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We investigate the applicability of k-spanners as shared virtual topologies for intradomain broad-
cast and multicast on the Internet. A light-weight k-spanner is a spanning subgraph of a network
that has both relatively small total edge weight and small multiplicative penalty (at most k) on
all point-to-point distances. We define broadcasting and multicasting protocols based on flooding
of a spanner, followed by pruning the distributiontree within the spanner and then joiningin the
network to formn sender-based trees, if desired. We evaluate &-spanners (for 2 < k < 7) in terms
of number of edges, diameter, and average distance on sets of randomly generated graphs having
properties similar to intradomain networks. We compare values of these metrics for spat.ners
with those for given graphs and single-source minimum-distance spanning trees. Results show
that a 3- or 4-spanner could serve as a good virtual topology for message distribution, having
fewer edges than the full network yet lower average distance and diameter than a single-source,
minimum-distance spanning tree.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network
architecture and design

General Terms: Performance

Additional Key Words and Phrases: Multicast protocol, k-spanner, distribution tree

1. INTRODUCTION

It has become increasingly apparent that there is a need for efficient ways to dis-
tribute messages from single senders to more than one receiver within communica-
tion networks. Sending a different copy of the message to each receiver (i.e., mailing
lists) can work effectively for applications involving infrequent, short transmissions.
However, applications such as real-time video distribution or on-line gaming and
conferencing, each requiring frequent distribution of relatively long messages, have
resulted in the need for more efficient broadcasting and multicasting algorithms
and associated protocols.

In this paper, we investigate the applicability of graph spanners as virtual topolo-
gies for broadcasting and multicasting in communication networks. First we define
graph spanners and review relevant theoretical results. We then discuss how graph
spanners could be incorporated into existing broadcast and multicast protocols.

Research supported in part by a National Science Foundation grant NCR-97-14680.
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Fig. 1. A 5-spanner of a 64-vertex graph

We present the design of an experiment aimed at determining relevant properties
of spanners of randomly generated graphs, We then discuss the results, noting
key values that support the use of spanners for message distribution. In terms of
Internet applicability, we see spanners playing a possible role in intra-domain con-
texts, where link-state topology information is reasonably available to the routers
for computing the spanners.

1.1 Graph Spanners

The notion of graph spanners was introduced about a decade ago in [Peleg and
Ullman 1987]. Each spanner is parameterized by a constant k, as follows: A k-
spanner of a graph G = (V, E) is a graph S = (V, E'), where E' is a subset of E,
such that the distance in S between any pair of vertices z and y of V is not more
than & times the distance between z and y in G. The distance between two vertices
of a graph is defined as the minimum, over all paths connecting the two vertices in
the graph, of the sum of edge lengths on the path. In Figure 1 we show an example
of a graph with 64 vertices with a 5-spanner displayed in gray edges.

A k-spanner is formed by removing certain edges from & while guaranteeing
that the distance between any pair of vertices is not stretched by more than the
multiplicative factor k. Unfortunately, the problem of deciding whether a k-spanner
exists that has total weight (1.e., sum of weights associated with edges) less than
W in an arbitrary graph G has been shown to be A"P-complete for most values
of k [Cai 1994]. The problem remains A"P-complete for any planar, biconnected
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graph G, with lower limits for k depending on whether edges of G are weighted
or unweighted (t.e., weights all equal to one). Finally, determining whether an
arbitrary graph has a k-spanner that is a tree or that is planar is also A"P-complete
[Cai and Corneil 1995; Brandes and Handke 1998].

Given the apparent intractability of finding minimum-weight spanners, a greedy
algorithm that finds relatively light-weight spanners can be used. The algorithm is
defined as follows:

Algorithm LightWeightSpanner(G, k)
// takes as input an arbitrary connected graph G = (V, E)
// and an integer k£ >1
// gives as output a k-spanner S = (V, E’) of G
Step 0. Let £’ be empty.
Step 1. Sort the edges E in increasing order of weight.
Step 2. For each edge e = (z,y) in E (considered in sorted order)
{if the distance between z and y in S = (V, E')
is greater than k times the distance in G
then add edge e to E'.}
Step 3. Report S = (V, E') as result.

