components can be developed. But software engineering has not yet
advanced to this point, and the large-scale reuse of generic software is an elusive
goal [Chan94, GAQ95, HPLM95, SG96, TTC95). Garlan et al. [GAO95] suggest
many possible reasons for this phenomenon. Part of the problem is clearly that soft-
ware designed with reuse in mind is hard to find or simply does not exist. Even

79

Chapter 4: Supportive Research In Software Engineering

among so-called reusable sofiware, low-level interoperability issues such as pro-
gramming languages, operating systems, and machine platforms often prevent
pieces from fitting together. But Garlan et al. [GAO95] point to a higher-level, more
pervasive problem. Components ofien make assumptions about the structure of the
applications in which they are to appear. These assumptions lead to architectural
mismatches between components and the applications trying to use them.

The assumptions concern a variety of software construction issues [GAO95). For
example, components often make assumptions about what part of the software
holds the main thread of control. If two components both demand it, an architec-
tural mismatch occurs. Similarly, components make assumptions about the format
of the data on which they operate. Other assumptions involve application protocols.
For instance, if one component uses an event-based model for sharing messages
and another one uses procedure calls, the application attempting lo integrate these
is forced to resolve the difference. The consequences of these assumptions include
excessive code size, poor performance, the need to modify external packages, the
need to reinvent existing functionality, and an error-prone construction process
[GAO95].

Domain-Specific Software Architectures

Indeed, despite promising research [AB96, GAO95, NM95, SDKR95), the general
problem of software reuse may not be solved for some time. Furthermore, the use
of software archilectures based on generic software styles only addresses one
aspect of the problem revealed by the application of object-oriented technology to
parallel computing. That is, software styles do very little in the way of capturing
domain-specific representations and integrating them into a software system.

To this end, rescarchers are exploring an alternative approach: domain-specific soft-
ware architectures (DSSAs). The ultimate goal of DSSAs is the same as the other
technologies discussed in this section: reusability. But DSSAs do not attempt to
provide general software reuse. Rather, the goal of DSSAs is to facilitate software
reuse within classes of applications. By agreeing on certain domain-specific soft-
ware characteristics, the conflicting assumptions of software components can be
eliminated, thus avoiding the architectural mismatches that inhibit reuse. Thus,
focusing on particular domains has the effect of reducing the software development
problem space, allowing effective software solutions to be found more easily.

However, despite promising DSSA efforts, so far computational science has not
been a primary target. Current DSSA domains include avionics, command and con-
trol, and vehicle-management ([SG96], p. 32).2 For example, Hayes-Roth et al.

80

Software Architecture

[HPLM95] describe a DSSA for adaptive inteligent systems (e.g., robotics, moni-
toring systems). They identify the three components of a DSSA: a reference archi-
tecture that describes the common framework of computation for the domain of
interest; a component library of reusable “chunks of domain expertise,” and an
application configuration method for choosing and assembling the components
required to build a specific application. A full analysis of their system is beyond the
scope of this paper. Rather, we focus on a distinguishing feature of DSSAs that is
also pertinent to the needs described above: domain modeling.

Domain Modeling

With respect to parallel computing and, more generally, metacomputing, we con-
tend that the only means of improving access to these technologies is to deliver
them in domain-specific concepts. We assume that application scientists are scien-
tists first and programmers second. Thus, allowing them to program in familiar
terms improves their ability to do science and reduces the struggle with high perfor-
mance compuler programming concepts.

To this end, research on the development of demain models offers methodologies
for collecting, organizing, and applying domain-specific concepts and knowledge
during the software construction process. A domain model serves several purposes.
For example, domain models provide a standard terminology for describing prob-
lems within the domain, and they reveal useful abstractions and patterns of compo-
sition, Domain models also establish high-level constraints that software must
satisfy [Bato94]. According to Might [Migh95], a domain model also indicates
what “functions are being performed and what data, information, and entities are
flowing among those functions.” The concept of a domain is relative. Domains can
vary in breadth, depth, level of abstraction, form, and representation. However, the
single, common characteristic among all domain models is that they “represent the
functions and flows (or behavior) in the domain of interest” [Migh95].

Taylor et al. [TTC95] propose five phases of domain engineering— that is, the cre-
ation (or evolution) of domain models and their associated software architectures.
In the first phase, interviews with users (or domain experts) reveal the contents of
the domain and the needs of users in that domain. The second phase attempts to
produce a dictionary and thesaurus of domain-specific terminology and 1o distin-
guish between essential and optional features. Design and implementation con-

2. The practica! reason that DSSA research has not yet targeted computational science domains is that funding has
largely originated from the Defense Advanced Research Projects Agency (DARPA), whose focus is naturally on
defense-related application arcas [Trac94].

81

Chapter 4: Supportive Research In Software Engineering

straints are developed in the third stage. Whereas the first two stages primarily
answered guestions about what the domain is, the third stages begins to explore
how domain knowledge will manifest itself. The fourth phase addresses the design
and analysis of the domain-specific software architecture through an iterative pro-
cess that is applied at successively lower levels of abstractions until the desired
detail is achieved. During the final step, the DSSA is populated with reusable soft-
ware components. From the preceding description, it is clear that developing a
domain model and software architecture is a complex and time consuming process.
The DSSA for adaptive intelligent systems developed by Hayes-Roth et al.
[HPLMS95] reportedly took several person-years to design, implement, test, debug,
and document. But Hayes-Roth et al. also note that there is only marginal addi-
tional costs for developing software that, in addition 10 meeting its functional objec-
tives, is reusable. Furthermore, the additional cost must be weighed against the
cost-savings of subsequent reuse.

Domain-Specific Software Architectures for Computational
Science Problems

As stated earlier, DSSA technology has rarely been applied to computational sci-
ence problems. One of the distinguishing characteristics of these problems is their
experimental nature. In many cases, this nature makes it impossible to form com-
plete specifications of desired functionality, requirements, constraints, or problem
description. In fact, this proves to be one of the limiting factors in successfully
applying problem-solving environments to computational science problems. What
are the prospects, then, of applying DSSA technology to these same problems?
This section briefly speculates on the answer to that question.

First, domain-specific software architectures and problem-solving environments are
fundamentally different. DSSAs primarily address sofiware development concerns
whereas PSEs address issues of software use and usability. The connection between
the two is that by applying DSSAs to computational science, someday it may be
possible to build software that can address software use and usability issues for this
type of problem.

Second, by definition, DSSAs (unlike PSEs) do not result in “point solutions”
[TTC95). In fact, Might [Migh95] claims that a key function of domain models is
“to systematically study the impact of alternative strategies and policies.” Much of
the experimentation in computational science involves just that—aliernative strate-
gies and policies for simulating, parameterizing, and analyzing computational mod-
els of physical phenomena. Even though Might targets software development

82

Software Architecture

supporting business-oriented processes (in the healthcare industry, in particular),
his comments apply equally well to computational scientists in search of a scientific
result, but lacking an obvious solution for attaining it.

Third, as we describe above, domains are relative. In particular, domains vary in
depth and in level of detail and abstraction. A reasonable assumption is that the
quality of a domain has direct bearing on the quality of resultant domain-specific
software architectures, not to mention the quality of applications derived from that
architecture. In many cases, though, while the science being conducted is experi-
mental, the computational problems are not. The computational problems may
change and evolve over time, but they do so within a common set of terminology,
concepls, assumpticns, and goals. They occur within a common domain.

Thus, computational science problems appear amenable to domain-specific soft-
ware architectures. Anglano, Schopf, Wolski, and Berman [ASWB93] describe a
system for hierarchically describing and characterizing heterogeneous, computa-
tional science applications that execute on high performance systems. Their system,
Zoom, is not a domain-specific software architecture, but it does have several simi-
larities to domain modeling and software architecture. We briefly explore the differ-
ences and similarities below.

There are three major properties that distinguish Zoom from a DSSA for computa-
tional science metacomputing. The first major difference is that Zoom does not
explicitly target computational science domains. Instead, Zoom addresses the
somewhat broader and differently focused “domain” of heterogeneous applications.
In this way, Zoom does not directly facilitate the integration of domain knowledge
into software and tool systems. Second, given its domain, Zoom is naturally con-
cerned primarily with performance. As a result, Zoom characterizes applications at
a lower level than what might be envisioned for domain-specific metacomputing.
The reason for this is that the applications targeted by Zoom do not assume the
existence of a computational infrastructure that handles requirements like resource
allocation, scheduling, and monitoring. Finally, Zoom is primarily a mechanism for
representing and reasoning about applications, Thus, unlike a software architecture,
it does not support the subsequent instantiation of those applications.

Despite these differences, Zoom has much in common with the DSSA process. At
its highest level, Zoom serves as a “domain of discourse” between computer scien-
tists and computational scientists [ASWB95], making it consistent with the first
two stages of the DSSA process, as described by Taylor et al. {TTC95]. Next,
Zoom identifies computational requirements, constraints, and options with respect
to implementations, data format and structure conversions, and performance

83

Chapter 4: Supportive Research In Software Engineering

trade-offs. This corresponds to the third phase of the DSSA process. It also echoes
Might's [Migh95] claim that domain models should support consideration of differ-
ent implementation options. Just as Taylor et al. [TTC95] describe the fourth phase
as an iterative process for defining a domain architecture at successively lower lev-
els of abstraction, Zoom supports a hierarchical representation that reveals increas-
ing amounts of application detail at each of three levels. Zoom also tries to address
one of the notable shortcomings of the object-oriented systems described earlier:
tool support. At its deepest level, Zoom provides information necessary for pro-
gram development tools and the “accurate cost models required for optimization
and scheduling” [ASWB95]. Anglano et al. hope to use Zoom as an interface to a
suite of tools for developing and managing heterogeneous computing applications.
DSSAs also strive to facilitate the development of tools in addition to applications
[HPLM95]. Finally, Anglano et al. propose a well-defined, (mostly) graphical nota-
tion for describing applications that is similar to the block diagrams used during the
DSSA process [TTC95] and in software architecture in general
([SG96], pp. 160-163).

Zoom provides a compelling glimpse into the application of DSSA technology to
high performance computing and computational science. But what are the possible
advantages 10 using a DSSA approach over object-oriented class hierarchies and
object-oriented systems for parallel computation?

Conclusion

The most obvious benefit of DSSAs is that they define methodologies for integrat-
ing domain knowledge into software systems. Object-oriented systems like
Norton's plasma simulation [NSD95], POOMA [ABCH95, RHCA97], and POET
[AM94] use ad hoc, informal methods for incorporating domain-specific concepts
into user applications or their own software. Furthermore, these systems do not
address the more challenging problem of supporting computation within a meta-
computing environment.

Systems like Legion [GW96] and Globus [FK96] strive to support generic meta-
computing capabilities. In addition, interoperability of components within these
systems is not reinforced by the careful modeling and analysis encouraged by soft-
ware architecture. Together, these (raits make generic metacompuling systems sus-
ceptible to the same poor reusability exhibited by other general software. With
respect to domain knowledge, some of the object-oriented systems described earlier
allow it to be reflected in application programming languages. However, reflecting

84

Conclusion

that same knowledge in associated tools (e.g., debuggers, performance analyzers,
visualizers) is difficult and not always possible using ad hoc methods. Not surpris-
ingly, domain-specific tools are rare. A lack of incorporated domain knowledge in
both languages and tools allows the relatively poor usability of parallel and distrib-
uted systems 1o persist.

In summary, domain-specific software architectures address both problems of
usability and reusability, Domain modeling offers a well-defined process for col-
lecting, organizing, and applying domain knowledge to the software construction
process. And software architecture encourages careful consideration of how soft-
ware is structured as components and connectors, supporting several nonfunctional
software requirements like reusability, interoperability, and extensibility. Ulti-
mately, applying domain-specific software architecture technology to metacomput-
ing for computational science results in applications and tools that appear cognizant
of a scientist’s domain. Such systems may be similar to domain-specific environ-
ments, a topic of the next chapter.

85

Chapter 4: Supportive Research In Software Engineering

86

CHAPTER 5

Supportive Research In
Computational Science

WHEREAS DOMAIN-SPECIFIC software architectures address the integration of
domain knowledge into well-engineered sofiware systems, they do not guarantee
that the computational and analytical capabilities of the resultant system actually
meet the demands of the scientist. After all, computational science problems are
characterized by diverse computational and analytical requirements that evolve
over time. DSSAs clearly focus primarily on design issues.

Problem-Solving Environments

Computational scientists are less concerned with how well-designed a software sys-
tem is than with how well it solves the specific computational problems they have.
In this regard, problem-solving environments are touted as a major breakthrough
for computaticnal science because they provide highly usable and useful computa-
tional capabilities [GHR94, Rice96, WHRC94]. (As we have mentioned earlier,
PSEs also emphasize careful software design [GHR94, MCWHO95], but that is not
the primary concern here.) Gallopoulos et al. [GHR94] identify three measures of
problem-solving environments: scope, power, and reliability. Scope refers to the
number of problems that a PSE addresses. Generally speaking, a PSE becomes eas-
ier to build as its scope is reduced, The power of a PSE measures its ability to actu-
ally solve the problems that can be posed to it. As scope increases, the likelihood

87

Chapter 5: Supportive Research in Computational Science

that some of the problems cannot be solved also increases. Finally, reliability refers
o a PSE's ability to produce correct solutions, For example, returning a message
indicating the PSE's inability to solve the problem is much more desirable than a
wrong answer [GHR94),

Problem-solving environments seek depth of support for specific computational
functionality. As an example, the PDELab problem-solving environment
[WHRC94] specializes in solving partial differential equations (PDEs). PDELab
attempts to support the entire spectrum of activities in which scientists might
engage while working with PDEs, from brain storming, trial and error reasoning,
and simulation to optimization, visualization, and interpretation. PDELab’s geal is
10 emulate all of these processes and to automate many of them. PDELab is sepa-
rated into three logical layers, each of which provides support in several areas:

Application Development Framework: specification tools, computational
skeletons, knowledge sources, and visual programming tools.

