Java Access Modifiers in
Parallel Universes

Amr Sabry and Stephen Fickas

CIS-TR-98-03
July 1998

Department of Computer and Information Science
University of Oregon



JAVA AcCcESS MODIFIERS IN PARALLEL UNIVERSES

Amr Sabry Stephen Fickas
Department of Computer Science
University of Oregon
Eugene, OR 97403

Technical Report CIS-TR-98-03

Abstract

This short note describes a gap in Java’s access control mechanism that sometimes
allows a Java class to illegally find the values of private variables in other classes.

This research was partially sponsored by the Advanced Resarch Projects Agency under the title: Quality
of Service Dynamic Validation Qualifiers - The ASSERT System, ARPA order number 269, under contract
number N66001-97-C-8521.

The views and conclusions contained in this document are those of the authors and should not be

interpreted as representing official policies, either expressed or implied, of the Advanced Research Projects
Agency or the U.S. government.



Copyright ©1998 by Amr Sabry and Steve Fickas

FirsT EDITION: July 6, 1998



1 Introduction

We assume the reader is familiar with the Java programming language and its security
model. For more details about the language, we recommend the Java Language Specifica-
tion [1] and for the latest update on security issues, we recommend http://www javasoft.-
com/security.

The problem we report is that, for every implementation of the Java Virtual Machine
(JVM), we can write the following method:

public void evilMethod (Object x) {
// we use pure Java code to SOMETIMES determine the values
// of the private variables of the argument x.

}

The trick is to use two JVM implementations that will run in parallel. The first JVM is
the one running the main computation: it is invoked (and trusted) by the user. The second
JVM is invoked from within evilMethod: it is written completely in Java and the user is
unaware of its existence. To distinguish between the two JVM implementations, we refer
to the former as the main JVM and the latter as the meta JVM.

By invoking a second, parallel JVM, the implementation of evilMethod attempts to
reconstruct the state of the main JVM. In some cases, this may require sophisticated rea-
soning, but in others, it is as straightforward as the following sequence of steps:

1. Use a Throwable object within evilMethod to get the backtrace of the main JVM’s
computation up to the call to evilMaethod.

2. Print the backtrace information on a PrintWriter object.

3. Parse the contents of the PrintWriter object to find the class file whose main method
was invoked to start the computation.

4. Use the meta JVM to load that class and execute its bytecodes to recreate a parallel
state. (This will replay the entire computation of the main JVM, loading more classes
as necessary.)

5. Read the values of the private data members of x in the meta JVM. This is possi-
ble since the meta JVM has its own internal data structures that parallels the data
structures used in the main JVM.

Figure 1 illustrates the idea.

We have already implemented most of a meta JVM in Java, and have tried the simple
examples in this paper to confirm the feasibility of the idea. More sophisticated examples
will be possible once we have the complete implementation of the meta JVM.

An analogy might help here: consider an entity (the IRS, a suspicious spouse, etc} who
needs to know the amount of money in a bank account. The owner of the bank account
considers this information private and will not divulge it. Suppose an expert banker with
knowledge of banking processes and transactions was available for hire. If this banker could
gain access to a backirace of all transactions from the legitimate bank, the transactions



r A
" —— y
'f \\
' v
! )
private y =3 yprivatey=3 |
: ’
\\ ’,
object x object x
o (Mcta JVM wd )
| Main JVM J

Figure 1: Recreating the State of the Main JVM

together with the banker’s knowledge of banking practice could be sufficient to reconstruct
the state of the account, including the current balance. The IRS is our evil method; the
expert banker is our meta JVM.

Unlike many of the security-related problems reported at http://java.sun.com/sfaq/-
chronology.html, this gap in access control is not about an implementation bug. We are
assuming that the main JVM is operating according to its specification. It just appears
that the backtrace is revealing too much information about the state of the main JVM. In
other words, to protect the current value of a private variable, it is also necessary to protect
the computation that was used to produce it.

In the next section, we outline the implementation of evilMethod in more detail. Sec-
tion 3 concludes.

2 How Private is Private?
Consider a simple object with a private instance variable:

class & {

private int x;

A (int x) { this.x = x; }
}

The Java specification states that the instance variable x is not accessible from any other
class. This property is not only important for encapsulation but also for security [3]. The
only exception to this rule is that, after proper security checks, certain sophisticated clients
of the Java core reflection API are given capabilities to access private fields by disabling
the default access control checks. (See: http://www.javasoft.com/products/jdk/1.2/docs/-
guide/reflection/reflection.html for more details.} Our scheme enables any client, irrespec-
tive of its privilege, to sometimes find the values of the private variables.

