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Abstract

To make eflective use of parallel computing environments, users have come to expect a broad
set of tools that augment parallel programming and execution infrastructure with capabilities such
as performance evaluation, debugging, runtime program control, and program interaction. The rich
history of parallel tool research and development reflects both fundamental issues in concurrent pro-
cessing and a progressive evolution of tool implementations, targeting current and future parallel
computing goals. The state of tools for parallel computing is discussed from a perspective of per-
formance evaluation. Many of the challenges that arise in parallel performance tools are common
to other tool areas. Ilook at {our such challenges: modeling, observability, diagnosis, and perturba-
tion. The need for tools will always be present in parallel and distributed systems, but the emphasis
on tool support may change. The discussion given is intentionally high-level, so as not to exclude
important tool projects by citing others. Rather, | attempt to present viewpoints on the challenges
that I think would be of concern in any performance tool design.

1 Introduction

Computer systems are arguably the most complex machines ever invented, and parallel computers and
distributed computers are the most complex computer systems. In simple terms, parallel and distributed
systems are designed to support concurrent computer operations. Although concurrent actions are a
common phenomenon in the natural world, encoding concurrency in a computer system such that the
computation is “correct” is not a simple task, even for seemingly trivial problems. Parallel systems also
have a more specific aim to support the simultaneous execution of concurrent operations for achieving
high performance. Maintaining high efficiency in parallel execution further complicates how parallel
systems are programmed and used.

Parallel systems are important as computing platforms because they offer the potential to solve prob-
lems requiring multiple computing resources and high-end performance. However, this potential cannot
be actualized without the support of tools, particularly tools for performance analysis and debugging.
Designing and developing tools for parallel systems is intrinsically difficult due to the complexity, both
architecturally and operationally, of the computing space represented. In general, a tool should

e Incorporate a mode! of the system and its operation in order to reduce problem complexity;

o Be sensitive to ebservabilily constraints that limit the scope of what is knowable of and about the
system;

e Diagnose important system states so as to aid the user in analysis; and



e Account for possible perturbaiion of the system caused by instrumentation intrusion or perturbation
of the model results cause by model abstractions.

A tool’s utility is determined partly by the sophistication of the system model on which it is based,
and this sophistication requires knowledge of system operation and behavior. Given the complexity
of parallel platforms, this knowledge may be difficult to obtain. Utility is also affected by the ability
to capture the requisite information about the system under certain access, accuracy, and granularity
constraints. Certain information may be unobtainable and, hence, unavailable to the tool. Perhaps
the most important aspect of a tool is its benefit to problem solving. A tocl can be a tremendous aid
in discovering and avoiding parallel computing problems if it supported the ability to diagnose system
states. However, tools can also influence the system when making measurements for purposes of analysis.
In the worst case, sysiem behavior can be perturbed to the point that observations are unreliable and
the models that use the data lead to misleading conclusions.

There is a rich research history in the field of parallel and distributed tools. Many important contribu-
tions have been made to understand concurrency, control program behavior, debug program correctness,
evaluate performance, and present results to users. Rather than attempt a comprehensive summary
of these contributions, the reader is directed to the conference proceedings, journals, and bibliographic
databases given in the references for the extensive background in the field. In particular, the reader can
find excellent recent surveys of the field in [1, 2, 3, 4, 5]. Out of respect for the many important tools that
have been developed, none will be directly cited. This chapter instead presents a higher-level view of
parallel tools than what might appear in tool surveys. The perspective is based on a consideration of the
four challenging problems for tools listed above — modeling, observability, diagnosis, and perturbation
— sgpecifically as they concern tools for parallel performance evaluation. It is my hope that this more
abstract discussion of parallel performance evaluation tools will provide some insight into the parallel
tools field as a whole.

In the remainder of the chapter, I first introduce (Section 2) the general problem of parallel perfor-
mance evaluation as a motivation for tools. In Section 3, a performance environment is advocated as a
general guiding framework for tool development. Section 4 discusses the use of models in tool design and
how, given a model, performance measurement and analysis techniques are implemented. The problem
of performance observability is discussed in Section 5. In Section 6, the concept of a performance diag-
nosis system is introduced. Parallel performance can be perturbed by several factors. The challenge of
performance perturbation analysis is considered in Section 7. Finally, concluding remarks are given in
Section 8.