Software Infrastructure: software bus, object-oriented user interfaces, pro-
gramming environments, language translation systems, graphics display sys-
tems, and machine managers.

Algorithms and Systems Infrastructure: numerical libraries, parallel com-
pilers, and expert system engines.

There is little doubt that systems like PDELab hold significant promise for certain
scientists. Indeed, many isolated physical phenomena can be modeled by systems
of partial differential equations [GHR94, HCYH%94, WHRC94]. But increasingly,
scientists are interested in coupling two or more distinct models together. For exam-
ple, in climate modeling, it is desirable to couple unique models of atmospheric and
oceanic circulation and chemisiry, land surface and sea ice processes, and trace gas
biogeochemistry [MABB94]. Each of these models could individually be address-
able by a unique PSE. But supporting composite and complex processes like cli-
mate modeling is beyond both the scope and the power of existing PSEs.

Multi-Component Modeling

The example of climate modeling is indicative of a more general trend in computa-
tional science toward whole-system modeling. For example, the Accelerated Strate-
gic Computing Initiative (ASCI) calls for “full-system” and *“full-physics”

88

Multidisciplinary Problem-Solving Environments

applications for maintaining the nation’s nuclear stockpile [DOE96]. Full-system
refers to all the components (nuclear and non-nuclear) of a weapons system; full-
physics refers to all the modeling techniques (e.g., physical, chemical, material, and
engineering) required for simulation. Similarly, automobile manufacturers desire
more robust modeling capabilities. Houstis et al. [HRTW95} detail the diverse prob-
lem areas encountered in modeling an engine;

The analysis of an engine involves... thermodynamics (gives the behavior of the
gases in the piston-cylinder assemblies), mechanics (gives the kinematic and
dynamic behaviors of pistons, links, cranks, ete.), structures (gives the stresses and
strains on the parts) and geometries {gives the shape of the components and the
structural constraints).

The total design and analysis of an engine requires that solutions to these individual
problem areas interact to determine a final solution. Drashansky er al. [DJRH97]
summarize the evolution of multi-component physical systems:

Computational modeling will shift from the current single physical component
design to entire physical systems with many components that have different
shapes, obey different physical laws, and interact with each other through geomet-
ric and physical interfaces.

Thus, for the experimental computational scientist, PSEs pose a dilemma. By defi-
nition, a PSE provides computational support for a single, well-defined, and well-
understood type of problem [GHR94]. The computational scientist, however, may
require support for several such problems. Worse yet, some of those problems may
be poorly defined and/or poorly understood [BRRM95, CDHHS6, HRTW95).

Multidisciplinary Problem-Solving Environments

Recognizing this and having had at least moderate success with prototype problem-
solving environments, the PSE community is now pursuing the creation of mulridis-
ciplinary problem-solving environments (MPSEs) [HRIW95]. As suggested above,
an MPSE provides a framework and software kernel through which multiple prob-
lem-specific PSEs are brought to bear on complex and composite problems. Hous-
tis er al. [HRTW95] identify three general requirements of MPSEs:

= MPSEs must be applicable to a wide variety of problems.

« MPSEs must allow software reuse.

39

Chapter 5: Supportive Research In Computational Sclence

* MPSEs must be able to accommodate “reasonably fast numerical methods.”

MPSEs and PSEs share an emphasis on sound software engineering practices, but
MPSEs are particularly concerned with achieving a high degree of software reuse
because “without software reuse, it is impractical for anyone to create on his own a
large software system for a reasonably complicated application” [HRIW95).

MPSEs also place a greater emphasis on network-based computing than do PSEs.
Researchers envision agent-based systems accessible in much the same fashion as
the Warld Wide Web is today. In this scenario, MPSE servers export user interface
agents to local desktop compulers through which users build and operate MPSE
applications. In turn, the MPSE server requests services from a diverse metacom-
puting environment. In addition to computational hardware, the metacomputing
environment contains computational software in the form of traditional problem-
solving environments. Each PSE is contained in an agent wrapper that interacts
with and controls the execution of the PSE to solve components of larger, multidis-
ciplinary problems [DJRH97].

Whereas basic PSEs provide a consistent abstraction to component numerical
libraries and modules, MPSEs create yet another level of abstraction where entire
PSEs are the objects of composition. While we discuss the issue of abstraction in
the next chapter, we simply pose a question here: how many layers of abstraction
are necessary? In addition, since PSEs are constructed as complete systems, it is not
clear how easily they could be used as components in a larger system. It is widely
accepted that reusable components must be designed and implemented with reuse
in mind.

The result of this continuing composition of systems is larger, bulkier software.
With each component PSE containing on the order of one million lines of code
[JDRW96], it remains to be seen if MPSEs ever achieve the ubiquity predicted by
their proponents. Currently, their promising vision is far from being readily avail-
able. Even basic PSEs are still mostly an emerging technology with very few proto-
types in existence. It is not surprising, then, that an early prototype MPSE
[JIDRW96] contains just one component PSE, which evolved out of the canonical
PSE example, PDELab [WHRC94].

Even if efforts to build MPSEs are successful, MPSEs are vltimately destined to the
same limitations of PSEs. With each component PSE able to address only a well-
defined, well-understood computational process, MPSEs offer no way to break free
of that restriction. Ultimately, to support experimental computational science—

90

Domain-Specific Environmants

where a simulated process may not yet be clearly understood—a different means of
support is required. The next section explores one such means,

Domain-Specific Environments

Supporting experimental computational science requires a fundamentally different
approach to problem-solving. The problems of experimental compultational science
are much more diverse than those addressed by PSEs. It may be the case that scien-
tists are trying to refine a method of simulation for a particular physical phenome-
non. Or, perhaps several different techniques for modeling a biological, ecological,
or environmental system are being explored. In other words, the problems of exper-
imental computational science are often exploratory in nature. They may not be
well-defined, and they are rarely well-understood, In addition, the problem-solving
process may include several loosely connected steps or stages of analysis, each with
its own unique requirements,

While this type of exploratory problem-solving may eventually evolve into a meth-
odology that could be encapsulated in a PSE, until that happens, scientists still
require the support of a robust computational environment. In fact, the science they
conduct today is what ultimately allows their results to be applied more broadly
tomorrow.

To this end, we propose and motivate three critical nonfunctional requirements for
the domain-specific environments (DSEs) required by exploratory computational
scientists:

Programmability facilitates rapid prototyping and provides a mechanism by
which domain abstractions and user-defined functionality become an integral
and essential part of the environment.

Extensibility allows the environment to be enhanced with new, unanticipated
functionality and problem-solving techniques as the scientific process evolves
over time.

1. Our use of the term “domain-specific environment” is consistent with the apparent first appication of the term in
this way by Cuny er af. (CDHH96). In the same work, Cuny et al. also propose these three requirements for DSEs,
though little discussion of their general importance to DSEs is presented therein. We attempl 1o expand on these
tdeas here and fater in this chapter.

] |

Chapter 5: Supportive Research In Computational Science

Interoperability allows a wide range of tools 1o be brought to bear on the scien-
tific process and enables the loosely connecled components of the environment
to work together via well-defined, open programming and communication
interfaces.

Each of these requirements address limitations of problem-solving environments
and multidisciplinary problem-solving environments. In particular, PSEs are pro-
grammable only at the highest levels where they support visual programming and
some template-based techniques. In contrast, DSEs provide frameworks of tools
and analytical support that can be tailored (albeit at a lower level) to the unique
requirements of each phase of the exploratory process.

PSEs provide extensibility by supporting the integration of foreign libraries and
systems. Unfortunately, the new functionality is only available in the confines of the
problem-solving context supporied by the particular PSE. DSEs, however, permit
the problem-solving context to expand and contract as necessary by maintaining a
looser coupling between components, which, in turn, allows unanticipated func-
tionality to be integrated more easily.

Finally, PSEs attempt to provide a complete set of interoperable tools necessary for
supporting the problem-solving process; thus, the need to apply external tools is not
a primary consideration. MPSEs create interoperability among several PSEs, but
they do not facilitate external tools and systems for the same reason. DSEs, on the
other hand, try to recognize that scientists may have pre-existing tools and systems
that they desire in an initial DSE implementation. Simultaneously, DSEs recognize
that as the scientific process evolves, those tools may be replaced or augmented
with others. Being able to use commercial, off-the-shelf software as components is
also critical, To this end, DSEs emphasize open and well-defined interfaces as a
means of increasing this type of component-level interoperability.

These distinctions reveal a fundamental difference between PSEs and DSEs:
Whereas PSEs attempt to support specific problem-solving methods, DSEs attempt
to support the evolution of such methods. Thus, in many regards, PSEs and DSEs
aitempt to address very different needs. We contend that domain-specific environ-
ments are particularly applicable to exploratory computational science in metacom-
puting environments. The remainder of this chapter will describe two such
environments,

92

Domain-Specific Environments

A Domain-Specific Environment for Environmental Modeling

The purpose of the Geographic Environmental Modeling Systems (GEMS) is to
provide general environmental modeling capabilities 1o “policy technicians” in reg-
ulatory agencies [BRRM95]). GEMS assists them in developing cost-effective con-
trols for hazardous waste, air pollution, acid rain, and global climate change by
providing a comprehensive computational environment which includes transparent
access to parallel and distributed computing over high-speed networks; geographi-
cally distributed, object-oriented databases; and a robust graphical user interface.

At first glance, GEMS appears to be more like a problem-solving environment: it
targets less technical end users, it provides general computational capabilities for a
specific problem area, and it provides transparent access to a collection of underly-
ing computational resources. Indeed, GEMS has much in common with the ideals
of problem-solving environments. However, a closer examination reveals an over-
whelming consistency with the characteristics and objectives of domain-specific
environments. This section explores the GEMS system as a representative example
of a domain-specific environment.

With respect to problem area, environmental modeling is far from the requisite
well-defined, well-understood process suitable to a PSE. In fact, the science behind
cnvironmental problems is not widely agreed upon. Consequently, organizations
currently use several different physical and chemical models, no one of which is
recognized as being superior [BRRM95]. Furthermore, policy makers require
exlensive “what-if" capabilities to explore the implications of various control strat-
egies. This type of analysis is complicated since air quality laws in the United
States are largely “goal-oriented.” That is, state and local policy makers can meet
federal air quality regulations in a variety of ways [BRRM935). Hence, environmen-
tal modeling (and the subsequent policy making) is largely an exploratory process
in the context of uncertain scientific laws.

Design. Prior to the development of GEMS, researchers made several design deci-
sions. Perhaps the most critical of these was the recognition that the design team
itself had to be composed of both computer scientists and application scientists
[BRRM95]:

Software engineers by themselves shouldn't try to develop a system with such ill-
defined requirements.... [They] require the active participation of domain experts

2. The creators of GEMS, Bruegge et al. [BRRM95), do not use the term “domain-specific environment” to describe
their system.

93

Chapter 5: Supportive Research In Computational Sclence

and end users, people who have traditionally been considered “outsiders” in the
software development process. At the same time, environmental engineers cannot
take risks with the most recent advances in computing technology without seeking
to include computer science experts.

What is notable about this statement is the musual need for collaboration. That is,
each group (computer scientists and application scientists) views the other as
“domain experts.” In addition, though, Bruegge er al. suggest that “ill-defined
requirements” are responsible for creating this need. The lack of requirements
demanded that the developers identify a series of design goals,

One of the general goals was to develop an “open™ modeling system. Whereas
PSEs function more like “black boxes,” Bruegge er al. [BRRM%5] envisioned a
“glass box™ approach, which echoes the properties of programmability, extensibil-
ity, and interoperability:

Existing modeling systems have always been developed for a specific end-to-end
purpase.... If the component parts were open to inspection, while at the same time
maintaining internal consistency—hence the term “glass box"—it would be much
easier to combine the parts to work as a coherent whole,

In fact, many of the design goals reflect these properties as well as the trade-offs
that often arise among nonfunctional requirements. For example, the developers
had to balance between making the system easy to use and accessible to nonexperts
and simultaneously providing experienced users with access to sufficient power and
Jfexibility to which they may be accustomed. A similar trade-off arose as the team
considered how to provide robust visualization support;

The main trade-off here is between providing sufficient power and flexibility to
achieve a sophisticated analysis and making the system easy to use for more fre-
quent rudimentary analyses.

In general, the developers wanted GEMS (o act as a framework that could integrate
a diverse set of known and unknown capabilities. Many of the specific design goals
contributing to this vision are consistent with the ideas of domain-specific environ-
ments:

* Incorporate existing functionality as system components (interoperability).
* Add new analysis capabilities (programmability, extensibility).
= Incorporate additional data sets (extensibility, interoperability).

» Change underlying model assumptions (programmability).

