




Memory requirements for table computations in 

partial k-tree algorithms 

Bengt Aspvall1 , Andrzej Proskurowski2 , and Jan Arne Telle1 

1 Department of Informatics, University of Bergen, Norway 
2 CIS Department, University of Oregon, USA 

Abstract. This paper addresses memory requirement issues arising in 
implementations of algorithms on graphs of bounded treewidth. Such 
dynamic programming algorithms require a large data table for each 
vertex of a tree-decomposition T of the input graph. We give a linear
time algorithm that finds the traversal order ofT minimizing the number 
of tables stored simultaneously. We show that this minimum value is 
lower-bounded by the pathwidth of T plus one, and upper bounded by 
twice the pathwidth of T plus one. We also give a linear-time algorithm 
finding the depth-first traversal order minimizing the sum of the sizes of 
tables stored simultaneously. 

1 Introduction 

Many NP-hard graph problems have linear-time algorithms when restricted to 
graphs of treewidth bounded by k (equivalently, partial k-trees), for fixed values 
of k. These algorithms have two stages: the first stage finds a bounded width 
tree-decomposition of the input graph and is followed by a dynamic programming 
stage that solves the problem in a bottom-up traversal of that tree. Theoreti
cally, the first stage has linear-time complexity (see (4)), but no general practical 
implementation for treewidth k � 5 exists. In this paper we focus on practical 
implementations of the second stage. 

Dynamic programming algorithms on bounded treewidth graphs have been 
studied since the mid-1980s leading to several powerful approaches, see (5) for an 
overview. Recent efforts have been aimed at making these theoretically efficient 
algorithms amenable also to practical applications [14, 15). Experimental results 
so far have not been negative: for example, using a 150 MHz alpha processor
based Digital computer, the maximum independent set problem is solved for 
treewidth-10 graphs of 1000 vertices in less than 10 seconds [8J. The given tree
decomposition for this particular example had about 1000 nodes and associated 
with each node is a data table of 211 32-bit words, so without reuse of data 
tables the combined storage would exceed 8 Megabytes of memory. With our 
algorithms we need only 80 Kilobytes. These initial investigations already show 
that avoidance of time-consuming I/O to external memory is an important issue 
(see [6] for a good overview of issues related to external memory use in graph 
algorithms and the expected increased significance of these issues in coming 
years). 
