2 Motivation

Two years after Scherr’s classic Ph.D. dissertation [6], considered by some to be the seminal work in
computer systems performance evaluation [7], Amdahl published his now famous paper on the limits of
parallel performance speedup [8]. Although there have been significant advancements in performance
evaluation techniques since Scherr’s thesis (particularly in the areas of monitoring, simulation, analytic
modeling, and bottleneck analysis), “Amdahl’s Law”! has arguably remained the most fundamental (and
the most controversial) result in parallel systems performance evaluation:

“For over a decade prophets have voiced the contention that the organization of a single
computer has reached its limits and that truly significant advances can be made only by
interconnection of a multiplicity of computers in such a manner as to permit cooperative
solution. ... Demonstration is made of the continued validity of the single processor approach.
.. A fairly obvious conclusion which can be drawn at this point is that the effort expended on
achieving high parallel processing rates is wasted unless it is accompanied by achievements

1 Amdahl's Law states that if s is t.he fraction of a computatwn that must be executed serially, then the spcedup of the
computation is bounded above by m, where 1 is the number of processors used. Note, limy .o m = ;.



in sequential processing rates of very nearly the same magnitude. ... At any point in time it
is difficult to foresee how the pravious bottlenecks in a sequential computer will be effectively
overcome.” [8]

Amdahl’s Law is fundamental in its simplicity and its generality: it defines an upper bound on the
performance of a parallel computation, relative to its sequential execution time, in terms of a single soft-
ware parameter (the fraction of sequential computation) and a single hardware parameter {the number
of processors). Amdahl’s Law is controversial because this speedup bound places severe limits on the
performance benefits of parallel computer systems; in general, it implies that achieving good parallel
performance will be exceedingly difficult.

The last thirty years attest to the veracity of Amdahl’s arguments. Several studies have extended his
simple speedup model to further quantify parallel execution overheads, effects of execution partitioning
strategies, and tradeoffs in speedup versus efficiency. The principal issue is one of parallel performance
scalability: how does the performance of a parallel system change relative to the hardware and software
effects of increasing the number of processors used to execute a program and/or increasing the size of a
program’s input? Various scalebility meirics have been defined to evaluate whether parallel computers
can deliver their performance potential. The most recognized of these, “scaled speedup,” has even been
used to refute the suitability of Amdahl’s Law for evaluating the performance of large-scale parallel
systems [9]. However, regardless of the metric used, the critical performance question remains: how
is the performance potential offered by parallel computer systems achieved by general-purpose parallel
applications?

Ferrari characterized a performance evaluator as one that tries to solve computer systems problems
and uses the most appropriate techniques and tools at hand (a process Ferrari calls applied performance
evaluation) [7]. In the context of parallel computer systems, two questions are of importance:

e What is the role of the performance evaluator (and, in general, performance evaluation)?

e What are the performance problems and the appropriate techniques and tools used to solve them?

The discussion of Amdahl’s Law gives us a point of reference for addressing these questions in parallel
computing.

First, delivered performance is the raison d’etre of parallel compuier systems: if the purpose of a
sequential computer system is to execute a program to perform a computation, the purpose of a parallel
computer system is to execute a program faster than a sequential computer system. Amdahl presents
this purpose in the form of a single performance metric, speedup, which can be use to evaluate the
effectiveness of a parallel program’s execution on a parallel machine. Although Amdahl’s Law was used
to downplay the importance of parallel systems, it equally represents a challenge: good performance
is possible, but it will be difficult to obtain. In this respect, the role of performance evaluation in
parallel systems is to understand the causes of actual performance behavior for purposes of performance
optimization.

Second, parallel performance is an inherently complex metric. Although the limits of parallel perfor-
mance {both offered potential and speedup bounds) are relatively simple to define (e.g., Amdahl’s Law),
the performance space is large, ranging from the performance achieved on one processor to the peak
performance on all processors. Furthermore, the difference between potential and delivered performance
on a parallel machine can be significant. Amdahl’s Law describes these variations in terms of a single
parameter, but, in general, many factors can contribute to performance variability. These factors are
interdependent, and seemingly minor changes in their relationship can often induce large changes in the
performance achieved. Hence, the performance space is multi-dimensional and can be highly irregular.

Third, parallel performance is difficult to measure, characterize, and understand. It is known that
Amdahl’s Law is an oversimplification of the cause of parallel performance degradation (i.e., sequential
execution); clearly, other overheads limit performance. Even so, determining the amount of time a
parallel computation spends in sequential execution can be nontrivial. In general, parallel performance



factors are dynamic in time, distributed in location and state, and parallel in occurrence. Although a
parallel system is a deterministic automaton, and, in principle, one could envision having full knowledge
of system activities, the complexity of hardware and software restricts performance observation: any
measurement will be incomplete and any characterization will be an abstraction of true performance
behavior. Moreover, performance behavior (the interaction and importance of performance factors) can
be highly sensitive to changes in execution context.