94

Domain-Specific Environments

* Add new and improved computational models (programmability, extensibility).

* Let users choose among different models (programmability).

One of the most unique aspects of GEMS is the intense collaboration between com-
puter scientists and application scientists to build a system that exhibited good soft-
ware engineering principles and could deliver adequate computational
performance, but that was also responsive to user needs and reflected domain
knowledge of environmental modeling. The developers adopted a development
mode! based on an object-oriented notation. Similar to the role played by the Zoom
system by Anglano et al. [ASWB95], this notation served as a “two-way mirror”
between the software engineers and environmental modeling experts [BRRM95].

Implementation. The GEMS prototype consists of about 75,000 lines of C++
code—an order of magnitude less than that required by problem-solving environ-
ments. As mentioned earlier, Joshi ez al. [JDRW96] claim PSEs can have as many
as one million lines of code, Why is there such a large differential in code size
between these two types of environments? The answer is not completely clear, but
the DSE properties described earlier offer some possibilities. First, DSEs empha-
size interoperability with existing systems. A relatively small amount of carefully
constructed interface code allows a wide range of functionality to be available
through the environment without having to be expressed as part of the system code.
Second, programmability offers a similar cost-savings; domain knowledge, tool
customization, and a variety of system-wide configurations are expressed outside of
the core system code. Finally, the need for extensibility suggests that not all of the
anticipated functionality is yet part of the system; hence, the system is operable and
usable despite being functionally incomplete. The important observation, though, is
that because of the nature of their science, the scientists may not yet know what the
missing functionality is. A DSE is designed and built to accommodate this evolu-
tion. As a result, a preliminary incamation of a DSE likely contains fewer lines of
code.

The implementation of the GEMS framework is based on a collection of five core
components: user interface, visualization, execution, monitoring, and data manage-
ment. The GEMS graphical user interface provides a point-and-click interface to
system functionality. Through extensive and iterative prototyping, the GEMS inter-
face reflects the user's view of environmental modeling with tools like Map View,
Chemical Lab, and Population. Rather than a bulky and inconvenient afterthought,
visualization is an integral part of the interface used for both specification and
results analysis.

95

Chapter 5: Supportive Research In Computational Science

The execution component facilitates access to the underlying environmental mod-
els; it is not the model itself [BRRM95). The goal is to allow the user to choose and
interact with the model, To this end, the execution component uses an event-based
system to handle the communication between the computational model and the
other components of the framework. GEMS targets a metacomputing environment
in which the computationally intense models run on supercomputers or networks of
workstations, visualization services utilize graphics displays, databases reside on
geographically distributed servers, and the user interface appears on the users work-
station. An event-based system provides a loose, yet flexible, coupling among
GEMS components. It also limits the amount of GEMS-specific code that must be
inserted into the models themselves to make them compatible with the rest of the
system [BRRM95].

Earlier, we suggested that one of the reasons DSE code size might be significantly
less than PSEs was because DSEs often rely on existing systems, The GEMS visu-
alization capabilities provides a good example of this by using a commercial off-
the-shelf visualization system (PV-Wave). The visualization component acts as an
interface between the GEMS user interface and the PV-Wave rendering system. Not
only does this reduce the code size, it offers better visualization capabilities and in a
shorter amount of time than the developers could create on their own. Similar to the
visualization component, the GEMS monitoring component integrates a pre-exist-
ing distributed monitoring system for identifying and debugging performance bot-
tlenecks.

With respect to data managemenl, the developers were attracted to the rich data
model supported by object-oriented database management systemns (OODBMS).
They adopted this paradigm because it showed “considerable promise in terms of
ease of use and... flexibility” [BRRM95]. However, meeting the nonfunctional
requirements of usability and flexibility came at the expense of performance:

The largest difficulty has been the performance penalty incurred with an
QOODBMS.... [and] we have not yet found a package that adequately meets the
requirements of our system in practice.... [The] use of an OODBMS to manage the
objects being displayed leads to unacceptable response times for an interactive sys-
tem.

In summary, the GEMS framework provides a PSE-like user experience but
addresses a much broader range of nonfunctional requirements essential to explor-
atory computational science. Key to accomplishing this is the design of a loosely
coupled framework that can incorporate existing systems (interoperability), accom-
modate new functionality (extensibility), and allow the environment to be tailored

96

Domain-Specific Environments

1o user needs (programmability). As such, GEMS is an excellent example of a
domain-specific environment.

A Domain-Specific Environment For Seismic Tomography

The goal of the Tomographic Imaging Environment for Ridge Research and Analy-
sis (TIERRA) project is to provide “a computational environment for tomographic
image analysis for marine seismologists studying the formation and structure of
volcanic mid-ocean ridges” [CDHH96). The scientists are concerned with areas of
the ocean floor where magma rises up from the Earth’s mantle to form volcanoes.
To understand the magmatic, hydrothermal, and tectonic processes, the scientists
use a method called “seismic tomography” (which is similar to medical CAT scans)
to construct 3D models and images of the ocean floor. The models and images are
crealed by extensive computations on seismic wave data collected by seismometers
positioned on the seafloor.

The goal of the environment is 1o support the general problem-solving process that
the scientists use in their analysis; the computation of models and images is only
one part of this process. As Cuny et al. [CDHH96] note, *the full analysis requires
extensive, domain-specific input from a geoscientist.”

Again, the similarity to PSEs is evident in this description. Cuny et al. [CDHH96]
recognize this similarity and point to the same important difference proposed car-
lier: “the leading-edge science applications we are concerned about are exploratory
and experimental in nature.... [and] demand domain-specific support that can adapt
to changing requirements.” Seismic tomography is characterized by a significant
amount of interaction with, and intervention by, the scientist. Creating a sea floor
model is not merely a task of specifying a few parameters, providing a dataset, and
running a computation. The scientist actually plays an integral role in the valida-
tion, optimization, and convergence of the final model [CDHH96]. This is reflective
of the poorly defined and poorly understood nature of this computational domain,
which, in turn, makes it unsuitable as a PSE target.

Since the scientist plays such a central role in the problem-solving process, it is
imperative that the environment fully consider their requirements. To this end,
TIERRA adopted a collaborative process for design and implementation
[CDHH96]:

The application scientists must establish requirements for problem investigation
and evaluate the environment as its implementation proceeds. The computer scien-

97

Chapter 5: Supportive Research In Computational Sclence

tists must fashion available technologies to address the requirements and possibly
even develop new infrastructure to complete the environment.

Design. The TIERRA design process employed an informal method for identifying
the requirements of the environment. Afier scientists described their overall prob-
lem-solving process, the group partitioned it into a series of seven steps. From each
step, a list of domain-specific requirements was generated. The steps in the prob-
lem-solving process are diverse and include data processing, verification and vali-
dation, and testing and optimization. The corresponding computational
requirements include tools and support for data manipulation; sophisticated, inter-
active visualization; improved performance; and program interaction and steering.

However, not all of these requirements were apparent ab initio; in some cases, they
evolved over the course of the collaboration. The need for program (computational)
steering is such a requirement. Far and away the most critical requirement for the
geoscientists at the beginning of the collaboration was performance. Their previous
compulational support required approximately 6 hours per iteration of the main
computation. The large amount of time required to generate models resulted in a
decoupled and poorly integrated problem-solving process. The preliminary, trivial
parallelization of the main computation, however, reduced the iteration time to
about 25 minutes. This performance improvement “allowed more rapid analysis
and the consideration of considerably larger data sets” [CDHH96]. The interesting
side effect was that as a result of the performance increase, the computational anal-
ysis bottleneck shifted from model generation to model evaluation. Suddenly, it
became possible to view the problem-solving process not as a “series of isolated
compuler runs, but as a series of steering operations on a single (long) computa-
tion” [CDHH96]. Thus, program interaction and computational steering became a
requirement of the evolving environment.

A similar process led to the requirement of more sophisticated, interactive, 3D visu-
alization. Scientists were originally content with simple, 2D plots created offiine.
However, model representations depicted in three dimensions were more easily
understood, and since model evaluation had become more of a bottleneck, the sci-
entists “became more convinced of their utility” [CDHH96].

Implementation. The features of programmability, extensibility, and interoperabil-
ity are primarily evident in the two main tool components of the TIERRA frame-
work. One component, DAQV (for Distributed Array Query and Visualization)
[HM96], handles program interaction and computational steering. The other com-
ponent, Viz [HHHMSY96], is a visvalization programming system. Both systems
embody all three of the desirable DSE features,

98

Domain-Specific Environments

DAQYV is a software library through which a parallel program with distributed data
makes its data available to external tools. Tools, on the other hand, are presented
with a logical, global view of program data and can make simple, high-level
requests for data. DAQV accesses distributed data through a library of programma-
ble data access functions. In addition, the library of access functions can be
extended to perform preprocessing, reductions, or compositions on the distributed
data before it is delivered to external tools. Finally, interoperability is achieved by
using an open client/server protocol based on standard, socket-based, interprocess
communication [CDHH96, HM96]. It is interesting to note that in its original form,
DAQYV did not support computational steering, However, because of its extensible
design and open communication protocol, DAQV was easily extended to support
this capability [CDHH96].

For visualization support, TIERRA relies on Viz, a highly programmable and
extensible visualization toolkit.? Visualizations are created through an interpreted,
high-level language that provides access to an object-oriented, 3D graphics library.
The robust language features and graphics model accessible through Viz enable a
high degree of programmability and extensibility. Interoperability and extensibility
are also enhanced by the ability to incorporate and access external libraries through
“foreign function interfaces” [CDHH96].

Whereas Bruegge ef al. [BRRMY5] present GEMS as a functionally complete sys-
tem, TIERRA continues to evolve:

The requirements for our environment are driven by the scientific discovery pro-
cess. As we provide increasing support for the activities of the seismologist, the
way in which they use the environment—and thus the requirements for the envi-
ronment—change. Given the experimental nature of our application domain, this
evolution will continue.

The researchers point to several future improvements, including new visualizations,
better support for data management, improved performance, more flexible and
interactive program control, and portability.

In summary, Cuny et al. propose the term domain-specific environment, which we
have also adopted, to describe an environment suitable for exploratory, ill-defined,
and poorly understood problems and their associated computational requirements.

3. Since the description of TIERRA by Cuny et al. [CDHH96], the TIERRA environment has abandoned use of Viz.
Future work will likely utitize easicr to use and more stable visunlization packages [Hare97). In terms of nonfunc-
tional requiremems, this suggests that programmability and extensibility in the visualization component proved to
be less important than ease of use.

99

Chapter 5: Supportive Research In Computational Science

However, the goal of their work, as well as that of Bruegge et al., is not to develop a
theory of DSEs. To the contrary, these reports are “experiential™; the researchers
did not seek general principles, nor did they fully discover any [CDHH96].

Conclusion

The emergence of problem-solving environments, multidisciplinary problem-solv-
ing environments, and domain-specific environments strongly suggests a need for
improved computational environment support. As Cuny et al. [CDHH96] point out,
performance used to be the sole concern for application scientists. But now, while
performance is still important, that need is more often balanced with a demand for
“more robust, integrated support from computational tools of diverse types”
[CDHHI6]. The tendency for PSEs, MPSEs, and DSEs to support a range of prob-
lem-solving capabilities is indicative of this trend.

Just as scientists are engaged in different types of research, these environments
address different needs. PSEs provide depth of support for a particular well-defined
and well-understood computational problem, If the science is expressible as that
type of problem, then a scientist can apply a PSE to their work. MPSEs seek to
bring several individual PSEs to bear on more complex phenomena. But again, each
part of the whole problem must be expressible in a form that can be addressed by a
component PSE. Finally, DSEs fill the gap left by PSEs and MPSEs by addressing
exploratory computational science problems that lack a precise definition, exhibit
several loosely coupled stages of analysis, and evolve over time.

Domain-specific environments, like the very problems they address, are not a well-
understood concept; there are no hard and fast rules for design or implementation,
However, we identify some general characteristics of DSEs that at least distinguish
them from problem-solving environments. In particular, DSEs are characterized by
an intense, if mostly informal, design and development collaboration between com-
puter scientists and application scientists that can, if desired, result in a loosely cou-
pled framework capable of high degrees of extensibility, programmability, and
interoperability. Collaboration by no means guarantees this result; designers and
implementers must make conscious decisions to avoid creating ad hoc systems.
DSEs do not take a formal approach to achieving domain-specificity like domain-
specific software architectures (DSSAs); rather, domain-specificity results as a nat-
ural side-effect of the collaboration between scientist and software engineer. More
generally, DSEs do not universally place a great emphasis on software engineering;
rather, software engineering techniques are employed where convenient or neces-

100

Conclusion

sary, and where they may directly result in meeting important nonfunctional
requirements (e.g., extensibility, interoperability, portability, etc.). Finally, by way
of the collaborative process, DSEs end up addressing the needs of specific scientists
as opposed to scientists in general. It is perhaps this characteristic more than any
other that holds particular promise with respect to the usefulness and usability of
the resultant environments. We envision a similar approach to building domain-spe-
cific metacomputing environments for computational science,

101

Chapter 5: Supportive Research In Computational Science

162

CHAPTER 6

Synthesis

WE SEEK to “synthesize” the area of domain-specific metacomputing for computa-
tional science in this chapter. We begin with a broad overview of the preceding
chapters. Next, we integrate the component technologies of the area by discussing
three key “integrating concepts” common to all of the technologies discussed ear-
lier. These concepts are nonfunctional requirements, software frameworks, and
abstraction, Each concept has a direct bearing on a specific stage in the lifecycle of
software (i.e., design, implementation, and use). Given this foundation, we specu-
late on the actual construction and evaluation of domain-specific metacomputing
environments and conclude by idenlifying the key open questions in the area,

Overview

We propose three broad requirements for domain-specific metacomputing for com-
putational science in Chapter 2: high performance heterogeneous computing, soft-
ware design and development, and domain-specificity. Subsequently, we suggest
that three broad, enabling technologies collectively address these requirements:
metacomputing, software architecture, and domain-specific environments. The
intricate relationship between the requirements and technologies of domain-specific
metacomputing for computational science is depicled in Figure 5, where each
requirement is addressed in a primary way by one of the technologies and in a sec-

103

Chapter &6: Synthesls

ondary way by another technology. Only together can these technologies fully
address the needs of this emerging area. Chapters 3, 4, and 5 bear out these relation-
ships in extensive detail. In addition, the chapters present other research that is rele-
vant to domain-specific metacomputing for computational science.

