
TECHNICAL REPORT CIS-TR-04-05, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF OREGON, NOVEMBER 24, 2004 1

Evaluating the Accuracy of Captured Snapshots by Peer-to-Peer Crawlers

Daniel Stutzbach, Reza Rejaie
{agthorr,reza}@cs.uoregon.edu

I. INTRODUCTION

During recent years, the increasing popularity of
peer-to-peer (P2P) networks has led to growing inter-
est in characterizing dynamics in P2P systems, in par-
ticular the dynamics of peer participation (i.e., churn)
and its impact on the resulting overlay topology and
resource availability (e.g., [1], [2], [3]). These charac-
terizations provide deeper insight into the behavior of
P2P systems, essential for proper design and effective
evaluation. A common technique to characterize the
dynamics of a P2P system is to capture snapshots
of the system using a crawler. Examination of in-
dividual snapshots reveals various properties of the
system (e.g., the size and diameter of the network
and node degree distribution), while the comparison
of sequential snapshots identifies dynamics of various
properties as a function of time (e.g., churn rate). The
accuracy of the conducted analysis based on the above
methodology directly depends on the accuracy of the
captured snapshots of the target P2P system. However,
to our knowledge, previous studies have not verified
the accuracy of their captured snapshots. Therefore,
these studies were unable to address the impact of
snapshot accuracy on correctness of their presented
characterizations. A perfect snapshot of a P2P system
is captured if a crawl is complete and instantaneous.
However, in practice neither of these conditions are
met for the following reasons.
1) Progressive Nature of Crawling: Crawlers dis-
cover participating peers in a progressive fashion.
Therefore, capturing a snapshot may take a long time
depending on the speed of the crawler and its available
resources (i.e., access link bandwidth and processing
power). Given that P2P systems are moving targets,
as the duration of the crawl increases, the captured
snapshot becomes more distorted because more nodes
might arrive or depart during the crawl. Furthermore,
the duration of the crawl determines the time gran-
ularity between comparing back to back snapshots.
Previous studies typically crawled their target P2P
systems in 30 minutes to two hours (e.g., [4], [5]).
2) Unreachable Peers: Captured snapshots are of-

ten incomplete because a non-negligible portion of
discovered peers are not reachable by the crawler.
Previous studies often assumed that unreachable peers
have departed the system and simply excluded them
from the captured snapshots. However, many of these
unreachable peers have not left the system. Instead,
they are either located behind a firewall (i.e., NATed)
or, more interestingly, are receiving too many SYN
packets. Therefore, ignoring these peers certainly in-
troduces a non-negligible error in the captured snap-
shot.

In summary, the accuracy of captured snapshots by
P2P crawlers can be significantly affected by both
the duration of a crawl and the ratio of unreachable
peers. Determining the accuracy of captured snapshots
of a P2P system is fundamentally difficult because
a more accurate reference snapshot for comparison
is not available. There is also a tradeoff between
the duration of a crawl and the completeness of the
captured snapshot. Furthermore, the desired character-
ization of P2P systems determines the granularity and
type of collected information in each snapshot. For
example, a study on churn only requires information
about participating peers and may not need to directly
contact all peers. In contrast, to study the overlay
topology, a captured snapshot should include all edges
of the overlay which requires the crawler to directly
contact every peer otherwise a connection between
two unvisited peers would be missed.

In this paper, our main goal is to quantify the
accuracy of captured snapshots by P2P crawlers.
More specifically, we try to answer the following key
questions:

• How do the speed of crawling and the ratio of
unreachable peers affect accuracy?

• What is the fundamental tradeoff between the
duration of the crawl and completeness of the
snapshot?

• What is the impact of snapshot accuracy on the
analysis of various characteristics of the system?