Finally, parallel performance is the product of a specific combination of parallel system (hardware
and system software) and application program. The performance evaluation requirements are therefore
dictated by the specific needs of the problem context and the user. In contrast to sequential computers,
the performance evaluation of parallel systems is more specialized in its role and more personalized in its
application; in fact, the “performance evaluator” is most often the parallel program developer, because
intimate knowledge of the program is usually required to hunt down performance bugs. Although the
advances in performance evaluation technology for sequential systems can be leveraged in the parallel
domain, the individuality and complexity of the parallel performance problem mandates that the tech-
niques be uniquely and carefully applied. New parallel performance evaluation techniques must also be
developed, with an orientation towards performance optimization.

Since Amdahl’s paper was published, there has been a growing crisis in parallel performance evalu-
ation: the technological advances in parallel computer systems (hardware and software) are increasing
the complexity of the computational environment, progressively diminishing the general user’s ability to
operate these systems near the high-end of their performance range. Presently, the crisis is acute. There
are scalable parallel machines being introduced today whose performance characteristics are reported
only as unachievable peak performance numbers. Furthermore, the system support for obtaining perfor-
mance data and the integration of this data into the overall system environment are woefully inadequate.
Although the growing acceptance of massively parallel computing and the arguments for performance
scalability continue to uphold the promise of parallelism, the intellectual challenge to achieve good
parallel performance, as originally articulated by Amdahl over thirty years ago, remains.

The development of performance evaluation environments for parallel computer systems is one ap-
proach to overcoming this crisis. The idea is to develop an environment for solving performance problems
based on a methodology of applied parallel performance evaluation and an integrated set of toois for
performance modeling, measurement, analysis, presentation, and prediction. The goal is to relieve the
user of the manual effort of performance investigation while reducing the intellectual burden of under-
standing complex performance behavior. The above discussion supports the need for environments for
parallel performance evaluation as a way to reduce the complexities of the performance problem for the
user. However, to be effective, performance evaluation environments must be carefully developed to be
an integral component of a parallel system’s design and use.

3 Environment Design

The scientific method — the systematic testing of hypotheses through controlled measurement of ob-
servable phenomena, analysis of collected data, and modeling of empirical results — has been advocated
as the working definition of “experimental (computer) science” [10] and as the basis of the “quantita-
tive philosophy of performance evaluation” [7]. Denning remarked that “science classifies knowledge”,
and that “experimental science classifies knowledge derived from observations” [10]. The advancement
of computer science knowledge will increasingly require an experimental approach — the building of
experimental apparatus to understand new ideas and to validate their usefulness in practice. Denning
commented that the experimental apparatus is not usually the subject of such research and that unless
the apparatus is used to obtain significant new knowledge, the research is not substantive. However,
in any field (and performance evaluation, in particular), progress in experimental science is inextricably
coupled with advances in observational technology; the ability to test hypotheses that predict the exis-
tence of heretofore undetected phenomena intimately depends on the requisite tools to more accurately



measure and analyze known phenomena. In performance evaluation, the new “scientific” knowledge
sought is the understanding of and solution to computer systems problems. The quantitative tools used
are the experimental apparatuses of applied performance evaluation. Better tools to observe and model
performance will lead to better solutions to performance problems.

Although the scientific method’s systematic measurement and hypothesis testing is both necessary
and desirable for parallel performance evaluation, the limited understanding of parallel execution and
the complexities of performance observation make the construction of parallel performance environments
based on the scientific approach especially difficult. In general, the environment design must meet two
basic requirements:

¢ The need to specify new parallel performance problems in terms of the characteristics of the
parallel system, the structure and parameters of the application program, the stored perfermance
knowledge, and the current, empirical performance data (performance hypothesis formulation).

o The need to conduct performance experiments (including measurement, analysis, presentation, and
modeling) to assess performance behavior (performance observation).