The algorithm considers light edges first and only adds an edge to the spanner
when it is necessary to connect neighbors so as to maintain the given stretch factor.
The resultant graph is a k-spanner because, if each edge in G has not been stretched
by more than k, then any path between non-neighbors in G has not been stretched
by more than k. The algorithm is clearly implementable in polynomial time. Man-
sour and Peleg have determined some properties of the spanners generated by this
algorithm; they are guaranteed to be sparse (with O(n) edges) and light-weight
(within O(logn) of the minimum weight of a spanning tree) for a (logn)-spanner.
[Mansour and Peleg 1994).

2. SPANNERS AND MESSAGE DISTRIBUTION

How might spanners be employed for message distribution in networks? One po-
tential application is as a virtual topology for broadcasting. Broadcasting is the
communication process whereby a message is sent from one sender to all cther sites
of a network, such as an administrative domain of the Internet. A need for broad-
casting can arise in a number of network management and control contexts, as well
as in implementations of distibuted algorithms. Without prior determination of a
distribution tree, one common means for completing broadeast is to flood the net-
work with the message. Flooding is the process whereby each vertex (site) sends a
broadcast message out on every adjacent edge (interface) other than the one(s) on
which it received the message. During fiooding, the message traverses every edge
at least once and some edges twice. Thus, the number of edges in a graph is a good
approximation to the amount of traffic generated by a broadcast through flooding.

Given a k-spanner of a network’s graph, rather than flooding all edges of the
graph, one can just flood the message over edges of the spanner. If the original
graph is connected, the spanner will be connected; thus, flooding over edges of the
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spanner will be sufficient to complete a broadcast. Questions arise as to how much
reduction in message traffic this will realize and what will be the increased delay
in the communication process. Later, we describe an experiment that we have
conducted to provide some answers to these questions.

There are a number of multicast protocols under consideration for use in admin-
istrative domains on the Internet {Ballardie et al. 1993; Deering et al. 1996]. All
rely upon establishing a distribution tree that covers the receivers of a multicast
group. There are two primary ways for characterizing trees used by the protocols.
In a protocol using sender-based trees, such as DVMRP or PIM-DenseMode (PIM-
DM), each sender establishes a tree that includes shortest paths to all receivers. In
a shared-tree protocol, such as CBT or PIM-SparseMode (PIM-5M), a single tree
is established that covers all receivers of the group that is used by all senders to
distribute messages.

Sender-based trees in DVMRP and PIM-DM are established by flooding the
domain with the message from the sender. Subsequently, branches of the tree
reaching no receiving members are pruned back until all leaves of the tree are
the intended receivers. As noted above, one benefit of using a spanner to flood
a message throughout a network will be a reduction in traffic generated by the
initial stage of such dense-mode protocols. We describe important features of a
modified version of PIM-DM called PIM-Span, which limits the set of links used
for transporting multicast data to the edges of a spanner. We summarize key points
of the PIM-Span protocol below:

e Most router implementations use at least two Route Information Bases (RIBs),
one for unicast and one for multicast. The RIBs hold applicable route entries
and next-hops to each reachable destination. In PIM-Span, a third RIB would
be added to the router implementation that holds the set of multicast routes
traversing only the spanner. Use of this spanner RIB ensures that only interfaces
belonging to the spanner will be selected as incoming interfaces for a multicast
and that flooding will be restricted to the spanner.

s The PIM-Span protocol requires the use of a link-state unicast routing protocol
(e.g., OSPF or ISIS). Link-state unicast protocols would distribute full topology
information, and then each router would compute a k-spanner, for a particular k
(the same for all routers). Routes corresponding to the spanner are then placed
in the spanner RIB and used for flooding of messages from new senders.

e PIM-DM makes RIB lookups to determine the incoming interface for a new (S, G)
entry and as a criterion for packet acceptance. In the PIM-Span protocol, a
multicast router must always select an incoming interface on the spanner, one
from which it received the message during flooding,.

e When flooding data upon creation of a new sender-multicast group entry, (5, G},
in each router, the PIM-Span protocol creates an outgoing interface list that
includes only spanner interfaces from which it did not receive the message during
flooding.

o Pruning of interfaces in PIM-Span is done as in PIM-DM, i.e., when a router has
no receivers in its local network and all downstream routers have sent prune mes-
sages. Periodically, PIM-Span can reflood the spanner to adjust the distribution
tree to reflect new group membership, as does PIM-DM.
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All PIM-Span message distribution is restricted to the spanner edges. This is a
clear benefit during the floocding stage; however, the spanner-based trees established
by pruning are not minimum-distance trees from the sender to group members in
the given network. While the experimental results we present below indicate that
the delay penalties are relatively minor for appropriate values of k, all flooding and
subsequent traffic in multicast groups will be concentrated in the spanner, perhaps
leading to traffic congestion. One way to deal with this is to create several spanners
by randomly permuting the uniformly weighted edges, as considered by the spanner
algorithm presented earlier. Different groups could use different spanners, with
selection based on the group address; several spanner RIBs would be maintained,
which is a small overhead.

