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Abstract:

The Virtual Notebook Environment (ViNE) is a platform-independent, web-based
interface designed to support a range of scientific activities across distributed,
heterogeneous computing platforms. ViNE provides scientists with a web-based
version of the common paper-based lab notebook, but in addition, it provides
support for collaboration and management of computational experiments.
Collaboration is supported with the web-based approach, which makes notebook
material generally accessible and with a hierarchy of security mechanisms that
screen that access. VINE provides uniform, system-transparent access to data, tools,



and programs throughout the scientist’s computing infrastructure. Computational
experiments can be launched from ViNE using a visual specification language. The
scientist is freed from concerns about inter-tool connectivity, data distribution, or
data management details. ViNE also provides support for dynamically linking
analysis results back into the notebook content.

In this paper we present the ViNE system architecture and a case study of its use in
neuropsychology research at the University of Oregon. Our case study with the
Brain Electrophysiology Laboratory (BEL) addresses their need for data security
and management, collaborative support, and distributed analysis processes. The
current version of VINE is a prototype system being tested with this and other
scientific applications.
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1 Introduction

Scientists increasingly rely on computational tools in their research. These tools range
from large-scale simulations to the more routine packages that perform statistical and
mathematical analysis, collect and store information in databases, produce graphical
visualizations of data and results, publish papers on the web, and support collaboration
over distances. Coordinating the use of such disparate programs across today’s
distributed, heterogeneous computing platforms can be challenging. This paper
introduces the Virtual Notebook Environment (ViNE): a platform-independent,
web-based interface that utilizes a traditional lab notebook analogy with chapters, pages
and a table of contents. ViNE extends the notebook to support a range of scientific
computational activities in a uniform manner.

Our target users are typified by neurophysiology researchers at the University of Oregon.
They use high density electrode arrays to collect brain voltage potentials measured on the
scalp over intervals lasting serveral milliseconds. A standard (paper) lab notebook is kept
for each subject, recording information about the experiment (such as time, experimental
setup, and environmental distractions that were present, etc.). This information is later
used during analysis to identify valid tests and subjects. The analysis itself is done with
commercially available statistical and numerical packages that run on a variety of
laboratory machines; data is manually moved from machine to machine when necessary.
Whereas the subject notebooks are shared among all of the researchers, each individual
scientist keeps his/her own analysis results, usually in folders. The neurophysiology
researchers seldom formally record the "process” of analysis (that is, the sequence of



computations run), but rather reconstruct the process for design walk-throughs with
colleagues or for publications. Other scientists that we have worked with on large
simulations [6] do keep a detailed record of their computational analysis, recording
parameter modifications and intermediate simulation output. ViNE aims to support all of
these activities across modern computing networks.

ViNE provides scientists with a web-based equivalent of a traditional paper notebook
extended with support for notebook sharing, security, and computational tool access and
management. Although other electronic notebocks provide collaboration support [8, 10,
14, 18] and features such as automatic data acquisition [20] and image annotation [10],
ViNE focuses on the entire computational environment, giving the scientist complete
access to laboratory notebooks, experimental data, and analysis tools in a location- and
platform-independent manner. He/she can review data, launch analysis tools, visualize
and save the results, add additional notes or annotations, and capture the analysis process.
Furthermore, ViNE is accessible through a simple, easy-to-use visual interface, and it
frees the scientist from considerating the exact locations of data, programs, and tools.

Specifically, ViNE contributes:

® a basic data and tool organization infrastructure;

® a framework for distributed, heterogeneous computing; and

@ an abstract, high-level interface that supports the seamless integration of
computational resources.

In the next two sections, we describe the architecture and implementation of ViNE
respectively. Following that, we present a case study of its use in the dense electrode
array research project.

2 Architecture

The ViNE architecture consists of one or more nodes, called leaves, distributed across the
set of computer systems that make up the scientist’s computational environment, as in
Figure 1. Leaves can reside on the same or different platforms with no restrictions on
their numbers or configuration. Leaves can be configured and located in a way that best
fits the distributed system and the scientists’ needs. Together, the collection of leaves
within the computer system defines the notebook environment.

Leaves are connected together by stems which provide inter-leaf communication. Each
stem has a local server and a library of communication methods. The server
communicates with other stems by sending messages across the network. Servers are
responsible for packing and unpacking messages and interacting with the local, low level



communication protocols. The library of communication methods hides these low level
details from the user by providing the leaves with standard, platform-independent
interfaces. Thus, ViNE makes it possible to uniformly access distributed resources
(notebooks, tools, data, etc.), supporting the exchange of information and access to
specialized capabilities across platforms. In this manner, users are shielded from the
distributed nature of ViNE.

Figure 1 - VINE architecture with example leaves.

