Memory requirements for table
computations in partial k-tree algorithms

Bengt Aspvall, Andrzej Proskurowski
and Jan Arne Telle

CIS-TR-98-05
June 1998

Department of Computer and Information Science
University of Oregon

Memory requirements for table computations in
partial k-tree algorithms

Bengt Aspvall’, Andrzej Proskurowski?, and Jan Arne Telle!

! Department of Informatics, University of Bergen, Norway
? CIS Department, University of Oregon, USA

Abstract. This paper addresses memory requirement issues arising in
implementations of algorithms on graphs of bounded treewidth. Such
dynamic programming algorithms require a large data table for each
vertex of a tree-decomposition T of the input graph. We give a linear-
time algorithm that finds the traversal order of T minimizing the number
of tables stored simultaneously. We show that this minimum value is
lower-bounded by the pathwidth of T plus one, and upper bounded by
twice the pathwidth of T plus one. We also give a linear-time algorithm
finding the depth-first traversal order minimizing the sum of the sizes of
tables stored simultaneously.

1 Introduction

Many NP-hard graph problems have linear-time algorithms when restricted to
graphs of treewidth bounded by k (equivalently, partial k-trees), for fixed values
of k. These algorithms have two stages: the first stage finds a bounded width
tree-decomposition of the input graph and is followed by a dynamic programming
stage that solves the problem in a bottom-up traversal of that tree. Theoreti-
cally, the first stage has linear-time complexity (see [4]), but no general practical
implementation for treewidth k > 5 exists. In this paper we focus on practical
implementations of the second stage.

Dynamic programming algorithms on bounded treewidth graphs have been
studied since the mid-1980s leading to several powerful approaches, see [5] for an
overview. Recent efforts have been aimed at making these theoretically efficient
algorithms amenable also to practical applications (14,15]. Experimental results
so far have not been negative: for example, using a 150 MHz alpha processor-
based Digital computer, the maximum independent set problem is solved for
treewidth-10 graphs of 1000 vertices in less than 10 seconds [8]. The given tree-
decomposition for this particular example had about 1000 nodes and associated
with each node is a data table of 2!! 32-bit words, so without reuse of data
tables the combined storage would exceed 8 Megabytes of memory. With our
algorithms we need only 80 Kilobytes. These initial investigations already show
that avoidance of time-consuming I/O to external memory is an important issue
(see [6) for a good overview of issues related to external memory use in graph
algorithms and the expected increased significance of these issues in coming
years).

In the bottom-up traversal of the tree-decomposition that accompanies the
dynamic programming stage, we are free to choose both the root and the traver-
sal order. Moreover, the information contained in the table at a child node is
superfluous once the table of its parent has been updated, and the table of the
parent need not be created until it is ready to be updated by the table of the
first child. Given a tree, a natural question is how to find a good root and a
goad traversal order to minimize the table requirement, i.e., the minimum num-
ber of tables that need to be stored simultaneously, under the assumption that
all tables will be kept in the main memory. In the next section we answer this
question and give a careful description of the resulting algorithm to ease the task
of implementation. In Section 3, we show an interesting relationship between the
table requirement of a tree T’ and the pathwidth of T', giving asymptotically tight
bounds relating these two parameters. In the case when the size of the table is
not the same over all nodes of the tree-decomposition, we may ask instead for a
traversal order that minimizes the sum of sizes of tables that need to be stored
simultaneously. In Section 4 we give a practical linear-time algorithm answering
this question for depth-first search (dfs) traversal orders. The traversal order
output by the algorithm in Section 2 minimizing table requirement is indeed a
dfs order, and dfs orders have the advantage of being easy to implement. We
conclude in Section 5 with a discussion of future research.