The first requirement reflects the notion that effective parallel performance evaluation will involve
the application of a cyclic (scientific) methodology of designing new performance experiments based
on cumulative system and performance information. This includes the initial targeting of performance
hypotheses from experiences with other performance problems and the progressive refinement of the
hypotheses as a result of performance experiments. The second requirement focuses on the issues con-
cerned with building and applying tools to test performance hypotheses. In particular, the need for
performance data to validate a hypothesis must be balanced against the observational capabilities of the
performance tools as constrained by the parallel system hardware and software,

Figure 1 shows a general design framework for a parallel performance evaluation environment based
on the scientific approach. This framework is more a reflection of an idealized environment than one
that might be realized in practice, du to the design complexities and implementation tradeoffs involved.
However, our belief is that this design view serves as a useful basis to discuss some of the challenges that
arise when attempting to develop parallel performance tools. Because the development of any set of
performance tools will involve tradeoffs between feasibility, functionality, accuracy, and cost, considering
these issues in a general context will provide us with a foundation to evaluate the capabilities of present
environments and to describe the requirements of parallel performance environments of the future.

4 Parallel Performance Paradigms

As suggested in Figure 1, the characteristics of the parallel system (hardware and software) and the
application program will be important determinants in the development and use of a parallel performance
environment. Although performance problems are often addressed in a specific system/program context,
the ability to apply conceptual abstractions of parallel performance to guide performance investigation
and to generalize results from performance experiments will be important for effective environment
use. Here we use the term parallel performance paradigm to represent the combination of an abstract
model of performance and the processes (measurement and analysis) needed to apply and integrate
the model in performance problem solving. To the extent that parallel performance paradigms can be
realized in actual performance environments, they will serve to help reduce the intellectual complexity
of performance evaluation for the user.

What counts as a useful parallel performance paradigm? On a basic level, this question implies
that there is (are) accepted definition(s) of parallel performance. There are three classes of quantitative
“performance indices” for evaluating computer systems: productivily (i.e., throughput), responsiveness
(i.e., turnaround or response time), and utilization. Of these, responsiveness is the index of merit for
parallel performance. Thus, for our purposes, good parallel performance paradigms will be those that
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Figure 1: Parallel Performance Evaluation Environment Design

can express, in some general manner, the influence of the most important parallel system and application
factors on response time performance.

The execution time speedup model, represented in Amdahl’s Law, is an example of a simple, universal
parallel performance paradigm. [t is simple because the number of processors and sequential execution
time are the only performance factors that matter in the model. It is universal because the paradigm
can be used for any parallel environment or program both for performance experimentation — the
measurement of speedup as function of the number of processors — and for performance prediction — the
estimation of the performance on n processors based on the sequential execution time measurements on m
processors. However, execution speedup is a poor paradigm for investigating performance problems (i.e.,
performance diagnosis), serving only an indicator of good or bad parallel performance. The performance
scalability extensions to the basic speedup models help to quantify the influence of additional performance
factors, but are still too general to explain performance behavior.

The power of a parallel performance paradigm comes from both its ability to represent performance
abstractly, for comparative and predictive purpose, and its ability to characterize performance specifi-
cally, for reasons of diagnosis and tuning. The generality of the underlying model can be at odds with
the specificity needed in performance measurement and execution analysis. Paradigms can either be ex-
tended to add performance metrics while keeping the analysis models simple, or be made more specific
with greater model detail and analysis resolution, but at the risk of less general application.

A paradigm based on the parallel execution profile of a particular performance metric (e.g., execution
time or degree of parallelism) is important because it expresses a procedure for evaluating performance
limiting behavior. The profile might be coarse-grained, describing parallel performance by a set of
summary statistics, or fine-grained, representing parallel performance as a time sequence of metric
values. For instance, the common execution time profile orders code segments according to their impact
on total execution time; code segments representing a higher percentage of the total time might be



candidates for performance optimization. A parallelism profile, on the other hand, reflects a history
of parallelism behavior and highlights regions where there is the potential for parallelism improvement.
However, parallel performance paradigms based on profiles alone are insufficient as a basis for formulating
performance hypotheses because they offer no explanation as to why the performance behavior occurred.

Alternatively, parallel performance paradigms based on the properties of the parallel execution envi-
ronment and the program’s computation have a greater potential for investigating performance problems.
For instance, performance models can be defined with respect to computational structures for parallel
workflow (e.g., pipelined, master-slave, or work gueue), or with respect to parallel work synchronization
mechanisms (e.g., fork-join, barrier, or message passing) or scheduling algorithms (e.g., task level or loop
level, self scheduling or block scheduling). A parallel performance paradigm based on such models will
specily the required measurements for the type of structures, mechanisms, and scheduling algorithms
used and will designate the associated types of analysis to be undertaken. Higher level performance
models are based on computational abstractions (e.g., control flow versus dale flow;, conirol parallel
versus dala parallel, or single program, multiple daia versus bulk synchronous parallel), which can be
used to refine and to prioritize lower level measurements to performance problems in the computational
domain. The important point here is that the performance paradigm is founded on the characteristics
of the parallel execution of interest, thereby providing a means for expressing and evaluating observed
performance behavior.