Each leaf contains a web server, a stem, and a set of notebooks as shown in Figure 1. In
addition, it may contain one or more functional components, depending on its resources
and purposes. There are five possible components -- notebook browsing, notebook
administration, data organization, tool organization, and experiment control -- each with
its own function and well-defined interface. Leaves can provide complete functionality
with all five components, such as Host B in the figure, or they can be more restricted. For
example, a leaf limited to notebook administration and browsing components, like the
leaf on Host D), can provide only the basic recording functions of a traditional (paper)
notebook. Maximally restricted leaves have no components at all, just a stem and a web
server, as seen in Host C. Such leaves function as data and computation servers that do



not house notebooks. Instead they provide access to data stored in large data repositories
or act as computation servers running specialized tasks.

The functional components are divided into two groups. The first provides basic,
traditional notebook facilities, and the second provides the ability to structure, launch,
and record the results of computational experiments. We describe each group in more
detail.

2.1 Functional Components: Basic Notebook Functionality

The notebook browsing and notebook administration components work together to
provide basic notebook functions. The notebook browsing component is available to all
users who have minimal security clearance for a notebook. It displays the notebook in a
series of formatted, easily browsed pages constructed from elements described in the data
organization and notebook administration components. The notebook administration
component provides the users with a set of controls to manage notebook structure and
security parameters. Structural notebook controls allow item addition and deletion, page
organization, and individual page layout.

To provide a secure environment, each notebook has a set of permissions and an owner;
only the owner can grant access to a notebook. There are three levels of permissions:
none, read only, and read/write. When a user wants to enter the ViNE environment, they
are required to log in, after which they are provided with a list of accessible notebooks.
As a user maneuvers through the environment, they are monitored to guarantee that there
are no unauthorized accesses to a notebook. ViNE security supports a flexible
collaborative environment while maintaining a range of data protection levels for each
user.

2.2 Functional Components: Computational Experiments

The other three components -- data organization, tool organization, and experiment
contro] -- extend the notebook functions for executing and recording computational
experiments. These components allow the user to create named objects with descriptive
information maintained by ViNE. They can be referenced throughout the notebook,
freeing the user from considering many low level aspects of tool and data use.

The data organization component gives notebooks the ability to reference data
throughout the ViNE system. Users must describe and name their data within their
notebook before it can be referenced. Flat files, for example, are described by giving
them a name, providing the name of the host it is located on, and the complete path to the
data file. Data that can be interpreted and understood when viewed, such as matrices and
images, can be displayed on the notebook pages. All described data is available for use in



the experiment control component.

The tool organization component is used to describe and name tools that are available
within the scientist’s computational environment. In order for tools to be accessed by
ViNE their interface must be "wrapped.” A tool and its wrapper are located on the same
leaf, where the wrapper provides an interface between ViNE and the tool. Part of the
description the user gives includes information about wrappers. For example, when
describing MATLAB [17] as a tool, the tool name given would be "MATLAB", and the
custom wrapper name would be "matlab.cgi". Additional information is also required
about tools such as location, host name, and inputs and outputs. Once a tool and wrapper
are described, the tool is available for use in the experiment control component and is
referenced by the given name.

The experiment control component provides users with a powerful method of combining
data, tools, and distributed computing resources to perform a variety of analysis tasks.
This component is split into an experiment builder and execution controller. The
experiment builder provides an abstract visual interface for constructing experiment
processes. The controller module acts as a central hub for experiment operations,
handling data and tool synchronization, error control, and output management.

Once a user has properly described their data and tools to ViNE, they can be utilized in
an experiment with no further concern for inter-tool communication or distributed data
management. Experiments are represented at a high level of abstraction using a directed,
acyclic graph with nodes representing entities (tool, data, and experiments) and edges
representing data flow between them (c.f. Figure 4).

Once an experiment has been designed with the visual builder and stored in a notebook, it
can be executed at any time. "Execution” of the experiment occurs at the leaf on which
the user’s notebook resides using its experiment controller module. During execution, the
controller communicates with remote leaves to move data needed for tools, and to issue
commands for tool execution. The controller ensures that data and tool operations are
properly synchronized.

Final output and experiment status information are stored in the notebook by the
experiment controller. Progress information can be gathered during an experiment for
monitoring operations that span long periods. After an experiment has been executed and
its results have been stored, the new data is available for use in subsequent experiments.
As suggested above, the experiment can also be treated as a discrete entity within a larger
experiment. This ability to embed experiments allows users to build libraries of common
tasks.



3 Implementation

The World Wide Web provides a collaborative, distributed, heterogeneous environment.
Our implementation takes advantage of web-related technologies such as Hypertext
Transport Protocol (HTTP) [9], Common Gateway Interface (CGI) [5], Java [1], and Perl
[23] to achieve portability and consistent interfaces across platforms. Here we discuss the
implementation of stems, the data and tool organization components, and the experiment
control component.