2 Table requirement

In the following, we will refer not to the bounded treewidth graph G itself but
instead focus on the adjacencies of its tree-decomposition T'. The interested
reader may see, e.g., [5] for definitions related to bounded treewidth graphs.
‘We assume that in order to solve a discrete optimization problem on G, some
function on T has to be computed. The value of this function is independent of
the choice of root for the tree, and is obtained from the completed computation
of the table associated with the vertex chosen as root. The computation of this
final table is a bottom-up process which involves computation of tables for all
other vertices of the tree. The table of a leaf vertex is defined by the base case of
the function. The table of a non-leaf vertex is updated according to the contents
of the completed table of its child vertex, after which that latter table can be
discarded. This table update operation requires the simultaneous presence of
the parent and child tables. The table at a vertex is completed once it has been
updated using the contents of the tables of all its children, We must thus pay
for storage of the table at a vertex u from the moment of its creation, allow the
table to become completed by being updated by completed tables of all children
of u, update the table of the parent of u, and only then discard the table of u.
We summarize the above discussion in a formal definition:

Definition 1 An ordering of edges ey, ...,en—1 of a rooted tree with n > 1 ver-
tices is a bottom-up traversal if for any edge e; = (u, parent(u)), all edges in the
subtree rooted at u have indices less than j. The lifetime of the table of vertes

u in this traversal is the interval [i, j] where e; is the lowest-indexed edge con-
taining u and e; is the highest-indexed edge containing u. The table requirement
of this traversal order is the mezimum number of tables alive at any time, i.e.
max;<i<n |{vk : € lifetime(vy)}].

For adjacent vertices u and v of T we define tabreg(u,v) as the minimum
table requirement of the subtree rooted at u with overall root chosen so that u
has parent v, taken over all possible bottom-up traversals of this subtree.

Theorem 2 In o given rooted iree, let a non-root vertez u have the parent v and
let £ and y be the children of u (if any} such that tabreq(z,u) > tabreg(y,u) >
tabreq(w, u) for any other child w of u (if u has only one child, define tabreq(y, u)
to be 0.) Then, the table requirement to compute the table associated with u is
gqiven by

. 1 for a leaf u (1)
GUTEQH, V) = max{tabreq(z, u), 2, tabreq(y, v) + 1} for a non-leaf u.

Proof. The base case of a leaf u follows from the definition of tabreg(u,v).
‘We continue with the non-leaf case. That the value given by (1) suffices follows
from noting the following: (i) First compute recursively the table of the child
x with largest table requirement; this requires at most tabreq(z,u). (ii) Then
create the table of u and update it with the table of £ before discarding table
of z; this requires at most 2 tables. (iii) Finally compute recursively tables of
remaining children of « one by one, in any order, updating the table of u before
discarding the table of the child; this requires at most tabregq(y, u) + 1. That the
value given by (1) is necessary follows by noting: (i) To compute the table of a
non-leaf vertex u, it is necessary to have computed the tables of all its children;
this requires at least tabreg(z,u). (ii) To update the table of u with the table
of a child, both these tables must be present in memory; this requires at least 2
tables. (iii) After a table has been created, it must be stored at least until the
table of its parent has been created. Thus, only for a single child ¢ of u will it be
possible to compute its table while storing only tables that belong to the subtree
rooted at c. This entails a requirement of at least tabreq(y, u) + 1 (achieved by
choosing ¢ = z) which is minimal since tabreg{z,u) > tabreg(y,u). n

For a tree T and a vertex r in T, we denote by T} the rooted version of T
resulting from designating r as its root. Since r does not have a parent in T5.,
we denote the table requirement of T, by tabreq(T}.). This value is the minimum
number of tables necessary to complete the table at r, and hence to compute
the function on T solving the original problem for G. When the tree is rooted
at u, the value of tabreg(7,,) is given by the right-hand side of (1).

Corollary 3 The right-hand side of (1) gives the value of tabreq(T,); in this
case, all neighbors of 4 are considered in defining T and y.

Corollary 4 For an n-vertex tree T rooted in an arbitrary verter u we have
4
tabreq(Ty) < |log, 3(n +1))

Proof. Let 5(i) be the number of nodes in the smallest rooted tree with table
requirement i. By Theorem 2 we have the recurrence S{1} = 1, 5(2) = 2 and
§(i) = 25(i—1)+1 for i > 3. The solution to this recurrence is $(i) = 3x2i-2-1
for i > 3. Rearranging and taking logarithms the result follows. =

Note that tabreg(T,,) will usually differ from tebreg(T.) for = # u. We define
the table requirement of a tree T as the minimum value of tabreg(T,) over all
vertices v of T'. This parameter is of interest also because of its similarity to graph
searching games (see, for instance, [7]), to the minimum stack traversal problem
[2] and to the pathwidth parameter, discussed in the next section. Indeed, the
algorithm we now present to compute this parameter uses a traversal strategy
resembling closely that of [2] as well as those used by [13,10] to compute the
pathwidth of a tree.

