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Abstract— During recent years, Distributed Hash Tables
(DHTs) have been extensively studied by the networking com-
munity through simulation and analysis, but until recently were
not adopted by popular P2P applications. Therefore, it was not
feasible to examine DHT behavior in practice. Recently, the
popular eMule file-sharing software incorporated a Kademlia
DHT, called Kad, into their software. The success of Kad appears
to have triggered other P2P applications (notably BitTorrent) to
also incorporate Kademlia.

In this paper, we empirically study the performance of the
key DHT function, lookup, over this DHT which has more
than one million simultaneous users. We develop new analysis
for predicting performance, characterize the accuracy of Kad’s
routing tables, and empirically determine the optimum level of
parallel lookup and the level of replication needed to cope with
lookup inconsistencies. Our results show that compared to the
current eMule client, overhead can be significantly reducedwhile
simultaneously increasing performance.

I. I NTRODUCTION

Distributed Hash Tables (DHTs) present an elegant dis-
tributed solution to deterministically map items to locations.
They provide astructuredapproach to Peer-to-Peer (P2P) file-
sharing applications since their item-to-location mapping can
be used to(i) place data on specific peers and(ii) efficiently
locate the data by identifying its corresponding peer. During
the past few years, the potential of DHTs has motivated a
wealth of research on different aspects of DHTs including
the design of new DHTs [1]–[5], performance evaluation and
improvement [6], [7], and the development of a wide range
of DHT-based distributed applications [8], [9]. Despite a great
deal of attention from the research community, DHTs have
not been widely deployed in practice until recently. In the
absence of any large scale deployment, all the previous studies
on DHTs relied only on simulation, theoretical analysis, and
limited-scale experiments. Therefore, the behavior of DHTs
in practice has not been examined and thus is not well
understood.

In practice, the dynamics of peer participation, orchurn,
can affect the accuracy of routing tables at each peer, and
thus the performance of lookup operations in a DHT. More
specifically, some entries in the routing table of individual
peers might be missing or stale. Therefore, each peer does not
have the expected connectivity to other peers. The inaccuracy
of routing tables in turn affects the efficiency and consistency
of lookup operations that are conducted by individual clients.

For example, a lookup may either take more than the ideal
number of hops or could map to inconsistent endpoints.

There are two class of solutions to address the effect of
churn on DHTs:(i) DHT-based: DHTs can incorporate various
techniques to actively improve their resiliency to churn byin-
creasing the degree of redundancy or frequency of updates for
the routing table at each peer.(ii) Client-based: Alternatively,
a client operating over an inaccurate DHT can improve its
lookup efficiency by conducting lookup in parallel or cope
with lookup inconsistency by active replication of its content.

Previous studies have examined both DHT-based [10], [11]
and client-based [4], [5] solutions as well as the interac-
tions and trade-offs between them [7]. All of the previous
studies have used either simulation, analysis, or small-scale
experiments to study these issues. However, churn, and thus
the degree of inaccuracy in routing tables, is a real-world
phenomenon generated by user behavior. Churn’s impact on
the performance of lookup operations has not been empirically
studied due to the limited deployment of DHTs. Given the lim-
ited understanding of churn characteristics, it is unclearhow
well simulation-based analysis of DHTs represent observed
behavior in practice. Section VI discusses the related workin
more detail.

This paper presents a measurement-based characterization
of routing table inaccuracy and its impact on lookup perfor-
mance in a widely deployed DHT, namelyKad. Kad is an
open, Kademlia-based [4] DHT (with more than 1 million
concurrent users) that has been recently deployed by the
popular eMule1 file-sharing application to improve efficiency
of search in the face of growing population. Section II presents
an overview of Kademlia and Kad.

To study the inaccuracy of routing tables in a DHT, Sec-
tion III first establishes an analytical framework to quantify
the effect of routing table richness on the performance of
lookup. To our knowledge, this is the first analysis to show
the direct benefits on lookup performance of Kademlia’sk-
buckets. Then, we characterize both freshness and complete-
ness of routing tables in Kad through detailed and repre-
sentative measurement. To explain the observed behavior, we
carefully examine the implementation of eMule2 and identify

1eMule began as an open-source alternative for the eDonkey unstructured
network.

2There is no written specification that describes the Kad protocol so our
explanations are based on our reading of the source code.



the underlying policies for routing table update and redun-
dancy management that cause the observed behavior. Since
we are dealing with a deployed DHT system, we are unable
to explore DHT-based solutions to improve the accuracy of
routing tables. Instead, we explore the design space of client-
based solutions to improve both efficiency and consistency of
lookup operations over DHT in practice.

Section IV examines client-based solutions to improve
lookup performance using kLookup, a tool we developed
to conduct a realistic lookup fromany source ID to any
destination ID without having local access to the designated
peers for these IDs. Further leveraging the iterative lookup
scheme in Kad, kLookup implements a spectrum of parallel
crawling techniques, enabling us to study various parallel
crawling techniques through real-world experiment over Kad
and identify major design trade-offs.

Finally, Section V characterizes the degree of inconsistency
in lookup operations in Kad and relates it to the underlying
reasons of inaccurate routing tables. We then explore repli-
cation techniques to cope with lookup inconsistency and find
that keeping three copies in the network dramatically improves
lookup consistency.