3.1 Stems

Stems use their servers to communicate across the network with each other. The stem
servers are persistent and multi-threaded, allowing them to handle multiple requests at
one time. Requests are sent across TCP/IP sockets in a specified format similar to
Uniform Resource Locators (URLs). This format is used for all requests made to the
servers. The servers are written in Java [1], exploiting its widespread availability on
many commonly used platforms, and its abundant built-in routines for socket
communication and threads.

In order for other programs to interact with the servers, they must use the library of
communication methods provided by the stem. The library includes, and other Java
programs can import, a Java package that handles socket communication. Perl [23]
scripts executed within the notebook invoke a Java-based stub program that then makes
the server request on its behalf. This set of library routines thus provides a consistent,
portable interface with the communication servers.

3.2 Data and Tool Organization Components

The data and tool organization components provide the management facilities for a
notebook’s resources. The data component allows notebooks to reference data throughout
the ViNE system. VINE currently recognizes just two types of data -- tabular and general
data. Tabular data is a matrix of values, fully described by its dimensions. General data is
treated as a flat file. Data files are accessed either locally or remotely by giving a host
name and path. The data component provides the facilities to insert and remove data into
a notebook regardless of its location and format.

The tool organization component maintains descriptions of available tools and their
wrappers. Tools are categorized as either general or custom, depending on whether they
can be fully controlled from the command line (general) or require more complex
interaction and control (custom). Wrappers are Common Gateway Interface (CGI) [5]
scripts that run a tool with the given parameters and can be accessed by a leaf’s web



server. ViNE provides wrappers for general tools. To register a general tool with ViNE,
the user provides its name, location, and a description of its input and output parameters.
For a custom tool, he/she must also supply a wrapper to interface between ViNE and the
tool. The wrapper is responsible for accepting a complex string containing the input and
output information, translating it for the specific tool, and executing the tool correctly. In
either case, once the tool is registered, it can be used in experiments.

3.3 Experiment Control Component

The experiment control component facilitates the construction and execution of
distributed computational tasks. It is composed of an experiment builder and an
experiment controller and is implemented in a mixture of Perl-based CGI and Java-based
executables for portability.

The experiment builder is a Java applet executed within a user’s web browser. It gathers
information from the user’s notebook to determine which objects are available. Once this
list is populated, users can visually construct experiments by choosing the experiment
"entities" (data, tools, other experiments, and control structures) and defining the data
flow between them (c.f. Figure 4). The builder monitors the syntax of these constructed
data flow models, preventing such things as models with obvious, nonterminating loops
or input/output incompatibilities between entities.

Between experiment construction and execution, CGI-based scripts allow the user to
store experiments within his/her notebook in two forms. A visual description of the data
flow model is kept for future editing, and a textual version of the experiment is kept for
execution. The language for the textual version was designed to support the easy
definition of ViNE data flow models and to support the addressing of program entities as
abstract methods with well-defined input/output characteristics. Figure 2 shows the
language representation for a visually constructed experiment. The definition of entity
behavior is established by both the data and tool organization components.

After an experiment is constructed it can be executed with the Java-based execution
controller that acts as a central manager. The controller utilizes the built-in Java threading
mechanisms to create and manage sequences of operations as specified in the data flow
model. Each entity is assigned a single thread, and each is given references to the threads
that can affect its execution state. An example of the thread structure for a visually
constructed experiment graph can be seen in Figure 2. Entity interactions are supported in
sequential, fork-join parallel, and disjoint parallel situations with inter-sequence
synchronization.



User-Constructed Experiment Language Representation

DEFINE data ImputFiler (3

DEFINE dota Inputriles {}

DEFINE tool "Remove Noise” {} [InpulFiler}

DEFIN: toal Averager {} {Inputrilea
InputFiles)

DEFINE data Cleaned {“Remove Noise“}

DEFINE data Avg {Averagar}

SEQUENCE saqk frilea
"Renove Nalse” Cleaned}
SEQUEICE seqB {Inpuifiled Inputrilen
Avecager Avgl
PARALIFL park {segh seqd}

SEQUENCE mainseq {pazh}

Execution Controller Thread Structure

Figure 2 - Experiment Representations

The final step in any experiment executed within ViNE is the gathering of results. The
data produced by an experiment can be automatically stored within the user notebook for
later analysis or browsing. This ability to capture results and store them allows the users
to easily keep a record of many experiments, greatly reducing the possibility of accidental
information loss that often occurs with paper notebooks and manually organized files.