The algorithm will consist of a single bottom-up phase, which will start at the
degree one vertices of the tree (leaves), and end in a root r with minimum value
of tabreq(T;) (over all vertices of T'). For each vertex v, we keep track of larg(v)
and nezt.larg(v), the two largest table requirements reported by neighbors of v.
We also maintain an array S of stacks to guide the order of processing vertices of
T. The stack S[i] contains those leaf vertices of the remaining tree of unprocessed
vertices whose subtrees have table requirements of value i. Vertices are popped
from the non-empty stack S[f] with the smallest value of i. The algorithm, which
assumes that T has at least two nodes, can now be described as follows (see
Figure 1 for an example of algorithm execution):

1 Set ¢ = 1. Push all degree one vertices of T on S[1]. For all vertices v, set
larg(v) = nezt.larg(v) = 0.
2 While T has more than one vertex remaining
2a While S[i] is empty increment :.
2b Pop a vertex w from S[i]. Let v be the single neighbor of w (its parent)
in the tree T' of unprocessed vertices.
2c Report the value { to v, update the value of larg(v) to max{i, larg(v)},
and also update nezt.larg(v) to max{nezt.larg{v), min(larg(v),i)}.
2d If v has received reports from all but one neighbor then push v on the
stack S[j], j = max{larg(v),1 + nezt.larg(v),2}. Remove w from T.
3 Report the only remaining vertex r in T as an optimal root, with table
requirement j such that r € S[j].

Theorem 5 The node r of T which remains unprocessed upon termination of
the algorithm (when the conditional in the outer while loop is false) is an optimal
rool for minimizing table requirement of T.

1 2 3 2 10
o *) J L* T " L®.
T 2 X3 2 12
1 ! 3 6 9 2
P ———] u) go+—————n [a——) b) g—
Go—0
6
9 7 1
10 8 5
L= *) L L~ L
r 2
12 4
11 3
o0) go————m10

Fig. 1. a) A tree with its optimal roet r and values of table requirement for subtrees,
as computed by our algerithm. Optimal root r gives table requirement 3, while rooting
in z would give table requirement 4. b) The order in which vertices were popped from
the stack during computation of optimal root. ¢) An optimal traversal order, as defined
by the order of execution of update-table(u, parent(u)) in call of DFS(r).

Proof. (By contradiction.) Assume that an optimal root r* # r has value
m* = tabreg(T,.) < tabreg(T,). Let r have the neighbors w,umn,...,w; with
w on the path from r to r* in T and let tabreg(w,,r) > tabreg(ws,r) >

. 2 tabreq(wy,r). Table requirements are defined by Theorem 2. We have
tabreg(w,,r) < tabreg(r,w) < m* and tebreq(ws,r) + 1 < tabreg(r,w) < m*.
We also have tabreg(w,r) < m* since otherwise, considering the previous state-
ment, r would be on a lower-indexed stack than w and r would not be processed
last. Since we assumed m® < tabreq(T,.) we have w and w; the two neigh-
bors of » with largest table requirements tabreg(w,r) = tabreq(un,r) = m* >
tabreg(w;,r). The two vertices, w and wn, are thus the last neighbors of r pro-
cessed by the algorithm, with the parameter i = m*. But this implies that the
penultimate neighbor of r processed by the algorithm causes r to be pushed on
the stack S[m*] in step 2d. Thus, r would be popped next and not remain as
the last unprocessed vertex. s

Using the observation that tabreq(T}) increases over its subtrees’ requirement
only when larg(v) = next.larg(v), we arrive at the following result:

Corollary 6 tabreq(T.) — 1 < tabreq(T\..) = m*, for any vertez r and an opti-
mal root r* in o tree T.

