
CertShim: Securing SSL Certificate Verification through Dynamic

Linking

Tyler Nichols, Adam Bates, Joe Pletcher, Braden Hollembaek,
Dave Tian, Abdulrahman Alkhelaifi, and Kevin R.B. Butler

Department of Computer and Information Science
University of Oregon, Eugene, OR

University of Oregon Technical Report TR-201405-01

Abstract

Recent discoveries of widespread vulnerabilities in
the SSL/TLS protocol stack, particular with regard
to the verification of server certificates, has left the
security of the Internet’s communications in doubt.
Newly proposed SSL trust enhancements address
many of these vulnerabilities, but are slow to be de-
ployed and do not solve the problem of securing ex-
isting software. In this work, we provide new mech-
anisms that offer immediate solutions to addressing
vulnerabilities in legacy code. We introduce Cert-
Shim, a lightweight retrofit to SSL implementations
that protects against SSL vulnerabilities, including
those surveyed by Georgiev et. al. [19], in a manner
that is transparent to the application. We demon-
strate CertShim’s extensibility by adapting it to
work with Convergence, DANE, and Client-Based
Key Pinning. CertShim imposes just 20 ms over-
head for an SSL verification call, and hooks the SSL
dependencies of 94% of Ubuntu’s most popular pack-
ages with no changes necessary to existing applica-
tions. This work significantly increases system-wide
security of SSL communications in non-browser soft-
ware, while simultaneously reducing the barriers to
evaluating and adopting the myriad alternative pro-
posals to the certificate authority system.

1 Introduction

Internet applications have relied for years on the SS-
L/TLS libraries for secure end-to-end channels, but a
growing body of literature points to systemic lapses
in security procedure that renders our communica-
tions insecure. The heart of these problems lies with
the inability for clients to accurately authenticate the
server when presented with its public-key certificate.
Certificate validation has been shown to be incor-
rect at all layers of the SSL stack, from improper
certificate handling in libraries [7, 29], to confusion
and abuse of SSL APIs [19, 43], to applications that
are broken by design so that they are easier to use
[17]. Moreover, high profile compromises of promi-
nent Certificate Authorities (CAs) have eroded the
very foundations of the SSL trust model [32, 18, 12].
Any one of these lapses gives rise to the threat of
a Man-in-the-Middle (MitM) attack, in which an at-
tacker is able to intercept and read supposedly-secure
SSL traffic in transit to or from a target website.

While a variety of forward-thinking solutions have
been proposed in the literature [10], less attention has
been paid to immediate countermeasures, and ways
in which we can fix the vast amount of legacy soft-
ware that is vulnerable and inexorably linked to the
CA model. Detecting and reporting these vulnera-
bilities is an inadequate solution; studies of Android
SSL usage have found that up to 76% of vulnerabili-
ties persist for over a year [43], even once the devel-
opers have been notified of confirmed vulnerabilities

1



[17]. In the presence of aloof and unavailable devel-
opers, we must pursue alternate means of securing
our Internet communications.

In this paper, we consider a system-wide approach
to securing negligent SSL code in non-browser soft-
ware that simultaneously facilitates the immediate
use of CA alternatives and other SSL trust enhance-
ments. We present CertShim, a lightweight retrofit
to existing popular SSL implementations (OpenSSL,
GnuTLS, and partial support for JSSE) that acts
as a shim1 into the validation procedure in dynami-
cally linked applications. CertShim provides appli-
cation and domain specific handlers thatforce correct
certificate validation on previously insecure applica-
tions. We demonstrate its practicality by incorporat-
ing a variety of verification techniques including tra-
ditional CA validation, Convergence [30], DANE [23],
and client-side key pinning [14, 31, 37, 42], some of
which were previously only available as experimental
browser plug-ins, CertShim reduces the barrier to
adopting alternative certificate validation systems by
making them immediate candidates for system-wide
deployment.

While recent studies have made recommendations
for the general improvement of the SSL ecosystem,
few have introduced system-wide defenses to SSL vul-
nerabilities in legacy software. Fahl et al. modify the
Android API to restrict SSL misuse [17], while Conti
et al. introduce MYTHIS, a benign MitM proxy for
Android that is able to defend against rogue access
point attacks [11]. In contrast to these works, our
platform-wide defense does not require a manufac-
turer update, or even administrator privileges, to be
put to use. We also deliver on the promise of plug-
gable certificate verification that is left to future work
by Fahl et al., and go a step further by showing
that additional security assurances can be attained
by layering multiple verification modules. CertShim
works in desktop and server environments, which are
considerably more complex than Android, as vari-
ous SSL implementations need be considered. Fur-
thermore, the solutions for Android experience com-
patibility issues with some programs; in contrast, we

1A shim is a library that transparently intercepts an API
and changes its parameters or operations.

present a policy engine that provides application- and
domain-specific certificate handling.

