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Abstract

The user-driven dynamics of peer participation, or churn,
are an inherent property of Peer-to-Peer (P2P) systems
that should be taken into account in both the design and
evaluation of any P2P application. While prior studies
have shown that peer participation is highly dynamic,
they have not provided detailed models, needed for sim-
ulation and analysis. More importantly, it is unclear
whether the dynamics of peer participation exhibit a sim-
ilar behavior across different classes of P2P applications.

In this paper, we present a detailed study of churn
in widely-deployed applications from three different
classes of P2P systems: an unstructured file-sharing sys-
tem (Gnutella), a content-distribution system (BitTor-
rent), and a distributed hash table system (Kad). Our
analysis reveals several interesting properties of churn in-
cluding the followings: (i) the overall dynamics of peer
participation is surprisingly similar across these systems,
(ii) peer session times and downtimes follow power-law
distributions, (iii) peer inter-arrival times follow a Pois-
son distribution, and (iv) peer session times across con-
secutive appearances are correlated in file sharing ap-
plications. These findings imply that a large portion of
participating peers at any point of time are highly sta-
ble while the remaining peers turnover very quickly. We
show how our findings can be used to simulate churn,
and discuss the basic implications of our results on the
design of P2P applications.

1 Introduction

During recent years, the Internet has witnessed a signif-
icant increase in the popularity of Peer-to-Peer applica-
tions ranging from file-sharing (e.g., Gnutella and Fast-
Track) to conferencing (e.g., End System Multicast [6])
and content distribution (e.g., BitTorrent). In P2P appli-
cations, each participating peer voluntarily joins the sys-
tem, uses available resources of other peers (e.g., CPU,
storage, bandwidth) while offering up its own resources,
and leaves the system at some arbitrary later point in

time. This implies that (i) peer participation in P2P sys-
tems is inherently dynamic, and (ii) these dynamics are
primarily user-driven (at least in those P2P applications
that do not run as a hidden “always-on” system dae-
mons). The user-driven dynamics of peer participation,
or churn, must be taken into account in both the design
and evaluation of any large scale P2P application. To
achieve this goal, application designers require a reliable,
representative, and relatively simple characterization of
churn.

Despite their importance, the characteristics of churn
in P2P applications are not well understood. Several
measurement-based studies have shed some light on the
overall dynamics of peer participation and show that it
is indeed highly dynamic (e.g., [5, 16, 17]). These stud-
ies only present high level characteristics of churn (i.e.,
the CDF of session time [15] or median session time [5])
as a part of comprehensive studies of specific P2P appli-
cations. Therefore, the provided characteristics are not
sufficient to model or simulate churn. More importantly,
previous studies on churn have not verified (or at least did
not present any evidence) that their measurements have
captured a representative population of sessions. Addi-
tionally, their findings are sometimes significantly differ-
ent (e.g., the reported median session time varies signifi-
cantly in different measurements of the same P2P appli-
cation [14]). Section 6 discusses the related work in more
detail. In the absence of any reliable model, researchers
have made simplifying assumptions about churn behav-
ior (e.g., a Poisson distribution for session time [14, 11])
in their design and evaluation. In a nutshell, the follow-
ing important questions about churn still beg for an an-
swer:

e What, if any, are the fundamental properties which
consistently characterize peer churn?

e How similar (or different) are churn characteristics
across different classes of P2P applications?

e What is the right model for churn characteristics for



use in evaluating P2P applications through simula-
tion?

e What algorithms can P2P applications employ to
handle churn intelligently?

This paper presents a detailed study on churn
in widely-deployed applications from three different
classes of P2P systems: Gnutella, an unstructured file-
sharing system; Kad, a Distributed Hash Table (DHT);
and BitTorrent, a content-distribution system. One con-
tribution of this work is our measurement methodology,
presented in Section 2, to capture an unbiased characteri-
zation of peer dynamics. This is particularly challenging
in Gnutella and Kad since no built-in centralized moni-
toring exists. To address this issue, we capture all partic-
ipating peers in Gnutella and leverage existing structure
in the Kad network to acquire a uniformly random sam-
ple of sessions.

The main contributions of this paper are detailed char-
acterizations and modeling of peer dynamics across dif-
ferent classes of P2P systems. Toward this end, in Sec-
tion 3 we characterize churn at two levels: (i) Group-
level characterizations, which present the behavior of
the all participating peers collectively, and (ii) Peer-Level
characterizations, which capture the behavior of specific
clients (in Kad) or specific IP addresses (in Gnutella and
BitTorrent) across multiple appearances in the system
over time. We also discuss similarities and differences in
churn behavior across the different classes of P2P appli-
cations. Our main results can be summarized as follows:

e Various characteristics of churn exhibit similar be-
havior across all three applications.

e Session time follows a power-law distribution.
However, most of the peers in the system at any
point of time are long-lived peers. In other words,
most peers in the system are relatively stable, while
the remaining small portion of peers turnover very
quickly.

e Peer inter-arrival time follows a Poisson distribu-
tion.

e Session times across consecutive appearances of a
client or an IP address exhibit a strong correlation
in both Gnutella and Kad. Thus, past session time
is a good predictor of the next session time.

e The availability of individual clients or IP addresses
per day exhibit a strong correlation across consecu-
tive days.

Additionally, Section 4 shows how our results can be
leveraged to accurately simulate churn for a desired ac-
tive population size, and Section 5 elaborates on key im-
plications of our results on the design of P2P applica-
tions.

2 Measurement Methodology

Our goal is to accurately capture the dynamics of peer
participation across a representative group of peers in
three candidate P2P systems: Gnutella, BitTorrent and
Kad. One attractive feature of these candidate systems is
that they have open specifications and open source imple-
mentations. This allows us to conduct our measurement
with more confidence since it minimizes any potential
incompatibility error. To accurately capture churn in any
P2P system, we need to address two issues: (i) how to
select a representative group of peers, and (ii) how to ac-
curately measure the arrival and departure times of each
selected peer. Our ability to address these issues depends
on features provided by each system as well as their pop-
ulation size.

While Gnutella and Kad applications build one large
overlay for the purpose of locating files, BitTorrent uses
separate overlays, called swarms for each file being
transferred. Each BitTorrent overlay network is identi-
fied by a hash of the file to be transferred and uses a spe-
cial rendezvous point, called a tracker, for coordination.
The tracker’s job is to keep track of all peers within the
swarm. Towards this end, each participating peer con-
tacts the tracker when it arrives and notifies the tracker
when it departs. Additionally, peers contact the tracker
periodically and the tracker removes peers which it has
not heard from in some time (i.e., soft state). The tracker
logs each of these interactions, significantly facilitating
the capture of the arrival and departure time of all peers
in each BitTorrent swarm.