Our main contributions can be summarized as follows:
• An analytical framework for computing the average per-

formance of lookups
• The surprising result that redundancy in routing tables,

such as Kademlia’sk-buckets, directly improves mean
lookup performance by reducing hop count

• kFetch, a tool for extracting the routing table from Kad
peers

• kLookup, a parameterized tool for performing lookups
over Kad using a variety of lookup algorithms

• Characterizations of the completeness and freshness of
the routing tables in Kad

• Demonstrating experimentally that parallel lookup can
reduce hop count, as predicted by our framework

• Experiments finding the optimum degree of parallelism
(α = 3) for use over Kad

• Experiments finding the optimum degree of replication
(c = 3) to overcome routing table inconsistencies in Kad

• Methodology that can be applied to studying and tuning
parameters for any widely deployed DHT.

While this study is inevitably centered around Kad, our
analysis, methodologies, tools and findings are mostly appli-
cable to other DHTs with proper adjustment. To address wider
applicability of our work, we briefly discuss how some issues
can be pursued in the context of other DHTs. Our extensive
examination of eMule’s implementation also revealed several
bugs in their implementation, some which will be fixed in the
next revision.

II. BACKGROUND

Since the Kad network which we use for our empirical
observations is based on Kademlia, we first present some
background on Kademlia. Like most DHTs, peers in Kademlia
each have an identifier that is assigned either uniformly at

random or via a cryptographic hash. To determine the distance
between two peers, Kademlia uses a unique “XOR metric”, the
bitwise XOR of their identifiers. For example, the distance
between0100 and0111 is 0011 (or 3).

Kademlia belongs to the general class of prefix-matching
DHTs, such as Pastry [3] and Tapestry [12]. At the high-level,
these DHTs work in the same way. Alookup consists of a
sequence oflookup steps. The first step consults the client’s
routing table for the target ID, which is guaranteed to have a
route where the high-orderb bits match. The next step is to
consult that peer, which is guaranteed to have a route where the
first 2b bits match. The process continues until no next route
can be found, indicating that the closest peer to the ID has been
reached. We can view the distance between two identifiers
as the number of bits which must be matched, orlog2 n in
the typical case, wheren is the network population size. The
expected number of steps islog2

n

b
. We callb the symbol size,

and in basic Kademlia,b = 1. Section III examines the utility
of different choices forb.

As IP is also a prefix-matching protocol, we borrow some
terminology from IP to describe Kademlia routing tables. Each
line in a Kademlia routing table is labeled with a subnet
address and mask. When performing a lookup for a key, the
most-specific routing table entry with a matching subnet is
used, just as in IP routing. In this paper, the familiar “slash-
notation” specifies masks.

In Kademlia, the routing table contains one line per address
bit, with increasingly specific masks. The subnet addressesare
the same as the peer hosting the routing table. For example,
consider a Kademlia network using 4-bit identifiers3 and a
particular peer with the address 0000. The routing lines are:
/0, 0/1, 00/2, 000/3, 0000/4. Because more-specific routes are
preferred, the effective routing lines are: 1/1, 01/2, 001/3,
0001/4. Put another way, the /0 line will only contain 1/1
addresses since any 0/1 address would go in one of the more
specific lines. The routing table structure can be viewed as a
binary tree, as shown in Figure 1(a).

Globally, the routing tables in all the Kademlia peers form
one large binary tree, with each peer containing a fraction
(O(log n)) of it. During a lookup, each routing step pivots to a
different peer which is one bit closer to the target, guaranteeing
that the lookup requires at mostO(log n) steps.

For redundancy purposes, each routing line (or node in the
binary tree) points to a list, called ak-bucket, ofk matching
contacts. Each contact includes the Kademlia ID, IP address,
and port of the remote peer. Thus, each lookup step has a
choice ofk different contacts. Section III examines some of
the consequences for choosing different values ofk. We note
that k-buckets could be adapted for use in most varieties of
DHT.

Kademlia makes use of parallel routing to speed up lookups,
as do EpiChord [13] and Accordion [5]. By sending outα

lookup requests at a time, a client can avoid stalling by trying

3In practice no DHT would use such a small identifier space, butit’s more
tractable for illustrative purposes.



to reach a departed peer and also increase the probability of
finding low-latency peers. Section IV examines using different
values ofα in Kad.

Kademlia uses iterative routing, where the client is respon-
sible for the entire lookup process. At each step, the client
sends alookup requestto the next-hop peer and waits for
a lookup reply. The reply lets the client know what the next
hop is. Iterative routing contrasts with recursive routing, where
the lookup request is forwarded automatically from one peer
to another. While it has been shown that recursive routing
typically has lower latency [14], iterative routing has several
useful practical properties:

Fate-Sharing: Lookups cannot be lost through the depar-
ture of an intermediate carrying the lookup request.

Debugging: Iterative routing is easier to debug since in-
formation at each step is reported back to the client
performing the lookup.

Compartmentalization: Iterative routing allows route table
structure and lookup efficiency to be improved indepen-
dently in a deployed network. Our tool, kLookup, uses
this division to evaluate a variety of lookup techniques
directly over the existing Kad network, as shown in
Sections IV and V.

Route Table Extraction: It is possible to download the
routing table of any peer, which we make use of in our
tool, kFetch, described in Section III-B.

In summary, the key properties of Kademlia (and, thus, Kad)
are as follows:

• Routing by prefix-matching
• Redundancy in routing tables (k-buckets)
• Parallel routing
• Iterative routing

Of these, redundancy, parallel routing, and iterative routing
could each be adding directly to most varieties of DHT. For
example, EpiChord is a variant of Chord with parallel routing.
Prefix-matching is an intrinsic property of Kademlia’s design,
which it shares with a number of other DHTs such as Pastry
and Tapestry.