Proof. Let P be the unique path r* = ry,rs,...,rqg = r between r* and r. Let C;
be the neighbors of r; that are not on P. The subtree rooted in a given vertex «
of C; does not depend on the choice of overall root » or r*. Thus in both cases z

reports the same memory requirement, of value at most m*, to its parent r;. By
Theorem 2, a report of table requirement of value m* + 1 or more occurs only
if one child reports at least m* + 1 or at least two children report m*. Thus, in
T such reports only occur on the path P, from some r; to its parent r;4;,i > 1,
but in no other place. We conclude that tabreg(T,.}) <m*+1.m

The values max{larg(v),1 + nezt.larg(v),2}, computed in step 2c by the
algorithm for each vertex v, gives the table requirement for the subtree of T,
rooted at ». To find a traversal order minimizing table requirement let a node
v in T;. have children child,(v), ..., child., (v), with child;(v) having the largest
table requirement over all subtrees of T, rooted at these vertices. A call of the
procedure DFS(r) shown below will then perform the dynamic programming
computation on T while minimizing the number of tables stored simultaneously:

DFS(v)
if v a leaf then create-table(v);
else {
DFS({child, (v)); /* The most expensive subtree first */
create-table(v);
update-table(child, (v), v);
discard-table(child; (v));
for i=2 to ¢, {
DFS(child;(v)});
update-table{child;(v), v);
discard-table(child;(v));}}

This strategy results in a traversal order minimizing table requirement as
described in the proof of Theorem 2.

3 Pathwidth and table requirement

Pathwidth is a graph parameter whose definition is closely related to treewidth
[22].

Definition 7 A path-decomposition of a graph G is a sequence X;,..., Xm of
bags, which are subsets of the vertex set V(G) of G, such that for each edge of G
there is a bag containing both its end-vertices and the bags containing any given
vertex form a connected subsequence. G has pathwidth at most k, pw(G) < k,
if it has a path-decomposition where the cardinality of any bag is at most k- 1.

As an aside, we remark that the definition of treewidth is similar, except that
the bags are nodes of a tree, as opposed to being nodes of a path (sequence),
and the bags containing a given vertex induce a connected subtree. There is a
linear-time algorithm computing pathwidth and path-decomposition of a tree,
(10], which uses a traversal similar to our minimum table requirement algorithm,
based on the following Theorem:

Theorem 8 [13] For a tree T, pw(T) > k if and only if there erists a vertex v
in T such that T'\ {v} has at least three components with pathwidth at least k.

We will use the following corollary to Theorem 8:

Corollary 9 In a tree T with pw(T) = k 4 1, either there is a vertez z s.t.
all components of T \ {z} have pathundth at most k, or the set of edges e, such
that deleting e from T gives two trees both of pathwidth k + 1, induce a path
P=ep,..,ep withp>1.

‘We will now show a close relation between the two parameters pathwidth
and table requirement for a tree.

Theorem 10 Any tree T has a node r such that
pw(T) + 1 < tabreg(T;) < 2pw(T) +1

Proof. We show that the first inequality holds even for an arbitrary choice of
r. Consider any bottom-up traversal order of T'., &;, e, ..., €51 that defines the
order of table updates. Let e; = (v;, parent(v;}) and define X; = {v;, pareni(v,)}
and X; = Xy \{vi=1 }U{w;, parent(;)} for2 <i < n—1. Then X,,..., Xp_1 isa
path-decomposition of T' as each edge is contained in a bag and, by construction,
the bags containing a given vertex are consecutive. Moreover, the maximum
cardinality of a bag is the memory requirement of this particular bottom-up
traversal of T;, as the table at a node is discarded precisely after the table of
the parent of the node has been updated. Thus pw(T) + 1 < tabreq(T).

We show the second inequality by induction on pw(T). The base case is
pw(T) = 0 with T being a single node r, and tabreg(T}) = 1 as a single table
suffices. For the inductive step, let us assumne the second inequality for trees with
pathwidth k and let pw(T) = & + 1. We must show that table requirement of T'
is at most 2k + 3. Apply Corollary 9 to T and choose as root of T a vertex z as
described by the Corollary, if it exists, or else consider the path P = ¢,,...,e,
as described by the Corollary, with e; = {v;—1,%;},1 £ i < p and choose v, as
the root. In the former case, the inductive assumption and Corollary 6, together
with Theorem 2, gives us tabreq(T.) < 2k + 3 < 2pw(T) + 1. In the latter
case, note that the endpoint vp of P, the lowest node of P in the tree T,,, by
Corollary 9 has all its subtrees of pathwidth at most k. Hence by the inductive
assumption and Corollary 6 these children report table requirement at most
2k + 2 to vy, so that by Theorem 2 vy reports table requirement at most 2k + 3
to its parent v;. By induction on {1, it follows that each node v;,2 > 1 on P
receives report of at most 2k + 3 from its child v;—; and a report of at most
2k + 2 from all its other children (since by Corollary 9 the subtrees rooted in
these other children must have pathwidth at most k). By Theorem 2 we conclude
that tabreg(T,) <2k +3=2(k+1)+1=2pw(T) + 1. =

It is easy to check that for a complete ternary tree T with k levels and root r
we have pw(T) + 1 = tebreq(T,.) = k. We can show that also the second bound
in Theorem 10 is asymptotically tight, by giving a class of trees G¥,k = 1,2, ...
with pw(G*) = k and minimum table requirement 2k. However, we leave this
out of this exyended abstract, see [1].