However, the Gnutella and Kad networks are ex-
tremely large in size (i.e., more than a million concurrent
peers) and do not have a central monitoring point. In
our prior work [18], we developed a peer-to-peer crawler
called Cruiser which can capture a snapshot of the peers
in the Gnutella network over the course of several min-
utes (A). We have modified Cruiser by separating out the
Gnutella-specific components and adopting a plug-in ar-
chitecture which allows Cruiser to speak different proto-
cols to crawl different P2P networks. The generic com-
ponents of Cruiser, used to achieve high performance,
include coordination, data recoding, and parallelization.
The plug-in architecture allows Cruiser to speak different
P2P protocols, such as Gnutella and Kad, with the addi-
tional of a relatively small, protocol-specific module.

Our basic measurement methodology for Gnutella and
Kad is to use Cruiser to collect hundreds of back-to-
back snapshots, and note the arrival and departure time
of peers by comparing snapshots. A new peer p that was
captured in snapshot 7 but was not present in snapshot
(¢ — 1) must have arrived during the interval 2A be-
tween the start of crawl (i — 1) and the end of crawl



it.  Alternatively, a peer ¢ that was part of snapshot
(i — 1) but was not present in snapshot ¢ must have left
during the interval 2A from the start of one crawl and
the end of the next. Therefore, we can measure with
a granularity of 2A the departure and arrival times of
every peer. We note that as the number of active peers
grows, the duration of each crawl (A) increases, and thus
the granularity of our measurements becomes coarser,
i.e., there is a tradeoff between the size of a snapshot
and the accuracy of the measured arrival and departure
times. Therefore, it is essential to minimize the duration
of crawls (A). Once we determine the departure and ar-
rival times of a peer p within a sequence of back-to-back
snapshots, we can easily determine the duration of one
appearance which is called its session time as follows:
SessionTime = Departurelime — ArrivalTime.
We also use the term uptime for active peer p to denote
the duration of time since its arrival.

To ensure that measured session times are not biased,
we use the “create-based method” employed by Saroiu
et al. [15]: Given a sequence of back-to-back snapshots
during a window of — minutes, we split the measurement
window into two halves. Then, we only keep the ses-
sion time for those peers that (i) arrive during the first
half, (ii) leave during either the first or second half of
the measurement window, and (iii) their session time is
not longer than 7. This guarantees unbiased results for
sessions shorter than 3, but tells us nothing about the dis-
tribution of longer sessions. To avoid time-of-day bias in
our results we chose = = 2 days. Our initial measure-
ments, as well as previous studies [3], show fluctuations
in network size correlated with the time of day.

In the following subsections, we present a brief
overview of our candidate applications, and discuss
application-specific issues in capturing accurate and rep-
resentative snapshots.

2.1 BitTorrent

BitTorrent is a popular P2P application that is often used
for the distribution of very large files from a source to
a large group of users (called a swarm). Peers form an
overlay and exchange different blocks of the content until
each peer has the entire file. Each swarm is coordinated
by a rendezvous point, called a tracker, whose address is
provided out of band. Each new peer contacts the tracker
to join the swarm, periodically sends an update of its
progress, and informs the tracker when it departs. Note
that each peer may receive the entire file across multi-
ple sessions, i.e., it may obtain only a subset of blocks
in one session and resume the download later. Since the
tracker logs all its interactions with group members, the

1The interval is 2A rather than A because there is a possibility
the peer arrives during crawl + — 1 after the crawler has passed its
neighborhood.

log provides detailed information about the arrival and
departure times of each peer.

We have obtained tracker logs from two long Bit-
Torrent swarms: distributions of Debian and Red Hat?.
Close examination of these tracker logs reveals that
roughly 50% of participating peers contact the tracker
within every 5 minutes, and 99% of them contact the
tracker within every 31 minutes. However, peers may de-
part in an ungraceful fashion and abruptly stop contact-
ing the tracker. To identify these peers, we conservatively
assume any peer that has not contacted the tracker within
35 minutes has ungracefully departed. These make up
around one third of all sessions in our dataset and were
eliminated since we can not measure their session time.
We note that the session time for a BitTorrent client is
a combination of time spent downloading the file (the
download time) and additional time that the user leaves
the client running after the download is complete (the
lingering time). While the download time might be in-
fluenced by the size of the file or the number of other
peers, the lingering time is directly determined by user
behavior. Furthermore, the user can directly control the
duration of each session by stopping the application dur-
ing the download and returning at a later time to com-
plete the file download. Since the tracker log presents
the evolution of delivered content to each peer, it allows
us to separate download time from lingering time in our
analysis and examine them separately.

2.2 Gnutella

Gnutella is a popular P2P file-sharing applications with
more than 1.3 million concurrent peers [19]. Each peer
joins the network by connecting to a random group of
participating peers. Since Gnutella is not run as a dae-
mon, the arrival and departure times of each peer are trig-
gered by user behavior, i.e., session times are driven by
when the user opens and closes the application. There is
no central node in the Gnutella network that keeps track
of all participating peers, therefore the only way to dis-
cover all peers is to crawl the overlay. Given a few par-
ticipating peers in the session, a crawler progressively
contacts peers to learn about their neighbors, until it dis-
covers all the peers. The large size of the Gnutella net-
work makes it a challenge to capture a complete crawl
quickly. To address this, previous studies have selected a
random subset of peers discovered by a partial crawl, and
periodically probe those peers to measure their session
time (e.g., [15, 3]). The key question is “Does the ses-
sion times of such a subset of peers represent the entire
population of sessions in the Gnutella network?”. With
a heavy-tailed distribution of session time [16, 5], peers

2We would like to thank Ernst Biersack from the Institut Eurecom
who has kindly shared their Red Had tracker logs with us [7]. We
obtained the Debian tracker logs directly from the Debian organization.



from a particular snapshot will have significantly longer
sessions than the average session.