We focus on the Gnutella network as a representative
P2P system because it is the largest, open P2P system



TECHNICAL REPORT CIS-TR-04-05, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF OREGON, NOVEMBER 24, 2004 2

on today’s Internet. However, we believe that most
of the raised issues and findings are generic and
applicable to other P2P systems. To answer the above
questions, we try to push the envelope and capture
more accurate snapshots of the Gnutella network by
increasing crawling speed and resolving the status
of unreachable peers. We also introduce techniques
for estimating the accuracy without having a perfect
reference snapshot. These more accurate snapshots are
used as reference to quantify the impact of crawling
speed and unreachable peers on snapshot accuracy.
These snapshots also enable us to examine several im-
portant tradeoffs during crawling. More importantly,
we provide deeper insight into the dynamics of the
Gnutella network over short timescales which was not
feasible in previous studies with slow crawlers.
To achieve these goals, we developed a fast and effi-
cient Gnutella crawler, called Cruiser, that is able to
capture a complete snapshot of the Gnutella network
in around 5 minutes with 6 off-the-shelf desktop PCs.
Cruiser achieves this significant reduction in crawl
time as follows: (i) it leverages several features of
modern Gnutella including its semi-structured topol-
ogy, efficient new handshake mechanism, and high
degree of node connectivity among top-level peers.
(ii) it substantially increases the degree of concurrency
during the crawling process by deploying a master-
slave architecture and allowing each slave crawler to
contact hundreds of peers simultaneously. We also
address several systems issues and performance bot-
tlenecks in the design of P2P crawlers. Our prelim-
inary results show that Cruiser can capture accurate
snapshots of the Gnutella network. Furthermore, we
quantify the impact of crawl duration and crawler
speed on the accuracy of captured snapshots. The
rest of this extended abstract is organized as follows:
In Section II, we briefly present key features of the
modern Gnutella protocol. Section III provides a short
overview of Cruiser. Finally, we present some of our
preliminary results in Section IV. More details on the

Legacy Peer
Ultra Peer
Leaf Peer

Top
-le

ve
l o

ve
rla

y o
f 

th
e G

nutel
la 

Top
olo

gy

Fig. 1. Semi-Structured Topology of Modern Gnutella

design and evaluation of Cruiser, along with further
results will be presented in the final version of the
paper.

II. MODERN GNUTELLA
In this section, we briefly describe a few key

features of modern Gnutella [6], [7] that are used by
Cruiser. The original Gnutella protocol had limited
scalability due to its flat overlay. To address this
limitation, most modern Gnutella clients implement
a two-tiered network structure by dividing peers into
two groups: ultrapeers (or super-peers) and leaf peers.
As shown in Figure 1, each ultrapeer neighbors with
several other ultrapeers within a top-level overlay. The
majority of the peers are leaves that are connected
to the overlay through a few ultrapeers. Furthermore,
modern Gnutella clients implement a mechanism that
allows high-bandwidth, un-firewalled leaf peers to
become ultrapeers in order to maintain a proper
ultrapeer-to-leaf ratio in the overlay. Those peers that
do not implement the ultrapeer feature can only reside
in the top-level overlay and do not accept any leaves.
We refer to these peers as legacy peers. We also refer
to the legacy peers and ultrapeers collectively as the
top-level peers. Our recent measurements [8] reveal
that the degree of connectivity among top-level peers
is much higher than that in flat original Gnutella.

Finally, modern Gnutella clients implement a spe-
cial handshaking feature that enables the crawler to
quickly query a peer for a list of its current neighbors.
Previous crawlers relied on other features of the
Gnutella protocol, namely Ping-Pong messages, to
retrieve this information. These techniques were less
efficient and potentially less reliable.

III. THE GNUTELLA CRUISER

Our primary goal in the design of Cruiser is to
significantly improve crawling speed compared to
previously reported crawlers in order to improve the
accuracy of captured snapshots. We deploy several
basic techniques and features to achieve this design
goal: First, the handshaking mechanism in modern
Gnutella enables Cruiser to quickly obtain a fresh
list of current neighbors from each peer. Second,
Cruiser leverages the two-tier structure of the Gnutella
network by only crawling the top-level peers. Since
each leaf must be connected to an ultrapeer, this
approach enables us to capture all the nodes and links
of the overlay by contacting a relatively small fraction
of all peers. Furthermore, the high degree of peer
connectivity within the top level overlay substantially



