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Abstract

The Distributed Array Query and Visualization (DAQV})
project aims to develop systems and tools that facilitate
interacting with distributed programs and data structures.
Arrays distributed across the processes of a parallel or
distributed application are made available to external cli-
ents via well-defined interfaces and protocols. Our design
considers the broad issues of language targets, models of
interaction, and abstractions for data access, while our
implementation attempts to provide a general framework
that can be adapted to a range of application scenarios.
The paper describes the second generation of DAQV work
and places it in the context of the more general distributed
array access problem. Current applications and future
work are also described.

1 Introduction

This paper describes the second generation of work
on the Distributed Array Query and Visualization
(DAQV') project. It is intended to be both an update to our
previous work and a technical summary of our recent
development efforts. We also discuss how our work con-
tributes to the general problem of accessing distributed
data on parallel and distributed systems.

DAQV provides one solution to the general problem
of providing high-level access to distributed arrays for the
purpose of visualization and analysis. It does this by
“exposing” the distributed data structures of a parallel (or
distributed) program to external tools via interfaces that
obviate the need to know about data decompositions, sym-
bol tables, or the number of processes involved or where

1. “DAQV" is pronounced “dave”; the “Q" is silent.

they are located. The goal is to provide access at a mean-
ingful and portable level -- a level at which the user is able
to interpret program data and at which external tools need
only know simple, logical structures.

The seminal work on DAQV, by authors Hackstadt
and Malony [8,9] and under the auspices of the Parallel
Tools (Ptools) Consortium [23], resulted in a publicly
available DAQV reference implementation. Ptools’ user-
oriented process was instrumental in identifying the needs
to be addressed by DAQV and refining the scope of the
original project. Though the Ptools portion of the project
was completed in June 1997, we continue to follow the
Ptools model by working closely with scientists to deter-
mine the functionality and operation of our tools.

Our current project, referred to as DAQV-IJ, is funded
by Los Alamos National Laboratory (LANL) [20] and is
being carried out in conjunction with the Computational
Science Institute (CSI) at the University of Oregon [2].
The programming and execution requirements of this user
community have driven the evolution and realization of a
new operational model for DAQV. For example, a recent
project in which our earlier work played a central role
addressed the development of a domain-specific environ-
ment (DSE) for seismic tomography [3]. That environ-
ment is being reimplemented with DAQV-II as a result of
the project’s evolving needs.

In this context, DAQV-II continues to be the source of
interesting research issues and challenging implementa-
tion problems. Many of these will be revealed in this paper
by describing three aspects of DAQV-II: how it differs
from the original reference implementation, how it oper-
ates, and how it is used to address the needs of scientists.
These topics are covered in sections on design, implemen-
tation, and application, respectively. First, though, we
briefly describe work related to DAQV-II.



2 Related work

DAQV is a confluence of several research ideas. Not
surprisingly, certain aspects of its design, functionality,
and implementation appear in other types of tools. For
example, sysiems like Falcon[5], CUMULVS [7],
VASE [14,26], and SCIRun [24] typically provide com-
plete, closed environments for computational steering. At
the core of these systems is functionality similar to that
provided by DAQV.II, but DAQV-II is unique in that it
implements “compulational steering middleware,” which
allows it to support steering functionality without impos-
ing constraints on the system and environment provided to
the end user. In this way, DAQV-II also supports a robust,
extensible framework for developing runtime interaction
and computational steering systems. This style of software
development is consistent with our in domain-specific
environments [3] for computational science; DAQV-II rep-
resents functionality that can be easily integrated with and
adapted to domain-specific software. As we describe later,
we have coupled DAQV-II with MATLAB to provide a
system for runtime simulation-tool interaction with seis-
mic tomography applications {12]. DAQV-II is also unique
in that it allows interactions with distributed data; of the
steering systems listed above, only CUMULVS directly
supporis distributed data. With respect to performance and
efficiency, domain-specific runtime visualization systems
like pV3 [10] are often able to make assumptions and opti-
mizations that obviate the need to directly address the
more general distributed data problem.