Kad is a Kademlia-based network for file-sharing, composed
of eMule clients. It has approximately 1 million simultaneous
users, plus many more firewalled peers who utilize the Kad
DHT for lookups but do not participate in the DHT structure.
For each file an eMule client is sharing, it computes the hash
of each word in the filename, and publishes information about
itself and the file to the peers responsible for the hashes. When
an eMule user enters a keyword search, eMule computes the
hash of the first keyword and initiates a lookup for the hash.
The lookup returns a set of endpoints to which the client
submits the full keyword list. Those peers process the query
and return a set of matching results.

III. I NACCURACY OF ROUTING TABLES

In this section, first we establish an analytical framework to
examine the effect on lookup performance of adding redun-
dancy to routing tables. This framework provides insight on

key trade-offs between different ways to increase the richness
of routing tables and provides a formula for computing the
average performance. Second, we empirically characterizethe
degree of routing table accuracy in Kad and identify the
underlying reasons for inaccuracies. These characteristics help
us explain the observed lookup performance in Section IV.

A. Benefits of Redundancy: An Analytical Framework

Every DHT has some structure that determines which neigh-
bors a peer can choose from based on their identifiers. For
example, in basic Kademlia a peer must have a neighbor with
a different high-order ID bit, a neighbor with a matching first
bit and a different second bit, a neighbor with the first two bits
matching and a different third bit, etc. We call each address–
mask pair abucket(following the Kademlia terminology) and
the neighbor information stored in the bucket acontact. In
the base case, the DHT contains just enough information
to perform the lookup inlog2 n expected hops. In prefix-
matching systems such Kademlia, this implies a symbol size
of b = 1 and one contact per bucket.

A DHT can enrich the routing table structure beyond this
base by eitheradding more bucketsor adding more contacts
per bucket. By adding more buckets, a DHT can guarantee that
a larger number of bits will be improved at each step, thereby
decreasing the number of hops for a lookup. For example,
Pastry [3] uses a default symbol size ofb = 4 which guarantees
4 bits will be improved at each step. Tables in Chord can also
be enriched in this way [7].

Adding more contacts per bucket is used to guard against
churn, an approach employed by DHTs such as Kademlia [4]
and Tapestry [12]. By having other contacts handy, a peer
can more quickly repair its routing table when a failure is
detected. Also, as observed in [4], with heavy-tailed session
times, storing backups and only evicting unresponsive peers
implicitly leads to a set of peers with good uptime character-
istics. Finally, multiple contacts allows for the use of parallel
routing. A bucket withk contacts is called ak-bucket.

To examine the benefits and costs of the above two ap-
proaches for enriching routing tables, we analyze their impact
in the context of Kademlia. Our analysis also directly applies
to other prefix-matching systems such as Pastry and Tapestry,
where we can quantify the improvement at each step in terms
of the number of matching bits. For other DHTs that use a
different basic geometry, our analysis could be adapted by
modifying the formulas to reflect the appropriate distance
metric.

There are two different approaches for adding more buckets
to a routing table, both of which improve the number of lookup
hops fromlog2 n to log2b :

Discrete Symbols: With this approach, illustrated in Fig-
ure 1(b), each interior node points tob − 1 buckets and
an additional interior node. When searching a routing
table, a peer begins by checking the firstb bits. If all
of them match the peer’s ID, then it proceeds to the next
b bits (i.e., the next interior node). Otherwise, it proceeds
immediately to the appropriate bucket. Using Discrete
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Symbols increases the routing table size fromlog2 n rows
of onek-bucket each tolog2b n rows of2b −1 k-buckets
each. This is the approach used in Kademlia and Pastry.

Split Symbols: With this approach, illustrated in Fig-
ure 1(c), each interior node points to2b−1 buckets and an
additional interior node. When searching a routing table,
a peer begins by checking the first single bit. If it matches
the peer’s ID, then it proceeds to the next bit (i.e., the next
interior node). Otherwise, it examines the nextb bits and
proceeds to the appropriate bucket. Using Split Symbols
increases the routing table size forlog2 n rows of onek-
bucket each tolog2 n rows of 2b−1 k-buckets each. This
is the approach used in Kad.

To compare and contrast these approaches for organizing
routing table contacts, we create a general framework for
analyzing their performance. We defineD(b, r, k) as a system
which usesb-bit symbols withr-bit resolution andk-buckets.
D(1, 1, k) is the basic Kademlia approach,D(b, b, k) is the
Discrete Symbol approach, andD(b, 1, k) is the Split Symbol
approach used in Kad. Each routing table haslog2r n rows of
2b − 2b−r k-buckets, for a total size ofk(2b − 2b−r) log2r n

contacts. Normalizing by a factor oflog2 n yields a normalized
size ofk 2b

−2b−r

r
.

Prior work has concerned itself exclusively with the worst-
case scenario where the selected contact will not match any
additional bits of the target identifier. For example, consider
searching for the key 111 in the routing table of peer 000 with
the baseb = 1 system. The peer looks in the bucket with the
prefix 1, and returns a contact which we know matches the
first bit of the key. However, that contact could be any of the
peers 100, 101, 110, or 111. In other words, there’s a1

2 chance
of improving at least 1 extra bit, a14 chance of improving at
least 2 extra bits, and so on. More precisely, the probability

of improving at leastδ bits is:

Pr[X ≥ δ] =
1

2δ
(1)

Therefore, the average-case is better than the worst-case
given in prior work. In particular, the key insight is that
large buckets (k > 1) improve the probability ofrandomly
finding a contact with more matching bits since there are
more options to choose from. As we will show, the average
number of bits improved increases logarithmically withk,
making the performance boost of increasingk comparable
to the performance boost of increasingb. Generally, for ak-
bucket the probability of improving by at leastdelta extra
symbols is:

F (δ, r, k) = Pr[X ≥ δ] = 1 −

(

1 −
1

2rδ

)k

(2)

and the probability of improvingexactlyδ symbols is:

f(δ, r, k) = Pr[X = δ] = F (δ, r, k) − F (δ + 1, r, k) (3)

The key question is: how many bits improve on average?
This is equal to the product ofr and the mean value off(δ, k)
as a function ofk as follows:

m(r, k) = r

∑

∞

δ=0 δ · f(δ, r, k)
∑

∞

δ=0 f(δ, r, k)
(4)

While we were unable to find a simple closed form for
m(r, k), it can be computed numerically without difficulty. For
r = 1, m(1, k) asymptotically approacheslog2 k + 0.3327,
somewhat exceeding this value for lowk. Significantly,
m(1, 1) = 1, indicating that on averager = 1 systems improve
one extra bit per step even with no redundancy! In other words,
a basicD(1, 1, 1) system on average performs a lookup inhalf
as many hopsas reported by previous work.

For a Discrete Symbol configuration,D(b, b, k), the number
of bits improved on average isb + m(b, k). For a Split
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Fig. 2. Relative performance of different routing table structures

Symbol configuration,D(b, 1, k), the number of bits improved
on average isb + m(1, k). In other words, while the Split
Symbol approach does use more routing table space, it has
the advantage that it can leverage a random improvement of
a single bit; the Discrete Symbol approach must randomly
improve byb bits to make use of the improvement.

To compare the different approaches, first consider the
three extreme cases:D(1, 1, k) (pure Redundancy),D(b, b, 1)
(pure Discrete Symbols), andD(b, 1, 1) (pure Split Symbols).
Figure 2(a) presents the performance of each approach as a
function of the normalized routing table size. Split Symbols
and Redundancy have nearly identical performance, while
Discrete Symbols performs slightly better.

For the case of Split Symbols (D(b, 1, 1)), theb-bit symbols
guarantee an improvement ofb bits in the worst case, plus an
additionalm(1, 1) = 1 bits on average, for a total of exactly
b+1 bits, dividing by the normalized size yieldsb+1

2b−1 . This is
the slope of the Split Symbols (D(b, 1, 1)) line in Figure 2(a).

For the case of Discrete Symbols (D(b, b, 1)), the b-bit
symbols again guarantee an improvement ofb bits in the worst
case, plus an additionalm(r, 1) bits on average. However,
m(r, 1) asymptotically approaches0 for larger. As a point of
reference, for Pastry’s typical value ofb = r = 4, the average
improvement is 4.27 bits per step, roughly a 4% reduction in
the mean number of lookup hops4 compared to that reported
by the Pastry authors [3]. The average improvement divided
by the normalized size isb b+m(r,1)

2b
−1 .

For the case of large buckets and 1-bit symbols (D(1, 1, k)),
the 1-bit symbols guarantee an improvement of1 bit in the
worst case, plus an additionalm(1, k) bits on average, for a
total of 1 + m(1, k). Dividing by the normalized size results
in 1+m(1,k)

k
. As a point of reference, for the value ofk = 20

suggested in the Kademlia paper [4], the average improvement
is 5.7 bits per step rather than 1 bit per step, resulting in a
60% reduction in the mean number of hops!

Can performance be improved by using a mixture of large
buckets and large symbols? Not really. Figures 2(b) and 2(c)
plot several other permutations ofD(b, r, k). Figure 2(b) holds
k constant and variesb, while Figure 2(c) holdsb constant
and variesk. For small values ofk (e.g.,2) with varying b,

4The expected number of hops is equal tologB n whereB is the average
number of bits of improvement.

both Discrete Symbols and Split Symbols have performance
in between their regular performance andD(1, 1, k). For mod-
erate values (e.g.,20) of k, the performance of Split Symbols
is virtually identical toD(1, 1, k), while the performance of
Discrete Symbols plummets (as seen in Figure 2(b)). Because
Discrete Symbols can’t make good use of randomness, the
k-redundancy imposes a cost with little benefit on lookup
performance.

In summary, increasing the symbol size offers a constant-
factor improvement to worst-case performance, while using
k-buckets unexpectedly offers comparable average-case im-
provement. Moreover,k-buckets offer other advantages:

• Reduced implementation complexity
• Lower maintenance bandwidth; fewer restrictions on ac-

ceptable contacts allows for more contacts to be acquired
passively

• Better resistance to churn by accumulating high-quality
contacts

While our framework is motivated by our study of Kad, it
applies to any prefix-matching DHT and could be extended
to other DHTs that can accommodate different symbol or
bucket sizes, such as Chord. In the following section, we use
the formulas we have developed to compute a bound on the
performance of Kad and empirically examine how close the
actual performance is to our model’s prediction.

B. Accuracy of Routing Tables in Kad

Our goal is to explore the structure and redundancy (i.e., b
and k) of routing tables in Kad by examining eMule source
code, and then empirically study the impact of churn on the
accuracy of routing tables in Kad.
Analysis of Accuracy/Redundancy: Close examination of
the eMule 0.46a source code along with empirical validations
revealed that Kad is based on Kademlia with a bucket size
of 10 contacts (k = 10), and3.25-bit Split Symbols5 which
means that Kad is aD(3.25, 1, 10) system. Therefore, accord-
ing to Equation 4 the mean number of improved bits per step
is 6.98 in Kad. Additionally, as a special case Kad always

5The 1

4
bit is due to the fact that Kad uses unbalanced subtrees. Each

interior node has branches with labels 0, 1000, 1001, 101, 110, and 111. The
0 branch leads to the next interior node; the other branches lead tok-buckets.
The average improvement per step is3.25 + m(1, k) bits.
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improves at least the 4 most significant bits on the first step,
or 7.73 on average for a maximally distant node6. Thus, the
expected number of hops for a maximally distant node in Kad
is log

2
(n)−7.73
6.98 + 1. To estimate the number of hops from this

equation, we determinen later in this subsection.
Characteristics of Accuracy: We examine two dimensions of
inaccuracy in the routing tables in Kad as follows:

Completeness: represents whether the routing table con-
tains the appropriate number of entries, given the size of
the Kad network.