Both the compiler and the JVM check for possible violations in access control. At
compile time, the following method is rejected:



class B {
public static void evilMethod (4 a) {
System.out.println("The value of a.x is " + a.x);
}
}

But due to the dynamic nature of Java, compiler checks are not sufficient. A malicious
user can fool the compiler by writing a new version of class A with a public meodifier,
compile the code in class B against it, and then delete the spurious class A. Or even better,
it is possible to completely bypass the compiler and generate the desired bytecodes directly.
In both cases, the JVM must dynamically check the validity of the access a.x. In our
test cases, only the JVM in version 1.2betal of the Java Development Kit (JDK) caught
the violation by throwing an IllegalAccessError exception. Earlier versions of the JVM
erroneously allowed the access. (And strangely enough the JVM specification [2] does not
appear to require that the instructions getField and putField enforce access control other
than for protected variables.)

But even when JVM implementations take care to protect the value of a private variable
from illegal access, they readily expose the sequence of steps that was used to compute
the value of that variable in the form of a backtrace. A malicious program can, in some
situations, exploit this information to find the value of the private variable.

To explain this point, let’s consider a small but complete application that uses the classes
A and B above:

class Test {
public static void main (Stringl] args) {
A a = new A(3);
B.evilMethod(a);
}
}

From within class B, instead of asking directly for the value of a.x, we'll instead ask for
the backtrace of the entire computation up to the point of the call. The backtrace is easily
accessible using Throwable objects and then parsed to produce the name of the class whose
main method started the computation. The outline of the solution is then:

class B {
public static void evilMethod (A a) {
Throwable te = new java.lang.InternalError(); // any exception would do
java.io.StringWriter sw = new java.io.StringWriter();
te.printStackTrace(new java.io.PrintWriter(sw));
String backtrace = sw.toString();

String className = parseBackTrace(backtrace); // definition omitted
// Invoke meta JVM ...

String[] metaArgs = { className };
MetaJVM.start(metaArgs);



// Inspect the data structures of the meta JVM to get the value of a.x
X
}

When executing this code, the string backtrace in evilMethod gets the value:

java.lang.InternalError
at B.evilMethod(Evil.java:15)
at Test.main(Evil.java:9)

It is easy to parse this string to bind the variable ciassName to the string Test. The
remainder of the solution is omitted since it depends on the internals of the our MetaJVM
which are not relevant here.

3 Conclusion

We can write a Java library that can, in some cases, illegally find the values of private
variables in an application. The technique used for the illegal access has some limitations:

1. It needs access to the application’s bytecodes. The most straightforward approach
would be to access the bytecodes contained in the main JVM. However, typical JVM
implementations do not make loaded bytecodes available, nor do any of the standard
Java libraries, e.g., the reflection package. This forces the meta JVM to directly read
the application’s class files, which means that it must do a set of file reads. This is
a clear weakness in the evil plan, and a place where it can fortunately be foiled. In
particular, if a security policy is in force that precludes file reads, as it is for most
applets, then our scheme fails - we cannot access the application’s code to recreate
state information.

2. It relies on the format of the stack trace which is non-portable across JVM implemen-
tations.

3. It works best if the sequence of steps used to produce the value of the private variable
is deterministic, i.e., can be easily replayed. For simplicity, we have replayed the
entire computation to find the value of the private variable, but in practice that value
might only depend on the last few method calls in the backtrace. If the value of
the private variable depends on interactive input, it may be impossible to replay the
computation. (But again the stack trace might help determining the control flow
implied by the input, or even the form of the input itself.)

In summary, the access modifier privata by itself is not sufficient to guarantee that some
private value won't be read. It must be used in conjunction with either a trace package
that does not make trace information available to an evil method, or a security manager
that prevents the evil method from accessing user bytecodes to recreate state.

It is not yet clear if it is possible to exploit this technique for serious security violations.
We defer an analysis of this question and a report on our meta JVM to future papers.



References

[1] GosLiNg, J., Joy, B., AND STEELE, G. The Java Language Specification. The Java
Series. Addison-Wesley, Reading, Mass., 1996.

[2] LinpnoLM, T., AND YELLIN, F. The Java Virtual Machine Specification. The Java
Series. Addison-Wesley, Reading, Mass., 1997.

[3] Oaks, S. Jave Security. O'Reilly & Associates, Inc., Sebastopol, California, 1998.