We make the following contributions:

• Enforce Safe Defaults on SSL: CertShim
hooks calls to SSL APIs in order to enforce host-
name validation and certificate validation. As
this behavior would otherwise break applications
that pin certificates or connect to domains that
use self-signed certificates, we present a policy
engine that enforces safe defaults but provides
unique handlers based on the application and
destination domain.

• Enable CA Alternatives: Existing open
source initiatives may be slow to adopt alterna-
tive SSL trust models, may intentionally choose
to stay with the status quo of certificate author-
ities, or may simply have gone defunct. Cert-
Shim provides modular retrofits that allow exist-
ing applications to use modern CA alternatives.
CertShim provides a means of taking the con-
sensus of multiple forms of certificate validation,
which to our knowledge is the first of its kind in
the literature, allowing even stronger guarantees
through ensemble validation.

• Performance Analysis of CertShim: We
survey Ubuntu’s 10,000 most popular packages
and find that CertShim supports 94% of the 390
packages that were found to contain SSL usage.
Our benchmarks show that the use of CertShim
adds as little as 20 ms to an SSL lookup under re-
alistic conditions. We also perform manual test-
ing to determine that CertShim transparently
secures all of the major SSL library misconfig-
urations and 8 of the 9 data-transport library
vulnerabilities identified by Georgiev et al.[19].

The remainder of this work is organized as follows:
Section 2 provides background on SSL, CAs, and the
problems associated with certificate validation. In
Section 3 we present the design and implementation
of CertShim, analyze its features in Section 4, and
evaluate its performance as well as coverage of real
world SSL usage in Section 5. Limitations of our
approach and future work are discussed in Section

2



6, and related work is summarized in Section 7. In
Section 8 we conclude.

2 Background

The SSL/TLS protocol families are largely responsi-
ble for securing the Internet’s web traffic. The orig-
inal SSL (Secure Socket Layers) protocols were in-
troduced by Netscape in 1995 to provide confiden-
tiality, integrity, and identity to network communica-
tions [22]. While the foundations of SSL’s solutions
to confidentiality and integrity have withstood the
test of time, reliably establishing destination identity
in SSL connections has proven to be a surprisingly
difficult problem. Without identity assurances, users
are vulnerable to the threat of impersonation or Man-
in-the-Middle (MitM) attacks, in which an attacker
is able to intercept and read supposedly-secure SSL
traffic bound to or from a target website. We still
rely on Netscape’s original solution, the Certificate
Authority (CA) public key infrastructure, which re-
quires that domains register with one or more CAs in
exchange for a signed X.509 certificate. A client can
then authenticate the server validating its certificate
by using the issuing CA’s public key; obtaining this
public key is a transparent process to the client, as it
is likely pre-installed into their operating system or
web browser.

Development Vulnerabilities. Good SSL code,
particularly with regards to certificate verification,
is very difficult to correctly implement. Numerous
MitM vulnerabilities have been discovered in certifi-
cate chain validation routines, such as null prefix at-
tacks on Pascal strings [29, 28]. Georgiev et al’s sur-
vey of SSL connection authentication exposed per-
vasive misunderstanding of certificate verification in
SSL API’s in non-browser software, and also drew at-
tention to many popular SSL libraries that are broken
by design [19]. Fahl et al. interviewed developers to
find that apps were often intentionally broken so as
to allow for easier development, or to support self-
signed certificates [17]. Even worse, the tomes of vul-
nerable SSL code that exist today that are unlikely
to ever be patched. Studies of SSL vulnerabilities in
Android apps have found that up to 76% of vulner-

abilities persist for over a year [43], even once the
developers have been notified of confirmed vulnera-
bilities [17]. Even more surprisingly, Brubaker et al.
perform automated testing to uncover dramatic in-
consistencies in the validation routines of the major
SSL libraries, some of which gave rise to exploitable
vulnerabilities [7]. Given that not even SSL library
development teams can agree on best practices for
certificate handling, the situation today is certainly
grim.