We could also borrow a useful notion from PIM-SM to improve the applicability
and scalability of the protocol. The multicast distribution tree can be switched to
a minimum-distance tree by having certain routers send a join toward the sender,
based upon a lookup in the unicast RIB. If the interface that leads to the sender
in the network differs from the incoming interface in use on the spanner, a join
message is sent on that interface. The join is propagated by upstream routers until
either another active, receiving router or the sender is encountered. The protocol
must be careful to ensure that no looping structure is created that would disconnect
a part of the distribution tree from the sender. Once message data begins to appear
on the new, incoming interface, a prune message can be sent up the spanner-based
incoming interface, thereby switching (part of) the tree to a shortest-path (instead
of spanner-based) tree from the sender in the given network. Switching to a sender-
based tree leads to better traffic distribution and somewhat less delay for large
messages.

The PIM-Span protocol with tree-switching capability represents an interesting
combination of dense-mode and sparse-mode behaviors that avoids, on the one
hand, the complete flooding of the network associated with dense-mode operations
and, on the other hand, the designation of a vulnerable core or rendezvous point as-
sociated with sparse mode behavior. Using a common, shared structure for floeding,
and switching to a shortest-distance, sender-based tree when traffic load warrants
it appears to capture valuable elements of both approaches. A full specification of
PIM-Span, including the tree-switching mechanism, is still to be completed.

3. EXPERIMENT DESIGN

The PIM-Span multicast protocol discussed above is viable only if spanners exhibit
considerable savings over the entire network topologies in terms of number of edges,
while not incurring significant penalty in terms of increased average or maximum
message delay. Qur goal is to compare these properties of spanners with those of
given network graphs and with single-source, minimum-distance spanning trees of
these graphs. In our experiment we choose an arbitrary vertex as the single source
of such spanning trees. Such trees are meant to represent shared trees or core-based
trees that reflect use of a single rendezvous point, as employed by several, proposed
multicast routing protocols [Ballardie et al. 1993; Deering et al. 1996].

We want the given network graphs to be representative of topologies for admin-
istrative domains of the Internet. As such, we generate graphs having either 64 or
128 vertices and average vertex degrees of approximately 4 or 8. In addition, we
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use two vertex connection schemes: one representing a strictly random adjacency
pattern and a second preferring “nearby” vertices over “distant” connections. This
results in eight different classes of random graphs, one for each combination of the
above three conditions. Our test sets consist of 50 graphs for each type. We gener-
ated J sets of graphs for each type to get some indication as to the stability of our
results relative to the random number generator used to create the network graphs.

We use the suite of random graph generators available at Georgia Tech [Zegura
1997]. These algorithms all place a set of n vertices on a square in the plane,
and then consider each pair of vertices in turn, deciding whether an edge is to be
added between them. The purely random scheme uses an equal probability between
all pairs of vertices; the locality preference scheme has the probability decreasing
exponentially with the distance between the two vertices on the plane ([Zegura
et al. 1996]). The locality method we used is the basic Waxman model, [Waxman
1988] in which the probability of an edge being added between two vertices is
ae~ ¥ (PL) where d is the distance between the vertices on the plane and o and 2
are parameters of the method. An increase in « increases the number of edges, and
an increase in {3 incraeses the ratio of "long” to "short” edges. We use the following
parameter settings: for degree 4, 64 vertex graphs, a = .42, 8 = .14; for degree
4, 128 vertex graphs, o = .21, 8 = .14; for degree 8, 64 vertex graphs, o = .85,
# = .15; and for degree 8, 128 vertex graphs, o = .42, 3 = .14,

The primary metrics we are interested in are number of edges, average distance,
and maximum distance in a given graph, its spanners, and spanning tree. We
consider three measures for the distance along an edge in a given graph. The
first is uniform over all edges; we assume its value is one. Given this measure,
the distance between two vertices equals the number of edges (“hop count”) in a
shortest path between the pair. The second measure is the (Euclidean) distance
between the end-vertices of the edge wrt. their location on the plane (determined
when the graph is generated). The third measure is a random weight, assigned
from the set {1,2,4, 8,16}, reflecting the fact that for traffic management purposes
in networks like the Internet, the cost of an edge may be set to an arbitrary value
irrespective of its physical length, We refer to these three distance measures as the
hop, length, and weight measure, respectively.