Freshness: captures the number of contacts in the routing
table that are still active (i.e., do not point to a departed
peer).

Toward this end, first we need to estimate the size of the
Kad network (n). In our previous work [15], we developed a
parallel peer-to-peer overlay crawler, calledCruiser. Crawling
the entire Kad network takes too long due to the large size of
routing tables at each peer and the large number of peers in
the network. Because churn occurs while the crawler runs,
a long crawl results in an inflated population count as it
records a large number of short-lived peers which were not
simultaneously present. However, since Kad identifiers are
selected uniformly at random, any subnet of the ID space is
a representative sample of the total population, and a subnet
can be crawled much faster than crawling the whole network.
Multiplying the size of the subnet by the number of such
subnets yields an estimate of the population size. By taking
the mean over many such samples, we can get a good estimate
for n. Moreover, our formulas are not sensitive to minor
fluctuations in population size as they are based onlog2 n.

Given a Kad overlay subnet as an input (e.g., 0x5cd/12),
Cruiser walks the DHT structure to capture a snapshot of
all the active peers with IDs in the specified subnet. For
example, it can capture a /10 subnet with roughly 1000 peers
in around 3–4 minutes and a /12 subnet with roughly 250
peers in around one minute. During June of 2005, we captured
the population size for several hundred randomly selected
subnets with Cruiser. Our measurements reveal that the Kad
network has a mean population size of approximately 980,000
concurrent peers. Given this estimated group size for the Kad

6The root node has a full 16 branches.

network, a lookup over Kad requireslog2 980, 000 ≈ 19.9
bits improvement per step, and a lookup in Kad should take
19.9−7.73

6.98 + 1 = 2.7 hops, assuming perfect routing tables.
This is significantly better than predicted by prior techniques
of log

2
(n)−4
3 + 1 = 6.30 hops. Correctly taking into account

the effect of randomness alters the predicted performance by
more than a factor of two.
kFetch: To study the accuracy of routing tables, we developed
a new tool calledkFetch. kFetch chooses a Kad peer at
random, downloads its complete routing table, and identifies
stale entries in the routing table by actively probing (i.e.,
sending a lookup request) to each contact in the routing table.
The routing table of the target peer should be downloaded
quickly in order to minimize any error in our characterization
due to on going churn (i.e., a contact that is considered stale
might be actually present in the network). Each Kad node only
replies to a lookup request from participating peers to lookup
an ID. There are two challenges to download a routing table
efficiently: (i) the rate of requests (which are UDP messages)
should be properly paced to rapidly download the table without
causing any packet loss, and(ii) lookup messages should prop-
erly select requested IDs from a target peer to extract its table
with the minimum number of messages. kFetch implements
NewReno-style congestion control to determine the proper rate
for issuing requests to the target node. Furthermore, kFetch
sends requests for each possible routing table line, a strategy
which can be used on any DHT that uses iterative routing.
Additionally, for each contact learned, kFetch pings the contact
to verify whether it is still present in the network, concurrently
with continuing to download the routing table. To locate a peer
at random, kFetch generates a random Kad identifier, then
performs a Kad lookup to locate the peer closest to that Kad
identifier.
Characteristics of Kad Tables: Using kFetch, we retrieved
the routing tables of approximately 80,000 distinct Kad peers
in June 2005 and examined their freshness and completeness.
Figure 3(a) shows the mean number of contacts in each routing
table bucket as a function of the bucket’s subnet mask. It
also shows what fraction of these contacts are fresh (i.e., the
contact responded to our ping). The “Ideal” line indicates the
average number of contacts in the bucket if we had global
information, based on the population size,i.e., min

(

10, n
2x

)
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Fig. 4. Distributions of Bucket Contents

wherex is the number of bits in the address mask andn is
the population size. All three curves (Ideal, Known, and Fresh)
curve off steeply when the mask length exceeds 16 bits, which
is where the number of contacts is limited by the number of
available contacts in the system. For shorter masks, on average
each bucket has one or two empty slots and contains one stale
contact. The mean number of empty slots is slightly higher as
the mask length increases. Figure 3(b) shows the mean number
of fresh contacts as a fraction of the number of contacts
actually present. This shows that around 90% of entries are
fresh for masks up to length around 16, then the fraction
of fresh entries decreases (meaning that the number of stale
entries increases). This is because the current implementation
of eMule doesn’t ping peers in buckets which are not at least
70% full. In fact, in Figure 3(c), where we examine the number
of contacts relative to the ideal number, above /17 there are
actually more stale contacts than active peers anywhere in
that subnet! As each peer is up, it gradually accumulates stale
contacts in these buckets which are expunged too slowly. As
a consequence virtually every lookup in Kad necessarily ends
with timeouts to stale peers even though the closest peer has
already been contacted! As this routing table maintenance
problem can trivially be corrected by pinging all buckets
instead of just those mostly full, in the remainder of this paper
we consider only the time required to hear from the closest
responsive peer.

