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Abstract—During recent years, Distributed Hash Tables For example, a lookup may either take more than the ideal
(DHTs) have been extensively studied by the networking com- number of hops or could map to inconsistent endpoints.
munity through simulation and analysis, but until recently were There are two class of solutions to address the effect of

not adopted by popular P2P applications. Therefore, it was ot - . .
feasible to examine DHT behavior in practice. Recently, the churn on DHTs{(i) DHT-based DHTSs can incorporate various

popular eMule file-sharing software incorporated a Kademla te€chniques to actively improve their resiliency to churnity
DHT, called Kad, into their software. The success of Kad appars  creasing the degree of redundancy or frequency of updates fo

to have triggered other P2P applications (notably BitTorrent) to  the routing table at each pe¢ii) Client-based Alternatively,
alslo 'tr‘h‘?orporate Kademlia. I study th . fhe & client operating over an inaccurate DHT can improve its
o G e e emprcal Sty Wb peforance of 2 lookup effiency by conducting lookup in parall or cope
than one million simultaneous users. We develop new analgsi With lookup inconsistency by active replication of its cent.
for predicting performance, characterize the accuracy of Kad's Previous studies have examined both DHT-based [10], [11]
routing tables, and empirically determine the optimum leve of and client-based [4], [5] solutions as well as the interac-
i ecasaaanes G oyt Shom e comoses e 101 nd radeofts between hem (7] Al o the prvious
currerF\)teMuIe client, ovérhead can be significantly re%ucedrvhile StUdle_S have used either S'r,m“at'on’ analysis, or smalesc
simultaneously increasing performance. experiments to study these issues. However, churn, and thus
the degree of inaccuracy in routing tables, is a real-world
phenomenon generated by user behavior. Churn’s impact on
the performance of lookup operations has not been emgyrical
Distributed Hash Tables (DHTs) present an elegant distudied due to the limited deployment of DHTs. Given the lim-
tributed solution to deterministically map items to locas. ited understanding of churn characteristics, it is uncleas
They provide sstructuredapproach to Peer-to-Peer (P2P) filewell simulation-based analysis of DHTs represent observed
sharing applications since their item-to-location magpéan behavior in practice. Section VI discusses the related work
be used tdi) place data on specific peers afil efficiently more detail.
locate the data by identifying its corresponding peer. Byiri  This paper presents a measurement-based characterization
the past few years, the potential of DHTs has motivatedaf routing table inaccuracy and its impact on lookup perfor-
wealth of research on different aspects of DHTs includin@ance in a widely deployed DHT, namekad. Kad is an
the design of new DHTSs [1]-[5], performance evaluation anspben, Kademlia-based [4] DHT (with more than 1 million
improvement [6], [7], and the development of a wide rangsoncurrent users) that has been recently deployed by the
of DHT-based distributed applications [8], [9]. Despiteraa popular eMulé file-sharing application to improve efficiency
deal of attention from the research community, DHTs hawsf search in the face of growing population. Section Il prése
not been widely deployed in practice until recently. In than overview of Kademlia and Kad.
absence of any large scale deployment, all the previousestud To study the inaccuracy of routing tables in a DHT, Sec-
on DHTSs relied only on simulation, theoretical analysisd artion Il first establishes an analytical framework to qufnti
limited-scale experiments. Therefore, the behavior of BHThe effect of routing table richness on the performance of
in practice has not been examined and thus is not wédbkup. To our knowledge, this is the first analysis to show
understood. the direct benefits on lookup performance of Kademlia's
In practice, the dynamics of peer participation,abrurn, buckets. Then, we characterize both freshness and complete
can affect the accuracy of routing tables at each peer, amess of routing tables in Kad through detailed and repre-
thus the performance of lookup operations in a DHT. Morgentative measurement. To explain the observed behawor, w
specifically, some entries in the routing table of individuacarefully examine the implementation of eMtilend identify
peers might be missing or stale. Therefore, each peer daes no _
have the expected connectivity to other peers. The inacyur%ei\‘fv':)"r‘i‘('e began as an open-source alternative for the eDonkeyustured
of routing tables in turn affects the efficiency and consisye '

) Sl - 2There is no written specification that describes the Kadogaitso our
of lookup operations that are conducted by individual ¢Ben explanations are based on our reading of the source code.
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the underlying policies for routing table update and redumandom or via a cryptographic hash. To determine the distanc
dancy management that cause the observed behavior. Sinegveen two peers, Kademlia uses a unique “XOR metric”, the
we are dealing with a deployed DHT system, we are unald@wise XOR of their identifiers. For example, the distance
to explore DHT-based solutions to improve the accuracy between0100 and0111 is 0011 (or 3).
routing tables. Instead, we explore the design space aitelie Kademlia belongs to the general class of prefix-matching
based solutions to improve both efficiency and consisteficy OHTs, such as Pastry [3] and Tapestry [12]. At the high-level
lookup operations over DHT in practice. these DHTs work in the same way. ldokup consists of a
Section IV examines client-based solutions to improwequence ofookup stepsThe first step consults the client’s
lookup performance using kLookup, a tool we developeduting table for the target ID, which is guaranteed to have a
to conduct a realistic lookup fronany source ID toany route where the high-ordér bits match. The next step is to
destination ID without having local access to the desighateonsult that peer, which is guaranteed to have a route where t
peers for these IDs. Further leveraging the iterative Ipokdirst 2b bits match. The process continues until no next route
scheme in Kad, kLookup implements a spectrum of parallehn be found, indicating that the closest peer to the ID has be
crawling techniques, enabling us to study various paralledached. We can view the distance between two identifiers
crawling techniques through real-world experiment ovedKaas the number of bits which must be matched la, n in
and identify major design trade-offs. the typical case, where is the network population size. The
Finally, Section V characterizes the degree of inconststenexpected number of stepsw. We callb the symbol size
in lookup operations in Kad and relates it to the underlyingnd in basic Kademligh = 1. Section Il examines the utility
reasons of inaccurate routing tables. We then explore-repf different choices fow.
cation techniques to cope with lookup inconsistency and findAs IP is also a prefix-matching protocol, we borrow some
that keeping three copies in the network dramatically inipso terminology from IP to describe Kademlia routing tablesclEa
lookup consistency. line in a Kademlia routing table is labeled with a subnet
Our main contributions can be summarized as follows: address and mask. When performing a lookup for a key, the
« An analytical framework for computing the average pemost-specific routing table entry with a matching subnet is
formance of lookups used, just as in IP routing. In this paper, the familiar “Blas
o The surprising result that redundancy in routing tablesptation” specifies masks.
such as Kademlia's:-buckets, directly improves mean In Kademlia, the routing table contains one line per address