Since performance is so central to a scientist’s ability to conduct simulation-based
research, we consider parallel and distributed computing to be the foundation of
metacomputing for computational science. Chapter 3 examines the major develop-
ment efforts in metacomputing and also explores several other projects addressing
related issues such as real-time system information and application scheduling. The
primary goal of the work in metacomputing is achieving high performance in heter-
ogeneous computing environments. Many of the projects, though, also emphasize
the software design and development process, employing modular frameworks or
object-oriented approaches.

To address issues of software construction in a more direct way, Chapler 4 seeks out
supporting research in software engineering. While ultimately focusing on software
architecture and domain-specific software architecture, in particular, the chapter
also explores the role that object-oriented technology plays in the parallel and dis-
tributed computing community. These techniques, in addition to offering improved
methods for software design and development, also facilitate the integration of
domain-specificity into software,

Finally, supporting efforts within (or at least targeting) the computational science
community to develop computational support environments are discussed in Chap-
ter 5. Two main technologies, problem-solving environments and domain-specific
environments, are presented. These environments exhibit different types of domain-
specificity, and we ultimately conclude that domain-specific environments are bet-
ter suited to the challenging and exploratory problems in computational science. In
addition to domain-specificity, though, access to and delivery of high performance
computing capabilities is central to both types of environments.

The Role of Nonfunctional Requirements in
Software Design

We consider parallel and distributed computing to be the foundational area for
domain-specific metacomputing for computational science, with software engineer-
ing and computational science taking on supportive roles. With performance so

104

The Role of Nonfunctional Requirements in Software Design

central to many scientists’ ability to conduct their work, this seems a reasonable
enough approach. But actually, this only represents one perspective of domain-spe-
cific metacomputing.

In earlier chapters, we refer to nonfunctional reguirements and their effect on
design and implementation decisions. Sommerville ([Somm89], p. 101) describes
nonfunctional requirements as restrictions or constraints placed on a software sys-
tem and notes that nonfunctional requirements typically interact and conflict with
the functional requirements of a system. Our view of nonfunctional requirements is
consistent with this, if not somewhat more general,

The nonfunctional requirements of a software system are, by nature, often hard to
recognize. They are even barder to express in a formal way. Sommerville
{[Somm89]}, p. 88-89, 101-102) indicates that analyzing nonfunctional require-
ments can be difficult for several reasons; they are often expressed in natural lan-
guage; the relationship between nonfunctional requirements and functional
requirements is not always easy to discern; and, when the relationship is under-
stood, nonfunctional requirements often relate to multiple functional requirements.
Furthermore, failing to meet nonfunctional requirements results in what are gener-
ally accepted as being the most costly problems to fix once the software is com-
plete. Yet, nonfunctional requirements have received relatively little research
attention [MCN92].

Indeed, recognizing, expressing, and analyzing nonfunctional requirements poses a
significant challenge to the software designer. In fact, our choice to “base™ domain-
specific metacompuling for computational science in parallel and distributed com-
puting results from our (implicitly stated) perception that performance is a very
critical nonfunctional requirement for this area. To that end, we naturally take a
performance-centric view of the problem. However, we could equally well take a
saftware-centric view and consider the software engineering problems to be the
most crucial. Or, we could take a domain-centric view and approach the problem
primarily from the standpoint of (a particular domain of) computational science.!
The best approach to a given problem —that is, the perspective a software devel-
oper takes toward a system—ultimately depends on their perception of the relative
importance of numerous (and possibly unstated) nonfunctional requirements.

A good example of how nonfunctional requirements can affect the design process is
seen in how a developer might go about integrating domain-specificity into a meta-

1. Additional viewpoints are undoubtedly possible.

105

Chapter &: Synthesis

computing environment, Domain-specific software architectures and domain-spe-
cific environments each offer a means of addressing this requirement. DSSAs
support a formal model for integrating domain-specificity into the fundamental
design of software. With an emphasis on careful software design, this approach
may be best suited to nonfunctional requirements like reusability and reliability.
DSEs, on the other hand, support more informal methods of achieving domain-
specificity and place a greater emphasis on the actual development of the underly-
ing software. This tends to result in systems that better satisfy nonfunctional
requirements like flexibility, extensibility, and interoperability. Similar scenarios
surrounding the requirements of high performance heterogenecus computing
(generic metacomputing systems vs. domain-/problem-specific support) and soft-
ware design and development (informal, convenient use of basic software engineer-
ing techniques vs. formal application of software architecture) also exist.

In this way, our organization of requirements and technologies for domain-specific
metacomputing, as depicted in Figure 5, creates a “solution space” within which
nonfunctional requirements may be used to discriminate between various design
and development options. As we have stated earlier, nonfunctional requirements
often result in trade-offs, both with respect 1o other nonfunctional requirements as
well as the functional requirements they impact.

There are numerous nonfunctional requirernents that may be of interest to domain-
specific metacomputing for computational science. Unfortunately, a complete list
of nonfunctional requirements does not exist [MCN92], and it is beyond the scope
of this work to determine and describe just the ones applicable to domain-specific
metacomputing. Several examples of nonfunctional requirements, however, are
derivable from our discussion so far: extensibility, flexibility, interoperability, per-
formance, programmability, reliability, reusability, and usability. Sommerville
([Somm39], p. 101} offers a few more common nonfunctional requirements for
software: speed, size, robustness, and portability. Mylopoulos et al. identify three
broad categories of nonfunctional requirements. In addition, for each category, they
list several user concerns and associated nonfunctional requirements. Their classifi-
cation is recreated in Figure 9. In a separate dimension, they also classify nonfunc-
tional requirements with respect to who observes them. For example, nonfunctional
requirements like efficiency, correctness, and interoperability are “consumer-ori-
ented”—that is, observable by the user. Other requirements, such as extensibility,
reusability, and maintainability are “technically-oriented"—that is, they are appar-
ent 1o the developer [MCN92].

Thus, nonfunctional requirements ultimately impact the design phase of the soft-
ware lifecycle, “serving as selection criteria for choosing among myriads of deci-

106

The Role of Frameworks in Software Implementation

FIGURE 9. Three catego-
ries of nonfunctional require-
ments showing examples of
user concerns and the non-
functional requirements that
address them. {Figure
adapted from Mylopoulos et
al. [MCNS2).)

Nonfunctional
Acquisition User Concern Requirernent
How welt does it utilize a resource? Efficlency
How sacure is 1? Integrity
What confidence can be placed in what
:”"""“:‘;“_" wnction? | 1d08s? P Refiability
e How well will It parform under adverse
conditions? Survivability
How easyis it to use it? Usabllity
Design— How wall doss it conform to requirements? Cormreciness
How easy is it to rapalr? Maintainability
How valid is the design? | ., easy is it to verify lts parformance? Variftabllity
How easy Is it to expand or upgrade its
capabillity or parformanca? Expandability
Adaptation— How easy is it to change? Flendbitity
H P daptable Is it? How easy Is it to Intarfera with another system? | Interoperability
oW acaptable How easy Is it to transport? Portability
How sasy Is it to convert for usa with anothar
application? Reusability

sion” [MCN92]. An explicit consideration of nonfunctional requirements can assist
in design decisions, but the method in which this happens can vary. Cuny et al,
{CDHH96), for example, take a very informal approach in which three nonfunc-
tional requirements (i.e., extensibility, programmability, and interoperability) act as
guiding principles in the subsequent design and implementation of the components
in their environment. Bruegge ef al. [BRRM95] pursue a mare explicit method,
though much more formal approaches, such as those from the area of requirements
engineering, also exist.

The Role of Frameworks in Software
Implementation

Many of the tools, systems, and approaches discussed in the previous chaplers are
built as, or claim to support, a framework 10 do one thing or another. Like the infor-
mal and inconsistent use of the word “architecture” when describing software struc-
ture ([SG96], p. 16), this term, too, is widely used and means very different things
to different people. While the word is not always intended to be a precise, well-
defined term (that is, it may be used in a vague, descriptive sense), authors often do
offer informal, or at least implicit, definitions. Only by sampling the literature can
the diverse contexts of use be revealed.

107

Chapter 6: Synthesls

To begin, the term “framework” is ofien applied to collections of interoperable
to0ls.? The software infrastructure that maintains open interfaces, provides tool
access and control, and supports functionality common Lo the entire toolset is called
a framework:

Vendors of these tools increasingly support some framework> that defines the rela-
tionships among tools, whereby tools from different vendors can be intermingled
by a user in a plug-and-play manner.... (Rover ef al. [RMN96])

We discuss the development of an integrated framework for heterogeneous net-
work computing, in which a collection of interrelated components provide a coher-
ent high-performance computing environment. (Dongarra ef al. [DGMS93])

[We] hope to provide a common framework with a graphical user interface from
which [users] can access all the data management, analysis, visualization, and
computational tools and services they need.... [The system should] serve as a
[ramework tying together the underlying pieces and providing a coherent interface.
(Bruegge et al. [BRRM95])

Perhaps the most common use of the term is in reference to an object-oriented style
of programming in which the amount of work required of the programmer is
reduced by the availability of one or more predefined class hierarchies. The pro-
gramming environment created by such support is often termed a framework:

A framework is a reusable object-oriented analysis and design for an application or
subsystem. An application ffamework provides a template for an entire applica-
tion.... A subsystem framework provides a set of services that are relatively inde-
pendent of the rest of the system. (Coleman et al. [CABD94])

A framework provides an integrated, layered system of objects. Each object in the
framework is composed of or utilizes objects from lower layers. [It] defines an
interface in which the users, who need not be familiar with object-oriented pro-
gramming, express the fundamental scientific content and/or numerical methods of
their problem.... (Reynders et al. [RHCA97])

The common framework that enables a coherent solution to these problems is
object-orientation. (Grimshaw and Wulf [GW96])

2. Ivis in this spirit that we have applied the term in our own research [BHMM94, HM97),
3. Underlines in the excerpts are ours.

108

The Role of Frameworks in Software Implementation

Related to its use describing object-oriented class hierarchies, the term “frame-
work” is more specifically applied to systems that support a template-based style of
programming. Such a programming environment is also called a framework:

Frames... provide support for the programming of distributed memory machines
via a library of basic algorithms, data structures and so-called programming frames
(or frameworks). The latter are skeletons with problem dependent parameters to be
provided by the user. Frames focus on re-usability and portability as well as on
small and easy-to-learn interfaces. (Romke and Silvestre [RS97])

[A framework is] an object-oriented style of programming where a pre-existing
environment provides a top-level object or objects within which all others are
nested.... It is intended that the user... instantiate, modify, and “frame” together
objects... to creale a numerical application.... A frame-based system is designed to
drive the user code. (Armstrong and Macfarlane [AM94])

Basically, a framework can be seen as a semi-finished program that not only pack-
ages some reusable functionality, but also defines a generic software architeciure
in terms of a set of collaborating, exiensible object classes. (Demeyer et al.
[DMNS97])

The term is also applied to system support for generating or building software com-
ponents, extensions, or complete environments {as opposed to end-user applica-
tions, as in the preceding examples}):

The objective of this work is to design a [ramework for building computer environ-
ments that provide all the computational facilities needed to solve a target class of
problems.... (Weerawarana er af, [WHRC94])

Amplifying this capacity for architecture reuse, we also provide a framework for
developing software components that can be reused and reconfigured easily in a
large domain of applications. (Hayes-Roth er al. [HPLM95])

Finally, systems which assist in the communication and design of software have
also been labeled frameworks:

[We] present... a representational framework that captures the structure of hetero-
geneous applications and the interactions between their components. (Anglano et
al. [ASWB935))

Design pattemns are frameworks that software engineers can use to communicate
the pros and cons of their design decisions to others. (Ramamoorthy and Tsai
(RTI6])

109

Chapter 6: Synthesis

Clearly, the framework concept is broadly applied. From just the excerpts above,
five types of frameworks are pertinent to domain-specific metacomputing for com-
putational science:* tool frameworks, object-oriented programming frameworks,
program template frameworks, software construction frameworks, and design
Sframeworks. Why is the concept of a framework so ubiquitous?