Because the distribution of parallel data is an impor-
tant factor in the performance behavior of a program,
viewing data and performance information in relation to
the distribution assists the user in tuning endeavors. For
example, the GDDT tool [19] provides a static depiction
of how parallel array data gets allocated on processors
under different distribution methods; it also supports an
external interface by which runtime information can be
collected. In the DAVis tool [16], distribution visualization
is combined with dynamic data visualization to understand
the effects of decomposition on algorithm aperation. Simi-
larly, Kimelman et al. show how a variety of runtime infor-
mation can be correlated to data distribution to better
visualize the execution of HPF programs [17]. And in the
IVD tool {15] a data distribution specification provided by
the user is used to reconstruct a distributed array that has
been saved in partitioned form. DAQV-II could easily pro-
vide distribution and runtime information to these tools
from a running application. In this way, DAQV-II is
unique because it combines distributed program interac-
tion and data access at a level low enough that computa-
tional steering, distribution visualization, and other
distributed data performance tools could be made to use it.

3 Design

In considering the general problem of interacting with
distributed arrays on parallel and distributed systems, our
design of DAQV-II was guided by three important consid-
erations: language targets, models of interaction, and
abstractions for data access. Decisions made in these areas
play a significant role in determining the usability, flexibil-
ity, and implementation difficulty of the resulting system.

3.1 Language targets

The choice of language targets for a distributed array
interaction system has two important implications. First,
the amount of compiler and runtime support offered by a
given language for handling distributed data directly
impacts the technical difficulty of implementing distrib-
uted array access for that language. The second issue is
whether providing distributed array access capabilities for
a given language will actually be useful to scientists.

Qur original implementation of DAQV (referred to
hereafter as DAQV-I) targeted High Performance Fortran
(HPF) [13]. We relied heavily on the HPF language, com-
piler, and runtime support in implementing key compo-
nents (e.g., data access, interprocess communication) of
the DAQV-I system. This “language-level” implementa-
tion afforded us almost guaranteed portability across dif-
ferent HPF computing environments and minimized our
worry about accessing and handling distributed data. On
the other hand, DAQV-I functionality was limited to appli-
cations written in High Performance Fortran. In our work
with CSI scientists, as well as in our other collaborations,
there was considerable reluctance in embracing HFPF
because of its performance and restricted (i.e., data-paral-
lel) programming model. In contrast, there was significant
interest in gaining DAQV functionality for Fortran 77 and
Fortran 90 applications that use a message passing library
such as PYM [4] or MPI [22].

Thus, in DAQV-II, Fortran 90 and MPI became our
primary implementation targets. However, we also wanted
to avoid being explicitly tied to a given language. Thus,
DAQV-II does not actually rely upon Fortran 9¢ (or MPI)
for any key functionality; in contrast to the first version,
this makes it easy to retarget to other languages such as
Fortran 77, HPF, C, and C++. The primary disadvantage of
this generalization is that DAQV-II must now address
more fully the general problem of reassembling distributed
arrays; we can no longer rely on a HPF-like runtime envi-
ronment for this support. This presented a tremendous
technical challenge that was cleverly avoided in the origi-
nal work. In DAQV-II, we currently support HPF-like
BLOCK and CYCLIC data distributions over multiple
dimensions.



3.2 Models of interaction

Interacting with distributed arrays and parallel pro-
grams can follow different models of interaction. In our
work, we have considered both client/server and peer-
based models. We have found that client/server interac-
tions tend to be easier to understand and implement, while
peer-based models are more general and allow a wider
range of interaction.

DAQV-I imposed a very strict client/server model of
interaction on the tools and applications involved. Tools
(e.g., for visualization, debugging, etc.) were clients of the
HPF application, which essentially became a distributed
data server when linked with the DAQV server library.
The model also distinguished between data clients and
conirol clients; only a single control client could connect
to a DAQV-I server, while any number of data clients were
allowed. This model was simple for users to understand,
relatively easy to implement, and avoided synchronization
issues among clients. However, the model was too restric-
tive for addressing emerging requirements like computa-
tional steering and simulation coupling [18], which require
bidirectional data flow and peer-based interaction.

In response, DAQV-II implements a more general
model of interaction and places less emphasis on client/
server relationships. The high-level view of DAQV-II is
one of tools and applications that interoperate with each
other by exchanging data and sharing control of each
other’s execution. Every component of the environment,
whether it is a tool or DAQV-enabled application, is
viewed equally. Thus, there is no required distinction
between data and control clients; every component is
allowed to access the data of other components and to reg-
ister data (distributed or not) for access by other compo-
nents. Of course, this does not preclude a strict client/
server relationship like that in DAQV-L, if that is all that is
required. However, DAQV-II affords many additional sys-
tem topologies, including peer relationships in which mul-
tiple DAQV-enabled applications can read and write each
other’s data. Such functionality is critical for model cou-
pling, the sharing of control and the exchange of data
between multiple simulations at runtime. Execution con-
trol is required so that the coupled simulations can be syn-
chronized when necessary; data access is required so that,
for example, the intermediate output of one model can be
used as the input to some other one.