Trust Vulnerabilities. Orthogonal to these im-
plementation issues are a number of fundamental and
systemic limitations in the CA trust model. CAs are
under no obligation to perform due diligence before
issuing a certificate, and in fact this lack of verifi-
cation is pervasive in the certificate ecosystem [45].
This, combined with the myriad recent serious, high-
profile compromises and blunders (e.g., Comodo[32],
Diginotar[18], TURKTRUST[12]), makes it fair to
ask whether CAs are sufficiently incentivized to pre-
serve the security of themselves or their customers.
These lapses are at times met without any serious
repercussions [9, 30], and there is even evidence that
CAs work directly against customer security by offer-
ing wiretap services [21, 39, 41, 42]. These problems
are serious enough, but they are exacerbated by a lack
of scoping; any CA can verify any certificate, meaning
that conscientious businesses that certify with rep-
utable CAs are just as at risk, and software vendors
often include potentially untrustworthy CAs in order
to ensure compatibility with Internet services [15].

2.1 CA Alternatives

Proposed CA enhancements and alternatives were
surveyed by Clark and van Oorschot [10], who iden-
tify families of proposals based on their underlying
fundamental principles of operation. These alterna-
tives vary widely in terms of both their advantages
and limitations, reflecting differences of opinion on
the fundamental problems with the CA trust model.
This work makes use of an important subset of these
security enhancements that require no server side
changes in order to be adopted; primitives such as
multipath probing [3, 30, 47], client-based key pin-
ning [37, 14, 31, 42], and certificate revocation lists

3



[33, 38, 13, 26] are eligible for immediate deploy-
ment by individual users, providing tangible security
enhancements to today’s Internet threats. Due to
its relative popularity, we also consider the DANE
DNS-based key pinning system, a trust enhancement
that embeds X.509 certificates in DNSSEC records
[23, 27]. However, none of these trust enhancements
has enjoyed widespread deployment, in part due to
the vast amount of non-browser software that would
need to be modified in order to enable their system-
wide use.

Key pinning, Convergence, and DANE are exem-
plar trust enhancements that we make use of in this
work. However, each suffers from inherent design or
trust limitations that impact their applicability in
certain scenarios. For example, client-based key pin-
ning cannot determine whether a change in a server’s
certificate is malicious or benign. Recent work by
Amann et al. [2, 4] shows that routine changes to SSL
trust relationships are often indistinguishable from
attacks, making this a noteworthy limitation. In con-
trast, Convergence can offer insight into the cause of
the unexpected certificate by detecting whether the
certificate has changed globally, or just locally. How-
ever, if the new certificate is the result of a MitM
attack near the server, the Convergence notaries will
conclude that the change is benign, resulting in a dan-
gerous false negative. DANE, by checking the target
domain’s TLSA record, could offer a definitive an-
swer to whether the change was benign, but DANE
is being incrementally deployed and further bloats
the traditional CA trust model to include the DNS
architecture. In this work, we show that by querying
multiple certificate validation systems it is possible
to retain the benefits of each while mitigating each
system’s limitations.

3 Design

3.1 Threat Model & Assumptions

Our system is designed with consideration for an ad-
versary in the network that attempts to launch a
MitM attack against SSL communications; this at-
tack could be launched from a rogue wireless access

point from which the client is connecting, or from
elsewhere on the Internet, such as somewhere on the
network paths between the client and server. Cert-
Shim works under multiple trust models, and we
therefore consider adversaries of varying strengths.
A weak attacker might only possess an untrusted
CA certificate, but a stronger attacker might pos-
sess a valid certificate from a trusted CA, or even
control parts of the Internet architecture (e.g., net-
work paths, trusted CAs, DNS resolvers). We discuss
the security of various verification modules against
these adversaries in Section 3.4. When client-based
key pinning is considered, we assume that the Client
has had one opportunity to correctly authenticate the
server in the past, which is necessary for use in Trust
on First Use (TOFU) authentication [5].

We seek to secure client-side non-browser applica-
tions that are benign but potentially defective in their
use of SSL. In particularly, we wish to protect against
insecure use of SSL libraries. Except where otherwise
noted, we do not consider incorrectness within the
underlying libraries themselves [7, 20], assuming in-
stead that they are correctly implemented. This work
is motivated by the fact that developers often fail to
fix vulnerable code, so we assume that the applica-
tions will not take active countermeasures to bypass
our mechanism. CertShim interposes on popular
known SSL libraries; we do not consider applications
that use their own SSL implementations. Doing so
would increase the cost and complexity of software
development, and in evaluation we found no evidence
that this was a widespread practice. However, we do
anticipate that applications can use many layers of
abstraction/misdirection in calling an SSL API, such
as a cURL wrapper for a scripting language.