lookup performance by reducing hop count bit, with increasingly specific masks. The subnet addresses

« kFetch, a tool for extracting the routing table from Kadhe same as the peer hosting the routing table. For example,
peers consider a Kademlia network using 4-bit identifiesnd a

o kLookup, a parameterized tool for performing lookupgarticular peer with the address 0000. The routing lines are
over Kad using a variety of lookup algorithms /0, 0/1, 00/2, 000/3, 0000/4. Because more-specific routes a

« Characterizations of the completeness and freshnesspodferred, the effective routing lines are: 1/1, 01/2, G01/
the routing tables in Kad 0001/4. Put another way, the /0 line will only contain 1/1

« Demonstrating experimentally that parallel lookup caaddresses since any 0/1 address would go in one of the more
reduce hop count, as predicted by our framework specific lines. The routing table structure can be viewed as a

« Experiments finding the optimum degree of parallelisthinary tree, as shown in Figure 1(a).
(o = 3) for use over Kad Globally, the routing tables in all the Kademlia peers form

« Experiments finding the optimum degree of replicatioone large binary tree, with each peer containing a fraction
(c = 3) to overcome routing table inconsistencies in KagO (log n)) of it. During a lookup, each routing step pivots to a

« Methodology that can be applied to studying and tuningjfferent peer which is one bit closer to the target, guarainigy

parameters for any widely deployed DHT. that the lookup requires at moét(logn) steps.

While this study is inevitably centered around Kad, our For redundancy purposes, each routing line (or node in the
analysis, methodologies, tools and findings are mostlyiapgbinary tree) points to a list, called /abucket, ofk matching
cable to other DHTs with proper adjustment. To address widesntacts. Each contact includes the Kademlia ID, IP address
applicability of our work, we briefly discuss how some issuesnd port of the remote peer. Thus, each lookup step has a
can be pursued in the context of other DHTs. Our extensichoice ofk different contacts. Section Il examines some of
examination of eMule’s implementation also revealed savethe consequences for choosing different values.dfVe note
bugs in their implementation, some which will be fixed in théhat k-buckets could be adapted for use in most varieties of
next revision. DHT.

Kademlia makes use of parallel routing to speed up lookups,

as do EpiChord [13] and Accordion [5]. By sending aut

Since the Kad network which we use for our empiricahokup requests at a time, a client can avoid stalling byngyi
observations is based on Kademlia, we first present some

background on _Kade_m“a' L'ke_ most _DHTS' peers n Kadem“ae'ln practice no DHT would use such a small identifier space;tisumore
each have an identifier that is assigned either uniformly @dctable for illustrative purposes.
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to reach a departed peer and also increase the probabilitykey trade-offs between different ways to increase the gskn
finding low-latency peers. Section IV examines using défér of routing tables and provides a formula for computing the
values of« in Kad. average performance. Second, we empirically charactdreze
Kademlia uses iterative routing, where the client is respodegree of routing table accuracy in Kad and identify the
sible for the entire lookup process. At each step, the cliemhderlying reasons for inaccuracies. These charactarisélp
sends alookup requestio the next-hop peer and waits forus explain the observed lookup performance in Section IV.
a lookup reply The reply lets the client know what the nex
hop is. Iterative routing contrasts with recursive roufiwhere
the lookup request is forwarded automatically from one peerEvery DHT has some structure that determines which neigh-
to another. While it has been shown that recursive routi@rs a peer can choose from based on their identifiers. For

typically has lower latency [14], iterative routing has el €xample, in basic Kademlia a peer must have a neighbor with
useful practical properties: a different high-order ID bit, a neighbor with a matchingffirs

Fate-Sharing Lookups cannot be lost through the depaIkgit and a different second bit, a neighbor with the first twis bi
ture of an intermediate carrying the lookup request matching and a different third bit, etc. We call each address

Debugging Iterative routing is easier to debug since in[nask pair éucket(following the Kademlia terminology) and

formation at each step is reported back to the cIief‘Ee neighbor information stored in the bucketantact In
performing the lookup the base case, the DHT contains just enough information

Compartmentalization: Iterative routing allows route table © perform the lookup inlog, n expected hops. In prefix-
structure and lookup efficiency to be improved indeper‘ir-]atCh'ng systems such Kademlia, this implies a symbol size

dently in a deployed network. Our tool, kLookup, usegfﬁz 1 and one (_:Or?t?]Ct per _buckelg.l b d thi
this division to evaluate a variety of lookup techniques DHT can enrich the routing table structure beyond this

directly over the existing Kad network, as shown i ase by eithendding more bucketsr adding more contacts
Sections IV and V. per bucketBy adding more buckets, a DHT can guarantee that

a larger number of bits will be improved at each step, thereby
Lﬁlecreasing the number of hops for a lookup. For example,
Pastry [3] uses a default symbol sizebof 4 which guarantees
bits will be improved at each step. Tables in Chord can also
)e enriched in this way [7].
Adding more contacts per bucket is used to guard against

tA. Benefits of Redundancy: An Analytical Framework

Route Table Extraction: It is possible to download the
routing table of any peer, which we make use of in o
tool, kFetch, described in Section IlI-B.