For each given graph GG, we determine the following subgraphs: k-spanners Si(G),
2 < k <7, and a minimum-distance spanning tree T(G) from vertex labeled 0, for
all three edge-distance measures (a total of 21 subgraphs). Note that each subgraph
has the same vertex set as the original graph, but has only a subset of the edges.
We then compare each subgraph to the original graph in terms of three metrics:
number of edges F, diameter D, and average distance A between vertices. We
make these comparisons in terms of the edge-distance measure (either hop, length,
or weight) used in constructing the spanner. We compare the graphs by computing
the ratios of parameter values for a subgraph to the values for the given graph; for
example, E(54(G))/E(G) would be the ratio of number of edges in a 2-spanncr of
G to the number of edges in a given graph G. We use the notation Gy 4 to represent
the set of graphs with v vertices and average degree d; for example Ge4,4 represents
the set of graphs with 64 vertices and average degree 4. For each test set of 50
graphs, we compute the average of each comparison ratio, as well as the minimum,
twenty-fifth percentile, seventy-fifth percentile, and maximum of the ratios.
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4, EXPERIMENT RESULTS

The experiment as designed above, generates a complex array of results. There
are 8 types of random graphs, based on number of vertices, average vertex degree,
and whether there was a locality preference in generating edges. Then there are 3
edge-distance measures applied to edges: hop, length, and weight. For each graph
and distance measure, we compute k-spanners for & from 2 to 7 and minimum-
distance spanning trees rooted at an arbitrary vertex. The metrics are computed
for all graphs are: number of edges, average distance between vertices, and greatest
distance between vertices (i.e., graph diameter). Our results indicate little or no
difference between the three test sets for the same parameter settings. So, we renort
the results from the first set of graphs for each parameter combination. All results
are available for viewing at URL [OurWebPage 1999].

The results of our experiment are expressed in terms of the ratios that compare
values of the metrics for a spanner or a spanning tree to the corresponding values
for the original graph. This use of ratios to compare graph metrics is similar to
that used in [Wei and Estrin 1994] to evaluate options for multicast shared trees.
The ratios of the numbers of edges are less than 1.0, while distance-related ratios
are greater than 1.0 (reflecting the increased distance due to excluding some edges).
We plot the values of these metric ratios for k-spanners as functions of k ranging
from 2 to 7. Each plot presents the average ratio, with error bars indicating the
twenty-fifth and seventy-fifty percentile value, over the 50 graph sample. The ratio
of the corresponding parameter value for spanning trees is shown on each plot for
comparison purposes.

4.1 Number of Edges

Given a graph with n vertices, every spanning tree has n—1 edges. As such, the edge
ratio for this parameter is a simple function of the average degree of the original
graph (1.e., about twice its inverse). For a random graph with average degree 4, we
expect the edge ratio to be {(n —1)/2n, or a little less than .50; for degree 8 graphs,
we expect (n — 1)/4n, or a little less than .25. There will be some variability due to
the randomness of the graphs generated, more so for the locality preference graphs
as the parameter settings that influence average degree were determined by trial
and error. The spanning trees set the lower bound for the number of edges in the
spanners. Edge ratios for the spanners will range from a possible high of 1.0 (all
edges included) down to the ratios associated with the spanning trees.

Let us start with resulis for Gga 4, the 64 vertex graphs having vertices with
average degree 4. Figure 2 shows two graphs depicting edge ratios for k-spanners
with k from 2 to 7; one graph showing the values of metrics for purely random graphs
and the other showing the same values for graphs with a locality preference. We first
note the general shape of the curves. The number of edges in k-spanners approach
the number of edges in the spanning tree as k increases. This is consistent with
the theoretical resulis mentioned earlier regarding properties of the light-weight
spanners generated by the spanner algorithm we used. The decrease in number of
edges is especially pronounced for the length and weight edge-distance measures.
In addition, the numbers of edges in k-spanners constructed for these two distance
measures have nearly identical behavior as k varies.
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Fig. 2. Edge ratios for the two random graph models (locality preference on the right).