3.2 System Goals

We set out to design a mechanism that provided the
following system-wide properties:

Override Insecure SSL Usage. Force safe de-
faults for certificate handling (i.e., validation of host-
names and certificate chains) on all SSL connections,
regardless of whether or not the application makes
any attempt to do so. This encompasses applications
that misconfigure the SSL API, applications that use

4



python-apt

netcat

curl

mailutils

libssl1.0.0

gnutls26

CertShim

Convergence

DANE

Preloaded Shared Object SSL ApplicationsSSL Libraries

. . .
. . . . . .

Key Pinning

Policy Engine

Figure 1: CertShim interoperates with various SSL
libraries, replacing their certificate verification func-
tions with those from proposed CA alternatives.

insecure SSL wrappers, and applications that are bro-
ken by design.

Enable SSL Trust Enhancements. In addition
to traditional verification, our system should be con-
figurable to enable the use of CA alternatives and
enhancements. CA Alternatives are often incapable
of correctly authenticating all Internet domains due
to design limitations or incremental deployment, so
we also wish to provide a means of querying multiple
verification methods and reconciling their results.

Maximize Compatibility. Due to the great di-
versity of SSL usage, existing software will use SSL
APIs in ways that we cannot anticipate, some of
which may be perfectly valid and secure. These con-
straints could be application-specific, such as using a
pinned certificate, or trusting a corporate CA. Oth-
ers could be domain-specific, such as a server on an
unreachable private network, or a server that has not
published a TLSA record [23]. Our mechanism must
be able to coexist with these applications without
breaking them.

Maximize Coverage. As applications could con-
ceivably re-implement SSL from the RFCs, it is im-
possible to enumerate all of the possible SSL libraries.
However, we wish to maximize the coverage of our de-
fensive layer by supporting the libraries that are most
commonly used by SSL applications in practice.

3.3 CertShim

Our system, CertShim, is a dynamically linked
shared object that performs binary instrumentation

Function Location Purpose
connect libssl1.0.0 Initial SSL handshake
do handshake libssl1.0.0 Renegotiate handshake
get verify result libssl1.0.0 Check verification result
handshake libgnutls26 SSL handshake
certificate verify peers2 libgnutls26 Verify certificate (deprec.)
certificate verify peers3 libgnutls26 Verify certificate
CheckIdentity JDK6 Verify hostname
CheckIdentity JDK7 Verify hostname
SetEndpointIdentifAlg JDK7 Verify hostname
connect System call Track hostname, port
gethostbyname System call Track hostname, port
getaddrinfo System call Track hostname, port

Table 1: Functions that CertShim overrides/hooks.
Multiple hooks are required because libraries have
multiple entry points that trigger certificate verifica-
tion.

in order to layer additional security onto the pop-
ular SSL implementations, OpenSSL and GnuTLS,
and includes an additional mechanism that instru-
ments JSSE’s SSLSocketFactory. Shown in Figure
1, CertShim works primarily through use of the
Linux dynamic linker’s LD PRELOAD environment vari-
able. Under normal circumstances, a function such as
ssl connect() would resolve to code in libssl.so.
However, when CertShim is enabled, the linker first
looks at our shared object before moving to the stan-
dard include paths, allowing us to redefine the be-
havior of the library’s verification function without
modifying specific executables, as shown in Figure
3. CertShim performs additional certificate checks
and also calls the original functions such that the se-
curity semantics of the original library workflow is
preserved. The specific form of verification is modu-
lar, and is discussed at greater length in Section 3.3.2.

3.3.1 Function Hooks

CertShim targets both verification functions and
handshake functions in SSL libraries as well as system
calls that allow for the recovery of important network
context. A list of the CertShim’s function hooks is
included in Table 1.