From Figure 3(a), we see that on average there are 1.5
empty slots plus 1 stale contact per bucket. We could plug
k = 10 − 1.5 − 1 = 7.5 into our formula, but first we must
validate that most buckets are close to the average state. Ifthe
variance is very high, for example if 85% of buckets had 10
entries and the other 15% were completely empty, then using
the average would introduce considerable error. Towards this
end, Figures 4(a) and 4(b) present the CDF of the number
of contacts and fresh contacts across all observed buckets for
masks /4, /8, and /12. They show that for both completeness
and freshness, nearly all buckets are close to the average value.
Therefore, we may use the average value for the purposes of
our computations without introducing considerable error.

Using an average of 1.5 empty slots plus 1 stale contact per
bucket, we have an effective bucket size ofk = 10−1.5−1 =
7.5. This increases the expected hop count tolog

2
(n)−7.33
6.58 +

1 = 2.91 hops. This is still significantly better than the value
predicted by prior analytical techniques of 6.30 hops.

Note that we are unable to change the routing tables in
the entire Kad network. Therefore, we explore client-based
alternatives to improve efficiency and consistency of lookup
in Kad and evaluate their performance in the following two
sections, respectively.

IV. L OOKUP EFFICIENCY

We turn our attention to client-based approaches to improve
the performance of iterative lookup over a DHT that has inac-
curate routing tables. While incomplete buckets will degrade
performance as described in the previous section, stale contacts
can dramatically increase latency by causing timeouts to occur.
Since the timeout interval is typically set to at least a few
round-trip times, it can easily exceed the desired time for the
entire lookup.

To improve performance despite inaccurate routing tables,
clients (i.e., end-points) can perform parallel lookup. While
parallel lookup has traditionally been used exclusively with
iterative DHTs, Jinyang Liet al. [5] present a technique for
performing parallel lookup on a recursive DHT.

In a parallel lookup, a client simultaneously manages multi-
ple lookup requests to different peers and performs the lookup
process based on the information obtained from all requests.
The inherent redundancy in the information collected by
parallel lookup reduces the problem of hitting stale contacts,
improving lookup performance at the cost of higher network
overhead (i.e.,a larger number of requests per lookup). Parallel
lookup has two other significant advantages. First, lookup
requests facilitate populating or passively updating the routing
tables, which in turn reduces the bandwidth requirement for
explicit updates, as shown in [7]. Second, during each step
of the lookup process, parallelism increases the number of
contacts searched, increasing the probability of finding a
contact closer to the target (i.e., with more matching bits) and
thus decreasing the number of hops needed to reach the target.

To examine different lookup strategies, we developed a
new tool, calledkLookup, which performs a lookup fromany
source ID toanydestination ID without requiring local access
to those peers. To emulate a lookup from a source ID, kLookup
takes the following steps. First, it uses a local Kad routing
table to locate the peer closest to the source ID (i.e., the source
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peer), then it extracts the routing table of the source peer using
kFetch. Finally, it performs a lookup to the destination ID
using the routing table of the source peer. kLookup implements
an adjustable degree of parallelism (α) with the following two
classes of parallel lookup techniques:(i) Strict Parallel lookup
and (ii) Loose Parallel lookup.

Strict Parallel Lookup : In this approach, a client begins
a lookup by sending lookup requests to theα best known
contacts. Similar to the window-based congestion control in
TCP, a client restricts the number of requests in-flight toα. A
new request is issued only when a pending request times out
or a response is received. The resulting overhead is limited
to a factor ofα. The downside of the strict approach is that
when a client sends a packet to a departed contact, it must wait
for a timeout to occur before giving up. In the meantime, the
degree of parallelism is effectively reduced by one. However, a
timeout is typically set to at least a few round-trip times which
is on the order of the desired time for the entire lookup. Thus,
in the strict approach,α roughly determines the number of
timeout events a client can experience without experiencing a
significant latency penalty. Kademlia uses this approach.

Loose Parallel Lookup: Parallel lookup can be performed in
a looser fashion by allowing more thanα requests in flight.
In this approach, a client can issue a lookup request to a
contact that is among the topα contacts as soon as such a
contact is identified, even if this lookup request increasesthe
number of pending requests beyondα. For example, ifα = 3,
the lookup begins by sending 3 lookup requests. If the first
response contains 3 better contacts (which is likely), 3 more

requests are sent immediately. While this approach appearsto
be significantly more expensive than strict parallel lookup, it
incurs only modest additional overhead since later responses
from the same step are less likely to contain better contacts
(i.e., each time a packet is sent, the bar has been raised). The
advantage of this looser approach is the ability to quickly
abandon lookups that are likely to time out. This approach
is used by eMule.

We evaluated the performance of both types of parallel
lookup techniques under varying degrees of parallelism. Using
kLookup, we captured several hundred lookups for different
values ofα for both strict and loose parallelism. Each lookup
used a unique, randomly selected source and a unique, ran-
domly selected destination. In our evaluation, we examine
three metrics:

Hops: The number of hops from the source to the destina-
tion

Latency: The duration from the start of the lookup to when
a response is received by the final destination, which is a
function of the number of hops and the time spent waiting
for responses and timeouts

Messages Sent: The overhead used to perform the lookup

Earlier, we mentioned that increasingα can reduce the
number of lookup hops by providing more opportunities to
randomly improve extra bits. Figure 6 provides empirical
support by showing that the mean number of hops decreases
slightly asα increases7. Furthermore, the hop count forα = 1
is around 3.2, which is close to our predicted value of 2.9.