To ensure that captured session times are representa-
tive, we try to capture all peers in the overlay in each
snapshot. We have recently developed a parallel crawler,
called Cruiser [18], that can capture a complete snap-
shot of the Gnutella network with 1.3 million peers, in
around 7 minutes (i.e., A = 7 minutes). Cruiser in-
corporates several features to achieve a achieve orders
of magnitude higher crawling speed compare to all pre-
viously reported crawler as follows: (i) a master-slave
architecture, (ii) parallel crawling of hundreds peers by
each slave machine, and (iii) leveraging the two-tier ar-
chitecture of modern Gnutella by crawling only top-level
peers. In summary, Cruiser enables us to measure the de-
parture and arrival times with around 14 minutes of accu-
racy for every peer in the network. Capturing the entire
population eliminates any concern about sampling bias.

23 Kad

Kad is a Kademlia-based [12] P2P search network used
by the eMule P2P file-sharing software [1]. To our
knowledge, Kad is the largest deployed DHT, with more
than 1 million simultaneous users according to our mea-
surements. Similar to other DHTS, each node has a glob-
ally unique identifier of length b bits, and objects are
stored on the node with the identifier closest to their hash.
Each node stores a structured routing table to other nodes
in the network such that the expected overlay distance
between any two nodes is O(log n), where n is the pop-
ulation size.

Cruiser crawls the Kad network by querying nodes for
their routing table information. This is possible due to
the fact that in Kad peers do not actually route messages
on behalf of other peers. Instead, each peer simply re-
turns a message to the original peer referring it to the
next hop in the routing table®. As a DHT, Kad uses a
deterministic algorithm to specify the prefixes in each
peer’s routing table, based on that peer’s Kad ID. Em-
ulating this algorithm, Cruiser can send a query for each
prefix in the routing table to extract the full routing table
of a peer.

Since Kad uses a simple UDP query-response proto-
col, and extracting the entire routing table of a single
peer requires many queries (around 40), Cruiser needs
a mechanism to regulate the query rate to avoid causing
congestion. Cruiser’s plug-in Kad module implements a
NewReno TCP-style congestion control algorithm [4, 8]
to recover from dropped packets and throttle back the
query rate when congestion is detected. The congestion
control component includes the following mechanisms:
round trip time variance estimation, slow start, conges-
tion avoidance, exponential backoff, fast retransmit, and

SThis is sometimes referred to as “iterative routing”.

Dataset Zone Mean Crawl
Kad 1 0xab0/10 3.4 min
Kad 2 0x594/10 3.5min
Kad 3 0xel4/10 3.3min
Kad 4 0x734/12 1.1 min

Table 1: Kad Zones

fast recovery. Our implementation differs from TCP in
that it relies on specific, rather than cumulative, acknowl-
edgements, so there is no risk of re-requesting packets
already received.

Our measurements reveal most Kad peers store over
700 pointers to other peers. However, many of these
pointers are stale*. Due to the large number of stale en-
tries in each routing table, Cruiser must contact each dis-
covered peer to verify whether it’s actually present dur-
ing the crawl. To achieve a high crawling speed, Cruiser
times out slow and unresponsive peers more aggressively
than TCP. If Cruiser has not received any packets from a
peer after 3 timeouts (2.5 seconds), it assumes the peer is
not present. If Cruiser receives any packets from a peer,
it notes the peer as present even if the full routing table
is not extracted due to later timeouts. We empirically
configured these timeout values by choosing the lowest
timeout which did not generate false negatives in prelim-
inary tests.

Due to the large network size as well as the large rout-
ing tables in each peer, crawling the entire Kad network
takes a long time, even with our fast crawler. Normally
this would unacceptably decrease the accuracy in mea-
suring the peer arrival and departure time. To address
this, we leverage the existing structure of the Kad ID
space. We divide the identifier space into zones, where
each zone consists of a continuous range of identifiers. If
we visualize the identifier space as a ring, a zone corre-
sponds with an arc of the ring. Since each peer selects
its ID uniformly at random, each zone represents a uni-
formly random sample of the entire Kad network. Unlike
sampling a set of addresses and probing them periodi-
cally, zones allow us to monitor the arrival of new peers.
In other words, we are selecting a subset of all potential
sessions rather than a subset of all currently active peers.

As an input parameter, Cruiser accepts a zone, speci-
fied as a Kad ID address and mask, analogous to an IP
subnet address. The address specifies the location of the
zone, and the mask specifies the zone’s size. We use the
“slash notation” to specify Kad ID zones. For example
“0x594/10” specifies all Kad identifiers where the first
10 bits match the first 10 bits in the hexadecimal number
0x594. Furthermore, we present results for four different
Kad zones, as shown in Table 1 to empirically verify that
results are consistent across zones. The /10 zones have

4Kademlia includes a lot of redundancy in its routing tables with
many potential paths for each next hop, using a LRU policy to push out
stale entries.
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Table 2: Measurement collections

approximately 1000 simultaneous peers at any time, and
the /12 zone has approximately 250 simultaneous peers.
We selected the /10 zone size because it is the largest
zone which we can crawl within 5 minutes. We added
the /12 zone to give us some insight into dynamics below
5 minutes®. We crawled each zone back-to-back for a 2-
day period during which we observed many thousands of
complete sessions in each zone.

2.4 DataSet

Table 2 provides summary information for the datasets
we use throughout this paper. We use 5 two-day datasets
from Gnutella and 4 two-day datasets from Kad, where
each datasets consists of several hundred back-to-back
snapshots. We also use 2 datasets from BitTorrent, each
a few months long. In the remainder of this paper, we
will simply refer to each dataset by the name given in
Table 2.

3 Characterizations of Churn

We characterize churn at two different levels:

(i) Group-Level Characterization: We consider individ-
ual appearances by peers (i.e., each measured session
time) independently. More specifically, the focus is on
the aggregate behavior of individual session times with-

5Reducing the zone size further does not significantly reduce our
crawl time due to the time we must spend waiting for congested peers
and timeouts.

the peer-level characterizations.
3.1 Group-Level Characterization

In this section, we explore properties of churn which do
not rely on peer identity across sessions. We explore
the relationship between the distribution of session times
across all sessions and the distribution of session times
across all peers coexisting at any particular moment. We
will also examine the power of uptime as a predictor for
remaining uptime, and examine the inter-arrival distri-
bution for new peers. These results will provide suffi-
cient information to model churn for simulation, which
we will discuss in Section 4.

Distribution of Session Time: Figure 1 presents the
distribution of session time across different datasets for
each system®. These results demonstrate the following
points: First, the distribution of session time across dif-
ferent datasets is very similar. This implies that the distri-
bution of session time does not significantly change with
time and thus our results are representative for each sys-
tem. Second, and more importantly, in all three systems
the distribution of session time, s(¢), within the range of
a few minutes up to a day follows a power-law distribu-
tion:

s(t) x t™¢

We also performed a least-squares fit on the log fo the
data of the session time distributions shown in Figure 1.