3.3 Abstractions for data access

The development of effective abstractions for access-
ing distributed data can have a direct impact on the usabil-
ity and applicability of a system. Qur efforts toward the
creation of abstractions for data access have focused on

capturing different “perspectives” of distributed data
access. In our experimentation, we have portrayed DAQV
functionality from two different perspectives: (1) who (or
what) decides to access data, and (2) how the data is to be
accessed.

The original motivation for DAQV-I stemmed from a
desire for simple, high-level access to distributed data.
Users wanted to be able to “get the data” using something
as simple as a PRINT statement [8]. They also wanted to
use existing visualization tools to display the data. This
resulted in the development of a push model for data
access in which the wuser inserted calls 1o a
DAQV_PUSH() procedure in their code (much like
PRINT statements). When the program was executed, data
would be delivered automatically to the appropriate dis-
play tool. This very simple model allowed users to do one-
time visual data dumps or to create animations of data over
time. However, to support a more interactive and flexible
approach to array visualization, we also implemented a
puil model which allowed rudimentary control over pro-
gram execution and selection of the arrays to be visual-
ized. This control and selection was allowed at explicit
yield points compiled into the code and was accessed at
runtime through an external interface. For our research in
the CSI, however, we learned a valuable lesson from
DAQV-I: a push model for data access is unnecessary, and
even undesirable, in interactive domain-specific environ-
ments.

Push data transfers are fixed because they are com-
piled into the application. Thus, a push statement in the
body of a loop results in a data transfer on every iteration.
But for simulations with long, computationally intense
loops, a scientist’s need to check data is the exception, not
the norm. Thus, despite the original Ptools feedback, our
scientists desired a low-overhead, interactive means of
accessing program data, Having two different modes of
access is unnecessarily complicated, especially when
external clients can be written to mimic push-like behav-
ior.

As a result, we reformulated and generalized the
abstraction for data access in DAQV-II 1o include both the
reading and writing of data (e.g., for computational steer-
ing). We have termed the new abstractions simply probe
{for reading data) and mutate (for changing data). We have
preserved the nolion of applications yielding to DAQV-II
to allow data to be repeatedly probed or mutated. How-
ever, it is the responsibility of the user to make sure that
probe and mutate instrumentation is placed in semanti-
cally and scientifically meaningful locations in the code.
Finally, DAQV-II is able to restrict access only to in-scope
arrays, a feature not supported in DAQV-1.

In summary, the lessons learned from the DAQV-I ref-
erence implementation, combined with a shifting focus in
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our own research toward domain-specific environments,
computational steering, and model coupling, have resulted
in fundamental changes in our design for DAQV-II. To that
end, our research into the design of a system for distrib-
uted array interaction has focused on the important issues
of language targets, models of interaction, and data access
abstractions.

4 Implementation

The implementation of DAQV-II can be divided into
two parts, the client and application libraries. The client
library is used by all components (i.e., tools and applica-
tions) in a DAQV system. It contains the interfaces and
protocols for attaching to and detaching from other tools
and/or applications, learning about what data is available,
requesting and altering that data, and controlling program
execution. The second part, the application library, is used
by a parallel or distributed program that wishes to make
distributed data available via DAQV-II. The application
library contains code that supports communication among
the application processes, answers data requests, and reas-
sembles distributed data; it is the core of DAQV-II and will
be the focus of our attention in this section. Figure 1
reveals the libraries, threads, and processes that make up
the DAQV architecture.