The k-spanners constructed for the hop edge-distance measure (hop spanners)
consistently have more edges than those constructed for length and weight edge-
distance measures (length and weight spanners). This phenomenon has a straight-
forward explanation. Recall the algorithm only adds edges (considered in increasing
order of their length or weight} to the spanner as needed to maintain an increase in
distance by a factor of less than k between neighbors in the original graph. A “long”
edge in the length or weight spanners may not be needed, as it can be effectively
“replaced” by a path of possibly more than k “short” edges. In a hop spanner, all
edges have equal distance and are considered in a random order. Thus, an edge
can only be omitted from the hop spanner when a path of k or fewer edges between
its end-vertices has already been considered, which can be expected to happen less
often.

As far as any differences between purely random and locality preference graphs,
edge ratios for the hop and weight spanners are affected little, if at all. For the
length edge-distance measure, some differences do appear. The edge ratio for length
spanners is consistently lower in the locality preference graphs. This indicates that
the locality preference for connecting neighbors in the given, randomly generated
graph does provide a small advantage when forming spanners based on the length
distance measure in terms of number of edges required. As there are more *short”
edges in such graphs, a higher percentage of what “long” edges there are can be
eliminated by the spanner algorithm. Note that when all edges are considered to
have the same edge-distance, as with the hop measure, or when edge-distances do
not correspond to the basis for the locality preference, as with the weight measure,
there is essentially no effect on number of edges.

4.2 Distance Measures

We next turn to distance-related resulis for the graphs with 64 vertices and av-
erage degree 4. As spanners have fewer edges than the original graphs, distances
between vertices will increase. By how much they increase and how they compare
to increases for minimum-distance spanning trees are the key questions. While the
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number of edges is related to traffic generated during message distribution, dis-
tance corresponds roughly to communication delay in the network. Let us first
consider the hop distance measure, as this is usually considered to be most relevant

to distance and delay in the Internet.
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Fig. 3. Average hop distance for the two random graph models (locality preference on the right).

First, we consider average hop distance between vertices. Figure 3 presents resulis
for the hop spanners, the first plot for purely random graphs and the second one
for locality preference graphs. In a minimum-distance spanning tree the average
distance ratio between the tree and the original graph, A(T(Gga,4)))/A(Gea,4)),
is slightly greater than 1.6. We see that average hop distance increases by over
60%, regardless of locality preference in neighbor selection. For a 4-spanner of such
graphs, the ratio A(S54(Gea,4)/A(Gsa,4)) is approximately 1.2, representing only
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Fig. 4. Average hop diameter for the two random graph models (locality preference on the right).
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Fig. 5. Average length distance ratios (locality preference on the right).

a 20% increase in average hop distance. As spanners do not approximate trees
for small k, there are alternative paths that provide shortcuts between vertices,
resulting in average distances that are significantly lower in such spanners. We
see average hop distances are not impacted by locality preference in the network
topology.

In Figure 4, we consider hop diameters in degree 4 graphs, again by two plots, one
for purely random graphs and one for locality preference graphs. In a minimum-
distance spanning tree, the ratio D{T(Ges,4))/ D(Ge4,4) is about 1.5, representing
a 50% increase over hop diameters of the original graph. For a 4-spanner of such
graphs, the ratio D{S4(Ge4,4)/ D{Gée4,4)) is approximately 1.2, for only a 20% in-
crease in hop diameter. Again, we see diameters associated with hop distances are
not changed by locality preference in modeling the network topology. Overall, we
see 4-spanners perform very well in comparison to minimum-distance spanning trees
when considering average hop distance; the difference is less for the hop diameter
measure, but still significant.

Our results show that, as was true for number of edges, only results associated
with the length measure for edge distance are impacted by locality preference in
forming edge connections. Figure 5 shows how average distance ratios in spanners
and spanning trees for the length edge-distance measure is indeed improved in the
locality preference networks. Even though the number of edges in spanners of
the locality preference graphs is less than in spanners for the pure random model,
their diameters and average distances are also smaller. Thus, if locality preference
based on the edge-distance measure plays a role in creating a network graph, then
spanners of that graph perform even better than indicated by the results for hop
spanners.