Parallel performance paradigms provide a framework for defining performance measurements, aiding
in performance diagnosis, and supporting performance prediction. During the performance evaluation
process the paradigms should be modified and refined as new performance knowledge is gained through
observation. For this reason, multi-paradigm approaches are common. A paradigm might employ re-
source usage models to identily performance anomalies and then event models to identify computational
states that lead to the anomalies. The program aclivily graph is a well-known multi-paradigm repre-
sentation that uses nodes in the graph to signify significant events in the program’s execution and arcs
to show the ordering of events within a process or the synchronization dependencies between processes.
By overlaying parallel program performance metrics one can see how the inter-event, inter-process de-
pendencies in a parallel program influence which procedures are important to a program’s execution
time.

5 Performance Observability

In order to evaluate the performance of a parallel application executing on a parallel computer system,
certain aspects of application and system behavior must be made observable. Whereas a performance
paradigm provides a conceptual foundation for investigating and understanding performance problems,
an environment must also support a means for performance experimentation — the measurement, analy-
sis, and presentation of parallel performance phenomena. Parallel performance observabilily is the ability
to accurately capture, analyze, and present (collectively, to observe) information about the performance
of a parallel computer system. Tools for performance observability must balance the need for perfor-
mance data against the cost of obtaining it (environment complexity and performance intrusion). Too
little performance data makes performance evaluation difficult; too much data can be complex to ana-
lyze and might perturb the measured system. What combination of tools for performance observation
is appropriate for parallel computer systems? How do the architecture, hardware, and system software
affect how performance data is collected? What performance events can and cannot be observed? How
do the performance evaluation tools affect the performance being measured? How should performance
information be conveyed to the performance analyst? Unfortunately, there is no formal approach to de-
termine, given a parallel performance evaluation problem, how to accurately “observe” parallel execution
in order to produce the required performance results. Furthermore, any parallel performance experiment
will ultimately be constrained by the capabilities of the available tools for performance observation.
Performance measurement is the foundation of performance observability. If an experiment can-



not be constructed, even in principle, to measure a phenomenon, it cannot operationally be said to
exist. If a phenomenon cannot be measured in practice, it cannot be observed. The complexity of par-
allel computer systems makes & prior: performance prediction difficult and experimental performance
measurement crucial. A complete characterization of software and hardware dynamics is needed to un-
derstand the performance of parallel execution and requires efficient techniques for runtime performance
instrumentation and data collection. Although performance measurement is a necessary component of
parallel performance environments, the degree and type of performance measurement support depends
on its intended purpose, and the nature of the performance experiments to be conducted defines the
needed capabilities of the performance monitoring system, its observational detail, and acceptable cost.

The diversity of parallel performance problems makes it difficult to develop a single set of performance
monitoring techniques. For every performance experiment, there nonetheless exists a minimal set of
required events that must be captured. In general, a parallel execution can be regarded as a sequence
of actions representing the computational activities one wishes to observe. The execution of an action
generates an event, an encoded instance of the action. A “performance measurement” can be viewed as
the collection of a (possibly infinite) set of events. Indeed, event-based models have been widely used
to describe program behavior and to define techniques for performance measurement. A system can be
represented in terms of the observable effects and interactions of system components as represented by
a stream of characteristic atomic behaviors (i.e., events), giving an abstract view of program behavior
in terms of a sequence of hierarchically defined events. In general, the more detailed the measurement,
the more data can be provided to a performance model, allowing for more detailed analysis.

However, before events can be analyzed, they must be detected and captured by a monitoring system.
The selection of instrumentation and data collection tools defines both the granularity and detail of
performance data that can be measured. Events of interest can occur at different observation points
{hardware and software), which may or may not be accessible. Furthermore, depending on the type of
measurement desired, the amount of performance data that must be collected and stored can vary. In
practice, the need to observe time-dependent parallel performance behavior and the problems associated
with the specification of complex performance events and their detection often necessitates measurement
solutions that capture a large volume of time-based event data (e.g., tracing) for later analysis.

The design and development of tools for detailed performance instrumentation and data capture on
parallel machines is non-trivial, often requiring significant engineering effort for their implementation.
Monitoring solutions based on tracing must solve several implementation problems, including event
timestamp consistency (both in accuracy and synchronization), trace buffer allocation, tracing overhead,
and trace 1/0. Although software recording of performance data suffices for low frequency events, capture
of detailed, high-frequency performance data ultimately requires hardware support if the performance
instrumentation is to remain efficient and unobtrusive. Alternatively, techniques to control monitoring
overhead dynamically by changing insirumentation during execution have been successful in reducing
significantly the amount of performance data captured.