4.1 Application structure

Our primary application targets consist of single-pro-
gram multiple-data (SPMD) processes writlen in Fortran
77 or Fortran 90 that may communicate with each other
through some message-passing service such as PVM or
MPI. We refer to the individual SPMD processes as the
application processes. Each application process contains
local dala that is part of a logical, global array that has
been distributed among the application processes. How-
ever, the concept of data distribution is likely to be foreign
or irrelevant to both the language (e.g., Fortran 90} and the
communication system (e.g., MPI). The distribution may
manifest itself in certain aspects of the application's algo-
rithms, but we have no means of determining that from the
source code. Hence, for our purposes, the *data distribu-
tion” exists solely in the programmer’s higher-level under-
standing of the task being solved; therefore, the
programmer is our only source for obtaining that informa-
tion. We are currently developing tools that support col-
lecting this information from the user.

4.2 Interface, threads, and processes

Each application process is linked with a DAQV
library that provides a simple procedural interface to the
application programmer. The interface allows the pro-
grammer to describe how data is distributed and to indi-



cate places in the code where it may be accessed. The
library is primarily responsible for initializing other parts
of the DAQV-II system and supporting a few data struc-
tures. The procedural interface is documented in Table 1.

Procedure and Arguments Description

—_— T

DAQU_INIT(
int *procld,
int *numProcs
}

Initializes process procid of an
application with numPrees pro-
cesses.

DAQV_REGISTER|(
valid *array,
int *rank,
int dim(},
int *cype,
char *name,
int distTypel],
int distParam(],
int *procRank,
int proe{]

)

Registers distributed data con-
tained in arzay, whose rank,
dimensions, type, and textual
name are also provided; dist-
Typa() and distParam{)
describe the distribution in each
dimension onto an abstract pro-
cessor grid of rank procRank
and with dimensions contained in
proc(].

DARQV_PROBE{
int *probeType
volid *arrayl
vold *array2

]

Fills panding proba (/.6., raad)
requests for any of the arrays
listed; H probaTypa is yielding,
then the call waits for additional
requests from cllents and does
not retum until explicitly told.

DAQV_MUTATE {
int *mutateType
void *arrayl
void *array2

Same as above, except the
arrays lisled can be mulated
instead of probed.

DAQV_EXIT Cleans up and terminates DAQV-

Il operation.

Table 1: The DAQV-Il procedural interface allows
programmers to make distributed data available
to external tools.

When each process initializes DAQV-II, the library
creates a slave thread that shadows execution of the appli-
cation process. The purpose of these threads is to maintain
information about available distributed data and to per-
form accesses to that data when requested. The reason for
embodying this functionality in the form of a thread is so
that querying the information and accessing the data can
be done concurrently with the execution of the application
processes, though we do not currently take advantage of
this capability. (That is, in our current model, distributed
data access is only allowed at those points explicitly speci-
fied in the application process.) DAGV-II uses the thread-
ing system provided by the Nexus multithreaded
communication library [6] to create and manage these
slave threads.

The individual slave threads are coordinated by a sep-
arate process called the DAQV master. In addition to coor-
dinating the slave threads, the master process is

responsible for interacting with the other tools and appli-
cations in the DAQV-II environment by acting as the “sin-
gle point of contact” for the entire set of application
processes, The master process spawns additional threads
to handle the various requests it receives; because it also
uses Nexus, the master process is fully multi-threaded and
can take advantage of multiple processors, if available.

DAQV-1I expects to be operating in a distributed, het-
erogeneous environment. Every process involved in
DAQV-II -- the application processes, the DAQV master
process, and the external tools and applications -- can run
on the same machine, different machines, or any combina-
tion thereof. Nexus effectively masks any implementa-
tional concerns of operating in such an environment. With
respect to performance, though, the user may need to con-
sider carefully where the various DAQV components
reside. We are planning to integrate performance monitor-
ing support in DAQV-II to aid in this task [25].

4.3 Protocols

The interactions that take place between DAQV-II
components occur at two levels: (1) interactions between
external tools and an application’s master process, and (2)
interactions between the master process and the applica-
tion process slave threads. These interactions can be com-
plex. Figure 2 gives a high-level view of the protocols
between external tools, the master process, and application
slave threads. In this section, we describe in detail how
one part of this protocol, read-only data access (probe), is
implemented.

For our example, let us assume the existence of an
executing, DAQV-enabled, parallel program that has regis-
tered a distributed array, A, with DAQV-II. Let us also
assume the existence of a DAQV-enabled client tool capa-
ble of sending and receiving the events shown in Figure 2.
Further, we assume that this tool has already attached to
the application’s master process and has received the nec-
essary registration information. The process we are about
to describe begins when the user makes a request for some
piece of the array A.