4 Application

The Brain Electrophysiology Laboratory (BEL) at the University of Oregon combines the
studies of the brain with analytic methods found in cognitive psychology [2]. Much of
our work with them has focused on the dense electrode array research project as
described earlier.

After analyzing their computational environment and how they use it, we identified the
following needs:

® Support for collaboration among the BEL scientists through notebook sharing;

® A secure environment where unpublished results could be protected;

® The ability to access notebooks from any platform or location; and

@ Support for more fully exploiting their distributed, heterogeneous computing
facilities.



To address these needs, we created a set of secure, collaborative ViNE notebooks for the
BEL scientists. A common notebook is open to everyone in the lab and allows sharing of
data and results; individual notebooks are private and contain recent, unpublished data
and results. The scientists have full control over how their notebooks are organized and
who has access to them.
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Figure 3 - Notebook page

The BEL scientists’ data consists of electroencephalogram (EEG) output, numerical
results, and visualizations. It is stored as it would be in a traditional notebook, on pages
organized into sections and chapters. A page is shown in Figure 3. It resembles a
traditional notebook page with the addition of the command palette and navigation aids
across the top. As the notebook pages are turned, the command palette remains at the top
for easy access.



Most of the BEL scientists’ tools are command files containing functions that are
interpreted in the MATLAB environment. The scientists rely heavily on MATLAB, and
thus it was the first application we wrapped, making most of their existing tools available
within ViNE. In addition, we added GNUplot [12], an image conversion tool, and a
movie generator to enhance their capabilities.

Information regarding location and usage of data and tools is captured as they are added
to the notebook and is available to the experiment builder. Most of the BEL tools were
built by combining the MATLAB application with a specific command file. These
MATLAB-abstracted tools allow various analysis processes to be combined in a larger
experiment. One such experiment is shown in Figure 4 where tools Grand Averager and
Interpolation are used consecutively on data file OAlnputs to produce data files
Interp_s139, Interp_s140, and Interp_s141.

Once the experiment is described, it can be executed and the results can be stored back in
the notebook. This experiment was executed in conjunction with a visualization tool.



Together, they produced the image shown in Figure 3, which was automatically inserted
into the notebook. In this manner, many of the tedious details of their computing
environment were hidden from the BEL scientists; as they ran their experiments they did
not need to be mindful of where their tools were, and they did not need to move any data
manually.

5 Related Work

Related work on electronic notebooks falls into two categories: those that focus on data
recording and those that provide support for running tools. In the first category,
notebooks that permit data entry in the form of text and images are prevalent [13, 20, 21,
22]. In recent years, some have been enhanced to provide collaborative environments [3,
8, 10, 14, 18, 19]. In one large collaborative notebook project, part of the DOE 2000
project [7], researchers at Oak Ridge National Laboratory [10], Lawrence Berkeley
National Laboratory [21], and Pacific Northwest National Laboratory [18] are working to
combine their individual electronic notebook projects with a common notebook and
communications mechanism.

Electronic notebooks that allow the user to run tools and store results also exist. Gene
Inspector [11] combines a DNA sequence analysis package and an electronic notebook to
aid in studying DNA sequences. Tektronix sells an electronic lab notebook that records
Digital Storage Oscilloscope measurements [24]. These highly specialized notebooks are
packaged with other software tools and are not general purpose in nature. ViNE, in
contrast, focuses on incorporating existing tools without requiring the user to learn new
tools. Similarly, the Northwest Parallel Architectures Center at Syracuse University
provides collaborative tool environments, such as SciVis [16] and WebWisdom [25], that
can be customized for the user. At Purdue, work has been done on creating a system
where users can access and run existing software tools across the World Wide Web using
a browser [15]. NetSolve [4] is another system that allows users to access computational
resources distributed across the network. It provides an interface to scientific packages
and supports interaction from within MATLAB, a command-line shell, C and Fortran
programs, or the World Wide Web. Like ViNE, these systems are general frameworks
that can be applied to specific groups of users and their tools. However, they lack VINE's
standard notebook and automated recording abilities.

6 Future Directions

The current version of ViNE is a prototype in use by scientists who are testing it as we
make ongoing improvements. During this testing, we have identified a number of
enhancements for future versions of the environment. The user interface, for example,
needs some modification. The notebook administration component will be extended with



a framework for integrating editors appropriate to a variety of data content, allowing
users to directly manipulate images, data, and text without leaving ViNE. Currently, we
use a persistent-server model for leaf process scheduling but to support systems with low
resources, we will provide on-demand processing. For the scientist with very large
amounts of data, we will provide more sophisticated ways to organize it, and we need to
be able to link directly to existing databases. Adding support for automated maintenance
of the tools’ configurations described in the notebook is another area of future
development. Finally, we will enhance the experiment component, adding facilities for
experiment monitoring, steering, and analysis.
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