Since the number of hops is as expected, the next question
is: how much latency is introduced by timing out while trying
to contact stale contacts? Figure 5(a) compares the latency
of the two approaches for several values ofα. The first
observation is that the latency forα = 1 is very high—
close to 10 seconds. Using a value ofα = 3 dramatically
reduces the latency, with diminishing returns for largerα.
Second, Figure 5(a) reveals that the loose approach is just
barely quicker for constantα. The greatest advantage of loose
parallelism is that it is significantly less likely to get stuck
waiting for timeouts to occur. However, as we show in Sec-

7This figure is particularly noisy due to the smally-axis scale. The general
downward trend is nevertheless visible.
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tion III, few contacts in Kad are stale. This explains why loose
parallelism does not show much performance improvement for
this network.

To examine the overhead of parallelism, Figure 5(b) shows
the number of packets sent as a function ofα for the two
approaches. In both cases, the overhead increases roughly
linearly with α, with loose approach generating roughly twice
as many messages as the strict approach. Given that for fixed
α the performance off strict and loose parallelism are quite
similar, this suggests that strict parallelism is the better choice
for the current Kad network. To more directly compare the
two, Figure 5(c) factors outα by plotting the performance as a
function of the overhead. From this, we see that asymptotically
the performance of strict and loose parallelism are surprisingly
similar. A large number of messages represents the upper-
bound on performance: no amount of increased parallelism
will significantly improve it. At the low-end, the two perform
the same since the two approaches result in identical behavior
for the special caseα = 1. However, the sweet-spot for strict
parallelism (α = 3) is significantly better than the sweet-spot
for loose parallelism.

In summary, these observations show that strict parallelism
with α = 3 is a good choice for the current Kad network.
Higher values ofα and loose parallelism substantially increase
overhead without much change in performance. Also, our
findings in Figure 6 provide evidence of the correctness of
our analysis in Section III.
Comparing with eMule: As part of creating kLookup, we
also attempted to exactly reimplement eMule 0.46a’s lookup
algorithm. We validated this mode of kLookup by extending
tcpdump to decode Kad packets and performing lookups for
the same key using kLookup and eMule itself to verify their
similarity. In the process of implementing eMule’s lookup
algorithm, we discovered a few bugs which significantly
degrade its8 efficiency.

As part of our study, we wanted to compare the performance
of eMule’s current lookup algorithm with and without the
bugs, in the hope that it will be of use to the eMule developers.
Again, we example performance in terms of hops and latency

8Our results are based on eMule version 0.46a, the most recentversion
available at the time of our study. We have been corresponding with the
eMule developer team regarding these discoveries, and at least some of the
bugs we report will be corrected in 0.46b.

and overhead in terms of the number of messages. These
experiments are based on more than one-thousand experiments
of using kLookup form unique and randomly selected sources
and destinations. With the bugs fixed, eMule’s lookup algo-
rithm is α = 3 with loose parallelism.

Figure 7(a) presents a CDF of the number of hops to
perform a lookup. The mean value is 3.59, somewhat worse
than our ideal value of 2.91. Without bugs, the number of hops
drops to 3.08, which is closer. Figure 7(b) shows the latency
of the two versions. In both cases, there is a significant tail
(not shown) out to around 70 seconds. We see that the fixed
version improves by around 1 second in most cases. The most
striking difference however is in the overhead, as shown in
7(c). The fixed version uses roughly half as many messages
on average.

V. L OOKUP CONSISTENCY

Ideally, each peer in a DHT is responsible for a certain part
of the DHT geometry and all lookups for any point in that
space lead to that peer. In practice, peer churn causes two
types of routing tables inaccuracies:

1) Peers may not yet have points to a recently arrived peer
2) Peers may have extraneous pointers to a recently de-

parted peer
When routes are inconsistent, it may not be possible to find

information. The extent of these problems is determined by
how frequently the DHT checks its pointers, known as route
stabilization, compared to the rate of churn in the system.
One approach to minimize these problems is to increase the
frequency of route stabilization. However, this significantly
increases the bandwidth required for route maintenance.

An alternative approach is to map each identifier to the set
of the c closest peers, rather than to just the single closest
peer. The publishing operation performs a regular lookup, then
searches the surrounding area to find the closestc. The search
operation does the same, and as long as the two find any peer
in common the search will succeed. Kademlia [4] takes this
approach as a basic principle; however, it can be used in any
DHT. For example, DHash [8] implements this technique over
Chord. The parameterc must be chosen, based on knowledge
of the degree of routing table inaccuracy, to guarantee with
high likelihood that multiple lookups will be able to find peers
in common.
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The key question is: what is the right value ofc to guarantee
a certain level of reliabilityp? In the following subsection, we
use empirical techniques to answer this question for Kad.

A. Achieving lookup consistency

To explore lookup consistency, we extended kLookup to
locate thec closest points after its regular search has com-
pleted. To get an empirical measure forp, we use kLookup
to perform 50 lookups to the same key, each from a different
starting point in the Kad network. The first lookup is a publish
operation which returns a set of peers to publish on. The
following lookups to the same key are query operations, which
return a set of peers to receive the actual query. Computing
the fraction of queries that successfully find one of the target
peers yields an empirical measure of the consistency,p, for
that experiment. We perform the lookups as concurrently as
possible to limit the effects of peer departure and arrival,to
narrow the focus to issues of inconsistent routing tables. For
these experiments, we used strict parallelism withα = 3. We
conducted this experiment 20 times for each value ofc in the
interval [1, 10] (i.e., 1000 lookups per value ofc).

