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Abstract.

We consider a model of communication in a network, where multiple sources have
messages to disseminate among the network membership. We propose that all the
messages (one [rom each source) be disseminated along the same spanning tree of
the network and consider the problem of constructing such a tree. One evaluative
measure for suitability ol the construction is the sum of distances from each source
for each vertex. We show that finding the exact solution in this case is NP-hard,
for any selection of the sources. We therefore investigate this problem for some
restricted classes of graphs and give eflicient solution algorithms for those. We aiso
consider alternative measures ol goodness of spanning communication trees.

1. Introduction

In computer networks (e.g., the Internet), an increasingly prominent com-
munication paradigm is multicast, whereby any of a set of network vertices
called senders broadcasts its message to the set of (multicast group) mem-
bers. In current Internet practice, the multicast protocol may require build-
ing an “optimal” routing tree from each of the senders to all group members;
this protocol suffers an explosive growth of resource usage with the network
size. We will discuss possible modifications to the above multicast protocol,
whereby all senders utilize the same, “shared” routing tree.

We consider classes of multicast applications that restrict the sets of
senders and receivers. For the purpose of our discussion, we will assume
that the group membership includes all N vertices of the network (modeled
as a simple undirected graph) and that some k& of those (1 < & < N) are des-
ignated as sources. We will also assume that all communications take place
along edges of a spanning tree of the network, i.e., an acyclic subgraph of
the network graph that includes all vertices of the network.
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There are several extant measures of goodness of a spanning tree, all with
respect to a possible length function on the edges of the graph. One measure
involves a simple sum of lengths of all edges of the spanning tree, resulting in
the so called minimum spanning tree. Another takes under consideration the
distance between vertices of the graph, being the sum of the lengths of edges
along a shortest path between the two vertices (unique in a tree). For a single
source, this defines a (single source) shortest-paths tree. Because of the
possible attributes and requirements of multicast applications, several other
measures come to mind. We will consider two cost measures, namely, the
sum of distances from each source to all vertices and the maximum distance
rom cach source, over all vertices. We will also discuss the complexity of
the problem as parameterized by the number £ of sources (1 < & < N).

2. Definitions

We model a network as a simple, undirected graph without loops, & =
(V. E), where V" is the set of N vertices and £ C (Y) is the set of edges.
There is a length function defined for the edges, { : £ — Z*. We define a
family of decision problems called k-Source Shortest-Paths Spanning Tree
(k-SPST), parameterized by a positive integer k.

k-SPST:

Instance: A graph ¢ = (V,E) with the length [(unction ¢,
k sources sy,...,s; € V', a positive integer &’

Question: Is there a spanning tree 7" of G whose cost (the sum of edge
lengths on the paths from all sources to all vertices) does not exceed
K?

For & = 1, this problem becomes the single source shortest path prob-
lem, with well known efficient solutions (for instance, the Dijkstra-Prim
algorithm). TFor the set of sources identical with the set of vertices of the
instance graph, we have a problem whose uniform edge lengths version has
heen delined before as Shortest Total Path Length Spanning Tree (¢f. [ND3]
in [1]} and shown to be N P-complete. In a recent paper [3], Wu et al. ad-
dress the all source problem and propose an efficient approximation scheme.

A very general problem of Optimum Communication Spanning Tree (cf.
[ND7) in [1]) has been defined by Hu [2] based on a complete graph G with
length €(u, ) and requirement 7(u, v} lor cach edge (u, v}, In this problem,
the cost measure of a spanning tree T of G is defined as the sum of vertex
distances in T weighted by the corresponding requirements: 2uwev dr(n, v):
r(u,v). By restricting the requirements r{u,v) = 0 for all vertices u except
the sources s;, and allowing “very large” edge lengths for (u,v) € E, the
problem reduces to 4-SPST.

In the next section, we will show that the 2-SPST problem is N P-complete.
[t remains so even in the uniform edge lengths case.
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We also consider the complexity of the multi-source problem with alterna-
tive cost measure being the maximum eccentricity of a source (distance from
any vertex), the k-Source Maximum-Eccentricity Spanning Tree (k-MEST).