8All log-log plots in this paper use log bins to smooth out the tail,
where the number of data points in each bin would otherwise become
small and noisy. To avoid weighting the fit towards the much larger
number of data points in the tail, fits also use log bins.
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The reduced chi-squared (x?) value and the power-law
parameter, «, are presented in Table 3. The parameter,
«, varies across datasets, but is consistently in the range
1.1-1.7. Higher values of « correspond with a smaller
fraction of long sessions. The reduced x? values less
than 3 indicate the distribution is a good fit.

This finding suggests that the power-law distribution
of session times is independent of the application and
the purpose of the application. Rather, it’s determined
by application-independent aspects of user behavior. To
further examine this hypothesis, we divide the session
time of BitTorrent clients into completion time (the time
from appearance to download completion) and lingering
time (the time that each peer stays in the network after
completion of the download). These results are limited
to peers which download the complete file in a single ses-
sion. Figure 2 depicts the distribution of both completion
time and lingering time for both BitTorrent datasets. In-
terestingly, these figures show that lingering time also
follows a power-law distribution. However, completion
time does not appear to follow any specific pattern, pre-
sumably since it is both group- and content-dependent.
Since lingering does not serve the user in any way, this
is yet another evidence, that user-controlled events, unre-
lated to the application’s functionality result in a power-
law.

Furthermore, session times in BitTorrent (Figure 1(c))

Dataset Reduced x? a
Gnutella 1 0.162202  1.30406
Gnutella 2 0.877162  1.33928
Gnutella 3 0.134783  1.44931
Gnutella 4 0.245367  1.67932
Gnutella 5 0.232318  1.59992

Kad 1 0.0133128  1.17703
Kad 2 0.0354993 1.11664
Kad 3 0.0342527  1.11935
Kad 4 0.0689354  1.15276
BitTorrent Debian 1.11564  1.27459
BitTorrent Red Hat 2.90033  1.27020

Table 3: Reduced 2 and fitted power-law parameter val-
ues for observed uptime distributions

exhibit a roughly uniform distribution for very short
timescale (< 1 minute), and power-law with a steeper
slope for very long (> 1 day) timescales. We expect
that Gnutella and Kad behave similarly, but our current
datasets are not of sufficiently long duration to charac-
terize long session times and do not have adequately fine
granularity to analyze the behavior of very short sessions.
In general, for very short timescales the power-law distri-
bution cannot hold since it would require an infinite num-
ber of infinitely short sessions. For very long timescales,
we would expect a steeper slope as hardware issues begin
to dominate over user behavior (e.g., needing to reboot,
power failure). Our findings present the behavior of ses-
sion time within the range of a few minutes up to a day,
which is adequate for most P2P modeling and simulation
purposes.

In summary, these results show that session times fol-
low a power-law distribution across different classes of
P2P systems within the timescale of a few minutes to one
day. Furthermore, this property is driven primarily by
user action. Power-law is a heavily skewed distribution;
compared to the Poisson distribution, it has some ses-
sions with much longer duration, as well as a much larger
fraction of sessions with very short durations. Therefore,
the common modeling assumption of a Poisson session
time distribution in recent studies (e.g., [14, 11]) is inap-
propriate.

Distribution of Peer Uptime: In the previous subsec-
tion, we presented the distribution of session time across
all sessions. However, it does not illustrate what combi-
nation of these peers might coexist in the system at any
point of time, i.e., Figure 1 does not present the distri-
bution of session time across peers in a given snapshot.
To address this issue, we turn our attention to the dis-
tribution of session time among participating peers in a
snapshot, s, (t). We mathematically relate s,,(¢) to s(t)
as follows. If we imagine sampling the snapshots of the
system, a session of length n has n opportunities to be
present, while a session of unit length only has a single
opportunity. Thus, s,,(t) is also called the time-weighted
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session time distribution, and is related to s(¢) as follows:

Su(t) o /s(t) dt ot -t7¢

There is also a relationship between s(t) and the distribu-
tion of uptimes among each peer in the system, «(¢). We
recall that the uptime of peer p at a given point of time is
defined as the continuous time that the peer p has been in
the system since its most recent arrival. In this case, an
uptime of n will be represented once by every peer with
a session length of n or longer. Thus, the relationship
between s(t) and w(t) is described as follows:

u(t) /toz(t) dt oct-t=¢

In other words, s, (t) and u(t) follow identical distri-
butions. In fact, the distribution of remaining uptimes’
among all peers in a snapshot also follows the same dis-
tribution. This implies that both the distribution of ses-
sion time and uptime within a snapshot follow power-
law distributions, but the latter has a significantly gentler
“slope”, o’ = a — 1. Lower « implies that the distribu-
tion of peers within a snapshot is weighted more heavily
towards long-lived peers.

Figure 3 shows the CDF of w(t) for co-existing peers
within a snapshot®. To compute this distribution, we di-
vide each measurement window into two halves, A and
B. We annotate each snapshot with the arrival time of
each peer. Then, for each snapshot in B, we sample the
uptime for each peer. If it’s uptime is greater than half
of our measurement window (i.e., one day for Gnutella
and Kad), then we record it’s uptime as unmeasurable.
This allows us to determine what fraction of uptimes are
greater than we can measure without bias®. For BitTor-

7By “remaining uptime” we mean the total session time minus the
uptime so far.

8\We also looked at the histogram version of these figures to confirm
the power-law shape, but omit these figures due to space constraints.

9This value is the difference between the highest plotted point in the
CDF and 100%.

rent, where we have tracker logs instead of snapshots, we
sample the state of the system once per minute.

Figure 3 shows several interesting points: First, the
uptime distributions exhibit very similar behavior across
different systems. Second, the gap in the tail of the dis-
tribution quantifies the percentage of peers whose uptime
was longer than half our measurement period (i.e., one
day). More specifically, roughly 10%-20% of peers per
snapshot in Gnutella and Kad have uptime longer than
a day, and around 1-3% of BitTorrent peers have up-
time longer than 14 days. Third, and most interestingly,
these distributions are heavily weighted towards uptimes
longer than a couple of hours, i.e., they show that the ma-
jority of peers in each snapshot are long-lived peers. For
example, if we randomly select a peer from these sys-
tems, the probability that the selected peer has an uptime
more than five hours is roughly 40% in Gnutella, 55% in
Kad and 60% in BitTorrent.