4 Memory requirement

Minimal separators of a partial k-tree can have varying sizes. The size of a
minimal separator, plus 1, is a lower bound on the size of the corresponding
bag of a tree-decomposition T, which in turn determines the size of the table
associated with the bag. These tables of varying size are updated during the
dynamic programming computations on T'.

In this section, we consider the case of variable size tables stored at nodes
of the tree-decomposition T. In this case, minimizing table requirement is not
enough. Instead, we would like to minimize the memory requirement, i.e., the
sum of the sizes of tables that must be stored simultaneously, over all bottom-up
traversal orders of T'. An efficient algorithm solving this problem still eludes us
and we leave its design as an open question. Instead, we consider only traversals
of T that follow a depth-first search (dfs) traversal order.

Definition 11 An ordering of edges ey, ...,en—1 of a tree T on n > 1 vertices
is a dfs traversal if we can choose a root r of T and for each vertex v of T,
order its children child, (v), ..., child,, (v) so that a call of the procedure DFS(r)
of Section 2 will ezecute the instructions update-table(u,v} for edges {u,v} in
the orderey,...,en—_1.

For completeness, we also define a top-down traversal:

Definition 12 An ordering of edges e,,...,ea-1 of a rooted tree T, onn > 1
vertices is a top-down traversal if for any edge e; = (u,parent(u)) all edges in
the subtrec rooted in u have indices greater than j.

Note that the traversal minimizing table requirement given in Section 2 is
a dfs traversal. The implementation of a dfs traversal of a tree-decomposition
is very simple, as illustrated by the DFS procedure given in Section 2. We will
give a two-phase linear-time algorithm to find a dfs traversal order of a tree with
weighted vertices minimizing its dfs memory requirement. Let tab(u) be the size
of the table at a node u of T'. We define mem(u,v) as the minimum dfs memory
requirement of the subtree rooted in u with overall root chosen so that u has
parent v, taken over all dfs traversals of this subtree.

Theorem 13 In o given rooted tree, let a non-root verter u have the parent v
and let z and y be the children of u (if any) such that mem(z,u) > mem{y, u) >
mem(w,u) for any other child w of u (if u has only one child define mem(y, u)
to be 0.) Then, the minimum dfs memory requirement to compute the table as-
sociated with u is given by

tab(u) for a leaf u

max{mem(z, u),)
tab(z) + tab(u), (2)
mem(y,u) + tab(u)} for a non-leaf u.

mem(u,v) =

The proof of this theorem is analogous to the proof of Theorem 2, in which
case table sizes are uniformly 1. We therefore leave the proof out, except for
noting that the necessity of the value mem(y, u) + tab(u) follows since we are re-
stricting to dfs traversals. We define the dfs memory requirement of T, mem(T,),
as the minimum dfs memory requirement necessary to complete the table at r,

Corollary 14 The right hand side of Theorem £ can also be used to compute
mem(T,); in this case, all neighbors of u are considered in defining = and y.

For any vertex r of tree T with neighbors w,, ..., w,, the values of dfs mem-
ory requirements for the principal subtrees of T}, mem(w,,r),...,mem(w,,r),
together with tab(r), determine the value of rnem(T,). For a pair of adjacent
vertices u,v, the value of mem(u,v) does not depend on the particular chosen
root, only that the root is in the component of T\ (u,v) that includes v. We
therefore conclude that knowledge of table sizes and the values mem(u,v) and
mem(v,u), for each edge (u,v) of T, provides all the information necessary to
compute mem(T}), for any vertex r of T. The following two-phase algorithm
utilizes this observation to find an optimal root and traversal order.

Let z be an arbitrary vertex of T.

1. Bottom-up Pick a root and using Theorem 2, compute in an arbitrary
bottom-up traversal of T, the values mem{u,v) for all edges uv of T where
v is the parent of u in T7.