The lesson of measurement detail versus accuracy is that because parallel programs are composed
of multiple threads of control, the accuracy of performance characterization depends on some global
knowledge of program state. Although behavioral models of parallel program execution allow events to
be measured independently for each thread of execution and then combined to determine global states,
certain measurements must additionally be made to preserve global performance data integrity (e.g.,
“global” time measurement). That is, parallel program measurement must not only capture thread
actions that reflect logical, operational behavior, but also data that will be used to establish an accurate
reference for performance analysis (e.g., global time reference).

6 Performance Diagnosis

Given a foundation for performance modeling and 2 means for performance measurement, a parallel
performance environment can support an process commonly known as performance debugging. When



a performance problem (i.e., a performance bug) is present, tools in the environment can be used to
investigate the problem, identify its source, and provide data for performance improvement. Performance
debugging is the process of applying these tools. How performance bugs are identified and how they
are explained is the problem of performance diagnosis [11]. Expert parallel programmers often improve
program performance enormously by experimenting with their programs on a parallel computer, then
interpreting the results of these experiments to suggest changes. This expertise has had difficulty finding
its way into performance environments for two reasons. First, researchers lack a theory of what diagnosis
methods work, and why. There is no formal way to describe or compare how expert programmers
solve their performance diagnosis problems in particular contexts. There is no standard theory for
understanding diagnosis system features and fitting them to the programmer’s particular needs. As a
result, researchers cannot easily compare and evaluate the performance debugging tools they produce,
and many potential users do not find systems that are applicable to their performance diagnosis problems.
Second, performance debugging tools are not easily adaptable to new requirements. Highly automated
systems, while providing considerable help to the programmer, are hard to change, hard to extend, and
hard to combine with other systems.

In simple terms, performance diagnosis guides the programmer in identifying poor decisions made
in parallel programming or in configuring parallel execution. By finding and explaining the chief per-
formance problems of the program, diagnosis helps the programmer determine which decisions had the
worst performance effects and how those effects might be repaired. During performance diagnosis, the
programmer decides which performance data to collect, which features to judge significant, which hy-
potheses to pursue, and what confirmation to seek. A performance diagnosis method can be defined as
the policies used to make such decisions, and a performance diagnosis system as a suite of programs
that supports some diagnosis method, ideally in an automatic way. The research problem is to define a
theory of performance diagnosis methods and to use that theory to create more automated, adaptable
performance diagnosis systems.

To attack the first obstacte to performance diagnosis systems, lack of theoretical justification, a
“knowledge-level” theory of performance diagnosis must be developed. In particular, a knowledge-
level theory must answer the question, What knowledge does a programmer use to choose actions to
meet performance diagnosis objectives? The theory breaks the question down into two parts: What
methods do expert programmers use?, and How can we rationalize the programmer’s choice of methods?
Underlying the challenge of developing a knowledge base is the fact that different performance metrics
provide useful information for different types of performance bottlenecks (bugs). This is one reason for
the emphasis on an underlying parallel performance paradigm: it provides a context for performance data
interpretation. The use of multiple paradigms help to address different performance issues. Since every
parallel application may have a different set of possible performance problems, the user is often left to
select the appropriate application; a comprehensive pre-enumeration of possible performance diagnoses
{hypotheses) is difficult. However, recent research has tried first to provide better guidance to the user
by treating the problem of finding a performance bottleneck as a search problem, and second to define
this space by describing “fault taxonomies” for the performance problems that commonly arise [11}.

The forgoing discussion suggests one reason why performance diagnosis systems are not widely used:
they are not adaptable to a wide variety of contexts. To help arrive at an initial diagnosis, performance
diagnosis systems define a limited fault taxonomy, a finite set of performance problems to look for.
To date, systems have derived this set from the workings of the programming language and runtime
system they support. It follows that the diagnosis systems are limited to a particular class of target
machines and environments (more abstractly, parallel performance paradigms). However, if we could
find methods and rationales that cut across a substantial number of diagnosis systems, then we might
be able to identify general methods, and differences among systems could then be studied to extract
rationale.