Certainly, the excerpts suggest a variety of benefits that can be derived from frame-
works, regardless of the particular type being used. These benefits include proper-
ties like abstraction, communication, customizability, extensibility, interoperability,
productivity, retargetability, and reusability. Indeed, Demeyer et af. [DMNSS7]
point to the impertant role that frameworks play in constructing open systems that
exhibit high degrees of interoperability, distribution, and extensibility. Not coinci-
dentally, many of these characteristics correspond to the nonfunctional require-
ments of the previous section. To that end, we argue that frameworks facilitate the
implementation of the nonfunctional requirements most important to the contribut-
ing technologies of domain-specific metacomputing for computational science.

First, we already know that a system’s nonfunctional requirements and the
designer’s perception of the software are closely related. Second, each of the possi-
ble perspective views toward a domain-specific metacomputing environment—per-
formance-, software-, and domain-centric—has a natural correspondence to one or
more of the framework types described above.

For example, a performance-centric perspective would likely result in the use of a
tool framework, allowing individual tools and components to be optimized for
maximum performance while still participating in a larger computational environ-
ment. Examples of this perspective/framework pairing include the Globus meta-
computing toolkit {FK96], AppLeS application-level schedulers [BW96], the p2d2
parallel debugger [CH94, Hood96], the DAQV distributed data access system
{(HM96, HM97], the PVM message-passing library [DGMS93], and the GEMS
[(BRRM95] and TIERRA [CDHH96] domain-specific environments. In addition,
Rover et al. [RMN96] consider the differences between “integrated environments”
and “toolkits” {both of which are framework-like approaches) as they pertain to
tools for high performance computing.

A software-centric view, depending on the nonfunctional requirements motivating
it, might utilize a software construction programming framework or a more formal
design framework to support the desired software engineering paradigms. Relevant

4. With only a couple exceptions, all of the excerpts about frameworks in this section are taken from sources cited
elsewhere in this discussion.

110

The Role of Abstraction in Software Use

literature to these pairings include Manola’s concern for interoperability in distrib-
uted object-systems [Mano95], Heiler's work on semantic interoperability [Heil95],
a DSSA-based adaptive intelligent system by Hayes-Roth et al. [HPLM95], models
for composing multiple (software) architectural styles [AB96], issues related to
software composition [NM95], and the approach for constructing scalable software
libraries put forth by Batory et al. [TBS593).

Finally, a domain-centric system view might focus on the rapid creation of real
application codes, making a program template or cbject-oriented programming
framework most applicable. Systems meeting this description include parallel
object-oriented plasma simulation by Norton er al. [NSD95], POET [AMS94],
POOMA [ABCH95, RHCA97], the programming frames approach by Romke and
Silvestre [RS97], and the Concurrent Archetypes project [Chan94].

It is most definitely the case that other system views and framework types exist—if
not for domain-specific metacomputing, then certainly for other problem areas. The
views and types described here are merely derived from the component technolo-
gies and requirements of domain-specific metacomputing. In general, we simply
propose that frameworks provide a means of implementing nonfunctional require-
ments and that the best type of framework for the task is a product of those require-
ments and the developer’s perceplion of the system.

The Role of Abstraction in Software Use

An abstraction reveals the salient features of an eniity and simultaneously hides
unnecessary, underlying detail. Abstraction is & dominant theme in the evolution of
compuler system hardware, programming languages, and software development.
Indeed, many of the systems and concepls discussed in earlier chapters exhibit var-
ious types and layers of abstraction.

For example, the Globus metacomputing project [FK96) proposes a “metacomput-
ing abstract machine” to which applications and services may be targeted. This
abstraction is layered on the Nexus communication library [FKT96, FGKT97]
(among other components), which supports several lower level abstractions (e.g.,
nodes, contexts, threads, links, etc.) for interprocess communication, data sharing,
and remote function invocation. At a higher level, the PYM/HeNCE environment
for heterogeneous computing [DGMS93, BDGMY6] interacts with the vser via a
graph-based abstraction to parallel programming, where nodes represent proce-
dures and arcs represent data dependencies and control flow. Object-orientation is

111

Chapter 6: Synthesis

FIGURE 10. The level of
abstraction for programming
and software development is
continually increasing, vield-
ing larger conceptual “build-
ing blocks™ ((SG96]. p. 12) for
constructing software sys-
tems.

often touted for its ability to support abstraction, as in the Legion metacomputing
project [GW96], object-oriented parallel computing [NSD95], and the POOMA
framework [ABCH95, RHCA97]. As illustrated by these examples, we are particu-
larly interested in the use and purpose of abstraction in the development of soft-
ware. Figure 10 illustrates the numerous and increasing levels of abstraction for
programming and software development that have emerged over time (and continue
to do so).s

software architectures
Software frameworks, templates,
Structure archetypes, and patterns
et libraries, class hierarchies,
modules, and components
Language objects and classes Indreasing
Constructs functions and procedures Dagrealof
(k) statemants and expressions Abgtractlon
Programming high-level languages
Languages assembly language
(1950s)
machine language

The figure reveals an interesting trend. Many of the modern developments in pro-
gramming languages and software cngineering have been motivated by the desire to
work at a higher conceptual level. Abstraction is both a driving force behind the
development of, and a powerful tool for using, the new technologies that allow us to
do this. With respect to programmming languages, Sebesta defines abstraction as “the
ability to define and then use complicated structures or operations in ways that
allow many of the details to be ignored” ([Sebe93], p. 15). The same definition
largely applies to sofiware engineering as a whole. The purpose of abstraction is to
preserve access t0 the most relevant features and make the details which enable
them wholly irrelevant. We often distinguish between interface and implenenta-
tion; abstraction is what creates this separation.

5. Figwre 10 is based on idens from Shaw ond Garlan ({SG96], p. 4, 12-13) and Wiederhold ef of. [WWC92), The fig-
ure is o composite of their ideas but includes our own slight modifications and extensions,

112

The Role of Abstraction in Software Use

Computer science is replete with examples of abstraction, which is often motivated
by the insight that a repeated, complex operations can be represented symbolically.
For example, assembly language first allowed the programmer to use symbolic
names in place of machine operation codes and addresses ([SG96], p. 12). Eventu-
ally, certain useful patterns of execution emerged like evaluating arithmetic expres-
sions, conditional statements, and loop constructs. These patterns were reflected in
early high-level languages like Fortran ([SG96], p. 13). Each of these advances rep-
resents an increase in the level of abstraction,

The introduction of high-level languages and abstract data types, however, began to
shift the target of abstraction from the language itself to language constructs. Proce-
dures and functions serve a role that is analogous to assembly language commands
and language siatements for loops: they replace commeonly used, unimportant, and/
or complex details with a single symbol. Objects and classes refine the technique
further, providing a more explicit distinction between interface and implementa-
tion.

Finally, as the need for abstraction exceeds what is possible for primitive language
constructs to address, attention is shifting to a broader view of overall software
structure. Libraries are, of course, a well-established, well-understood abstraction
for software construction. Class hierarchies, too, have become a common software
abstraction. Libraries and class hierarchies both represent yet larger conceptual
building blocks for software developers. But many of the proposed abstractions
remain topics of active research. The development of a module-based abstraction,
which is to libraries and class hierarchies what objects and classes are to procedures
and functions, continues to be refined today despite its origins in the 1970s and con-
tinued work throughout the 1980s ([SG96]), pp. 13-14). Template-based and arche-
type abstractions are being applied wilh limited success (e.g., Armstrong and
Macfarlane [AM94], Chandy [Chan94], and Romke and Silvestre [RS97]) though
their wide-spread acceptance and use remains at large. Finally, frameworks, while
already being applied in a variety of ways (as described in the previous section),
have yet to emerge as a well-defined abstraction for software development, though
research results are beginning to appear (e.g., Demeyer et al. [DMNS97]). Like-
wise, efforts are being made to promote abstractions within sofiware architecture
(e.g., the analysis and use of software styles), but this, too, remains an area of active
research.

As the level of abstraction increases, so does the target audience. For example,
many of today’s “end users” of high performance computing systems could fill in
the stubs of a template to instantiate a parallel program (e.g., as in the POET system

113

Chapter 6: Synthesis

[AM94]), but the vast majority of them could certainly not create the assembly
code, much less the machine code, to effect the same functionality.

Abstraction is by no means unique to programming and software development.
Other areas of computer science also embrace abstraction. Graphical user interface
crealion tools allow interfaces to be constructed from a palette of predefined “wid-
gels.” (XForms by Zhao and Overmars [Z097] is an example of such a system.)
While this type of programming is similar to a component-based approach, the
user’s interactions with the system are at the user’s level, That is, the environment
allows the user to interact with important functionality (e.g., scroll bars, dialog
boxes, buttons, etc.) without having to explicitly deal with the low-level details
{e.g., windowing library calls, event loops, callbacks, eic.).

Indeed, abstraction can have a significant impact on the usability of software by end
users. It is not surprising, then that the concept also thrives in commercially pro-
duced software. Scientific visualization environments, for example, support many
levels of abstractions. Low level graphics primitives are accessible through higher
level visualization abstractions like surfaces, contours, and glyphs. Visualization
programs can be created by wiring together preprogrammed modules to create a
data flow network that loads, formats, analyzing, and renders user data. Similarly,
applications for creating multimedia presentations often employ user interface met-
aphors that reflect a high degree of abstraction. For example, the user might be able
to compose a “cast” of “actors” and write a “script” to “direct” the presentation.
Later, “set changes” and “special effects” could be also added. In theory, metaphors
like this engage the user and give them a vehicle to understanding the software's
functionality. In this way, abstraction functions as a lens through which users can
see how software can be used to address their needs. Thus, abstraction ultimately
impacts software usability,

Given this, we now consider the role that abstraction plays in domain-specific meta-
computing for computational science. In fact, abstraction is applicable in all of the
ways we have just described. Clearly, the construction of metacomputing environ-
ments already benefits from existing programming and software abstractions. We
feel that emerging abstractions like software architecture and frameworks should
also be brought to bear on this problem. But an equally important role for abstrac-
tion is to improve scientists’ access and use of fulure metacomputing systems. We
state domain-specificity as a requirement for this area, but “domain-specificity” is
really just a type of abstraction. Domain-specific abstractions can be layered on top
of metacomputing environments to convey the salient functions and characteristics
of the environment (e.g., performance capability) in terms of, and with respect to,
the domain in which the scientist works.

114

Specificity Through Abstraction

FIGURE 11, Software
abstractions form a bridge
between the low level system
details that developers
understand and the low level
domain knowledge that sci-
entists (users) possess.

Specificity Through Abstraction

Thus, it is ultimately through a process of abstraction that metacomputing can be
brought to bear on specific domains of computational science: specificity through
abstraction.

The notion that software can be made more precise, more specific, and ultimately
more usable through a process that seeks to replace lower-level details with higher-
level concepts—that is, achieving specificity through abstraction—is somewhat
counter-intuitive. The key to understanding this is a consideration of the perspec-
tives from which software is viewed.

Developers typically take a bottom-up approach, seeing the underlying mechanisms
and specific technologies which make up the software. That view may be perfor-
mance-centric, software-centric, or even domain-centric, but as developers they
possess intimate knowledge of the system and understand how to use it.

Users, on the other hand, look at software first for what it can do for them and how
it fits into the problems they are trying to solve. Parallel and distributed computing
has proven difficult enough for scientists to exploil; metacomputing technology
represents an order of magnitude increase in the problem. The capabilities must be
delivered in a domain-specific way that scientists can actually use. A process of
abstraction builds up the “domain-specific lens” through which a user—a scien-
tist—can determine how to apply a particular system to their problems. Or, to
employ another metaphor, Figure 11 illustrates how abstraction creates a bridge
between low-level system detail and low-level domain knowledge,

High-Level System/Domain
Abstraction

Developers Users
® o ® &
® mm © | Y N N

""-'-l Low-Level Low-Level
@' System Domain
&S5/ Details Knowledge

<

115

Chapter 6: Synthesis

The work on problem-solving environments, domain-specific environments, and
domain-specific software architectures represents only the beginnings of a domain-
specific approach to metacomputing for computational science. Just as this chapter
attempts to synthesize the main concepls of this area, the technologies themselves
must be synthesized to address, in a collective manaer, the three broad requirements
we propose: high performance heterogeneous computing, software design and
development, and domain-specificity. In this section, we briefly speculate on how
that implementational synthesis might occur and how candidate environments
might be evaluated. The steps in the informal and speculative model we present
below, like the sections above, correspond to the lifecycle stages of software design,
software implementation, and software use.

Design: Identifying the Domain and Nonfunctional Requirements

Building any kind of domain-specific environment must begin with the identifica-
tion of the domain to be addressed. Through a collaborative process, both func-
tional and nonfunctional requirements must be identified. This collaboration can be
a formal one like that used to build domain-specific software architectures or infor-
mal like the process used in the TIERRA domain-specific environment. The non-
functional requirements and the developer’s perspective of the environment, as
suggested above, should play a role in determining the best approach. Obviously,
existing techniques for software specification, modeling, and requirements engi-
neering could also be applied.

It is important to make nonfunctional requirements explicit at this stage because
they (1) often affect multiple functional requirements, {2) play a significant role in
implementation strategies, (3) may change over the development (and subsequent
use) of the environment, and (4) are usually only evaluated subjectively. Even the
best understanding of nonfunctional requirements at the beginning of the develop-
ment process is not a guarantee that the environment will be a success. Like most
software design and development, an iterative process is ultimately required.