Verification Functions. To manipulate certificate
handling procedures, the most obvious place to start
was with SSL library verification functions. We
instrumented OpenSSL’s ssl get verify result()

5



1 int SSL_get_verify_result(SSL *ctx)

2 // Determine SSL initialization type

3 type = resolve_ctx_type(ctx)

4
5 // Obtain the domain and port

6 name = lookup_name(ctx)

7 port = lookup_port(ctx)

8
9 // Grab the certificate fingerprint

10 sha = extract_ctx_fingerprint(ctx)

11
12 // Call a validation Function

13 status = 0

14 if (CONFIG_CERT_PINNING)

15 status += keypin_verify(name ,port ,sha)

16 if (CONFIG_CERT_AUTHORITY)

17 status += ca_verify(name ,port ,sha)

18 if (CONFIG_CONVERGENCE)

19 status +=

convergence_verify(name ,port ,sha)

20 if (CONFIG_DANE)

21 status += dane_verify(name ,port ,sha)

22
23 // Check the results

24 if (resolve(status) == OK)

25 return X509_V_OK

26 else

27 return X509_ERR_INVALID_CA

shim.c

Figure 2: Pseudocode for CertShim’s dynamically
loaded SSL get verify result function.

and GnuTLS’ gnutls certificate verify peer()

to support modular certificate verification. The re-
turn values of these functions are consistent with the
API of their respective libraries, and reflect the re-
sult of the module’s decision. Pseudocode for Cert-
Shim’s version of SSL get verify result() can be
found in Figure 2. In lines 2-7, the canonical name
and port of the certificate are recovered. In lines
9-10, the certificate fingerprint (SHA1 hash) is ex-
tracted from the SSL context. Certificate validation
functions are called in lines 12-19. Lines 21-25 return
the standard X509 accept or reject values based on
whether or not the certificate was approved.

Handshake Functions. While the verification func-
tion hooks allow us to make use of CA alterna-
tives, they are insufficient to force proper verifica-

Client Application: 
SSL_connect()

CertShim: Disable 
SSL struct callbacks

CertShim: Call libssl 
SSL_connect()

CertShim: Call 
Verification Module

Terminate connection and 
return error

Fatal connection

error

Client Application: 
Executed

ELF preloads 
CertShim

CertShim: Init,
Load policies, hooks

CertShim: Check 
verification result 

against policy

Return OK on success or 
connection error on failure

Figure 3: Interaction between a client application us-
ing the SSL connect() function and CertShim.

tion in vulnerable applications due to the fact that
they often go unused by developers [19]. Therefore,
CertShim also targets the main connection func-
tions of SSL libraries, which represent a choke point
at which we can force certificate verification. We
instrument OpenSSL’s ssl connect() and ssl do -

handshake() functions and GnuTLS’s gnutls do -

handshake() function. CertShim first calls the orig-
inal functions from each respective library, return-
ing its error code if the connection failed on its own
(e.g., due to network connectivity failure). If the
call is successful, however, CertShim calls the ver-
ification module as described above. If verification
fails, CertShim generates an error that emulates
a connection failure, essentially short-circuiting the
SSL connection and forcing the application to recover
(shown in Figure 3). This system behavior is likely

6



to cause unexpected behavior in some applications;
however, as we show in Section 3.4 the behavior of
the verification module can be configured to prevent
application breakage.

CertShim’s inclusion of both handshake and ver-
ification functions is to ensure that vulnerable SSL
code is hooked. This is necessary because numerous
studies have shown that negligent developers often
fail to consult SSL verification functions [19, 17]. As
a consequence, however, CertShim will redundantly
verify certificates in well-formed SSL code. The ver-
ification function hooks are superseded by the hand-
shake hooks in normal usage, but we felt it impor-
tant to hook the verification functions so that the li-
braries’ certificate handling was consistent across dif-
ferent parts of the API. We show in Section 5 that
the performance costs of using CertShim are mini-
mal, and that this redundancy is a small price to pay
for the added coverage assurances.

Network Context. Some alternate certificate ver-
ification methods, such as network probing, require
a canonical hostname and port in order to validate
an X509 certificate. However, the structures passed
into OpenSSL and GnuTLS functions do not reliably
contain this information. This is due to the great
variety of ways in which these routines are invoked;
in some cases, certificates are verified without being
aware of the endpoint with which the SSL session is
being established. To recover this information, we
instrument the getaddrinfo(), gethostbyname(),
and connect() system calls. By recording the pa-
rameters passed and returned from the original func-
tions, we were able to perform reverse lookups that
translated socket file descriptors to hostnames, which
were then stored in a sqlite3 database that was
keyed from the process id of the calling function.
Keying off the pid was important to allowing the
database to be shared between processes, preventing
file descriptor collisions.