L-MEST:

Instance: A graph & = (V. ) with length function (, & sources s,,...,$; €
V', a positive integer iV
Question: Is there a spanning tree T of ¢ whose cost {maximum eccen-
tricity ol a source) does not exceed h'?
We show later that certain restrictions of the problem are efficiently solv-
able.

3. NP-Completeness Reduction

Before presenting a. reduction, we state an observation about the structure
of our measure of goodness for a solution of the 2-SPST problem.

OBSERVATION L. The cost of a spanning tree T of agraph G with N vertices,
two of which, s; and s,. are sources is equal to N -d(p) + 23 ey d( v, p),
where pis the unique path between the sources, d(p) its length, and [or a
vertex v, d(v, p)is the shortest distance of » 10 a vertex of p.

Proor.  For any vertex ¢ of &, the shortest paths to the two sources
include twice the path between v and the nearest vertex w of p and the two
subpaths of p: (w, s;) and (w, s3), whose lengths add to d{s;, s;). Summing
over all vertices of G gives the above formula. O

We will use the well-known 3-SAT decision problem to reduce to the 2-
SPST problem.

3-SAT ([LO2}in [1]):

Instance: A set ol disjunctive clauses, Ci. 1 <1 < m invalving literals of
boolean variables &;.....x,

Question: Is there a truth value assignment to the variables that satisfies
all the clauses?

Tueorem 3.1. 2-SPST is N P-complete even when all edge lengths are equal.

Proor. A reduction from 3-SAT problem. Given an instance Cy,...,(,
of 3-5AT, construct an instance of 2-SPST by combining the following “gad-
gets™:

A gadget corresponding to the variable ; consists of a four-cycle with
vertices labeled, in order, n'f,.vr..rﬂ’..a-f". I'or each ¢, 1 € ¢ < n, identily
vertices x} and =] ,.

A gadget corresponding to a clause C; = (y;,, 45, ¥ ) consists of a vertex
labeled ¢;. adjacent to L = 2nm degree-t vertices; this makes it costly to not
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Fig. 3.1: The construction; a clause ¢, = £ /£ A £y,

satisy the clause (see below). Additionally, the clause vertex ¢; is connected
to the variable gadget vertices that correspond to the literals y;,, %, and y;,
through paths of n — I vertices each. That is, for cach 5, 1 € 7 < m,
identify the vertex representing literal y; of C'; with the F or T vertex of
the corresponding variable gadget, depending on whether y;, is satisfied hy
assigning FALSE or TRUE to the variable.

The two source vertices are sy = 2{ and s, = 2%, This ensures that in any
spanning tree, the path between s; and s, is of length at least 2u (and equal
to 2n only if the path does not pass through a clause vertex). Finally, one of
the sources, say sy, is adjacent to M = dm({n+ 1)(L + 1) degree-1 vertices;
this makes it costly to have a long path from s; to s; in the spanning tree,
This graph has ¥ = M + 30 4+ 1 + Lm 4 3nm — 2m vertices. Completing
the construction, the constant A" of the instance of 2-SPST is defined to be
20N + 2M 4+ 2n 4+ m(n + 1)2L + 3n) = 4m.

Let us assume that the instance of 3-SAT is satisfiable. We construct a
spanning tree by connecting sy and sy through the variable gadgets, for cach
i including the vertex a7 or a” (call those “essential variable vertices™) ac-
cording to the satisfying truth assignment. The length of this path pis thus
2n. We complete the tree by removing edges between a clause vertex and
two of its degree-2 neighbors. leaving a connection to an essential variable
vertex, for each clause vertex.

There are 3m paths in the graph connecting clause vertices to the s, $,-
path. We designate each one as “short™ or “long” according to whetler
it attaches to an essential or inessential variable vertex. Let P denote the
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number of long paths. Since each clause has at least one short path, P < 2m.
By Observation 1, the cost of the tree is 20N + 23 .y d{v, p), where the
component 23" d(r, p) equals

0 for vertices i on the s, s,-path

2M for A degree-one vertices v adjacent to s

2n for # non-essential variable vertices »

2nm for m clause vertices v

2Lm(n+ 1) for mL degree-1 vertices v adjacent to clause vertices
Pimin+1)-2) for vertices v in long paths

(3m = P)n=1)n for vertices v in short paths

T'his totals 20N + 20 + 20 + 2Lm(n + 1)+ 32%m = nm +2P(n = 1) < K.