The combination of the uptime distribution (Figure 3)
and the session time distribution (Figure 1) present an
enlightening view of churn in P2P system as follows: At
any point of time, a majority of participating peers in
the system are long-lived peers. However, the remaining
small portion of short-lived peers join and leave the sys-
tem at such a high rate that they constitute a relatively
large portion of overall sessions. Describing this from a
different angle, the session time for a randomly selected
session (Figure 1) is likely to be short whereas the ses-
sion time of a randomly selected participating peer from
a particular snapshot is likely to be long.

Uptime Predictability: In contrast to a Poisson distribu-
tion, the power-law distribution is not memoryless. This
implies that at any point of time, peer uptime is a good
predictor of its remaining uptime, i.e., the longer a peer
has been in the network, the more likely it will remain for
a long period of time. To empirically show this property,
we examine the correlation between uptime and remain-
ing uptime at two levels. Figure 4 depicts the CDF of
the median remaining uptime for peers with uptime =z,
across different datasets of all three candidate systems.
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Figure 5: CDF of Remaining Uptime for peers already up 4 hours, 8 hours, and 12 hours

This figure shows that while uptime is in general a good
predictor of remaining uptime, its strength is different
among candidate systems and for different uptime val-
ues. More specifically, peer uptime in Gnutella is a good
indicator of the remaining uptime regardless of uptime
value; the median peer has a remaining uptime between
50% and 100% of its uptime so far. However, the uptime
of Kad peers is a stronger predictor of remaining uptime
up to around 4 hours. Beyond that, the median peer’s re-
maining uptime increases only slowly. Nevertheless, at
16 hours of uptime, Kad peers have approximately the
same median remaining uptime (around 7 hours) as their
Gnutella counterparts. In the BitTorrent Debian dataset,
we see a rapid increase in the median remaining uptime.
Closer examination of this trace reveals that the observed
remaining uptime distribution is significantly affected by
the large number of seed peers run by the Debian organi-
zation.

To take a closer look at this correlation, we also exam-
ine the CDF of the remaining uptime for peers currently
up for 1 hour, 2 hours, and 8 hours. Figure 5 depicts
these CDFs for a single dataset in each candidate system.
These figures show that the reliability of the predictions
is highly variable, due to the high-skew of the underlying
power-law distribution. For example, in Gnutella around
50% of peers up for 8 hours will be up for at least another

8 hours. However, the bottom 20% of the peers will be
up for less than 2 more hours, while the top 30% will be
up for more than 16 hours!

In summary, our results imply that while uptime is
on average a good indicator of remaining uptime, it ex-
hibits high variance. Therefore it should be used when a
bad prediction does not have a major cost for individual
peers but collectively making better predictions across
all peers improves overall performance.

Disgtribution of Inter-Arrival Time: An inter-arrival
time is the duration between the arrival of one peer and
the next. The distribution of peer inter-arrival times
is another dimension of group-level characteristics of
churn. It’s an important characteristic for simulating
churn which has not be discussed in previous studies. To
measure inter-arrival times, we must be able to observe
individual arrival events. In Gnutella, this is not possi-
ble since tens of thousands of new peers arrive between
two consecutive snapshots. In contrast, measuring inter-
arrival time in BitTorrent is straightforward since tracker
logs capture arrival times with one-second granularity.
To examine inter-arrival time in Kad, we use our Kad 4
trace which monitors a smaller zone with 1 minute gran-
ularity. To further improve the granularity of the dataset,
we divide the target zone into 16 smaller zones of equal
size. This makes the inter-arrival times within each zone
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sufficiently long to be measured accurately (i.e., signif-
icantly longer than 1 minute) without reducing the total
number of arrival events.

Figure 6 presents log-linear plots of the distribution
of peer inter-arrival time for three datasets: BitTorrent
Red Hat and Debian as well as Kad 4. These distribu-
tions appear to be straight lines on the log-linear plots,
which is consistent with a Poisson distribution. This is
reasonable because the Poisson distribution is memory-
less which represents the fact that the arrival time of in-
dividual peers are independent events. It’s worth not-
ing that despite the similarity of these distributions, the
median inter-arrival time is significantly different across
these datasets, which reflects difference in the population
size.

3.2 Peer-Level Characterization

In this section, we characterize the behavior of a peer
across multiple appearances in the system. These char-
acterizations are useful for both for design and evalua-
tion of peer-to-peer systems. For example, they enable a
peer to predict its session time early in a new appearance
based on previous appearances. They are also a first step
towards modeling appearances of a single peer within a
simulation environment.

To achieve this goal, we need to determine the iden-
tity of each peer. We consider two types of identities:

(i) Unique Client ID and (ii) IP Address. As previous
studies have shown [2], each client might use a differ-
ent IP address during each appearance in the system due
to dynamic address assignment. Therefore, the charac-
terization of peer behavior based only on unique, per-
sistent client IDs represents the behavior of individual
clients over time. Such characterizations are useful for
those P2P applications that store persistent “state” in-
formation (i.e., content or pointers) at specific clients,
and thus are affected by their pattern of appearance in
the system. However, IP-based characterization presents
the behavior of specific IP address (that might be poten-
tially used by different clients) across multiple appear-
ances over time. IP-based characterizations are useful for
bootstrapping, where it’s important to rely on the avail-
ability of any peer at a particular IP address, regardless
of its identity.

Kad is the only candidate system in which individ-
ual peers have a persistent unique 1D. Thus, we use the
Kad dataset for ID-based characterization, and both Gnu-
tella and BitTorrent datasets for IP-based characteriza-
tion across multiple appearances. We examine the fol-
lowing characteristics on both an IP- and an ID-basis:
(i) the distribution of downtime, (ii) the correlation be-
tween consecutive session times, and (iii) availability.
Figure 7 presents the variability of IP addresses in our
Kad datasets both within sessions and between sessions.
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Figure 9: Correlation between Consecutive Session Time

While a peer does not typically changes its IP address
within a session, there is a high degree of IP address
changes between sessions. Furthermore, Figure 7(b)
shows there is a correlation between the downtime and
the likelihood of a change in IP address. For example,
almost 60% of the peers that are away from the network
for 12 hours exhibit a change in address.