2. Top-down Using Theorem 2, compute in an arbitrary top-down traversal of
T: the values mem/(u,v) for all edges uv of T where v is the child of v in T%.
When processing a vertex u, compute also mem(T,) using the right-hand
side of Theorem 2 with children of u ranging over all its neighbors. During
the traversal, select a vertex r that has the minimum value of mem(T5.).

The vertex r above is an optimal root. To find a traversal order minimizing
dfs memory requirement let a node v in T’ have children child, (v}, ..., child,, (v),
with child,(v) having the largest value of mem(child;(v),v) over 1 € ¢ < ¢,
as computed by the algorithm. These values are the dfs memory requirements
for subtrees of T} rooted at these vertices. A call of DFS({r) of the procedure in
section 2 will then perform the dynamic programming on T while minimizing
the sum of the sizes of tables stored simultaneously, aver all dfs traversals of the
tree.

See Figure 2 for an example. At each node v of the tree we keep track of
both the largest, second-largest and third-largest (these could be equal) dfs
memory requirements mern(w,v) reported by neighbors of v, and the iden-
tity of these neighbors. These values are incrementally updated. Assume that v
has the neighbors r, z,y, z, w, with the bottom-up phase resulting in the values
mem(z,v) > mem(y,v) > mem(z,v) > mem(w,v). The three largest values are
stored, and the two largest values are used in the bottom-up phase to compute
mem(v,r). In the top-down phase, the values used to compute, say, mem(v,)
will be mem(y,v) and the maximum of mem(r, v} and mem(z,v). These values
and the identities of the corresponding neighbors are also used in the eventual
call of DFS{r).

Q-

—0
@ Q—0 a) ? 6 o d)

@——'T ®—-T @
z]
by Y.)
€ —0 @ —0 ¢
® @ o0 T T
[14] 1] &
l 7 v 4
1 2 3
—~_6& & 6 & 3 3
®ID ' 1 o - p II.@ O o} O
e # 0 2
O—et—2e G-—0 O——0—"— —0
: 3 12 L]
G O+—0 o -2 0 9

Fig. 2. a) An unrooted tree with table sizes for each node. b} Bottom-up phase of
algorithm with arbitrary root in bold and dfs memory requirements for subtrees. c)
Top-down phase of algorithm. d} dfs memory requirements by rooting at respective
nodes. e} Minimum dfs memory requirement with optimal root in bold. f) An optimal
dfs traversal order with root in bold.

Theorem 15 The algorithm given above computes an optimal root r minimizing
dfs memory requirement in lineer time, and the call of DFS{r) gives an optimal
traversal order.

Proof. The correctness of the bottom-up phase of the algorithm follows by The-
orem 13. By Corollary 14, the computation of mem(T,} for a vertex u in the
top-down phase yields the correct value of the minimum dfs memory requirement
with that vertex as the root. Using the data structures mentioned above (with
values of the three largest memory requirements for subtrees of each node in-
crementally updated) each visit in the traversals takes constant time, hence the
linear time complexity. The call of DFS(r) results in a traversal order minimizing
table requirement as described in the proof of Theorem 13 and Theorem 2. »

5 Conclusions and Future Research

Recent efforts have been aimed at making the theoretically efficient dynamic
programming algorithms on bounded treewidth graphs amenable also to practi-
cal applications. Thorup [15) has shown that the control-flow graphs of goto-free
programs have treewidth bounded by 6, and that an optimal tree-decomposition
of the graph can be found easily. This result has been used to give a linear-time
algorithm that takes a goto-free program and for a fixed number of registers de-
termines if register allocation can be done without spilling [3]. A key ingredient
in this latter algorithm is dynamic programming on a bounded treewidth graph.

We have identified and described the problem of table and memory require-
ments of table computations in dynamic programming algorithms on bounded
treewidth graphs and we have provided linear-time algorithms that can be ap-
plied in a pre-processing stage to minimize the effects of this problem. In Section
1 we mentioned the example of a width 10 tree-decomposition of 1000 nodes,
with uniform table-gize of 8 Kbytes. By applying Corollary 4 we see that the
traversal order given by the algorithm of Section 2 for this example uses at most
10 tables, giving a memory requirement of 80 Kbytes.