The second obstacle to the acceptance of diagnosis systems — poor automation and adaptability —
can be addressed by a new diagnosis system framework (Figure 2). Here, policies would be interpreted
by a goal-oriented problem solver to choose methods to pursue. The methods would in turn interface
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Figure 2: Framework of a Parallel Performance Diagnosis System

with the programming environment to apply tools to carry out experiments. The problem solver is based
on knowledge-level theory of expert performance diagnosis and is able to perform actions to accomplish a
method’s diagnostic goal, often instructing a tool to perform some measurement or analysis experiment
that will add new information to the performance database. The purpose of the environment interface
is to support adaptable diagnosis by separating diagnosis methods from the software tools that support
those methods. It specifies diagnosis actions in terms of their effects on a high-level performance database.
Methods can thus execute these actions and track their effects without knowing what commands are
sent to tools, or how data and programs are stored in files. As a result, general methods can be adapted
unchanged to new tools. One can reuse knowledge about which steps to take in performance diagnosis
in contexts where the manner in which those steps are taken differs significantly.

7 Performance Perturbation

Computer system performance evaluation is subject to the same instrumentation pitfalls facing any ex-
perimental science; notably, uncertainty and instrumentation perturbation. Instrumentation, no matter
how unobtrusive, introduces performance perturbations, and the degree of perturbation is proportional
to the fraction of the system state that is captured: excessive instrumentation perturbs the measured sys-
tem, but limited instrumentation reduces measurement detail. Simply put, performance instrumentation
manifests an Insirumentation Uncertainly Principle [12]:

e Instrumentation perturbs the system state,
e Execution phenomena and instrumentation are coupled logically.
o Volume and accuracy are antithetical.

The terms “Heisenberg Uncertainty” and “probe effect” have been used to describe the error intro-
duced in the performance measurement due to a monitor’s intrusion on computer system behavior. The
primary source of instrumentation perturbations is the execution of additional instructions. However,
ancillary perturbations can result from disabled compiler optimizations and additional operating system
overhead. These perturbations manifest themselves in several ways: execution slowdown, changes in

10



memory reference patterns, event reordering, and even register interlock stalls. Perturbation due to
instrumentation has two eflects on the events occurring during parallel execution: temporal effects and
resource assignment effects. In addition to the slowdown caused by instrumentation overhead, temporal
effects include possible event re-orderings as the measurement changes the likelihood of different partial
order executions. Resource assignment effects occur because the instrumentation changes the dynamic
resource demands. In instances where the computation dynamically adapts to resource availability,
instrumentation can perturb resource allocation and utilization.

Performance measurements can differ significantly from actual execution (where measurements are
disabled) unless the perturbation effects are taken into account by the performance environment during
performance analysis. The goal of performance perturbalion analysis is the recovery of actual run-
time performance behavior from perturbed performance measurements. Formal models of performance
perturbation are needed that permit quantitative evaluation of perturbations given instrumentation
costs, measured event frequency, and desired instrumentation detail. Techniques based on timing and
event models have been applied with positive results [12]. Because actual performance behavior is inferred
(approximated) by these models from the performance measurements, however, no absolute means for
testing the accuracy of perturbation analysis is available. Rather, performance approximations were
empirically validated with respect to two measures: total program execution time and selected even
timings.

It is not uncommon that execution time is degraded many-fold when a program is measured. If total
program execution time is accurately approximated after perturbation analysis is applied, the implica-
tion is that perturbation analysis errors are not accumnulating. On the other hand, the reason detail
performance measurements are made is to observe eveats of finer granularity. Perturbation analysis must
also accurately resolve individual event timings. To determine the accuracy of trace events, one needs a
standard of reference. No such standard exists, because the actual event trace is unknown. Instead, a
sequence of event traces, each with successively smaller subsets of the detailed trace measurement, must
be produced and the approximated event timings of correlated events compared. From the measurement
uncertainty principle, as the number of trace events decreases, the presumed accuracy of the event timing
approximations increases. If the approximated times of events correlated across the traces correspond,
then it follows that the timing of other events in the detailed trace should also be accurate.

However, this validation approach is not wholely satisfying, because it lacks a theoretical basis. In
general, concurrent execution involves data dependent behavior. The states of parallel programs in-
herently form a partial order that musi be lollowed during execution. If dependency control is spread
across threads of execution, instrumentation can perturb the timing relationships of events and, thus,
their actual execution ordering. If performance instrumentation is designed correctly, an un-instrumented
parallel execution that satisfies Lamport’s sequential consistency criterion® [13] implies that the perfor-
mance measurement will be non-interfering and safe. If the performance measurements involve only
the detection and recording of event occurrence (i.e., tracing), the partial order relationships will be
unaffected and the set of feasible executions® will remain unchanged. Beginning with a total ordering
of measured events consistent with the happened before relation [14] defined by the original partial or-
der execution, time-based and event-based perturbation analysis can be applied to thread events that
occurred either during independent execution to remove the instrumentation overhead or in dependent
execution to enforce the semantics of operations that implement inter-thread synchronization. As long
as the total ordering of dependent events present in the measured execution is maintained during this
analysis, the final approximated execution will also be a feasible execution.