We observed that forc = 1, the consistency is only 89%,
meaning that 11% of the time queries fail to find the same
“closest” peer as a publisher. To explore how many replicas
are needed, Figure 8(a) plotsp as a function ofc. For the
valuec = 3, the consistency is over 99.9% across the twenty
50-lookup trials. Forc = 2, the consistency is in between, at
around 96%.

The above values are for findingany of the replicas. How-
ever, another issue regarding consistency is how effectively
all of the replicas can be found. If one replica can always
be located, but the others cannot be, then lookups will fail
if the one easy-to-locate replica fails. Therefore, for each
replica we compute the number of lookups that found it, and
plot it as a CDF in Figure 8(b). An ideal curve would be a
vertical line atx = 100%, indicating that every query found
every replica. The Figure shows that the performance for the
nearby-replication method is indeed good, with roughly 50%
of queries able to find every replica, and 80–90% of queries
able to find 80% of the replicas.

In summary, our results show that locating the three closest
nodes after finding the closest peer is an effective way to cope
with routing table inconsistencies. More importantly, we show

that even routing table inconsistencies can be a considerable
problem in practice with more than 11% of lookups failing
when no replication is used.
Comparing with eMule: Currently, eMule uses a fuzzy
algorithm which selects several peers as part of the endpoint
set, but which are not necessarily the closest. In addition to
our experiments for different values ofc, we also conducted
more than 60 experiments using eMule’s algorithm9. We found
that eMule’s approach produces 19 replicas on average and
queries succeeds 99.9% of the time. While robust, this is 6.3
times more replicas than simply usingc = 3. Furthermore,
Figure 8(b) shows the CDF of the number of replicas each
lookup found. The performance is substantially worse than the
nearest-c approach, with many replicas being found by only
a few queries. For example, 50% of replicas could be found
less than one-third of the time, compare to just 3% forc = 3.
Additionally, some replicas were not found byany queries.

VI. RELATED WORK

Early work on DHTs focused on introducing new DHTs [1]–
[4] that each achievedO(log n) lookup hops usingO(log n)
state. Initially, it was difficult to directly compare the per-
formance of these DHTs, as each DHT has several tunable
parameters which might cause it to perform better or worse
under different loads. For example, under low churn a DHT
with a large routing table will perform better since it can
achieve faster lookups and route maintenance is inexpensive.
The same DHT will perform poorly under heavy churn.

Several studies [7], [10], [16]–[19] have attempted to ad-
dress the issue of DHT performance under churn, in most cases
using a simple Poisson model for session length. However,
several measurement studies of peer-to-peer systems [20]–[24]
show that session times follow a heavy-tailed distribution. In
this study, we conduct experiments using the real Kad network,
i.e., under real churn.

Gummadiet al. [6] showed that DHTs can be broken into
two components: geometry (or structure) and lookup strategy.
Some DHT geometries provide greater routing flexibility than
others in terms of neighbor selection or route selection. For
example, in CAN a peer’s neighbors are precisely defined
by the geometry, while in Chord there are2i−1 options for

9For these experiments we also used eMule’s lookup techniques.



theith neighbor, providing Chord substantially more flexibility
in selecting neighbors. Their results show that more flexible
systems, such as Chord and Kademlia, can achieve better
performance. We utilize their division between geometry and
lookup to study the lookup behavior in light of the geometry
of the deployed Kad network.

Jinyang Li et al. developed a performance-versus-cost
framework (PVC) for comparing different DHTs [7]. Their
key observation is that for a given bandwidth usage, there
is a minimum lookup latency that can be achieved over the
entire space of DHT parameters, and vice versa. In PVC, they
simulate each DHT using a wide variety of parameters and
plot the best lookup latency each DHT can achieve within a
given bandwidth constraint. This allows them to compare how
different DHTs make the performance-versus-cost trade-off
under a given load. They show that using large routing tables
with infrequent stabilizations and parallel lookup achieves a
better balance than other approaches, culminating in theirlater
development of the Accordion DHT [5]. However, PVC can
only draw conclusions about how well the DHTs respond
to the simulated workload. While their work is useful for
drawing inferences about design trade-offs, our work is aimed
at optimizing tunable parameters in a DHT that is already
deployed.

In summary, prior work on DHTs has been driven by
analysis, simulation, and limited experiments. In each case, a
model is used to approximate or estimate real-world behavior.
This paper presents experiments on a deployed DHT that has
approximately one million real users, and develops tools and
techniques for improving its performance.

VII. C ONCLUSIONS ANDFUTURE WORK

This paper examines lookup performance over the Kad DHT
network. We analytically derive new formulas for the expected
hop count, taking into account random improvements, and
demonstrate that Kademlia’s use ofk-buckets leads to signifi-
cantly better performance than previously reported. We present
new tools, kFetch and kLookup, to characterize the accuracy
of routing tables in Kad, examine the impact of accuracy
on efficiency and consistency of the lookup operation, and
experimentally verify our analysis. Furthermore, we explore
two types of parallel lookup techniques and their impact on
lookup efficiency and also examine the degree of replication
needed to cope with routing consistency. While some of our
empirical results are specific to Kad, our analysis applies to
other prefix-matching DHTs such as Pastry and Tapestry and
could be modified to handle other DHT geometries.

In our future work, we plan to measure the bandwidth eMule
uses for route maintenance, and conduct a similar study in
which we explore ways to maintain higher quality routing
information at lower cost. We also plan to use our recent
measurement-based characterization of churn in peer-to-peer
systems [25] to determine the number of replicas needed to
guarantee the availability of a piece of data within the network.
This will include a mathematical analysis of the trade-off
between republishing the data more frequently to a few peers

versus publishing infrequently to many peers, followed by
empirical experiments to validate our findings.
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