Most software engineering approaches to addressing nonfunctional requirements
attempt to develop formal definitions and then measure the degree to which a fin-
ished software product meets the requirement. Mylopoulos et al. [MCN92] propose
a technique that is much more amenable 1o domain-specific metacomputing. In
their *“process-oriented” approach, nonfunctional requirements are viewed as crite-

6. We do not discuss those techniques here since they are not unigue aspects of domain-specific metacomputing for
computational science.

116

Specificity Through Ahstraction

ria for making design decisions. Thus, rather than evaluating a finished product,
they attempt to “rationalize the development process in terms of nonfunctional
requirements” [MCN92]. They point out that each design decision affects each non-
functional requirement in either a positive or negative way. An analysis of the “pos-
itive and negative dependencies” can be used to argue that a system meets a given
nonfunctional requirement or to explain why it does not. In a broad sense, their
approach formalizes that taken by Cuny ef al, in the development of the TIERRA
domain-specific environment.

Implementation: Using Frameworks or Software Architectures

We believe that a frameworks-based approach holds particular promise for imple-
menting systems in this area. Frameworks, as described above, address a range of
nonfunctional requirements important to domain-specific metacomputing, and they
can also facilitate the creation of appropriate abstractions (see next section). If
existing technology is to be used, a framework may improve the ability to integrate
it into the environment. If a more formal approach is desired, methodologies from
software architecture and domain-specific software architecture should be
employed.

The exploratory nature of many computational science problems demands a flexi-
ble implementation that can evolve wilh the problem-solving requirements. The
propertics of domain-specific environments—extensibility, programmability, and
interoperability—should all be targeted as critical nonfunctional requirements for
domain-specific metacomputing environments,

However, the challenge in implementing frameworks is achieving an appropriate
balance between “flexibility—packaging software components that can be reused in
as many contexts as possible—and tailorability—designing software architectures
that are easy to adapt to targeted requirements” [DMNS97]. In this regard, flexibil-
ity and tailorability are inherently at odds with each other. A greater degree of flex-
ibility results in more oppertunities for adapting the framework to particular needs;
however, having additional opportunities for adaptation requires the developer 1o
possess a better understanding of the framework in order to adapt it; and a frame-
work that requires more comprehensive knowledge ends up being less tailorable.
We noted a similar problem in the Legion metacomputing project [GW96] where
attempts to maximize flexibility impinge on the extent to which developers can
actually implement the system. This, in turn, makes it very difficult for others just
to grasp how the system may be tailored. Demeyer et al. [DMNS97] conclude,
“although flexibility is, in general, a good thing, too much flexibility can result in
decreased tailorability”—yet another trade-off among nonfunctional requirements.

117

Chapter 6: Synthesis

The situation is particularly critical for domain-specific metacomputing since the
optimal degree of flexibility almost certainly can never be determined ab initio.

Use: Creating Appropriate Abstractions

Ultimately, the adaptation of a framework must involve a consideration of how the
end user interacts with the system, including the identification of appropriate meta-
phors and abstractions. The most likely place for these to be used is in a graphical
interface. However, abstractions can also be applied to framework components that
are open to replacement, extension, or customization by the user. Again, DSEs pro-
vide examples of how, through the use of frameworks, environments can be tailored
to meet user needs. Similarly, DSSAs can incorporate domain abstractions into the
design of the software itself, perhaps facilitating the extension of that abstraction to
how the user interacts with the system.

Another important issue is how the underlying computational resources are (or are
not) presented to the user. The literature supports a spectrum of possibilities. Raw
message-passing libraries like PVM [DGMS93] make few attempts at abstraction
in this regard. But the extension to PVM, HeNCE [BDGM96], does support the
configuration and cost estimation of target virtual machines, Other systems, like
Legion [GWS6] and Globus [FK96], envision supporting a range of resource-level
access. At one exireme, users simply submit an application and rely on the system
lo figure out when and where to run it. At the other exireme, a user could exert full
decision-making control over the resources used, The problem, though, is that these
approaches are not really abstractions: they fail to communicate in meaningful
terms the important {eatures of the system and at the same time conceal the unnec-
essary details. So, what abstractions are appropriate to accomplish this for meta-
computing?

Al best, this is a difficult question to answer. First, metacomputing systems are pri-
marily intended to be generic systems that enable a wide range of computing activ-
ities. Discovering and defining widely applicable abstractions for these generic
systems may not even be tractable, nor is it consistent with the goal of domain-spe-
cific metacomputing. Second, since current metacomputing systems primarily tar-
get application developers and system sofiware programmers, an abstraction
relevant to their needs (if one exists at all) is not necessarily an abstraction that will
help the end user better understand or interact with the system,

This remains a challenging issue. To begin to understand its implications, one must
consider a simple question: what is meaningful and important to the scientist? With

118

Specificity Through Abstraction

respect (o computational resources, one can imagine that a scientist might have
questions like the following:

How long will the application take to run?

How accurate will the results be?

What could be done to make the code run faster (or be more accurate)?
Note what the questions are not:

Does the compiler on node X automatically parallelize the code?

Do nodes X and ¥ use compatible data representations?

What is the communication latency between node X and node Y

Theoretically, this suggests that the abstraction best suited to scientists could be
extremely simple. As we stated early on, “nobody wants parallelism” [Panc91];
what scientists and engineers do want is performance. If performance is, in fact, the
single most meaningful and important concept to what they are trying to accom-
plish, then the abstraction through which they access and interact with computa-
tional resources could be trivial. However, the underlying details and support for
that abstraction tell a different story. The requirements to create such a simple
abstraction far exceed current capabilities to automate processes like program anal-
ysis and decomposition, resource selection, system configuration, scheduling, mon-
itoring, and optimization, Thus, creation of the “best” abstractions for demain-
specific metacomputing may not be possible for some time. Meanwhile, the area
has the potential to “push the envelope” of current technology while trying to
achieve that goal,

Evaluation
The nature of domain-specific metacomputing environments for computational sci-
ence makes them difficult to evaluate in the same way other software systems are.
The process of software testing and evaluation has long been split into two catego-
ries ([Somm89), p. 406):

Validation: Are we building the right product?

Verification: Are we building the product right?

119

Chapter &6: Synthesis

Validation attempts to make sure that the implementation of the software does what
the user wants it to do, and verification ensures that the software meets the specifi-
cations and requirements set out for the system. While similar, the concepts have at
least one distinct difference: verification can be carried out during implementation,
but validation can only be applied afterwards.

This creates an interesting situation for domain-specific metacomputing environ-
ments. Verification, in its purest form, is complicated by the fact that complete
specifications for such environments are rarely feasible. Thus, how can developers
know if they are building the product correctly if they do not have a specification
for what “correct” is?

Part of the reason complete specifications are so difficult is that these environments
are intended 1o evolve with the scientist’s process of exploration and discovery. In
other words, domain-specific environments effectively assume that validation—
prior to actval use of the system by the end user—is impossible. That is, how can
developers build the correct product if the whole point of the product is to change
over the course of its use?

What this suggests is that some form of “meta-level” evaluation must take place. If
the point of a system is to change and evolve in light of emergent requirements and
problem-solving needs, then what software features can be examined that might
yield insight in this regard? In other words, can some higher-order aspect of the
software be evaluated to determine if it does (or will) address this need? We already
have a term for these characteristics: nonfunctional requirements.

That domain-specific metacomputing environments for computational science must
place so much emphasis on nonfunctional requirements clearly complicates the
evaluation process. Methods for guaranteeing the fulfillment of nonfunctional
requirements are not yet widely used {or known) ((Somm89], p. 101-103). This rel-
egates the evaluation of domain-specific metacomputing environments to be a
largely subjective process. Rather than asking, “Is the environment portable?” Eval-
uators must ask, “Is the environment portable enough?” And they must continue to
ask such questions throughout the life of the environment because the scientist’s
need for poertability might change. The answers to such questions are subjective,
dependent on the particular user’s needs at & given time.

It is largely for this reason that collaboration is such a critical component of the
domain-specific metacomputing process. That is, formal methods for designing,
implementing, and evaluating domain-specific metacomputing environments for
computational science do not yet exist. Collaborative approaches play an important

120

Open Problems

tole in the development of these techniques. In this way, the area can be viewed as a
driver of advancements in several key areas of computer science, including high
performance computing, software engineering, and especially computational sci-
ence.

Open Problems

Throughout the course of this and previous chapters, several open problems for the
area of domain-specific metacomputing for computational science have been
revealed. This section consolidates and summarizes these issues by posing them as
questions and, where possible, briefly speculating on answers and possible research
directions. Consistent with other sections in this chapter, we organize our discus-
sion according to the software lifecycle stages of design, implementation, and use.

Design
How are the important features of computational science domains extracted?

How are nonfunciional requirements determined?

How are domain-knowledge and nonfunctional requirements integrated into soft-
ware implementation and sofiware use?

Informal collaborations have had promising results, though more well-defined and
precise methods exist in the areas of domain modeling [Bato94, Migh95] and
domain-specific software architecture [TTC95, Trac94). Ultimately, the scientist
understands the domain, and the software engineer understands the software.
Through a collaborative process, developers must educate users about the trade-offs
associated with various nonfunctional requirements. And scientists must educate
developers about what is needed out of the environment. A large body of research
in the software engineering and user interface communities addresses collaborative
compuling [ACM91] and participatory design [ACM93]. Adaptations and/or exten-
sions to these ideas could be applied to these types of problems. The “process-ori-
ented” approach 1o using nonfunctional requirements by Mylopoulos et al
[MCN92] offers a promising direction, but must be made more accessible to the
average software developer.

Should formal software engineering meihods for specification, requirements engi-
neering, and software testing be applied to this area? If so, how?

121

Chapter 6: Synthesls

A single answer to this question is not in the spirit of domain-specific metacomput-
ing. The question should be posed on a case-by-case basis with any decision subject
to at least the nonfunctional requirements of the environment. The application of
more formal methods must ultimately be balanced with expected benefits of doing
so. Domain-specific metacomputing is unique in many ways, It is unclear whether
existing formal methods are well-suited to it.

Implementation

How is a software architecture or framework type chosen?

How are frameworks built?

As Shaw and Garlan point out, picking the best architectural style for a given prob-
lem (or domain) is an open problem ([SG96], p. 17). Similarly, general methodolo-
gies for choosing among the various types of frameworks we identify are largely
missing [DMNS97). And while researchers in the area of software architecture are
developing formalisms and tools to assist in applying the technology, the imple-
mentation of frameworks remains more art than science. Unfortunately, frame-
works appear to have more immediate and practical application to domain-specific
metacomputing. A general treatment of frameworks-based computing (as opposed
to treatments of specific types of frameworks) is necessary.

How are properties like extensibility, programmability, and interoperability actu-
ally “implemented”?

Essentially, the question exposes the problem of how nonfunctional requirements
can be satisfied in an implementation. The work in domain-specific environments
[CDHH96] offers examples of how specific nonfunctional requirements can be sat-
isfied in a particular environment. But this does not offer any general understanding
of the problem. A traditional software engineering approach would define “met-
rics” for measuring such properties ((SommB89], pp. 101, 292), but this is notori-
ously difficult for nonfunctional requirements., A more formal treatment of how to
identify and measure nonfunctional requirements would go a long way toward
determining how best to implement them. Mylopoulos er al. [MCN92] offer a
promising approach to the problem, but it is not a broadly applicable solution.

How is access to computational resources 1o be improved and automated so that
both performance and ease of use are maximized?

122

Open Problems

This is the proverbial *Holy Grail” of parallel and distributed computing. The per-
formance capability is clearly there; it’s just incredibly difficult to deliver it in a
nice package. A vast amount of work is required to address this open problem.
While some projects (e.g., Legion [GW96]) envision easy-to-use, desktop access to
a worldwide metacomputer, that vision is simply not possible until some major
breakthroughs in high performance computing are made. Not only must problems
of performance and usability be addressed, but issues of administration, security,
and other socio-technical problems require similar concerted efforts. Relatively lit-
tle work is being pursued in these areas.

Use

How are appropriate domain-specific abstractions for metacomputing systems
identified and built?

How can high-level abstractions be built so that they simultaneously support the
process af scientific exploration?

As suggesied in the section on open problems in design, collaboration is central to
identifying appropriate abstractions for computational science domains. But these
questions get at how the underlying heterogeneous computing environments of
domain-specific metacomputers is actually used by the scientist. We suggesie thata
very simple, performance-oriented abstraction might be appropriate where the
metacomputing environment is a black box that always delivers maximum perfor-
mance; delivering that abstraction, though, is currently not possible. A degree of
interaction in the form of application description, resource selection, and perfor-
mance goals is the least that is required. Efforts to build such metacomputer
abstractions for specific domains of computational science is an important research
goal.

A potential problem with high-level abstractions, though, is that they can lock the
user into a particular way of thinking. This may not be conducive to the processes
of exploration and experimentation required for scientific advancement. Achieving
the optimal balance between abstraction and flexibility, with respect to how the user
interacts with a system, pushes software engineering and the study of user inter-
faces to the limit.

How do you evaluate instances of domain-specific metacomputing environments?

The simple answer to this question is to build the environment; let (or make) the
scientists use it; and then decide if it is successful or not. OF course, this is not

123

Chapter 6: Syntheslis

always a feasible or economical approach—it certainly is not a formal one—to
evaluation. But currently, it is representative of the state-of-the-art in evaluating
these types of systems. Furthermore, it is largely consistent with the ways of exper-
imental computer science. For this type of work, theory and formalism alone do
not—and may never—suffice. The insight, experience, and knowledge that is
derived from experimentation is extremely beneficial. Efforts to combine theory
and practice may result in improved methods, but attempting to replace the process
of experimentation in which computer scientists engage would not be productive.