We call a spanning tree T legal if it corresponds to a truth assignment
{(i.e..if no clanse vertex lics on the path from s; to s, in T). If the instance
of 3-5AT is not satisfiable, then the cost of a legal tree is higher than i,
since the degree-1 neighbors of an unsatisfied clause are at distance n + 2
from the path between sy and s35 they would contribute an extra cost of 2L,
which would make the cost exceed A" even if P were 0. (P must be at least
3 because of the unsatisfied clause.)

If T is not legal, the path from s, to s, includes a clause vertex and has
length at least 2n + 2. The M degree-1 neighbors of sy contribute an extra
2M to the cost of T'. The cost of this tree is therefore more than:

N(2n+2)+2M 2N 4 AM
2N+ 2M + 8min+ 1L+ 1)
2N+ 2M +20m(n 4+ 1)+ 6Lm(n + 1)+ 8m(n + 1)

2N 4 2M +2Lm(n + L)+ 3nm{n+ 1)+ 2n > K.

VIVIVYV

CoroLLAary 1. The 2-SPST problem is N P-complete.
CoroLLARY 2. The E-SPST problem is N P-complete for any k> 1.

4. Algorithms for 2-Source Spanning Trees

4.1 Distance sum measure

[n light of the dilficulty of solving the 2-SPST problem [or general graphs, we
will be satisfied. for the time being. to present efficient solution algorithms
for some fairly restricted classes of graphs. To start with an almost trivial
class of graphs, we consider first unicyclic graphs consisting of cycle vertices
wy, 0 € ¢ < noand the corresponding trees T; rooted in eycle vertices (cf.
Figure 4.1). We use 2, as a synonym for .
Wlog.. we can assume that. in the given input graph G with N = ¥ ., ... |T}]

vertices, the sources are the roots iy and 2, of trees Ty and Ty, 7 >0 (for
J =0, an optimal spanning tree T of ¢ is identical with the single-source
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Fig. 4.1: A unicyclic graph.

shortest-paths spanning tree of G.) As we noted belore, the cost of T con-
sists of the length ol the shortest path between the sources taken N times
plus the distances ofl all vertices to that patl. For each tree 7). we denote
by N, the number of vertices in 7} and by §; the sum of their distances to
the root .x;.

Let us deline [unction L{x;, z;) to denote the “clockwise™ distance from
xy to x; for instance, Lz, ) = 3 conek H{Tm, Tmpr) for 0 < i < k and
similarly for other cases of i and k. Removing the edge (i, 2r41) from the
only cycle of G results in a tree, say T*), The cost of T™) is equal to,
according to Observation I, N times the sum of the distance hetween the
sources, L{rg.a;) when j <k < n, or L{i;.20) when 0 < & < §, plus twice
the distance sums 5; in T; and twice the following sums:

z }\',L(.a:j..‘n,-) + Z NoL{we e+ forj<hk<n (4.1}
peisk k<icn
or
> NiL(eo,wi)+ Y. NiL(xi,x;) for 0 < I < j. (4.2)
ek ki<

Finding a & to minimize the cost of 7*) can be done in linear time. To
design such an incremental update algorithin we observe that the difference
between costs of T™*} for two consccutive values of & can be computed in
constant time,

A generalization of unicyclic graphs may involve multiple cycles C; con-
nected in a tree-like manner through common articulation points, Such
graphs are sometimes called cacti. Let ¢ be a cactus with sources s,
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and sy. There exists a path of cycles Cy,...,C, between sy (= 21p) and
s9 (= wn,,) , such that all (sy,s2)-paths pass through articulation ver-
tices 27 5, = ®2,0,.. .. ¥pwl,y,_, = &no Of the consecutive intermediate cycles
6'29 ] C"n—l-

We will describe an algorithm to eliminate an edge [rom each cycle in
order to obtain a minimum cost spanning tree T of .