In summary, the key properties of Kademlia (and, thus, Ka
are as follows:

« Routing by prefix-matching churn, an approach employed by DHTs such as Kademlia [4]
« Redundancy in routing tables-puckets) and Tapestry [12]. By having other contacts handy, a peer
« Parallel routing can more quickly repair its routing table when a failure is
« lterative routing detected. Also, as observed in [4], with heavy-tailed sessi

Of these, redundancy, parallel routing, and iterativeingut times, storing backups and only evicting unresponsive eer
could each be adding directly to most varieties of DHT. Famplicitly leads to a set of peers with good uptime character
example, EpiChord is a variant of Chord with parallel rogtin istics. Finally, multiple contacts allows for the use of qlgl
Prefix-matching is an intrinsic property of Kademlia’s dgsi routing. A bucket withk contacts is called &-bucket.
which it shares with a number of other DHTs such as PastryTo examine the benefits and costs of the above two ap-
and Tapestry. proaches for enriching routing tables, we analyze theiraictp

Kad is a Kademlia-based network for file-sharing, composét the context of Kademlia. Our analysis also directly aggli
of eMule clients. It has approximately 1 million simultamso to other prefix-matching systems such as Pastry and Tapestry
users, plus many more firewalled peers who utilize the Kacghere we can quantify the improvement at each step in terms
DHT for lookups but do not participate in the DHT structureof the number of matching bits. For other DHTs that use a
For each file an eMule client is sharing, it computes the hagdfiferent basic geometry, our analysis could be adapted by
of each word in the filename, and publishes information abomodifying the formulas to reflect the appropriate distance
itself and the file to the peers responsible for the hashesrwtmetric.
an eMule user enters a keyword search, eMule computes thdhere are two different approaches for adding more buckets
hash of the first keyword and initiates a lookup for the hasta a routing table, both of which improve the number of lookup
The lookup returns a set of endpoints to which the cliefiops fromlog, n to log,s:

submits the full keyword list. Those peers process the queryDiscrete Symbols With this approach, illustrated in Fig-
and return a set of matching results. ure 1(b), each interior node points ko- 1 buckets and
an additional interior node. When searching a routing
table, a peer begins by checking the fibsbits. If all

In this section, first we establish an analytical framewark t of them match the peer’s ID, then it proceeds to the next
examine the effect on lookup performance of adding redun- b bits (.e.,the next interior node). Otherwise, it proceeds
dancy to routing tables. This framework provides insight on immediately to the appropriate bucket. Using Discrete

IIl. | NACCURACY OF ROUTING TABLES
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Fig. 1. Routing Table Structures

Symbols increases the routing table size flogy, n rows of improving at leasb bits is:
of onek-bucket each tdog,. n rows of2° — 1 k-buckets 1
each. This is the approach used in Kademlia and Pastry. PriX > 6] = 1)

. . . . . . 20
Split Symbols With this approach, illustrated in Fig- Theref th is better than th ¢
ure 1(c), each interior node points26-! buckets and an eretore, the average-case 1S betler than the worst-case

iven in prior work. In particular, the key insight is that

additional interior node. When searching a routing tabl bucket D i th bability ofiandoml
a peer begins by checking the first single bit. If it match rge bucke sK > ) improve the probabiiity orancomly
inding a contact with more matching bits since there are

the peer’s ID, then it proceeds to the next bi(the next . .
more options to choose from. As we will show, the average

interior node). Otherwise, it examines the néxtits and b f bits i di | ithmically with
proceeds to the appropriate bucket. Using Split Symbd?é‘m er ot bils Improved increases fogarrinmically w

increases the routing table size fog, n rows of onek- making the performance boost of increasihgcomparable

bucket each tdog, n rows of 2°~! k-buckets each. This LO trlletpterz]rformall)nc;rboosft _Of mcr_easﬁlgG?nleradIZ,tfor af
is the approach used in Kad. ucket the probability of improving by at leadtita extra

symbols is:

k
To compare and contrast these approaches for organizing F(,rk)y=Pr[X >40]=1- (1 - 2—15) 2
routing table contacts, we create a general framework for

analyzing their performance. We defifb, r, k) as a system and the probability of improvingxactlys symbols is:
which use%-bit symbols withr-bit resolution andk-buckets. . e

D(1,1,k) is the basic Kademlia approach(b,b, k) is the F@r k) = PriX = 0] = F(,r, k) = F(0+1,m k) (3)
Discrete Symbol approach, ad{b, 1, k) is the Split Symbol  The key question is: how many bits improve on average?
approach used in Kad. Each routing table hag. n rows of This is equal to the product efand the mean value ¢f(§, k)

20 — 2= k-buckets, for a total size of(2° — 2°~")log,. n as a function of: as follows:

contacts. Normalizing by a factor tfg, n yields a normalized Zg" 00 f(0,7, k)
) ob_gb—r m(r, k) = r=55 — (4)
size ofk = . ( ) 25:0 f(éa Ty k)

Prior work has concerned itself exclusively with the worst- While we were unable to find a simple closed form for
case scenario where the selected contact will not match anyr, k), it can be computed numerically without difficulty. For
additional bits of the target identifier. For example, consider = 1, m(1, k) asymptotically approachdsg, k + 0.3327,
searching for the key 111 in the routing table of peer 000 wigbmewhat exceeding this value for low. Significantly,
the base) = 1 system. The peer looks in the bucket with then(1,1) = 1, indicating that on average= 1 systems improve
prefix 1, and returns a contact which we know matches tl@e extra bit per step even with no redundancy! In other words
first bit of the key. However, that contact could be any of the basicD(1,1, 1) system on average performs a lookughadf
peers 100, 101, 110, or 111. In other words, ther%sn:damance as many hopss reported by previous work.
of improving at least 1 extra bit, é chance of improving at  For a Discrete Symbol configuratioP|b, b, k), the number
least 2 extra bits, and so on. More precisely, the probgbilibf bits improved on average i + m(b, k). For a Split
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Fig. 2. Relative performance of different routing tableustures