TECHNICAL REPORT CIS-TR-04-05, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF OREGON, NOVEMBER 24, 2004 3

increases the rate of discovery for new ultrapeers.
Overall, this strategy leads to a major reduction in
the duration of a crawl without loss of information.
Third, Cruiser employs a master-slave architecture in
order to achieve a high degree of concurrency and
to effectively utilize available resources on multiple
desktop PCs. A master process coordinates among
multiple slave processes where each slave acts as
a virtually independent crawler and crawls the net-
work in parallel. To further improve the degree of
concurrency, each slave process uses asynchronous
communications to open hundreds of connections in
parallel. Although Cruiser uses considerable local
resources, its offered load on individual Gnutella peers
is minimal since each top-level peer is contacted only
once per snapshot.
Fourth, Cruiser implements an adaptive load man-
agement mechanism to ensure that slaves processes
remain busy but do not become overwhelmed. This is
important for the steady progress of the crawl espe-
cially when different slave nodes have heterogeneous
processing capabilities. Toward this end, Cruiser en-
ables each slave process to adjust its own load (i.e.,
number of open connections) using an AIMD algo-
rithm similar to TCP’s congestion control mechanism.
Unreachable Peers: A non-negligible subset of con-
tacted peers in each crawl timeout or refuse TCP
connections. Peers are unreachable when they have
already left the system (i.e., departed), they are lo-
cated behind a firewall (i.e., NATed), or they receive
too many SYN packets (i.e., overloaded). While the
problem with departed and NATed peers were already
raised in previous studies, we discovered unreachable
peers that were overloaded, and refused and then
accepted TCP connections sporadically over a short
period of time (i.e., within a single minute they would
alternate repeatedly between accepting and refusing
connections [8]). Unreachable ultrapeers can intro-
duce the following errors in a captured snapshot: (i)
including unreachable peers that were departed, (ii)
missing branches between unreachable ultrapeers and
their leaves, and (iii) missing branches between two
unreachable top-level peers. To minimize these errors,
it is important to quantify what portion of unreachable
peers were departed versus firewalled or overloaded.
Unfortunately, there is no reliable test to firmly verify
the status of an unreachable peers among the three
possible scenarios, since both overloaded, NATed, and
departed peers may or may not reply to SYN packets.

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000

0 10000 20000 30000 40000 50000

N
od

es
/li

nk
s

di
sc

ov
er

ed

Top-level nodes contacted

Leaf Links
Top-level Links

Leaf Nodes
Top-level Nodes

Fig. 2. Cumulative information per contacted ultrapeer

We used the following approach to identify the
status of unreachable peers. We performed back-
to-back crawls to capture two snapshots. Then, the
unreachable peers in the first snapshot that were
missing from the second snapshot, were considered
“departed peers” during the first snapshot. This is fea-
sible because the duration of each crawl is very short
(around 5 minutes). To distinguish overloaded peers
from NATed peers, we created a “profile” of Gnutella
peers that contains various information about each
discovered peer (e.g., the number of times each peer
was successfully contacted). The profile is updated
by Cruiser after each crawl. After excluding departed
peers from a snapshot, the status of remaining un-
reachable peers in each crawl is quickly determined
as follows: if a peer was successfully contacted at
least once in previous crawls, it is considered to
be overloaded. Otherwise, it is likely to be NATed.
Clearly, the accuracy of this approach increases with
the number of previous crawls (i.e., the number of
attempted contacts for each unreachable peer). We
also group the NATed peers in the profile that have the
same prefix in order to identify those ISPs that deploy
a firewall for their clients. Currently, our Gnutella
profile consists of more than one million peers, and
is growing.

IV. RESULTS

We have been running Cruiser on six 1Ghz Pen-
tium III PCs in our lab during the past couple of
months and have captured several hundred snapshots
of the Gnutella network. In this section, we present
a preview of our results to demonstrate the ability
of Cruiser to capture accurate snapshots and examine
several key tradeoffs. Note that the profile is not
used to reduce error in the presented results. We
will report the benefits of the profile along with the
impact of unreachable peers in the final revision of
the paper. Completeness of Snapshots: To examine
the completeness of captured snapshots by Cruiser,