First we observe that for a subgraph separated from the sources by a single
vertex x;, of a cycle C;, 0 < i < n, the single-source shortest-paths span-
ning tree (with the articulation vertex being the source lor the subproblem)
provides a subtree of the optimal tree T for the input cactus . The number
of vertices in such a subtree becomes an attribute w(z, ;) of the articulation
cycle vertex 2;; (analogous to N; in the unicyclic case). For each cycle C,
with vertices a; ; weighted by w(x; ;), we have a separate optimization prob-
lem of choosing an edge (@ g £4+1) 0 remove, according to the formulae
(4.1) and (4.2) above. This algorithm computes the optimal spanning tree
in linear time.

Woe observe further that this algorithm applies to any instance of the prob-
lem in which the subgraph induced by all (s, sy)-paths is a cactus. Any
hicounected component of the instance graph sharing an articulation vertex
s with such a cactus can be optimally spanned by a shortest-paths tree with
the single-source s.

A simple algoritlun constructs an approximate solution to the 2-SPST
problem with cost at most twice the optimal. Given a graph G with two
sources 1 and sy, the algorithm constructs a shortest (s, s2)-path p, con-
tracts its edges collapsing the path’s vertices into one “super vertex” s and
then constructs a single-source s shortest paths tree 7’ spanning the derived
graph ¢, We claim that the spanning tree T of G consisting of the path p
and the edges of &' corresponding to edges of T/ lhas the cost at most twice
that of an optimal spanning tree 7" of . Assume that the (sy, s9)-path p~
in T has length 3. Any vertex v of (¢ is at most M /2 [urther away from p
than from p* (this because a vertex of p°, namely a source, can be reached
from » within this extra distance). Thus in T we over-estimate the cost of
T™ by at most 2n(A/2) = Mn, which is a lower bound on the cost of T=.
This gives the lollowing theorem.

Tueorenm 4.1. The optimal solution to the 2-SPST problem can be effi-
ciently approximated within « faclor of 2,

4.2 Muoaztimumn eceentricily measure

Now, let us consider the alternative cost measure for an optimal spanning
tree, namely. the maximum eccentricity of a source. For a cycle vertex x;
of the unicyclic graph G as above, let d(x;) be the depth of the tree T;. Let
the function L{wx;, x1) be defined as hefore to denote the clockwise distance
around the cycle. The maximum eccentricity of a source is minimized with
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the following expressions {when choosing the removed edge (24, 2541)):

L(.r:_,..z:n)+|nax{0|::|§1{j{k(L(:a:g..i:,)+d(.r:)). I!l{l_illéil(L(.J'.',.’I‘J)-l-(l(:t:;))} for0<h <y
o - (4.3)

L(.no,.-rJ)+1n:lx{Lr2:'1€:‘(L(:::I-’:r:,,)-}-rl(;r,)} (L(zy,xp)td(xi))) forj <k <n

(d.4)

The expressions (4.3) and (4.1) can be evaluated in time proportional
to n by separately computing values of L for 2y and #; (as one of the
arguments) and then incrementally updating them with d{x;), Lo obtain
the relevant maximuin values. A final scan of those values will vield the
minimum maximum source eccentricity and thus a linear time algorithm for
the 2-MEST problem on unicyclic graphs.

Il the sources are located not on the cycle but in the trees, Ty and T,
then the distances of the sources 1o the cycle, Dy = d{s,2y) and Dy =
d(s2,.x;), respectively, would modify the formulae (4.3) and (4.4} in the
obvious manner. This suggests a pseudo-polynomial time solution algorithm
for the 2-MEST problem on cacti. (For unit edge lengths or lengths with
magnitude polynomially bounded by the input length, this represents an
cfficient algorithim. We are unable, as yet, to solve the problem on cacti
with arbitrary edge lengths.) Namely, for each cycle C,. as above, solve the
problem for the unicyelic case lor all possible values of Dy and D; and then
use the dynamic programming approach to find an optimal spanning tree T