Distribution of Downtime: We define downtime as the
interval between a departure time and the next arrival
time for the same peer. To ensure an unbiased sampling
of downtime, we again apply the create-based method
(described in Section 2). Figure 8 presents the distribu-
tion of client downtime for Kad (based on ID), and IP
downtime for Gnutella and BitTorrent (based on IP ad-
dress). This figure shows that client downtime in Kad
follows a power-law distribution within the timescale of
few minutes up to 5 hours. Interestingly, the distribution
of downtime based on IP address also follows a power-
law distribution for both Gnutella (between a few min-
utes up to 5 hours) and BitTorrent (between a few min-
utes up to eight weeks!). In Gnutella and Kad, after
around 5 hours the distribution begins to curve slightly
upward. Further investigation is required to reliably ex-
plain the underlying cause for the shape of this distribu-
tion for downtimes longer than 5 hours.

One caveat with characterizing downtime is that we
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cannot quantify (i) the number of long-absent peers
which have not logged into the system during our mea-
surement period®®, and (ii) the actual downtime values of
these peers. Information about these long-absent peers
are necessary for simulating multiple appearances over
long times scales (weeks). It’s worth noting that there is
also a population of peers who never return to the system
and thus their downtime cannot be defined. We reserve
studying these issues for future work.

Correélation in Session Time: Another interesting ques-
tion is “How correlated are session times across different
appearances of a single peer?” Characterizing such cor-
relations illustrates whether past session times of a peer
are good predictor of future session times. For example,
in Gnutella, a peer can promote itself to an Ultrapeer ear-
lier if it can reliably estimate that its remaining uptime is
long. Given all pairs of consecutive session times for
each peer in our measurement window, Figure 9 presents
the distribution of the median of the second session times
for all peers with first session time x. In other words, we
have (n — 1) pairs of consecutive sessions for peer p if it
appears n times during our measurement. These figures
show that there is a strong correlation between consecu-

10Note that the analogous quantity for session time (i.e., the fraction
of very long-lived peers) is easy to measure since the peers are actually
present in the system. This fraction is shown by the gap between the
highest point and 100% in Figure 3.
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tive session times (based on peer ID) in Kad, and (based
on IP address) in Gnutella. However, session times in
BitTorrent do not exhibit such a correlation. This result
is not surprising because the pattern of client participa-
tion in BitTorrent is likely to be different from Kad or
Gnutella. A BitTorrent client tries to download a desired
file, possibly during multiple sessions, and leaves. While
lingering time across all peers follows a power-law dis-
tribution as shown in Figure 2, once a peer has com-
pleted a download it has no motivation to return. In con-
trast, both Kad and Gnutella are file-sharing applications
where clients casually join the system, possibly on a reg-
ular basis, to search for various contents, and may also
download the content. Therefore, their typical session
time is more likely to exhibit correlation across different
appearances. In summary, the main implication of this
finding is that the past session time of individual clients
or IP addresses is a good predictor of their next session
time in both structured and unstructured file-sharing ap-
plications.

Another important issue is the correlation between
non-consecutive session times and any potential impact
the gap between sessions might have on the correlation.
Examination of this issue requires a much longer dataset
(e.g., across a few weeks) and remains as a future work
item.

Correlation in Availability: Similar to the correlation
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in session time, we can examine the correlation in avail-
ability of participating peers across consecutive windows
of time. The availability of a peer is the portion of a win-
dow that the peer has been available in the system. For
example, a node with 50% availability during one day,
might appear just once for 12 hours, or appear 4 times
and stay 3 hours during each appearance. In essence, the
availability of a peer during a window is a coarse mea-
sure that represents the peer’s overall degree of partici-
pation during that window regardless of its pattern of ap-
pearance. In the previous subsection, we focused on the
fine-grained relationship between consecutive sessions.
In this subsection, we examine availability which cap-
tures a coarser view of the relationship between sessions,
regardless of the number of sessions.

To study peer availability, we divide each two-day
dataset into two windows of one-day length, and examine
the correlation between the availability of peers in two
consecutive days. Figure 10 depicts the median availabil-
ity in the second day for all peers with the availability of
x% in the first day. These results show that a strong cor-
relation exists between availability of individual clients
(in Kad) and individual IP addresses (in Gnutella) across
two consecutive days. Bhagwan et al. [2] show the avail-
ability of different peers are mostly independent. It is
worth noting that this is orthogonal to our result, since
we examine the correlation in availability of a single peer



Listing 1 Discrete Event Simulator

now = 0
eventq = []

def arrival (now):
num peers += 1
heappush(event q,
(now + random session(),
departure))
heappush(event g,
(now + random.interarrival (),
arrival))

OCO~NOUITRAWNE

def departure(now):

num peers -=1

heappush(event q,
(random.interarrival (),
whil e True:
now, func =
func(now)

arrival))

heappop(event q)

across multiple measurement windows.

To further explore the underlying dynamics of the
availability in Gnutella and Kad, we present the distribu-
tion of appearances per day across all peers in Figure 11.
This figure shows that more than half the peers in both
systems appear at most once per day while a very small
number of clients may return to the system more often
(up to 80 times per day). However, since the number of
peers per Gnutella snapshot is significantly larger than
in our Kad snapshots, this has increased the number of
peers in each group. Furthermore, shared IP addresses
among participating peers could be another factor that
increases the number of appearances of an IP address in
Gnutella.

In summary, the availability of individual clients or
specific IP addresses, across two consecutive days, are
strongly correlated. Furthermore, most observed peers
appear only once per day.

4 Simulating Churn

In this section, we discuss how our findings can be used
to accurately simulate churn in a P2P network. A typical
goal in a simulation is to generate churn by generating
arrival and session times** for individual peers such that
the average group converges to a desired size, P, often
specified based on the available resources of the simu-
lator or the expected population size for a P2P system.
There are two ways to model churn:

e Retaining Peer Identity, where each peer may leave
and re-join the system multiple times during a sim-
ulation

The departure time of a peer is simply determined by adding its
arrival and session times.
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Symbol | Meaning

User Inputs
P | Target Mean Simulation Population
Empirical inputs
Q@ Power-Law Parameter
f Fraction of Peers with Uptime < ¢,,,4.
timin Minimum Modeled Session Time (2 min)
tmax Maximum Modeled Session Time (1 day)
Functions and Computed Values
x A value generated uniformly at random
s(t) Session Time Probability Density Function
S(t) | Session Time CDF
S~1(z) | The inverse of the Session Time CDF
A Proportionality Constant
s4(t) | Time-Weighted Session Time Probability
Density Function
m Mean Remaining Uptime
r Mean Arrival/Departure Rate

Table 4: Variable and Function Definitions

e Ignoring Peer Identity, where no state is retained
about a peer once it departs (i.e., returning peers are
modeled as new peers)

Modeling the first scenario is challenging since it re-
quires not just uptime and downtime distributions, but
a comprehensive model of how peers arrive for the first
time and how often peers leave never to return. In other
words, it must also model the lifetime of peers, which is
beyond the scope of this paper. We therefore focus on the
second, simpler case which only requires the inter-arrival
and session time distributions.