The tool uses a procedure provided by the DAQV cli-
ent library to send a request for the desired array section to
the master process. This procedure causes a Nexus remote
service request (RSR) to be made to the master process,
which responds by adding the request to a queue of pend-
ing events. Execution control is returned to the client tool
as soon as the master process receives the request; the tool
may now periodically query the client library to see if the
request has been answered.

Meanwhile, on the application side, the parallel pro-
gram eventually reaches a call to the procedural interface
routine DAQV_PROBE (), which has the array symbol &
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as one of its arguments, Upon invocation,
DAQV_PROBE({) transfers execution control to the slave
threads. The threads send the argument list of the
DAQV_PROBE () call to the master process, which con-
firms whether this is a valid probe point.

If the call to DAQV_PROBE () is valid, the master
searches its event queue for pending probe requests from
external tools. Each item on the queue must be cross-refer-
enced with the argument list from the call to
DAQV_PROBE ()} so that only requests for arrays that are
actually in scope are answered.

The master forwards each valid request in its event
queue to the slave threads. Using distribution information
provided by the user when the amray was registered, the

slave threads determine what part of the array, if any,
resides locally.2 The threads each allocate a buffer and fill
it with the appropriale values read from the address space
of their associated application process. The slave threads
respond to the masler process by sending the filled buffers.
The master process coordinates receipt of the data from
the slaves, assembles the data into a single buffer, and
sends it to the external tool that originally requested it.

Similar types of interactions between the master pro-
cess and slave threads occur when application processes
register distributed arrays and when data is mutated. As
described above, data access (i.e., probe and mutate) is
complicated by having to interpret array distributions and
map global data requests from tools into localized requests
for the application processes. These routines can be a bot-
tleneck if not implemented with care; we continue to opti-
mize and refine these parts of our implementation,

5 Applications

Our current prototype clients for DAQV-II are shown
in Figure 3. These clients demonstrate DAQV functional-
ity and are intended to be used as models for other devel-
opment efforts. As we have mentioned earlier, our interest
in supporting the activities of computationzal scientists is
largely responsible for shaping the capabilities of DAQV-
I1. We plan to use DAQV-II in a number of ways that per-
tain to these activities. DAQV-I was the cornerstone of a
complele program interaction, sleering, and visualization
environment for a seismic tomography application [3].
However, the performance penalty incurred by using HPF
(which DAQV-I required) was too severe, and, as a result,
the environment was not used by the scientists.

Now that DAQV-II supports Fortran 90 and improved
support for client interaction, we are reimplementing the
environment in a new version called Tierralab [11,12].
Built as an extension to MATLAB [21], Tierral.ab offers
powerful, interactive, runtime data analysis and visualiza-
tion capabilities not previously available to the scientists.
The environment is already beginning to be used by geo-
physicists at the University of Oregon. A TierraLab ses-
sion with two seismic visualizations created in MATLAB
is shown in Figure 4.

The design and implementation of DAQV-TI has been
driven by the need to interact with distributed data in par-
allel scientific applications. While we have identified cer-
tain priority targets for our work (i.e., SPMD Fortran 90
codes with implicitly distributed data), the DAQV-II

2. Although not discussed here, the determination of where
distributed data resides is non-trivial. DAQV-II allows
access to any regular sub-section of a multidimensional
array distributed in 2 BLOCK or CYCLIC manner in each
dimension.



Define s coordinate range for ISTEGER*2 C_20D[10, 40)
Enter the values meneally by ?pim anumber Ineach fleld. Or.clickon
|

the biack errow for agiven digwmion to 2t values waing the aliders.
Flrst Elemeni  Last Element

Set the first, last, and
stride conrdinales for
this dimension:

l

i)

R il u L

a [0

Figure 3: A generic prototype client for DAQV-I that
can launch other clients for visualizing, analyzing,
or mutating program data.

il Ar—m

e A

% Comnect to tha Lomography oude
wriPile = */home/cui/laurs/tosog/vorktomogera/daqv_mastsr_u I
LABCRY 3 tid = fopeniurifile,'r*};
ight 1584:55 The MsthWorke, Inc, url=focunf{fid. "Ae*)}

ta L-Tsrm feloselfid);
i 1998 [4d arr)=tiacenl atiach®,uel)}

& Walt for the ocde 16 load the stations
2> moniior?