TECHNICAL REPORT CIS-TR-04-05, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF OREGON, NOVEMBER 24, 2004 4

we kept track of the following variables during each
single crawl: number of discovered top-level peers,
number of leaves, number of links between ultrapeers,
and number of links to leaves. Figure 2 presents
variations of these four variables as a function of
number of contacted peers thus far in a sample crawl.
Note that the number of discovered top-level peers as
well as leaves curve off which is evidence that Cruiser
has captured a majority of the participating peers.
Links between top-level peers curves off somewhat.
Finally, links to leaves is linearly increasing with the
number of top-level peers because each top-level peers
provide a unique set of links between itself and its
leaves.
Impact of Crawling Duration: To examine the
impact of crawl duration on the accuracy of captured
snapshots, we modified Cruiser to stop the crawl after
a specified period. Then, we performed two back-to-
back crawls and repeated this process for different
durations. We define δ+ and δ− as the number of new
and missing peers in the second snapshot compared
to the first one, respectively (normalized by the total
number of peers in the first crawl). Figures 3 presents
the sum δ = δ+ + δ− as well as the total number of
discovered peers as a function of the crawl duration
for all participating peers (both top-level and leaves).
During short crawls (left side of the graph), δ is high
because the captured snapshot is incomplete, and each
crawl captures a different subset. As the duration of
crawl increases, δ decreases which indicates that the
captured snapshot becomes more complete. Increas-
ing the crawl length beyond two minute does not
decrease δ any further, and achieves marginal increase
in number of discovered peers. This figure reveals
a few important points. First, there exists a “sweet
spot” for crawl duration beyond which crawling has
diminishing returns if the goal is simply to capture

0

20

40

60

80

100

0 50 100 150 200 250 300

0

100000

200000

300000

400000

500000

600000

700000

C
ha

ng
e

in
pe

er
s

(δ
)

Pe
er

s
di

sc
ov

er
ed

Maximum crawl duration (seconds)

δ

Peers Discovered

Fig. 3. Error as a function of maximum crawl duration, generated
by running two crawls back-to-back for each x-value and compute
the δ. Mean of 8 runs.

0

15

30

45

0 20 40 60 80 100 120

To
p-

le
ve

l
D

el
ta

Crawl Duration (minutes)

3

3
3

3

Fig. 4. Effects of crawling speed

the population. Second, for sufficiently long crawls,
Cruiser can capture a relatively un-stretched snapshot.
Third, the change of δ = 0.08 is an upper-bound on
the distortion due to the passage of time as Cruiser
runs. The relatively flat delta on the right suggest
that a small but significant fraction of the network
is unstable and turns over quickly.
Impact of Crawling Speed: To examine the im-
pact of crawling speed on the accuracy of captured
snapshots, we decreased the speed of Cruiser by
reducing the number of parallel connections that each
slave process can open. Figure 4 depicts the error
in top-level peers between snapshots from back-to-
back crawls as a function of crawl duration. The first
snapshot was captured with the maximum speed and
serves as a reference whereas the speed (and thus
duration) of the second snapshot has changed. The
duration of the second snapshot is shown as x value.
This figure clearly demonstrates that the accuracy of
snapshots decreases significantly for longer crawls.

REFERENCES

[1] R. Bhagwan, S. Savage, and G. Voelker, “Understanding
availability,” in International Workshop on Peer-to-Peer
Systems, 2003.

[2] Stefan Saroiu, P. Krishna Gummadi, , and Steven D. Gribble,
“Measuring and Analyzing the Characteristics of Napster and
Gnutella Hosts,” Multimedia Systems Journal, vol. 8, no. 5,
Nov. 2002.

[3] David Liben-Nowell, Hari Balakrishnan, , and David Karger,
“Analysis of the Evolution of Peer-to-Peer Systems,” in
Principles of Distributed Computing, Monterey, CA, July
2002.

[4] clip2.com, “Gnutella: To the Bandwidth Barrier and Beyond,”
Nov. 2000.

[5] Matei Ripeanu, Ian Foster, and Adriana Iamnitchi, “Mapping
the Gnutella Network: Properties of Large-Scale Peer-to-Peer
Systems and Implications for System Design,” IEEE Internet
Computing Journal, vol. 6, no. 1, 2002.

[6] Anurag Singla and Christopher Rohrs, “Ultrapeers: Another
Step Towards Gnutella Scalability,” Gnutella Developer’s
Forum, Nov. 2002.

[7] Lime Wire LLC, “Crawler Compatability,” Gnutella Devel-
oper’s Forum, Jan. 2003.

[8] Daniel Stutzbach and Reza Rejaie, “Characterizing Today’s
Semi-Structured Gnutella Network,” Tech. Rep. CIS-TR-04-
02, University of Oregon, 2004.