Using our algorithms in a pre-processing stage it is possible to apply the
dynamic programming stage of the partial k-tree algorithms to much larger
input graphs, or graphs with larger treewidth, without paying the cost of ex-
ternal memory references. The overhead associated with this linear-time, small-
constant pre-processing, is in most cases negligible in comparison with the cost of
the dynamic programming itself, which for any NP-hard problem on an n-node
treewidth k graph has a running time of f2(nc*) for some constant ¢ (unless there
are sub-exponential time algorithms for NP-hard problems). However, more pro-
gramming work is needed to confirm this experimentally.

From Theorem 2 it is clear that table requirement two is achieved when
there is a width k& tree-decomposition T' of the input graph G where T is a
caterpillar, i.e. T is a tree obtained from a path by adding leaves adjacent to
the path, or equivalently T is a connected graph of pathwidth 1. When T is a
path, the treewidth and pathwidth of G coincide. This observation thus extends

the “folklore” that dynamic programming on a path-decomposition {a path) is
simpler than on a general tree-decomposition. A natural question to ask is for a
characterization of graphs of treewidth k that have a width k tree-decomposition
forming a caterpillar. A partial answer to this question is presented in [11]: every
multitolerance graph has an optimal tree-decomposition forming a caterpillar.
The more general question is how to find tree-decompositions having small value
of memory requirement.

Finally, the design of an efficient algorithm finding the minimum memory
requirement of a tree with varying table size, over all bottom-up traversal orders,
remains open. Another interesting question is that of bounding the worst case
performance ratio of the DFS-traversal algorithm over this minimum value.

References

1. B.Aspvall, A .Proskurowski and J.A.Telle, Memory requirements for table compu-
tations in partial k-tree algorithms, submitted special issue of Algorithmica on
Treewidth, Graph Minors and Algerithms.

2. T. Beyer, 5.M. Hedetniemi, S.T. Hedetniemi and A. Proskurowski, Graph traversal
with minimum stack depth, Congressus Numerantium, Vel. 32 , 121-130, 1981,

3. H. Bodlaender, J. Gustedt and J.A. Telle, Linear-time register allocation for a fixed
number of registers and no stack variables, Proceedings 9th ACM-SIAM Symposium
on Discrete Algorithms (SODA’98), 574-583.

4. H. Bodlaender, A linear time algorithm for finding tree-decompositions of small
treewidth, in Proceedings 25th Symposium on the Theory of Computing (STOC'93),
226-234.

. H. Bodlaender, A tourist guide through treewidth, Acta Cybernetica, 11:1-21, 1993.

. Y.-J. Chiang, M.T. Goedrich, E.F. Grove, R. Tamassia, D.E. Vengroff and
J.8.Vitter, External-Memory Graph Algorithms, Proc. ACM-SIAM Symp. on Dis-
crete Algorithms (SODA’S5), pp. 139-149, 1995,

7. LA, Ellis, LH. Sudborough and J.S. Turner, The vertex separation number and

search number of a graph, Informatior and Computation vol. 113, 50-79, 1994.

8. B. Hiim, Implementing and testing algorithms for tree-like graphs, Master’s Thesis,
November 1997, Dept. of Informatics, University of Bergen.

9. L. Kirousis and C. Papadimitriou, Searching and pebbling, Theoretical Computer
Science 47, 205-218, 1986.

10. R. Mohring, Graph problems related to gate matrix layout and PLA folding, in
Computational Graph Theory, Computing Suppl. 7, Springer-Verlag, 17-51, 1990,

11. A.Parra, Triangulating multitolerance graphs, Technical Report 392/1994, TU
Berlin, Germany, 1994.

12. N. Robertson and P. Seymour, Graph Minors 1. Excluding a forest, Journal of
Combinatorial Theory Series B 35, 39-61, 1983.

13. P. Scheffler, A linear algorithm for the pathwidth of trees, Topics in Combinatorics
and Graph Theory, Physica-Verlag Heidelberg, 613-620, 1990.

14. J.A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on
partial k-trees, STAM Journal on Discrete Mathematics, Vol. 10, No. 4, 529-550,
November 1997.

15. M. Thorup, Structured Programs have Small Tree-Width and Good Register Al-
location, Proceedings 23rd Workshop on Graph-Theoretical Concepts in Computer
Science (WG'97), LNCS vol. 1335, 318-332.

[=t =}