3.3.2 Verification Modules

Currently, CertShim supports 4 certificate verifica-
tion methods:

• Traditional CA Verification: Module invokes
the underlying native SSL API calls.

• Convergence[30]: Module communicates with
Convergence Notaries via a REST API. Conver-
gences local cache is implemented as a sqlite3

database, and the list of trusted notaries and a
verification threshold is set via a configuration
file.

• DANE [23]: Module is a thin wrapper around
Lexis’ SWEDE library for TLSA record verifica-
tion [35]. This servers to demonstrate that exist-
ing prototypes for SSL trust enhancements can
be easily adapted for use with CertShim. With
minor modifications, this module could be used
to deploy Liang et. al.’s DANE extension for se-
curing CDN connections in non-browser software
[27].

• Client-Based Key Pinning: Implementa-
tions currently exist as Firefox Plug-Ins [37, 42].
Rather than adapting these utilities, we de-
veloped our own trust-on-first-use key pinning
module that stores certificate fingerprints in an
sqlite3 database.

Not only does CertShim facilitate the use of any
one of these modules, it also offers support for cer-
tificate validation through ensemble voting strate-
gies. For example, all 4 of the modules can be en-
abled simultaneously, with a majority vote deter-
mining whether or not the certificate is approved.
Because CertShim uses a single verification mod-
ule across many implementations of SSL, prototyp-
ing clients for new CA alternatives becomes a one-
time cost and interoperability with a variety of SSL
libraries is assured.

3.4 Policy Engine

CertShim includes a policy engine that allows users
to easily express complex certificate verification rou-
tines that can be enforced system-wide or tailored to
a specific application or domain. Policies are defined
by the user as an Apache-like configuration file that

7



1 global_policy: {

2 cert_pinning = false;

3 cert_authority = true;

4 convergence = false;

5 dane = false;

6 vote = 1.00;

7 };

8
9 command_policies: ({

10 cmd = "/usr/bin/git";

11 vote = 1.00;

12 methods: {

13 cert_authority = false;

14 convergence = true;

15 };

16 }, {

17 cmd = "/usr/bin/lynx";

18 vote = 0.50;

19 methods: {

20 cert_pinning = true;

21 convergence = true;

22 dane = true;

23 };

24 });

25
26 host_policies: ({

27 host = "www.torproject.org";

28 vote = 1.00;

29 methods: {

30 cert_authority = false;

31 dane = true;

32 };

33 });

config.cfg

Figure 4: A sample CertShim policy configuration
file

is dynamically loaded every time an application is in-
voked, allowing for the user to alter the SSL behavior
of all applications on the system at any time without
having to recompile. Figure 4 is an example of such
a policy definition file. The configuration subsystem
of CertShim uses libconfig [1] for parsing the con-
figuration file and extracting data.

The structure of the policy file is easy to under-
stand and use. A global policy entry defines the
system-wide behavior of CertShim except for cases
where a more specific policy is present. The engine
finds relevant policy entries by pattern matching over

the cmd and host keys, with priority being given to
host entries. The methods key in each entry allows
for the enabling and disabling of specific verification
modules. The vote key represents the percent of
modules that must return true before CertShim ap-
proves the certificate. When a key is not set in a spe-
cific entry, it inherits the value of the global policy.
The ordering of the policies within the configuration
file is irrelevant.

Figure 4 shows an example configuration file that
illustrates the granularity and flexibility of the Cert-
Shim policy configuration engine. The global pol-
icy is set to force traditional CA verification on all
SSL connections. However, this user connects to a
GitLab versioning server that makes use of a self-
signed certificate, so they created a command pol-
icy entry for git that uses the Convergence module.
The user also wants stronger assurances than tradi-
tional CAs can provide when browsing with Lynx,
so they create an additional command entry that
queries all 4 modules and requires that at least 2 re-
turn true. This entry inherits its cert authority

value from the global policy. Finally, when connect-
ing to domains that are known to offer DANE sup-
port such as torproject.org, the user adds a host
policy entry that requires DANE validation. Policies
that tolerate failure in this fashion are useful when
using CertShim as a platform for testing CA alter-
natives that may not be entirely stable. In the event
that a verification method fails but overall verifica-
tion passes, CertShim prints a notification of the
failure to syslog.