Symbol configurationD(b, 1, k), the number of bits improved both Discrete Symbols and Split Symbols have performance
on average i + m(1,k). In other words, while the Split in between their regular performance aRdl, 1, k). For mod-
Symbol approach does use more routing table space, it leaate valuesd.g.,20) of k, the performance of Split Symbols
the advantage that it can leverage a random improvementi®ivirtually identical toD(1, 1, k), while the performance of
a single bit; the Discrete Symbol approach must randomBiscrete Symbols plummets (as seen in Figure 2(b)). Because
improve byb bits to make use of the improvement. Discrete Symbols can't make good use of randomness, the
To compare the different approaches, first consider theredundancy imposes a cost with little benefit on lookup
three extreme case®(1, 1, k) (pure Redundancy(b,b,1) performance.
(pure Discrete Symbols), arid(b, 1,1) (pure Split Symbols).  In summary, increasing the symbol size offers a constant-
Figure 2(a) presents the performance of each approach aaaor improvement to worst-case performance, while using
function of the normalized routing table size. Split Synsbolk-buckets unexpectedly offers comparable average-case im-
and Redundancy have nearly identical performance, whpeovement. Moreoverk-buckets offer other advantages:

For the case of Split Symbol®(b, 1, 1)), theb-bit symbols | ower maintenance bandwidth; fewer restrictions on ac-
guarantee an improvement bbits in the worst case, plus an ceptable contacts allows for more contacts to be acquired
additionalm(1,1) = 1 bits on average, for a total of exactly passively
b+1 bits, dividing by the normalized size yields=r. Thisis ., Better resistance to churn by accumulating high-quality
the slope of the Split SymbolgX(b, 1, 1)) line in Figure 2(a). contacts

For the case of Discrete Symbol®(,b,1)), the b-bit While our framework is motivated by our study of Kad, it

symbols again guarantee an improvemerit bits in the worst applies to any prefix-matching DHT and could be extended

case,l plus ant a;dd||t||onah(r71)h22fs oln averige. HO_WteV?r'to other DHTs that can accommodate different symbol or
m(r,1) asymptotically approachésfor larger. As a point of )\ et gizes, such as Chord. In the following section, we use

reference, for Pastry's typical value b= r = 4, the average the formulas we have developed to compute a bound on the

improvement is 4.27 bits per step, roughly a 4% reduction Bbrformance of Kad and empirically examine how close the
the mean number of lookup hdpsompared to that reportedagtual performance is to our model's prediction.

by the Pastry authors [3]. The average improvement divide
. . s b+m(r,1 . .
by the normalized size g1 B. Accuracy of Routing Tables in Kad

For the case of large buckets and 1-bit symb®i§l( 1, k)),
the 1-bit symbols guarantee an improvementldbit in the
worst case, plus an additional(1, k) bits on average, for a

Our goal is to explore the structure and redundamney, 6
and k) of routing tables in Kad by examining eMule source

total of 1 + m(1, k). Dividing by the normalized size resuItsCOde’ and then empirically study the impact of churn on the

lem(1,k) T accuracy of routing tables in Kad.

in —=="_ As a point of reference, for the value bf= 20 . ] N

su egted in the Kademlia paper [4], the average im rovEmArqalySIS of Accuracy/Redundancy Close examination of
99 bap . 9 P e eMule 0.46a source code along with empirical validation

is 5.7 bits per .Step rather than 1 bit per step, resulting Inrtaalvealed that Kad is based on Kademlia with a bucket size
60% reduction in the mean number of hops!

of 10 contacts ¥ = 10), and 3.25-bit Split Symbol§ which

Can performance be improved by using a mixture of lar feans that Kad is @(3.25,1, 10) system. Therefore, accord-
buckets and large symbols? Not really. Figures 2(b) and 2(¢ . . .
fig to Equation 4 the mean number of improved bits per step

plot several other permutations Df{b, r, k). Figure 2(b) holds . : " .
k constant and varies, while Figure 2(c) holds constant is 6.98 in Kad. Additionally, as a special case Kad always

and variesk. For small values of: (e.g.,2) with varying b, 5The % bit is due to the fact that Kad uses unbalanced subtrees. Each

interior node has branches with labels 0, 1000, 1001, 104, 4id 111. The
4The expected number of hops is equalldg; n where B is the average 0 branch leads to the next interior node; the other brances tok-buckets.
number of bits of improvement. The average improvement per stemig€5 + m(1, k) bits.
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improves at least the 4 most significant bits on the first stepetwork, a lookup over Kad requirdsg, 980,000 ~ 19.9

or 7.73 on average for a maximally distant ned€hus, the bits improvement per step, and a lookup in Kad should take
expected number of hops for a maximally distant node in Kéég;—gw + 1 = 2.7 hops, assuming perfect routing tables.
is 10820778 | 1 g estimate the number of hops from thigThis is significantly better than predicted by prior techreg

6.98
equation, we determine later in this subsection. of % + 1 = 6.30 hops. Correctly taking into account
Characteristics of Accuracy. We examine two dimensions ofthe effect of randomness alters the predicted performapnce b
inaccuracy in the routing tables in Kad as follows: more than a factor of two

Completeness represents whether the routing table corkFetch: To study the accuracy of routing tables, we developed
tains the appropriate number of entries, given the size @fnew tool calledkFetch kFetch chooses a Kad peer at
the Kad network. random, downloads its complete routing table, and idestifie