The basic simulation methodology is to construct a
Discrete Event Simulator based on a priority queue (i.e.,
a heap) as shown in Listing 1. Each element in the
queue includes a future event, such as a peer arrival or
departure, and a scheduled time for that event to oc-
cur. We prime the queue with a single arrival event (line
16). Processing each arrival event requires the follow-
ing steps: (i) generating a new peer, (ii) determining
the peer’s session time in order to schedule its depar-
ture event (line 6), and (iii) scheduling the next arrival
event (line 9). Two functions, r andomsessi on()
and randomi nt erarri val (), generate samples of
the session and inter-arrival distributions. The following
subsections explain the implementation of these func-
tions to reproduce the models derived in Section 3 (i.e.,
power-law and Poisson, respectively). Table 4 summa-
rizes the list of variables used in this section.

Session Time: To generate proper session time values,
i.e., define randomsessi on(), we need to address
the following issue: the session time distribution has
three distinct regions (as shown in Section 3.1). These
regions are as follows: sessions less than two minutes,




sessions between two minutes and one day, and sessions
longer than one day. For reasons of brevity and ease of
exposition, we ignore the peers with session durations
less than two minutes. Our model could be extended to
include these peers without much difficulty. Our data
is not comprehensive enough to model sessions longer
than one day accurately. However, in many cases sim-
ulations will be much shorter than one day. Therefore,
we treat these long-lived peers as a fixed (i.e., static) por-
tion of the population that will be present in the system
for the entire simulation. The accuracy of this simplifica-
tion decreases for simulations that last more than a few
days. The observed percentage of peers (f) with ses-
sion time of one day or less are given in the CDFs in
Figure 3. The number of fixed peers is P(1 — f). For
example, in the Gnutella 5 dataset, we have f = 93%,
and 7% of P is fixed. When developing an actual proto-
col, a range of different input values should be selected
to ensure robustness against slight changes in the simu-
lation model. When designing a protocol that leverages
long-lived peers, it may be best to conservatively assume
f = 100%, and there are no fixed peers.

We now turn our attention to modeling churn for the
P f peers with session time between ¢,,,;, = 2 minutes
and t¢,,,, = 1day. Toward this end, we can convert a
uniformly random number between 0 and 1 to a session
time in the range [tmin, tmaz] USING the inverse of the
power-law cumulative distribution for session time i.e.,
the function that maps [0, 1] — [tmin, tmaz]. TO derive
the inverse CDF, recall from Section 3.1 that the the ses-
sion time density function is given by: s(¢) oc t=* The
session time cumulative distribution function is simply
the integral of the density function:

_ t*OH*l

min

t
S(t)oc/ tmdt oc t—T!

tmin
To make it a proper cumulative distribution, we must also

compute the proportionality constant, A = S(tl 5. to
satisfy:

S(tmaz) — A (tfaJrl _ t—a+l

max min

)=1

Finally, we reverse the function through algebraic manip-
ulation so that it accepts = (selected uniformly at random
between 0 and 1) as an input, and generates a session
time:

z4+At_ o+

1 min

§7H (@) =exp | —— A

Inter-Arrival Time: Generating Poisson inter-arrival
times for randomi nterarrival () is straightfor-
ward given the mean inter-arrival rate, . The standard
formulat = # translates the uniformly random vari-
able x into the Poisson variable ¢. To ensure a stable

Listing 2 Random Generators

1 A=1.0/ (tmax**(-al pha+l)

2 - tmin**(-al pha+l))

3

4 m= ((-al pha+l)/(-al pha+2)

5 * (tmax**(-al pha+2)-tm n**(-al pha+2))
6 /| (tmax**(-al pha+l)-tni n**(-al pha+l)))
7

8 def random.interarrival():

9 return -log(random()) / ((P*f)/m

10

11 def random session():

12 p = randon()

13 t = exp(log((p+A*tm n**(-al pha+l))/A)
14 / (-alpha + 1))

15 return t
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group size in steady state, the arrival rate must be equal
to the mean departure rate, %, where m denotes the mean
session duration of peers in the system. The difficulty is
in computing m.

To compute the mean session duration (m) of peers
in the system, we divide the sum of the time-weighted
session times by the number of peers that generated those
sessions. This can be thought of as dividing the total time
each peer is up by the number of peers. Recall the time-
weighted session time distribution is given by:

Su(t) o /s(t) dt ct-t™¢

Then, dividing the integral of s,,(¢) by the integral of s(t)
to compute m gives us:
t7nam
/ t-tT*dt
t

tmaa:
/ Sy (t) dt
t — min

min —
/ t~dt
t

o =
/ s(t) dt
t min

—a+2 —a+2
—a+1 . tmaw — tmin

— 1 — 1
—a+2 tm%—zi_ - tm?rj_

Finally, we can compute the mean rate of departure, after
s}yfbtracting out the fixed peers (which never depart): r =
"To summarize, Listing 2 presents an implementation
of our routines to randomly generate the inter-arrival and
session time values as pseudo-code. We have also im-
plemented this code in a small simulator to empirically
validate its accuracy. Our results show that after a ¢,,,4.
warm-up period, the population stabilizes around the de-
sired mean group size P.

5 Design Implications

In this section, we discuss a couple of key implications
of our findings on the design of churn-aware P2P appli-
cations. To gracefully cope with churn, information, in-
cluding both state (e.g., routing) or content, should be



maintained at stable peers. Otherwise, the overhead of
updating state in the system can become expensive, or
the availability of stored content can be affected. The
fundamental design question is “How to reliably iden-
tify stable peers?” Our results show that the naive ap-
proach of randomly selecting from an accumulated list
of observed peers during a session is more likely to cap-
ture short-lived peers because the distribution of session
time among all sessions follows a power-law similar to
Figure 1. Our findings suggest two more reliable strate-
gies for identifying long-lived peers are as follows: (i)
randomly selecting participating peers within a short pe-
riod of time is likely to capture some long-lived peers
since the distribution of session time among peers up
at any moment (Figure 3) is weighted more heavily to-
wards long-lived peers, or (ii) weight observed peers by
the number of times they are observed. The key point
is that observations made over time becomes skewed to-
wards the larger number of short-lived peers if we do not
weight the observations back in favor of the long-lived
peers. For example, if a peer has a few neighbors in a
(structured or unstructured) P2P overlay that it periodi-
cally interacts with, the neighbor peer with highest up-
time is more likely to have a longer remaining uptime.
Therefore, it is more useful to keep information about
these more stable neighbors, and store content at these
neighbors.