;; [& hiscontourf{ncooras, ycooras, bathgria,cl):
N> caxin{[-3,4) -1,2]})

»? hold en
€120, 0vei2,1), 7K. markernize’ B}
l!u}(ljt).nnlm(!,:),‘n','nﬂmln'.!

statusstierral getutatus®,idi;
and

N Gat the staticn ordinetes

Izdatum orr)=tierral probe’, 1d, “zdetum’, {1 131 1)}
[nate arr)=tisrrai*proba’, id:,"neta’, (¢ 121 1]}
latscion err)=tierra{*probe’,id, 'seationt, {1 3;1 nete]i;
station(d, 1) = -etation(d ih;

& Continus tomography program
srr~tisrra{’ocoatinue’, id);

Figure 4: The TierraLab environment, developed for use by seismologists, integrates DAQV-Il functional-
ity into MATLAB's powerful data analysis and display capabilities.



model meets a significantly broader range of requirements.
We feel that the functionality of DAQV-II is compelling
enough that a more general class of distributed computing
problems can also be addressed. In particular, there are
problems whose solutions traditionaily have not been
viewed as involving “distributed data.”” We are currently
exploring two examples of this possible role for DAQV-II.

Consider a system like the Network Weather
Service [27] which monitors the performance and utiliza-
tion of a collection of distributed, heterogeneous
machines. Each node maintains an array of metrics that are
periodically reported (or collected) by a client responsible
for displaying the results. This is fundamentally a distrib-
uted data problem. As an experiment, we constructed a
simple distributed load monitoring tool written in C and
using DAQV-II. As shown in Figure 5, a DAQV-enabled
load daemon is executed on each of eight machines in a
distributed environment and communicates with a DAQV
master process executed somewhere else in the system.

Load Metrics
(4]
3
=2
i

DAQV Master Process

Giobal Declaration
REAL Load(3,8)

- Global Distribution
el IR S]] prerriBoTE
; Load {COLLAPSED,
< i BLOCK(1))
10 0 T ON PROCESSORS(B)

DAQV Load Clisat
1-min 5-min 35-min

[ =

[ LT

earth krypton a

Figure 5: A distributed load monitor implemented
in C and using DAQV-I.

Each daemon tracks the J-minute, 5-minute, and 15-
minute load averages in a 3-element array. This array is
globally viewed as a two dimensional array distributed
across eight machines. A client tool may make requests for
the load information across all or some of the machines
through the master process via a logical reference to all or
part of the global array. These requests, in turn, are con-
verted into requests for the associated data from the appro-

priate load daemons. In response to its request, the client
receives a single, global array of load data, and data is only
communicated when it is requested. In this case, we are
essentially imposing the notion of a BLOCK data distribu-
tion on the distributed load data. The advantage of using
DAQV-II is in the simple interface it supports and the ease
with which client tools can be developed. (As a comment
on DAQV-II's high-level utility, we built this prototype in
less than four hours.) In addition, the portability of DAQV-
II is limited only by the portability of the Nexus communi-
cations library.

We are also applying this technique to other perfor-
mance metrics and runtime application performance data.
For example, we are currently integrating DAQV-II with
TAU, Tuning and Analysis Utilities for C++ [1]. Our ini-
tial work [25] is focusing on providing client access o
TAU’s performance callstack, an efficient performance
view of a program’s execution profile at runtime. This pro-
file shows where time is being spent in a program's code
for each thread of execution. The client needs to display
this data with respect to individual threads as well as the
entire application. The DAQV-II framework will provide
access Lo this data and support the interaction between the
display client and the executing program.

6 Conclusion

In summary, DAQV-II is an example of a distributed
array interaction framework. In our work, we have experi-
mented with different language targets, models of interac-
tion, and data access abstractions. Our current design and
implementation reflects the lessons we have learned
through this process as well as our focus on addressing the
evolving requirements of high-performance computational
science applications. The development of DAQV-II is an
ongoing research challenge. Support for data mutation,
streaming and parallel data transfers, and optimized distri-
bution mapping algorithms top our list for future work.
Through the construction of higher-level domain-specific
environments that are based on DAQV-II, we hope to
establish its generality and efficacy for providing a range
of interactive capabilities with parallel and distributed pro-
grams and data. Additional information and documenta-
tion on DAQV-II can be found on our web site: <http://
www.cs.uoregon.edu/research/paraducks/>.
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