Freshness captures the number of contacts in the routingtale entries in the routing table by actively probirige.(

table that are still activei.¢., do not point to a departed sending a lookup request) to each contact in the routing tabl
peer). The routing table of the target peer should be downloaded

Toward this end, first we need to estimate the size of tigeickly in order to minimize any error in our characteripati
Kad network ). In our previous work [15], we developed adqe to on going churni.(e.,_ a contact that is considered stale
parallel peer-to-peer overlay crawler, callécliser. Crawling Might be actually present in the network). Each Kad node only
the entire Kad network takes too long due to the large size §EPlies o a lookup request from participating peers to gk
routing tables at each peer and the large number of peersarhlp' There are two challenges to d_ownload a routing table
the network. Because churn occurs while the crawler ruridficiently: () the rate of requests (which are UDP messages)
a long crawl results in an inflated population count as fould be properly paced to rapidly download the table witho
records a large number of short-lived peers which were nguSing any packetloss, a(igj lookup messages should prop-
simultaneously present. However, since Kad identifiers af8Y Select requested IDs from a target peer to extractlieta
selected uniformly at random, any subnet of the ID space'|dth the minimum number of messages. kFetch implements
a representative sample of the total population, and a subN§WReno-style congestion control to determine the progter r
can be crawled much faster than crawling the whole netwol@ iSSUINg requests to the target node. Furthermore, kFetc
Multiplying the size of the subnet by the number of sucR€Nds requests for each possible routing table line, zgyrat
subnets yields an estimate of the population size. By taki¥fjich can be used on any DHT that uses iterative routing.
the mean over many such samples, we can get a good estimistgitionally, for each contact learned, kFetch pings thetaot
for n. Moreover, our formulas are not sensitive to minaf© Verify whether itis still present in the network, conatly
fluctuations in population size as they are basedogg . with continuing to download the routing table. TollocaFeT ampe
Given a Kad overlay subnet as an inpetd,, Ox5cd/12), at random, kFetch generates a random Kad identifier, then

Cruiser walks the DHT structure to capture a snapshot Bfrforms a Kad lookup to locate the peer closest to that Kad
all the active peers with IDs in the specified subnet. F&gentifier. , ,
example, it can capture a /10 subnet with roughly 1000 peé;garacterlstms of Kad Tables Using kFetch, we retrieved

in around 3—4 minutes and a /12 subnet with roughly zghe routing tables of approximat_ely 80,000 distinct Kadrpee
peers in around one minute. During June of 2005, we captut@d’un€ 2005 and examined their freshness and completeness.
the population size for several hundred randomly selectE#ure 3(a) shows the mean number of contacts in each routing
subnets with Cruiser. Our measurements reveal that the K8Q!e bucket as a function of the bucket's subnet mask. It
network has a mean population size of approximately 980,08(§° Shows what fraction of these contacts are fresh, the

concurrent peers. Given this estimated group size for th K§ONtact responded to our ping). The “Ideal” line indicates t
average number of contacts in the bucket if we had global

6The root node has a full 16 branches. information, based on the population siie,., min (10, %)
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wherez is the number of bits in the address mask ang 1 = 2.91 hops. This is still significantly better than the value
the population size. All three curves (Ideal, Known, andshje predicted by prior analytical techniques of 6.30 hops.

curve off steeply when the mask length exceeds 16 bits, whichNote that we are unable to change the routing tables in
is where the number of contacts is limited by the number ttie entire Kad network. Therefore, we explore client-based
available contacts in the system. For shorter masks, omgeeralternatives to improve efficiency and consistency of Iqoku
each bucket has one or two empty slots and contains one stal&Kad and evaluate their performance in the following two
contact. The mean number of empty slots is slightly higher asctions, respectively.

the mask length increases. Figure 3(b) shows the mean number
of fresh contacts as a fraction of the number of contacts
actually present. This shows that around 90% of entries are/Ve turn our attention to client-based approaches to improve
fresh for masks up to length around 16, then the fractidhe performance of iterative lookup over a DHT that has inac-
of fresh entries decreases (meaning that the number of stiigate routing tables. While incomplete buckets will deigra
entries increases). This is because the current impletiemtaPerformance as described in the previous section, statactsn

of eMule doesn't ping peers in buckets which are not at leg&tn dramatically increase latency by causing timeouts ¢arc
70% full. In fact, in Figure 3(c), where we examine the numbéyince the timeout interval is typically set to at least a few
of contacts relative to the ideal number, above /17 there dRand-trip times, it can easily exceed the desired time fer t
actually more stale contacts than active peers anywhere€ffire lookup.

that subnet! As each peer is up, it gradually accumulatés sta 10 improve performance despite inaccurate routing tables,
contacts in these buckets which are expunged too slowly. Alents {.e., end-points) can perform parallel lookup. While

a consequence virtually every lookup in Kad necessarilysen@@rallel lookup has traditionally been used exclusivelyhwi
with timeouts to stale peers even though the closest peer Hggative DHTs, Jinyang Lt al. [5] present a technique for
already been contacted! As this routing table maintenanR@rforming parallel lookup on a recursive DHT.

problem can trivially be corrected by pinging all buckets In & parallel lookup, a client simultaneously manages multi
instead of just those mostly full, in the remainder of thipga P! lookup requests to different peers and performs theupok

we consider only the time required to hear from the closeRfocess based on the information obtained from all requests
responsive peer. The inherent redundancy in the information collected by