Our results indicated that 10%-20% of peers at any
moment have an uptime longer than one day. This mo-
tivates a scalable and low-cost bootstrapping mechanism
for existing peers in the system (not for first comers) that
does not require any well-known bootstrapping node as
follows: Each peer can select and cache IP addresses of
several long-lived peers during a session using the strate-
gies we described earlier. To connect to the system at any
later time, each peer can contact cached long-lived peers
to locate a participating peer in the system. Maintaining a
sufficiently large number of long-lived peers ensures that
each peer with a high probability can find another peer
to bootstrap into the system without any need to contact
a centralized bootstrapping node, and without having to
waste time trying to contact many short-lived addresses.

Finally, the strong correlation in consecutive session
times (or availability) of clients (in Kad) implies that a
P2P application can properly estimate the duration of its
session time (or availability per day) based on its last ob-
served behavbior. The advantage of this approach is that
it does not require the application to wait for a while to
measure uptime as a sign to predict user behavior for the
rest of the session.

Our finding that session times are independent of
download time in BitTorrent has interesting conse-
quences. The power-law session duration results in a
significant population of peers in a swarm who are lin-
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gering after their download has completed. Since these
peers are donating resources to the system without us-
ing further resources, they significantly increase the per-
formance of other peers in the swarm. In other words,
power-law session times implicitly lead to good perfor-
mance for peer-to-peer file distribution.

6 Redated Work

We are not aware of any study that has exclusively exam-
ined different aspects of churn in P2P networks. How-
ever, several studies have presented a passing investiga-
tion of session time as part of wider characterizations
of P2P applications. We divide these studies into two
groups based on their measurement technique: (i) pas-
sive monitoring of P2P traffic and (ii) active probing.

As part of a study on P2P flows in a large ISP net-
work, Sen et al. [16] use passive measurement at sev-
eral routers to monitor flows in FastTrack, Gnutella, and
Direct-Connect. They present a CDF of the duration an
IP address is active (the “ontime”), based on a threshold,
& = 30 minutes, of inactivity. They show that the ontime
is heavy-tailed, but does not follow a Zipf distribution
when ranked. As part of a study on workload charac-
terization in Kazaa, Gummadi et al. [5] present session
durations based on passive monitoring of a router at the
University of Washington. They found that session du-
rations are heavy-tailed, with a median session length of
2.4 minutes while the 90th percentile is 28.25 minutes.
In general, passive monitoring techniques to characterize
churn will underestimates session times when peers are
not generating traffic through the observation point. The
difficulty in correctly identifying peer-to-peer flows [9]
can also limit measurement accuracy. Furthermore, it is
difficult to determine whether the subset of users moni-
tored with passive measurement is representative of the
entire P2P user population, especially if data is collected
at a small number of measurement points.

Several studies use active probing or crawling to char-
acterize P2P networks and present the behavior of ses-
sion time across peers. While studying the locality of
files in Napster and Gnutella, Chu et al. [3] present the
session time distribution based on probing and fit it to
a log-quadratic distribution®. In their insightful char-
acterization of peers in Napster and Gnutella, Saroiu et
al. [15] present a CDF of session durations based on
probing, showing session durations are heavily skewed.
They also present CDFs of peer availability in these sys-
tems. More recently, Liang et al. [10] similarly provide
a CDF of session durations for Supernodes in the Kazaa
network, based on active probing. Finally, Bhagwan et
al. [2] examine availability in the Overnet DHT using
probing. They show that IP address changes are fairly

12This distribution is defined by p o< exp(a1 (log x)2 + azlog z).
and can be thought of as a second-order power-law.



common in these systems and there is little correlation
between the availability of different peers (i.e., that each
peer acts independently).

There have also been a few studies on BitTorrent [13,
7], using tracker logs which allow for high accuracy.
Pouwelse et al. [13] show that session times follow a
Zipf distribution when ranked, except for the longest-
lived peers'3. lzal et al. [7] study a 5-month tracker log
from the Red Hat 9 1SO images and present a CCDF of
session times and show that they are heavily skewed. We
obtained a copy of their data and use it in our analysis.

Our study differs from these prior work in several
ways. Previous studies often present only the distribu-
tion of session time which is not sufficient to simulate
churn. Furthermore, they neither investigate other as-
pects of churn nor conduct any comparison across dif-
ferent classes of P2P applications, as we do in this paper.
More importantly, none of the previous studies on P2P
file-sharing applications have shown that they have cap-
tured a representative population of sessions in their tar-
get system. We believe that the lack of representative
sampling could be the main contributing factor in the
different results reported by previous studies (e.g., dra-
matically different median session time ranging from 1
minute to an hour [14]). More specifically, these stud-
ies do not distinguish sampling peers from the total ses-
sion population, s(t), and sampling peers within a spe-
cific snapshot, s,,(¢).

7 Conclusions and Future Work

This paper presented a detailed characterization of churn
in three different classes of P2P systems: Gnutella, Kad
and BitTorrent. Our measurement methodology lever-
ages application-specific features to capture representa-
tive sessions in each system. In particular, we have
shown that it is critical to differentiate sampling from all
sessions and sampling from all peers. We characterize
both group-level as well as client- and IP-level charac-
terizations of churn. Our main findings, listed in Sec-
tion 1, present new insights into peer dynamics that can
be used in the design and evaluation of churn-aware P2P
applications. Finally, we show how our findings can be
incorporated for simulating churn.

We are pursuing this work in several directions, pri-
marily based on collecting longer datasets from Gnutella
and Kad. First, we intend to more closely study the cor-
relations between consecutive sessions over longer time
scales. Second, we plan to conduct more detailed char-
acterizations of downtime and changes in the user pop-
ulation (up or down) to develop simulation models for
multiple appearances. Finally, we are exploring the im-

13We note that the Zipf approach of plotting values based on their
rank compresses the typically sparse data points of measurements of
the tail of a power-law distribution.
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plications of churn on existing P2P systems. We have al-
ready conducted a limited analysis of how churn affects
the overlay topology structure in Gnutella [19].
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