Conclusion

The emerging area of domain-specific metacomputing for computational science
stands to revolutionize the way in which scientists conduct their computer-based
research. A promising collection of technologies already exists and need only be
organized and applied in a collective manner to begin this revolution. Numerous
pitfalls and problems must be confronted, but this is, to a large extent, reflective of
the methods of experimental computer science. Experimental computer scientists
must continually confront the development of larger and larger software systems—
and on an experimental basis. That is, the scale of experimentation is growing. And
with that growth, researchers are confronted with new challenges of software
design, implementation, use, and evaluation. Like the very domain scientists for
which they construct systems, experimental computer scientists are ultimately
engaged in their own exploratory process of experimentation and discovery. It is
only through this process that revolutions like domain-specific metacomputing for
computational science can take place.

124

References

[AB96]

[ASWBS5]

[AMS4]

[ACM91]

[ACMD93]

A. Abd-Allah and B. Boehm, Models for Composing Heterogeneous Software
Architectures, University of Southern California Computer Science Department
Technical Report USC-CSE-96-505, 1996.

C. Anglano, J. Schopf, R, Wolski, and F. Berman, Zoom: A Hierarchical Represen-
tation for Heterogeneous Applications, University of California San Diego, Depart-
ment of Computer Science and Engineering Technical Report C§95-451, January
1995.

R. Armstrong and J. Macfarlane, The Use of Frameworks for Scientific Computa-
tion in a FParallel Distributed Environment, Proceedings of the 3rd IEEE Sympo-
sium on High Performance Distributed Compuling, San Francisco, CA, August
1994, pp. 15-25.

Association for Computing Machinery (ACM), Communications of the ACM, issue
on “Collaborative Computing,” ACM Press, New York, NY, Vol. 34, No. 12,
December 1991.

Association for Computing Machinery (ACM), Communications of the ACM, issue
on “Participatory Design,” ACM Press, New York, NY, Vol. 36, No. 4, June 1993.

125

References

[ABCH95]

[BBB96]

[Bato94]

[BDGM96)

[BM95]

[BW96]

[BWFS96]

[Bern94]

[BMM94]

[BP94]

S. Adas, S. Banerjee, J. Cummings, P. Hinker, M. Srikant, J. Reynders, and M.
Tholburn, POOMA: A High Performance Distributed Simulation Environment for
Scientific Applications, Proceedings of Supercomputing 95, San Diego, CA,
December 1995.

J. Baldeschweiler, R. Blumofe, and E. Brewer, ATLAS: An Infrastructure for Glo-
bal Computing, Proceedings of the Seventh ACM SIGOPS European Workshop:
Systems Support for Worldwide Applications, Connemara, Ireland, September
1996.

D. Batory, Products of Domain Models, Proceedings of the ARPA Domain Model-
ing Workshop, George Mason University, September 1994,

A. Beguelin, J. Dongarra, A. Geist, R. Manchek, K. Moore, and V. Sunderam, Tools
Jor Heterogeneous Network Computing, Proceedings of the SIAM Conference on
Parallel Computing, 1993.

F. Berman and R. Moore, Heterogeneous Computing Environments, Working
Group 9 Report from the Proceedings of the 2nd Pasadena Workshop on System
Software and Tools for High Performance Computing Environments, T. Sterling, P.
Messina, and J. Pool, eds., available at <http://cesdis.gsfc.nasa.gov/PAS2/>, Janu-
ary 1995.

F. Berman and R. Wolski, Scheduling from the Perspective of the Application, Pro-
ceedings of the High Performance Distributed Computing Conference, Syracuse,
NY, August 1996.

F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, Application-Level
Scheduling on Distributed Heterogeneous Networks (Technical Paper), Proceed-
ings of Supercomputing '96, Pittsburgh, PA, November 1996,

T. Bemers-Lee, RFC [630: Universal Resource Identifiers in WWW: A Unifying
Syntax for the Expression of Names and Addresses of Objects on the Network as
used in the World-Wide Web, June 1994. See also <hitp://ds.internic.net/rfc/
tfe1630.txt> and <http://www.w3.org/Addressing/>.

T. Berners-Lee, L. Masinster, and M. McCahill, eds., RFC 1738: Uniform Resource
Locators (URL), December 1994. See also <htip://www.w3.org/Addressing/> and
<http://ds.internic.net/rfc/rfc1738.txt>,

R. Blumofe and D. Park, Scheduling Large-Scale Parallel Computations on Net-
works of Workstations, Proceedings of the 3rd International Symposium on High
Performance Distributed Computing, San Francisco, CA, August 1994,

126

References

[BPWB93]

[BHMM94]

[BRRM95]

[CDY6)

[Chan94]

[CH94]

[CM89]

[CABD94]

[CDK94]

[Cox90]

[CDHHY96]

K. Brodlie, A. Poon, H. Wright, L. Brankin, G. Banecki, and A. Gay, GRASPARC -
A Problem Solving Environment Integrating Compuiation and Visualization, Pro-
ceedings of IEEE Visualization '93, IEEE Computer Society Press, Los Alamitos,
CA, 1993, pp. 102-109.

D. Brown, 8. Hackstadt, A. Malony, and B. Mohr, Program Analysis Environments
for Parallel Language Systems: The TAU Environment, Proceedings of the Work-
shop on Environments and Tools for Parallel Scientific Computing, Townsend, TN,
May 1994, pp. 162-171.

B. Bruegge, E. Riedel, A. Russell, and G. McRae, Developing GEMS: An Environ-
mental Modeling System, IEEE Computational Science and Engineering, Vol. 2,
No. 3, Fall 1995, pp. 55-68.

H. Casanova and J. Dongarra, Netsolve: A Network Server for Solving Computa-
tional Science Problems, Proceedings of Supercomputing '96, Pittsburgh, PA,
November 1996.

K. Chandy, Concurrent Program Archetypes, Proceedings of the 8th International
Parallel Processing Symposium, Cancun, Mexico, April 1994,

D. Cheng and R. Hood, A Portable Debugger for Parallel and Distributed Pro-
grams, Proceedings of Supercomputing '94, Washington, D.C., November 1994,
pp. 723-732.

D. Cheriton and T. Mann, Decentralizing a Global Naming Service for Improved
Performance and Fault Tolerance, ACM Transactions on Computer Systems, Vol.
7, No. 22, May 1989, pp. 147-183.

D. Coleman, P. Amold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jere-
maes, Object-Oriented Developmeni: The Fusion Method, Prentice-Hall, Engle-
wood Cliffs, NJ, 1994,

G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems: Concepts and
Design, 2nd Edition, Addison-Wesley, Inc., New York, NY, 1994,

B. Cox, Planning The Software Industrial Revolution, IEEE Software, Vol. 7, No.
6, November 1990, pp. 25-33.

J. Cuny, R. Dunn, S. Hackstadt, C. Harrop, H. Hersey, A. Malony, and D. Toomey,
Building Domain-Specific Environments for Computational Science: A Case Study
in Seismic Tomography, International Journal of Supercomputing Applications and
High Performance Computing, Vol. 11, No. 3, Fall 1997.

127

References

[DMNS97]

[DGMS93]

[DW95]

[DJRHY7]

[ETM95]

[Esha96)

[FT95)

[FGKT97]

[FGNS96]

[FK96]

[FKT96]

[FT96]

S. Demeyer, T. Meijler, O. Nierstrasz, and P. Steyaert, Design Guidelines for Tai-
lorable Frameworks, submitied to Communications of the ACM, ACM Press, New
York, NY, October 1997 (issue on “Object-Oriented Frameworks™).

J. Dongarra, A. Geist, R. Manchek, and V. Sunderam, Integrated PVM Framework
Supports Heterogeneous Network Computing, Computer in Physics, Vol. 7, No. 2,
April 1993, pp. 166-175.

J. Dongarra and D. Walker, Software Libraries for Linear Algebra Computations on
High Performance Computers, SIAM Review, Vol. 37, No. 2, June 1995, See also
<http://www.netlib.org/>.

T. Drashansky, A. Joshi, J. Rice, E. Houstis, and S. Weerawarana, A MultiAgent
Environment for MPSEs, (CD-ROM) Proceedings of the 8th SIAM Conference on
Parallel Processing for Scientific Computing, 1997.

I. Ekmecic, L. Tartalja, and V, Milutinovic, EM3: A Taxonomy of Heterogeneous
Computing Systems, IEEE Computer, Vol. 28, No. 12, December 1995, pp. 68-70.

M. Eshagian, ed., Heterogeneous Computing, Artech House, Inc., Norwood, MA,
1996.

M. Fayad and W. Tsai, Object-Oriented Experiences, Communications of the
ACM, Vol. 38, No. 10, October 1995, pp. 50-53.

1. Foster, J. Geisler, C. Kesselman, and S. Tuecke, Managing Multiple Communica-
tion Methods in High-Performance Networked Computing Systems, Journal of Par-
allel and Distributed Computing, Vol. 40, No. 1, Janvary 1997, pp. 35-48.

L. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke, Software Infrastructure
Jor the I-WAY High-Performance Distributed Computing Experiment, Proceedings
of the 5th IEEE Symposium on High Performance Distributed Computing, Syra-
cuse, New York, August 1996.

1. Foster and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, Pro-
ceedings of the Workshop on Environments and Tools for Parallel Scientific Com-
puting, Lyon, France, August 1996.

1. Foster, C. Kesselman, and S. Tuecke, The Nexus Approach to Integrating Multi-
threading and Communication, Journal of Paralle]l and Distributed Computing, Vol.
37, No. 1, August 1996, pp. 70-82.

1. Foster and S. Tuecke, Enabling Technologies for Web-Based Ubiquitous Super-
computing, Proceedings of the 5th IEEE Symposium on High Performance Distrib-
uted Computing, Syracuse, New York, August 1996,

128

References

[GHR94]

(GAO95]

[Grim96])

[GNW95]

[GW36]

[HM96]

[HM97]

[Harr97)

[Hart92]

[HPLM95]

{Heil95]

[HHHM96]

E. Gallopoulos, E. Houstis, and J. Rice, Computer as Thinker/Doer: Problem-Solv-
ing Environments for Computational Science, IEEE Computational Science and
Engineering, Vol. 1, No. 2, Summer 1994, pp. 11-23.

D. Garlan, R. Allen, and J. Ockerbloom, Architectural Mismatch, or Why It’s Hard
1o Build Systems Out of Existing Parts, Proceedings of the 17th International Con-
ference on Software Engineering (ICSE-17), Seattle, WA, April 1995,

A. Grimshaw, LEGION: Supporting Diversity and Performance in Wide-Area
Metasystems, presentation at the Workshop on Sofiware Tools for High Perfor-
mance Computing Systems, Chatham, MA, October, 1996.

A. Grimshaw, A. Nguyen-Tuong, and W. Wulf, Campus-Wide Computing: Results
Using Legion at the University of Virginia, University of Virginia Computer Sci-
ence Department Technical Report CS-95-19, March 1995,

A. Grimshaw and W. Wulf, Legion - A View from 50,000 Feet, Proceedings of the
5th IEEE International Symposium on High Performance Distributed Computing,
Syracuse, New York, August 1996.

S. Hackstadt and A. Malony, Distributed Array Query and Visualization for High
Performance Fortran, Proceedings of Euro-Par '96, Lyon, France, August 1996, pp.
55-63.

S. Hackstadt and A. Malony, DAQV: Distributed Array Query and Visualization
Framework, Journal of Theoretical Computer Science, special issue on Parallel
Computing (to appear).

C. Harmrop, personal communication, Department of Computer and Information Sci-
ence, University of Cregon, June 1997,

J. Hart, Introduction: Visualization in Netwarked Environments, Communications
of the ACM, Vol. 35, No. 6, June 1992, p. 43.

B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, and M. Balabanovic, A4
Domain-Specific Software Architecture for Adaptive Intelligent Systems, IEEE
Transactions on Software Engineering, Vol. 21, No. 4, April 1995, pp. 288-301.

S. Heiler, Semantic Interoperability, ACM Computing Surveys, Vol. 27, No. 2, June
1995, pp. 271-273.

H. Hersey, S. Hackstadt, L. Hansen, and A. Malony, Viz: A Visualization Program-
ming System, University of Oregon, Department of Computer and Information Sci-
ence, Technical Report CIS-TR-96-05, April 1996.

129

References

[Hind83]
[Hood96])

[HRTWS5]

[HCYHY4]

[John96)
[JDRW96]
[KPSW93)
[LLNL97]
[LG96]

[Mano95]

[MCWH95]

A. Hindmarsh, ODEPACK, A Systematized Collection of ODE Solvers, Scientific
Computing, R. Stepleman et al. (eds.), North-Holland, Amsterdam, 1983 (Vol. 1 of
IMACS Transactions on Scientific Computation), pp. 55-64.

R. Hood, The p2d2 Project: Building a Portable Distributed Debugger, Proceed-
ings of ACM SIGMETRICS Symposium on Parallel and Distributed Tools (SPDT
'96), Philadelphia, PA, May 1996.