. 3 h h arallel lookup reduces the problem of hitting stale cotstac
From Figure 3(a), we see that on average there are ﬁ#proving lookup performance at the cost of higher network

empty slots plus 1 staI(_a contact per bucket. _We could le('J%erheadi(e.,aIarger number of requests per lookup). Parallel
k - 10 -1.5 -1 = 7.5 into our formula, but first we must lookup has two other significant advantages. First, lookup
vall_date that most _buckets are close_ to the average stdtee If requests facilitate populating or passively updating theing
variance Is very high, for example if 85% of buckets had tables, which in turn reduces the bandwidth requirement for
entries and the othgr 15% were cqmpletely empty, ther.1 us'@)?plicit updates, as shown in [7]. Second, during each step
the average would introduce considerable error. Towariss thye ', o lookup process, parallelism increases the number of
end, Figures 4(a) and 4(b) present the CDF of the numhey,io s searched, increasing the probability of finding a
of contacts and fresh contacts across all observed bucrbuetse’omact closer to the targeite,, with more matching bits) and
masks /4, /8, and /12. They show that for both completene[ﬁﬁs decreasing the number of hops needed to reach the.target
and freshness, nearly all buckets are close to the averag® va 1 oyamine different lookup strategies, we developed a
Therefore, we may use the average value for the purposes,ly 1,0, calleckLookup which performs a lookup frorany
our computations without introducing considerable error. source ID toanydestination ID without requiring local access
Using an average of 1.5 empty slots plus 1 stale contact perthose peers. To emulate a lookup from a source ID, kLookup
bucket, we have an effective bucket sizekof 10—1.5—1 = takes the following steps. First, it uses a local Kad routing

7.5. This increases the expected hop counﬂi‘é’éw + table to locate the peer closest to the sourcei l@®,(he source

IV. LOOKUP EFFICIENCY
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329 o ; requests are sent immediately. While this approach appears
Q 3.15 - k be significantly more expensive than strict parallel logkitip
£ o4 incurs only modest additional overhead since later reggns
g 305 from the same step are less likely to contain better contacts
8 (i.e., each time a packet is sent, the bar has been raised). The
- - . . ™ A
3 N advantage of this looser approach is the ability to quickly
2.95 T T T T ] abandon lookups that are likely to time out. This approach
0 2 4 6 8 10 is used by eMule.

Degree of Parallelisma() We evaluated the performance of both types of parallel
lookup techniques under varying degrees of parallelisnmdJs
kLookup, we captured several hundred lookups for different
values ofa for both strict and loose parallelism. Each lookup
used a unique, randomly selected source and a unique, ran-

peer), then it extracts the routing table of the source ps@gu gomly selected destination. In our evaluation, we examine
kFetch. Finally, it performs a lookup to the destination IQpree metrics:

using the routing table of the source peer. kLookup implasien
an adjustable degree of parallelism) (vith the following two
classes of parallel lookup techniqués:Strict Parallel lookup
and (i) Loose Parallel lookup.

Fig. 6. Parallel lookup reduces hop count

Hops: The number of hops from the source to the destina-
tion

Latency: The duration from the start of the lookup to when
a response is received by the final destination, which is a

Strict Parallel Lookup: In this approach, a client begins function of the number of hops and the time spent waiting
a lookup by sending lookup requests to thebest known for responses and timeouts

contacts. Similar to the window-based congestion control i Messages SentThe overhead used to perform the lookup
TCP, a client restricts the number of requests in-flighdtc\ . . . .
ItEarller, we mentioned that increasing can reduce the

new request is issued only when a pending request times qu s i
. , . ... number of lookup hops by providing more opportunities to

or a response is received. The resulting overhead is limite . . . : i

. ; . randomly improve extra bits. Figure 6 provides empirical

to a factor ofa. The downside of the strict approach is thaé ort by showind that the mean number of hops decreases

when a client sends a packet to a departed contact, it must W PP y'S 9 P

: - . slightly asca increase$ Furthermore, the hop count far= 1
for a timeout to occur before giving up. In the meantime, the T .
T , IS around 3.2, which is close to our predicted value of 2.9.
degree of parallelism is effectively reduced by one. Howexe Si th ber of h . ted. th N "
timeout is typically set to at least a few round-trip timesieth Ince the number of Nops IS as expected, the next question

is on the order of the desired time for the entire lookup. Thu'tg: hov‘f{ mtjcrt' Ilatencyt|s :n})ro:l_uced k5)y timing out Wht"he trlyltng
in the strict approache roughly determines the number of(:c (t:t?n ?C stale conhac Sf' \gure I(a) ;:ompafreTsh ?_ atency
timeout events a client can experience without experiegwain0 € two approaches for several vaiues ar 1he irs

significant latency penalty. Kademlia uses this approach. observation is that the latency far = 1 is very high—

. Close to 10 seconds. Using a value @f= 3 dramatically
Loose Parallel Lookup Parallel lookup can be performed in

| tashion by allowi h in fliah reduces the latency, with diminishing returns for larger
a looser fashion by allowing more thanrequests in flight. Second, Figure 5(a) reveals that the loose approach is just
In this approach, a client can issue a lookup request to

: bﬁrely quicker for constant. The greatest advantage of loose
contact that is among the tap contacts as soon as such

is identified if this look . 5 ?Jarallelism is that it is significantly less likely to get sku
contactis | ent|_|e , even I this lookup request |n.crea es waiting for timeouts to occur. However, as we show in Sec-
number of pending requests beyandFor example, ifv = 3,

the Iookup begi_ns by sending 3 Iookup _reql_JeS_tS' If the ﬁrSt7This figure is particularly noisy due to the smaHaxis scale. The general
response contains 3 better contacts (which is likely), 3emadownward trend is nevertheless visible.
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Fig. 7. Efficiency metrics across many lookups