But is the final approximated execution a “likely” execution? That is, would the approximated
execution ever actually occur, and with what expectancy would it occur? Any perturbation analysis
approximation must be safe (i.e., must not violate partial ordering relationships) and, therefore, must

2 A parallel execution is sequentially consistent if the result is the same as if the operations were executed in some
sequential order obtained by arbitrarily interleaving the thread execution streams.

3The set of program executions that could result from the partial order of program events is known as the partially
ordered set of (feasible) executions.
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Figure 3: Unifying Framework for Measurement-Based Experimental Performance Analysis

be provided sufficient measurements that capture the operations that enforce ordering during execution.
However, the accuracy of perturbation analysis depends not only on more precise synchronization mea-
surements, but also on additional knowledge of actual (likely) execution behavior, which is unattainable
from measurements alone. The set of likely executions is the subset of the feasible ezecutions that are
most probable. In many cases, the complete range of feasible executions will be restricted to a smaller set
of likely executions due to the computational environment. If instrumentation is added, the set of likely
executions can change. Computing the likelihood distribution of feasible executions is an extremely dif-
ficult problem, requiring an execution time model of concurrent operation. Thus, the inability to predict
likely executions makes it difficult to bound the error of measurement-only perturbation analysis.

Simply put, performance measurement alone is insufficient to solve the perturbation analysis prob-
lem. If additional information were provided to the perturbation analysis process that describes certain
behavioral properties and resource allocation and usage of the parallel computation (e.g., data depen-
dency information, loop scheduling algorithms, processor allocation, memory usage), the perturbation
analysis could use this information to make more accurate approximations by modeling the effects of
nondeterministic execution in the presence of instrumentation.

This observation suggests a strong relationship between parallel performance paradigms which are
used to define methodologies for performance measurement and diagnosis, and performance perturbation
analysis.

e The accuracy of parallel performance models depend on the validity of the performance data used.

e Performance perturbation analysis depends on knowledge of context-dependent execution control
and system performance information, which is provided in the parallel performance models, to
resolve perturbation errors.

This relationship can be captured in a framework for measurement-based experimental performance
analysis, unifying performance perturbation analysis and parallel performance modeling research; see
Figure 3. The interesting parts of the framework concern the feedback paths:

e to event specification and program analysis, for changing the granularity of performance observa-
tion;

¢ to perturbation analysis, for preventing execution ordering violations; and
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¢ to parallel performance modeling, for annotating the representational form of the parallel program
with measured performance data and system parameters.

One can consider performance perturbation more generally as a change to “real”, unperturbed per-
formance of a parallel computation as a result of some change to the parallel execution environment.
This change could be the result of performance measurement, as we have discussed here, or the result
of performance analysis abstraction. Because we are trying to discover the “real” performance by an
analysis process, whether it is based on measurement, simulation, or analytical modeling, there is always
a question about the accuracy ol the performance approximation. That accuracy can be perturbed
not only by instrumentation intrusion, but also by inaccurate or incorrect modeling assumptions. The
important insight is that perturbation analysis can be more fully regarded as a general performance pre-
diction problem. The goal is to estimate (predict) performance based on stored performance knowledge
coupled with abstractions of parallel program and system behavior. Only by understanding the interplay
of performance knowledge with parallel models (actual or abstract) can high confidence approximations
be achieved. The natural tension between the complexity of measurement and modeling makes this an
interesting challenge.

8 Summary

The changing nature of the parallel computing platform extends the bounds of how these systems
are programmed and used, further increasing computational and performance complexity. Tools must
adapt to this change. Designing and building tools for parallel performance evaluation is one of the
most challenging research areas in computer science. Not only are there fundamental issues associated
with modeling and observing concurrent, parallel operations, but the self-referential and self-diagnostic
notions of computer-based tools trying to understand computational behavior are extraordinary. This
chapter has presented a performance evaluation perspective on the general research area of parallel tools.
The views presented on modeling, observability, diagnosis, and perturbation are applicable to the more
general field as 2 whole. They are also useful as guideposts for understanding how tools should evolve
to meet the requirements of next-generation systems.
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