




Tools for Parallel Computing: A Performance Evaluation 

Perspective 

Allen D. Malony 

Department of Computer and Information Science 
University of Oregon 

January 26, 1999 

Abstract 

To make effective use of parallel computing environments, users have come to expect a broad 
set of tools that augment parallel programming and execution infrastructure with capabilities such 
as performance evaluation, debugging, runtime program control, and program interaction. The rich 
history of parallel tool research and development reflects both fundamental issues in concurrent pro­
cessing and a progressive evolution of tool implementations, targeting current and future parallel 
computing goals. The state of tools for parallel computing is discussed from a perspective of per­
formance evaluation. Many of the challenges that arise in parallel performance tools are common 
to other tool areas. I look at four such challenges: modeling, observability, diagnosis, and perturba­
tion. The need for tools will always be present in parallel and distributed systems, but the emphasis 
on tool support may change. The discussion given is intentionally high-level, so as not to exclude 
important tool projects by citing others. Rather, I attempt to present viewpoints on the challenges 
that I think would be of concern in any performance tool design. 

1 Introduction 

Computer systems are arguably the most complex machines ever invented, and parallel computers and 
distributed computers are the most complex computer systems. In simple terms, parallel and distributed 
systems are designed to support concurrent computer operations. Although concurrent actions are a 
common phenomenon in the natural world, encoding concurrency in a computer system such that the 
computation is "correct" is not a simple task, even for seemingly trivial problems. Parallel systems also 
have a more specific aim to support the simultaneous execution of concurrent operations for achieving 
high performance. Maintaining high efficiency in parallel execution further complicates how parallel 
systems are programmed and used. 

Parallel systems are important as computing platforms because they offer the potential to solve prob­
lems requiring multiple computing resources and high-end performance. However, this potential cannot 
be actualized without the support of tools, particularly tools for performance analysis and debugging. 
Designing and developing tools for parallel systems is intrinsically difficult due to the complexity, both 
architecturally and operationally, of the computing space represented. In general, a tool should 

• Incorporate a model of the system and its operation in order to reduce problem complexity;

• Be sensitive to observability constraints that limit the scope of what is knowable of and about the
system;

• Diagnose important system states so as to aid the user in analysis; and

1 






