tion Ill, few contacts in Kad are stale. This explains whydeo and overhead in terms of the number of messages. These
parallelism does not show much performance improvement fexperiments are based on more than one-thousand expesiment
this network. of using kLookup form unique and randomly selected sources
To examine the overhead of parallelism, Figure 5(b) showsd destinations. With the bugs fixed, eMule’s lookup algo-
the number of packets sent as a functioncofor the two rithm is o = 3 with loose parallelism.
approaches. In both cases, the overhead increases roughRigure 7(a) presents a CDF of the number of hops to
linearly with «, with loose approach generating roughly twicgerform a lookup. The mean value is 3.59, somewhat worse
as many messages as the strict approach. Given that for filegh our ideal value of 2.91. Without bugs, the number of hops
« the performance off strict and loose parallelism are quitkops to 3.08, which is closer. Figure 7(b) shows the latency
similar, this suggests that strict parallelism is the battwice of the two versions. In both cases, there is a significant tail
for the current Kad network. To more directly compare th@ot shown) out to around 70 seconds. We see that the fixed
two, Figure 5(c) factors out by plotting the performance as aversion improves by around 1 second in most cases. The most
function of the overhead. From this, we see that asymptbticastriking difference however is in the overhead, as shown in
the performance of strict and loose parallelism are surmflig  7(c). The fixed version uses roughly half as many messages
similar. A large number of messages represents the uppen-average.
bQunq on performance: no amount of increased parallelism V. LOOKUP CONSISTENCY
will significantly improve it. At the low-end, the two perfor i ) ) _
the same since the two approaches result in identical behavi 'd€ally, each peer in a DHT is responsible for a certain part
for the special case = 1. However, the sweet-spot for strict®f the DHT geometry and all lookups for any point in that

parallelism ¢ — 3) is significantly better than the sweet-spopPace lead to that peer. In practice, peer churn causes two
for loose parallelism. types of routing tables inaccuracies:

In summary, these observations show that strict paratielis 1) Peers may not yet have points to a recently arrived peer
with o = 3 is a good choice for the current Kad network. 2) Peers may have extraneous pointers to a recently de-
Higher values of and loose parallelism substantially increase ~ Parted peer
overhead without much change in performance. Also, ourWhen routes are inconsistent, it may not be possible to find
findings in Figure 6 provide evidence of the correctness #fformation. The extent of these problems is determined by
our analysis in Section Il how frequently the DHT checks its pointers, known as route
Comparing with eMule: As part of creating kLookup, we Stabilization, compared to the rate of churn in the system.
also attempted to exactly reimplement eMule 0.46a’s lookéne approach to minimize these problems is to increase the
algorithm. We validated this mode of kLookup by extendin§equency of route stabilization. However, this signifittan
tcpdump to decode Kad packets and performing lookups fgcreases the bandwidth required for route maintenance.
the same key using kLookup and eMule itself to verify their An alternative approach is to map each identifier to the set
similarity. In the process of implementing eMule’s looku®f the ¢ closest peers, rather than to just the single closest
algorithm, we discovered a few bugs which significantipeer. The publishing operation performs a regular lookugnt
degrade it% efficiency. searches the surrounding area to find the closebhe search

As part of our study, we wanted to compare the performan@geration does the same, and as long as the two find any peer
of eMule’s current lookup algorithm with and without then common the search will succeed. Kademlia [4] takes this
bugs, in the hope that it will be of use to the eMule develope@Pproach as a basic principle; however, it can be used in any
Again, we example performance in terms of hops and lateney1T. For example, DHash [8] implements this technique over

Chord. The parametermust be chosen, based on knowledge
80ur results are based on eMule version 0.46a, the most reeesion of the degree of routing table inaccuracy, to guarantee with

available at the time of our study. We have been correspgndiith the . S : . .
eMule developer team regarding these discoveries, andast #me of the hlgh likelihood that multlple Iookups will be able to find pse

bugs we report will be corrected in 0.46b. in common.
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Fig. 8. Lookup Consistency

The key question is: what is the right value«db guarantee that even routing table inconsistencies can be a consilderab
a certain level of reliabilityy? In the following subsection, we problem in practice with more than 11% of lookups failing
use empirical techniques to answer this question for Kad. when no replication is used.

Comparing with eMule: Currently, eMule uses a fuzzy

] algorithm which selects several peers as part of the entipoin
To explore lookup consistency, we extended kLookup i@t but which are not necessarily the closest. In addition t

locate thec closest points after its regular search has comyr experiments for different values of we also conducted
pleted. To get an empirical measure farwe use kLookup more than 60 experiments using eMule’s algorithiive found

to perform 50 lookups to the same key, each from a differefar emule’s approach produces 19 replicas on average and
starting point in the Kad network. The first lookup is a publisqyeries succeeds 99.9% of the time. While robust, this is 6.3
operation which returns a set of peers to publish on. Thgyes more replicas than simply using= 3. Furthermore,
following lookups to the same key are query operations, Whigjgyre 8(b) shows the CDF of the number of replicas each
return a set of peers to receive the actual query. Computigkup found. The performance is substantially worse than t
the fraction of queries that successfully find one of thedtrg,earest approach, with many replicas being found by only
peers yields an empirical measure of the consistencor 5 few queries. For example, 50% of replicas could be found
that experiment. We perform the lookups as concurrently gss than one-third of the time, compare to just 3%der 3.

possible to limit the effects of peer departure and arrit@l, additionally, some replicas were not found layy queries.
narrow the focus to issues of inconsistent routing tables. F

A. Achieving lookup consistency

these experiments, we used strict parallelism wits 3. We VI. RELATED WORK
ponducted this_experiment 20 times for each value of the Early work on DHTSs focused on introducing new DHTs [1]—
interval [1,10] (i.e., 1000 lookups per value af). [4] that each achieve® (log n) lookup hops using (log )

We observed that for = 1, the consistency is only 89%, state. Initially, it was difficult to directly compare the rpe
meaning that 11% of the time queries fail to find the samgrmance of these DHTSs, as each DHT has several tunable
“closest” peer as a publisher. To explore how many replic@srameters which might cause it to perform better or worse
are needed, Figure 8(a) plotsas a function ofc. For the ynder different loads. For example, under low churn a DHT
valuec = 3, the consistency is over 99.9% across the twengyith a large routing table will perform better since it can
50-lookup trials. Fore = 2, the consistency is in between, afchjeve faster lookups and route maintenance is inexpensiv
around 96%. The same DHT will perform poorly under heavy churn.