Note that the distance metrics for spanning trees do not represent an upper limit
on those metrics for k-spanners. Spanners do not focus on minimizing any distances,
only limiting maximum distance growth. Spanners for higher values of k tend to
permit greater distances between vertices than do the minimum-distance spanning
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trees. This is especially noticeable when considering the diameter measure. The k-
spanners we generated have higher hop diameter than the corresponding spanning
trees when k was greater or equal to 5.

4.3 Vertices and Degrees

As average vertex degree increases, both spanning trees and spanners have lower
edge ratios. In Figure 6, we turn our attention to Geq g, graphs having 64 vertices
with average degree of 8. In Figure 2 we saw that for a degree 4 graph, a 4-spanner
has less than 55% of the edges of the original graph for the length and weight edge-
distance measures; a 4-spanner for the hop edge-distance measure has about 75%
of the edges. Now, in a degree & graph, a 4-spanner has only approximately 30% of
the edges of the original graph for the length and weight edge-distance measures;
for the hop edge-distance measure, it has less than 50%. Recall that if we use a
spanner to broadcast a message by flooding within a domain, the number of edges
corresponds roughly to the message traffic generated. We can see that using a 4-
spanner to flood the network results in significant reduction in traffic, and that this
benefit increases as average degree of vertices in the network graph increases.

When considering the effects of average vertex degree on distance measures, we
find that the average hop distance ratio for the spanning tree is approximately 1.75
in graphs with average degree 8; for 3-spanners, it is less than 1.25, and [or 4-
spanners it is less than 1.45, regardless of locality preference. In these same graphs,
the hop diameter ratio for the spanning tree is approximately 1.55; for 3-spanners
it is less than 1.25, and for 4-spanners it is less than 1.50, regardless of locality
prelerence. We see that distance ratios tend to increase overall, reflecting a penalty
incurred by being able to discard more edges when forming the spanners in higher
degree graphs. The pattern of results we find when comparing spanners to the
minimum-distance spanning trese are essentially unchanged, however. The 3- or
4-spanners significantly reduce distances over the spanning tree. As in degree-4
graphs, spanners show betier relative performance on the average distance met-
ric than on the diameter metric. Figure 6 shows some representative results for
sapnners of degree-8 graphs.

Now we turn our attention to network graphs having 128 vertices. The first thing
we note is that the general pattern of results remains unchanged. Qverall, the edge
ratios tend to be slightly higher for the spanners. This increase in edge ratios
produces slightly better distance-related ratios in the spanners. The results for
graphs with 128 vertices are somewhat more supportive of the usefulness of 3-, 4-,
or 5-spanners as distribution topologies; spanner distance-related ratios are slightly
better when compared to minimum-distance spanning tree results. However, we
feel it is best to say that our results indicate that spanner properties are, for the
most part, independent of the number of vertices. This is in contrast to average
degree and, in the case of the length edge-distance measure only, locality preference,
which have clear, more significant, impacts on spanner performance.
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5. CONCLUSION AND FUTURE RESEARCH

In this paper, we have presented two main results regarding the potential use of
graph spanners as virtual topologies for message distribution in networks. First,
we describe a multicast protocol PIM-Span that employs a spanner as basis for
forming the distribution tree from any sender. While not all details of the protocol
design have been decided, its close relationship to existing PIM protocols makes
completing this protocol specification a reasonable next step.

Second, we conduct what we believe to be the first experimental analysis of k-
spanners with respect to edge ratio and distance ratio metrics. While a k-spanner
guarantees maximum stretch less than or equal to k, as expected, average distances
and diameters increase by much less. We also address the issues of how these
metrics are affected by number of vertices, average vertex degree, and any locality
preference in constructing the given graph.

The results show that a spanner represents an interesting intermediate virtual
topology between the original network graph, which minimizes distances, and a
spanning tree, which minimizes number of edges. For the ranges of graph sizes
(number of vertices) and average vertex degrees that typify adminstrative domains
on the Internet, k-spanners, for 3 < k < 5, appear to be the most applicable.

We have a number of research questions to pursue as a result of this study. One
is clearly to complete a specification of PIM-Span. Anocther is to investigate the
number of k-spanners that exist in a given graph and to determine the extent to
which they share edges. An ability to select a number of partially edge-disjoint
spanners would be valuable for improving the scalability of spanner use as traffic
levels increase and possible congestion develops in a network. Finally, spanaer-
related problems for selected sender and receiver sets within a network also offer
the potentials for new, interesting results.
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