E. Houstis, J. Rice, A. Joshi, S. Weerawarana, E. Sacks, V. Rego, N. Wang, C. Tak-
oudis, A. Sameh, and E. Gallopoulos, MPSE: Multidisciplinary Problem Solving
Environments, Purdue University, Department of Computer Sciences, Technical
Report CSD-TR-95-047, 1955,

C. Hui, G. Chan, M. Yuen, M. Hamdi, and I. Ahmad, Solving Partial Differential
Eguations on a Network of Workstations, Proceedings of the 3rd IEEE Symposium

on High Performance Distributed Computing, San Francisco, CA, August 1994, pp.
194-201,

N. Johnson, The Legacy and Future of CFD ar Los Alamos, Proceedings of 1996
Canadian CFD Conference, Ottawa, Canada, June 1996. See also <http://
gnarly.Janl.gov/>.

A. Joshi, T. Drashansky, J. Rice, S. Weerawarana, and E. Houstis, Multi-Agent Sim-
ulation of Complex Heterogeneous Models in Scientific Computing, Purdue Univer-
sity, Department of Computer Science, Technical Report 96-025, 1996.

A. Khokhar, V. Prasanna, M. Shaaban, and C. Wang, Heterageneous Computing:
Challenges and Opportunities, IEEE Computer, Vol. 26, No. 6, June 1993, pp. 18-
27.

Lawrence Livermore National Laboratory, Accelerarted Strategic Computing Initia-
tive, brochures from Supercomputing "96, available at <htip://www.lInl.gov/asci/
overview/>, May 1997,

M. Lewis and A, Grimshaw, Using Dynamic Coonfigurability to Support Object-
Oriented Programming Languages and Systems in Legion, University of Virginia
Computer Science Department Technical Report CS8-96-19, December 1996,

F. Manola, Interoperability Issues in Large-Scale Distributed Object Systems, ACM
Computing Surveys, Yol. 27, No. 2, June 1995, pp. 268-270.

S. Markus, A. Catlin, S. Weerawarana, and E. Houstis, On the Saftware Engineer-
ing of Multi-Platform Parallel/Distributed Software, Proceedings of the First Inter-
national Conference on Neural, Parallel, and Scientific Computation, 1995,

130

References

[MFS94]

[Migh95)

[MABB94]

fMN96]

[MCN92]

[NCO96]

[NSF93]

[NWM93]

[NM95]

[NSD95]

[NHSS87]

[OMG95]

C. Mechoso, J. Farrara, and I. Spahr, Running a Climate Model in a Heterogeneous,
Distributed Computer Environment, Proceedings of the 3rd IEEE Symposium on
High Performance Distributed Computing, San Francisco, CA, August 1994, pp.
79-84.

R. Might, Domain Models: What are They? How are They Used?, George Mason
University, unpublished. See also <http://www.owego.com/dssa/>,

A. Mirin, J. Ambrosiano, J. Bolstad, A. Bourgeois, J. Brown, B. Chan, W. Danne-
vik, P. Duffy, P. Eltgroth, C, Matarazzo, and M. Wehner, Climate System Modeling
Using a Domain and Task Decomposition Message-Passing Approach, Computer
Physics Communications, Vol. 84, 1994, pp. 278-296.

S. Moser and O. Nierstrasz, The Effect of Object-Oriented Frameworks on Devel-
oper Productivity, IEEE Computer, Vol. 29, No. 9, September 1996, pp. 45-51.

J. Mylopoulos, L. Chung, and B. Nixon, Representing and Using Nonfunctional
Requirements: A Process-Oriented Approach, YEEE Transactions on Software
Engineering, Vol. 18, No. 6, June 1992, pp, 483-497.

National Coordination Office for High Performance Computing and Communica-
tions, High Performance Computing and Communications: Foundation for Amer-
ica’s Information Future (FY 1996 Blue Book), S. Howe, ed., National
Coordination Office, 1996. See also <hitp://www.hpce.gov/>.

National Science Foundation, From Desktop to Teraflop: Exploiting The U.S. Lead
In High Performance Computing, Report NSB 93-205, NSF Blue Ribbon Panel on
High Performance Computing, chaired by Prof. Lewis Branscomb, August 1993.

L. Nicol, C. Wilkes, and F, Manola, Object Orientation in Heterogeneous Distrib-
uted Computing Systems, IEEE Computer, Vol. 26, No. 6, June 1993, pp. 57-67.

0. Nierstrasz and T. Meijler, Research Directions in Software Composition, ACM
Computing Surveys, Vol. 27, No. 2, June 1995, pp. 262-264.

C. Norton, B. Szymanski, and V. Decyk, Object-Oriented Parallel Computation For
Plasma Simulation, Communications of the ACM, Vol. 38, No. 10, October 1995,
pp. 88-100,

D. Notkin, N. Hutchinson, J. Sanislo, and M. Schwartz, Heterogeneous Computing
Environments: Report on the ACM SIGOPS Workshap on Accommodating Hetero-
geneity, Communications of the ACM, Vol. 30, No. 2, February 1987, pp. 132-140.

Object Management Group, The Common Object Request Broker: Architecture and
Specification, Revision 2.0, Document ptc/96-03-04, July 19935, See also <http://
www.omg.org/>.

131

References

[0G96]

[Panc91]

[Panc94]

[Panc95]

[HP90]

[Purt94]

[PSW91]

[RT96)

[RHCA97]

{Rice95]

[Rice96]

[RS97]

[RMNY6]

Open Group, Distributed Computing Environment Overview, Document TOG-
DCE-PD-1296, 1996. See also <http://www.opengroup.org/>,

C. Pancake, Software Support for Parallel Computing: Where Are We Headed?,
Communications of the ACM, Vol. 34, No. 11, November 1991, pp. 52-64.

C. Pancake, A Collaborative Effort In Parallel Tool Design, Proceedings of the Sec-
ond Workshop on Environments and Tools for Parallel Scientific Computing,
Townsend, TN, May 1994, pp. 112-118,

C. Pancake, The Promise And The Cost af Object Technology: A Five Year Forecast,
Communications of the ACM, Vol. 38, No. 10, October 1995, pp. 32-49,

D. Patterson and J. Hennessy, Compuier Architecture: A Quantitative Approach,
Morgan Kaufmann Publishers, Inc., Palo Alto, CA, 1990,

J. Purtilo, The Polylith Software Bus, ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), Vol. 16, No. 1, January 1994, pp. 151-174.

. Purtilo, R. Snodgrass, and A. Wolf, Software Bus Organization: Reference Model
and Comparison of Two Existing Systems, DARPA Module Interconnection For-
malism Working Group, Technical Report 8, University of Arizona Computer Sci-
ence Department, November 1991,

C. Ramamoorthy and W. Tsai, Advances in Software Engineering, IEEE Computer,
Vol. 29, No. 10, October 1996, pp. 47-58.

J. Reynders et al., POOMA: A Framework for Scientific Simulations on Parallel
Architectures, available from <http://www.acl.lanl.gov/PoomaFramework/>, Janu-
ary 1997.

J. Rice, Computational Science and the Future of Computing Research, IEEE Com-
putational Science and Engineering, Vol. 2, No. 4, Winter 1995, pp. 35-41.

J. Rice, Scalable Scientific Software Libraries and Problem Solving Environments,
Purdue University, Department of Computer Sciences, Technical Report CSD-TR-
96-001, January 1996,

T. Romke and J. Silvestre, Programming Frames for the Efficient Use of Parallel
Systems, University of Paderborn, Paderborn Center for Parallel Computing, Tech-
nical Report TR-001-97, 1997,

D. Rover, A. Malony, and G. Nutt, Summary of Working Group on Integrated Envi-
ronments Vs. Toolkits, Debugging and Performance Tuning for Parallel Computing
Systems, M. Simmons, A. Hayes, J. Brown, and D. Reed, eds., IEEE Computer
Society Press, Los Alamitos, CA, 1996, pp. 371-389.

132

References

[Sebe93]

[SDAY%6]

[SDKR95]

[SG96]

[SKS92]

[SC92]

[SM94]

[Somm89]

[SBM92]

[Sund96)

[Swar82)

[TTC95]

[TBSS93]

[Trac94)

R. Sebesta, Concepis of Programming Languages, 2nd Edition, Benjamin/Cum-
mings Publishing Co., Redwood City, CA, 1993,

H, Seigel, H. Dietz, and J. Antonio, Software Support for Heterogeneous Comput-
ing, ACM Compuling Surveys, Vol, 28, No, 1, March 1996, pp. 237-239,

M. Shaw, R. DeLine, D. Klein, T. Ross, D, Young, and G. Zelesnik, Abstractions
Jor Software Architecture and Tools to Support Them, IEEE Transactions on Soft-
ware Engineering, Vol. 21, No. 4, April 1995, pp. 314-335.

M. Shaw and D. Garlan, Saftware Architecture: Perspectives on an Emerging Disci-
pline, Pretice-Hall, Inc., Upper Saddle River, NI, 1996 (242 pages).

N. Shivaratri, P. Krueger, and M. Singhal, Load Distributing for Locally Distributed
Systems, IEEE Computer, Vol. 25, No. 12, December 1992, pp. 33-44,

L. Smarr and C. Catlett, Metacomputing, Communications of the ACM, Vol. 35,
No. 6, June 1992, pp. 44-52.

K. Sollins and L. Masinster, RFC 1737: Functional Requirements for Uniform
Resource Names, December 1994, See also <http://ds.internic.net/rfc/ric1737.txt>.

I. Sommerville, Software Engineering, 3rd Edition, Addison-Wesley, Inc., New
Yory, NY, 1989,

R. Springmeyer, M. Blattner, and N. Max, A Characterization of the Scientific Data
Analysis Process, Proceedings of IEEE Visualization '92, Boston, MA, October
1992, pp. 235-242,

V. Sunderam, Heterogeneous Network Computing: The Next Generation, Proceed-
ings of the Workshop on Environments and Tools for Parallel Scientific Computing,
Lyon, France, August 1996,

P. Swarzirauber, Vectorizing the FFTs, Parallel Computations, G. Rodrigue, ed.,
Academic Press, 1982, pp. 51-83.

R. Taylor, W. Tracz, and L. Coglianese, Software Development Using Domain-Spe-
cific Saftware Architectures, ACM SIGSOFT Software Engineering Notes, Vol. 20,
No. 5, December 1995, pp. 27-37.

J. Thomas, D. Batory, V. Singhal, and M. Sirkin, A Scalable Approach To Software
Libraries, Proceedings of the Sixth Annual Workshop on Software Reuse, Owego,
New York, November 1993,

W. Tracz, ed., Domain-Specific Software Architecture (DSSA) Frequently Asked
Questions (FAQ), ACM Software Enginecring Notes, Vol. 19, No. 2, April 1994,
pp. 52-56. See also <http://www.owego.com/dssa/faq/faq.html>,

133

References

[DOE96]

[WBS5]

[WHRC94)

[WWC92]

[Wols96]

[WSP97]

[Wood96]

[YC95]

[Z2097]

[ZWZD92]

[Zigm96]

United States Department of Energy Defense Programs, Accelerated Strategic
Computing Initiative Program Plan (Draft), Seplember 1996. See also <http://
www.lInl.gov/asci-alliances/>.

T. Wagner and R. D. Bergeron, Data-Parallel Program Visualization, Proceedings
of IEEE Visuvalization 95, November 1995, pp. 224-231.

S. Weerawarana, E. Houstis, J. Rice, A. Catlin, C. Crabill, C. Chui, and S. Markus,
PDELab: An Object-Oriented Framework for Building Problem Solving Environ-
ments for PDE Based Applications, Proceedings of the 2nd Annual Object-Ori-
ented Numerics Conference, 1994. Also available as Purdue University Department
of Computer Science Technical Report CSD-TR-94-021, 1994,

G. Wiederhold, P. Wegner, and S. Ceri, Toward Megaprogramming, Communica-
tions of the ACM, Vol. 35, No. 11, November 1992, pp. 89-99,

R. Wolski, Dynamically Forecasting Network Performance Using the Network
Weather Service, University of California San Diego, Computer Science and Engi-
neering Department, Technical Report TR-CS96-494, November 1996.

R. Wolski, N. Spring, and C. Peterson, Implementing a Performance Forecasting
System for Metacomputing: The Network Weather Service, University of California
San Diego, Department of Computer Science, Technical Report TR-CS97-540,
May 1997.

P. Woodward, Perspectives on Supercomputing: Three Decades of Change, IEEE
Computer, Vol. 29, No. 10, October 1996, pp. 99-111.

A. Yu and J. Chen, The POSTGRESSY5 User Manual, Version 1.0, September 1995,
See also <http://www.postgresql.org/>.

T. Zhao and M. Overmars, Forms Library: A Graphical User Interface Toolkit for
X, Version 0.86, March 1997. See also <http://bragg.phys.uwm.edu/xforms/> and
<http://www.westworld.com/~dau/xforms/>.

S. Zhouw, J. Wang, X. Zheng, and P. Delisle, UTOPIA: A Load Sharing Facility for
Large, Heterogeneous Distributed Computer Systems, University of Toronto, Com-
puter Systems Research Institute, Technical Report CSRI-257, Toronto, Canada,
April 1992,

D. Zigmond, Uniform Resource Locators for Television and Telephony, Internet
Draft, November 1996. See also <http://www.ics.uci.edu/pub/ietfiurif>.

134