The simple single-source shortest-paths algorithm that produces an ap-
proximation to the 2-SPST problem gives also an approximate solution to
the 2-MEST problem, as follows. Let 77 be a single-source s shortest-paths
tree in the graph (i obtained from the instance graph G by collapsing ver-
tices of a shortest path between the sources s; and s; into vertex s. We
obtain a spanning tree I of & by adding to the original edges of T/ the
contracted edges of the (s;,82)-path. The maximum source eccentricity, A,
of a vertex in T is not larger than the distance between the sources, m, plus
the maximum distance d from any vertex to the single source s of the de-
rived graph €', Being shortest path distances in . both d and m are lower
bounds on the maximum source cccentricity A in the optimal spanning
tree I of . Thus we have M < 24/~

, max
i<k

5. Pseudo-polynomial Algorithm for k-MEST Problem

If the multi-source maximum-eccentricity problem seems easy, it is because
it is casy — for edges with uniform length. In that case, the answer can
he obtained by a brute-force low-order polynomial time algorithm based on
computing single-source shortest-paths trees, as presented below. Uniortu-
nately, in the general case the shortest-paths algorithm has to be executed
a nuniber of times that is proportional not only to the number of edges but
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also to their lengths. The latter may not be polynomial in the size of the
problem instance.

We will show that for an instance graph ¢ with sources § = {s,...,5.}
and unit edge lengths, there exists either a vertex a, or an edge (y, z),
such that the shortest-paths tree (from either z or the “midpoint™ of (y. z),
respectively) in 7 minimizes the maximum source eccentricity.

We first formulate two facts relating source eccentricities in an optimal
tree of G, say T, to those in a shortest-paths tree, say Ty. for a certain
verlex . Let ¢ be the maximum intra-source distance in 7" and let M~ be
the maximum source eccentricity in ™. Let P be a path of length ¢ between
a pair of sources, say s; and s, in ™. Let & be the midpoint {equidistant
from s; and s;) on P. If ¢ is odd, @ will be an auxiliary vertex subdividing
the middle edge (y, z) of P; we define the lengths of (@, y) and (z.z) to be
We observe that this modification does not change the solution to the
riginal problem. The following is implied by our definitions.

O ni—

Fact 5.1, In 1™, no source s € 5 is more than ¢/2 farther away from
ay e, dpa(a,s) < qf2. Tor any vertex v in (. the distance in 7" to x,
dps{e.0) < M™ = qf2.

Now, let I'. be a shortest-paths tree of G (possibly modificd with the
auxiliary vertex . as per above) with the single source x. The construction
implies the following fact.

Facr 5.2, For any vertex v in G, the distance in 7™ to @ is not smaller than
the distance [rom v to & in 1.

From these simple facts follows that the maximum source eccentricity in
T, does not exceed A=,
THEOREM 5.1, For (G, § = {s.....4 si}. M=, q and x, as defined above,
MaXyevses dr (v, s) = M~

Proor. The distance dy_(#,s) is bounded by the sum of distances from
to ¢ and ¢ which is bounded by Af™, as per the Facts 5.1 and 5.2: dp (v, )+
dr e s) <dp(oox)+dpee,s) < (M —q¢f2)+q¢/2=AM". O

The above theorem implies a brute-force algorithm that requires only poly-
nomial time (as a function of the instance size):

For G, § = {s1,....8t}, compute a single-source shortest-paths tree for
cach vertex x and the midpoint of each edge (. z) in G (as defined above). A
tree that minimizes source eccentricity is the solution to the given instance
of k-MEST problem with uniform edge length.

A reduction from a general instance of L-MEST (with integral. non-uniform
edge lengths) involves the construction of a derived graph, G/, with edges of
uniform length. G’ is obtained from (& by replacing ecach edge {y, =) with a
path of ((y. =) edges (with all new internal vertices of the path). It is easy
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to see that the minimum source eccentricity in the optimal spanning tree T/
of ¢/ is the minimum source eccentricity of the spanning tree of ' uniquely
determined by T". The reduction is polynomial-time only when edge lengths
are hounded by a polynomial (in the number of vertices in &), This remark
limits the usefulness of our algorithm in the general case of k-MEST.
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