The above values are for findirany of the replicas. How-  geyeral studies [7], [10], [16]-[19] have attempted to ad-
ever, another issue regarding consistency is how effégtivgjress the issue of DHT performance under churn, in most cases
all of the replicas can be found. If one replica can aI_wa)@sing a simple Poisson model for session length. However,
_be located, but the others car_mot b_e, then lookups will faibyeral measurement studies of peer-to-peer systemg22p]—
if the one easy-to-locate replica fails. Therefore, forfeaghow that session times follow a heavy-tailed distribution
replica we compute the number of lookups that found it, anflis study, we conduct experiments using the real Kad néwor
plot it as a CDF in Figure 8(b). An ideal curve would be Qe ynder real churn.
vertical line atz = 100%, indicating that every query found Gymmadiet al. [6] showed that DHTs can be broken into
every replica. The Figure shows that the performance for thg, components: geometry (or structure) and lookup styateg
nearby-replication method is indeed good, with roughly 50%ome DHT geometries provide greater routing flexibilityrtha
of queries able to find every replica, and 80-90% of querigghers in terms of neighbor selection or route selection. Fo
able to find 80% of the replicas. example, in CAN a peer's neighbors are precisely defined

In summary, our results show that locating the three closggf the geometry, while in Chord there a2é! options for
nodes after finding the closest peer is an effective way te cop

with routing table inconsistencies. More importantly, wew 9For these experiments we also used eMule’s lookup techsique



the ™ neighbor, providing Chord substantially more flexibilityversus publishing infrequently to many peers, followed by
in selecting neighbors. Their results show that more flexibempirical experiments to validate our findings.
systems, such as Chord and Kademlia, can achieve better
performance. We utilize their division between geometrgl an
lookup to study the lookup behavior in light of the geometryil] |- Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. &alshnan,
of the deployed Kad network. iChord 4 el Feerio heer Lookup Sence or Inteagpla
Jinyang Li et al. developed a performance-versus-cost?] s. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. &heriA
framework (PVC) for Comparing different DHTs [7] Their Scalable Content-Addressable Network,”SiGCOMM 2001.

. . . . ] A. Rowstron and P. Druschel, “Pastry: Scalable, distiéld object
key observation is that for a given bandwidth usage, ther location and routing for large-scale peer-to-peer systeimsFIP/ACM

is a minimum lookup latency that can be achieved over the International Conference on Distributed Systems Platiorgviddle-
entire space of DHT parameters, and vice versa. In PVC, the@/ ware), Heidelberg, Germany, Nov. 2001, pp. 329-350.

. . . . P. Maymounkov and D. Mazieres, “Kademlia: A Peer-toipkgorma-
simulate each DHT using a wide variety of parameters an tion System Based on the XOR Metric,” International Workshop on

plot the best lookup latency each DHT can achieve within a peer-to-Peer Systemg002.
given bandwidth constraint. This allows them to compare hows] J- Li, J. Stribling, R. Morris, and M. F. Kaashoek, “Banidth-efficient

. ~ _ _ Management of DHT Routing Tables,” iNetworked Systems Design
different DHTs make the performance-versus-cost trafle-of " ImplementationBoston, MA, May 2005,

under a given load. They show that using large routing tablgg] k. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Béerand
with infrequent stabilizations and parallel lookup acleig\a I. Stoica, “The Impact of DHT Routing Geometry on Resiliersued

: P . Proximity,” in SIGCOMM Karlsruhe, Germany, Aug. 2003.
better balance than other approaches, culminating in kteir [7] J.Li, J. Stribling, F. Kaashoek, R. Morris, and T. Gil, ‘Performance vs.

development of the Accordion DHT [5]. However, PVC can ~ Cost Framework for Evaluating DHT Design Tradeoffs undeu@hi
only draw conclusions about how well the DHTs respond in INFOCOM Miami, FL, Mar. 2005.

: : : : [8] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and |. 8&i“Wide-
to the simulated workload. While their work is useful for area cooperative storage with CFS "$OSP Banff, AB, Canada, Oct.

drawing inferences about design trade-offs, our work isegim 2001.
at optimizing tunable parameters in a DHT that is already®] V. Ramasubramanian and E. G. Sirer, “The Design and Impfgation
deployed of a Next Generation Name Service for the Internet,"SIGCOMM
' i . Portland, OR, 2004.
In summary, prior work on DHTs has been driven byig] s. Rhea, D. Geels, and J. Kubiatowicz, “Handling Chur@iDHT,” in
analysis, simulation, and limited experiments. In eactecas USENIX 2004, pp. 127-140.

; ; : _ :[11] S. S. Lam and H. Liu, “Failure Recovery for StructuredPP2etworks:
model is used to approximate or estimate real-world bemawg Protocol Design and Performance Evaluation,”"SIGMETRICS New

This paper presents experiments on a deployed DHT that has york, NY, June 2004.

approximately one million real users, and develops toots afi2] B. t\)(. Zhao, L. Huang, J. Striblir:g, S. (ll.bRTea, |A. D. Jd;;@nd J.D.

; ; ; ; Kubiatowicz, “Tapestry: A Resilient Global-Scale Overltyr Service
techniques for improving its performance. Deployment,” IEEE Journal on Selected Areas in Communicatjons
VII. C = W vol. 22, no. 1, pp. 41-53, Jan. 2004.
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