3.5 Java Instrumentation

In the Java architecture, we cannot interpose on SSL
libraries such as JSSE and BouncyCastle through
Linux’s dynamic linking. Instead, we make use of the
java.lang.instrumentation interface to achieve
similar functionality inside of the JVM. We success-
fully used this method to provide CertShim-like
functionality by hooking the checkIdentity() func-
tion in JDK 6’s JSSE, and the checkIdentity() and
setEndpointIdentificationAlgorihtm function of
JDK 7. Georgiev et al. point to misuse of the low
level JSSE SSLSocketFactory API, which does not

8



perform hostname verification, as one of the biggest
SSL vulnerabilities in Java [19]. While in control
of these functions, CertShim overrides the applica-
tions’ configuration in order to force hostname ver-
ification. Like our C-based mechanism, our instru-
mentation object can be injected into all Java calls
by setting an environment variable. Java is not yet
fully supported in CertShim, as we have not re-
implemented our policy engine and verification mod-
ules. However, this mechanism demonstrates how our
approach can be generalized to work with Java.

4 Analysis

We now consider the extent to which CertShim
meets our 3 primary system goals: override insecure
SSL usage, enable SSL trust enhancements, and max-
imize compatibility. We consider the extent to which
we achieve maximal coverage in Section 5.

4.1 Override Insecure SSL Usage

Recent work has uncovered strong evidence that inse-
cure certificate handling practices are often a result of
developer confusion and apathy [16, 17, 19]. Rather
than wait on developers, CertShim automatically
fixes these vulnerabilities without requiring developer
intervention. Enforcing safe defaults for SSL does
not even require policy configuration, as CertShim
installs with a global default policy that enforces CA
verification. We also include fail safe protections to
the policy engine, such as the vote key defaulting to
1.00 if left accidentally unspecified by the user.
CertShim supports all applications that dynami-

cally link to OpenSSL and GnuTLS, two of the most
popular open source SSL libraries. In Section 5, we
show that this provides support for 94% of SSL usage
in the most popular Ubuntu packages. Most excit-
ingly, CertShim fixes certificate verification in data-
transport libraries that are broken by design, includ-
ing urllib/urllib2, httplib, python’s ssl module,
and perl’s fsockopen call. This aspect of CertShim
proves critical, as the survey in Section 5 finds that
such libraries represent up to 33% of SSL usage in
Ubuntu packages.

4.2 Enable SSL Trust Enhancements

In this work, we implement verification modules for
3 exemplar CA alternatives, making them immediate
candidates for system-wide deployment. Switching
from CA verification to an alternative such as Con-
vergence requires a change of just 2 lines in the Cert-
Shim configuration file. Due to incremental deploy-
ment or design limitations, some CA alternatives are
not universally applicable to the entire SSL ecosys-
tem. For example, not all HTTPS domains have
published TLSA certificates for DANE, and other do-
mains will be inside closed networks that cannot be
verified with Convergence’s multi-path probing. We
have further contributed to the adoptability of CA
alternatives by introducing a policy engine that al-
lows for application and domain specific certificate
handling. With CertShim, it is possible to force
DANE verification only on domains that are known
to be supported. CertShim even helps to support
traditional CA verification by providing a multi-path
probe module that can be enabled specifically for ap-
plications and domains that make use of self-signed
certificates.

4.2.1 Consensus Verification

CertShim further improves SSL security by provid-
ing the first practical means of reconciling the re-
sults of multiple certificate verification handlers. In
so doing, it is possible to overcome practical prob-
lems or trust concerns that are limitations of different
architectures. To demonstrate the power of this ap-
proach, we present sample policy entries that repre-
sent unique trust and usage models for SSL. For a de-
tailed explanation of the security properties of these
systems, please refer to the original works. We believe
that the combining of different verification primitives
through consensus voting represents a promising new
direction for securing SSL.

Distrust the CAs. Convergence was motivated by
the goal of completely removing certificate authori-
ties from the SSL trust model. CAs are replaced with
notaries, trusted third parties that are incentivized to
be trustworthy agents due to trust agility, the ability
of the user to change who their trusted notaries at

9



any time. However, multi-path probing cannot vali-
date all domains. One option would be to combine
Convergence with client-based key pinning:

cert_pinning = true;

convergence = true;

vote = 0.50;

This configuration allows for a CA-free trust
model. When Convergence is unable to validate a
domain, CertShim would default to a trust-on-first-
use model [5]. In the event that a certificate is up-
dated, in most cases Convergence would be able to
re-validate the domain, making up for key pinning’s
inability to offer context in the event of a benign
anomaly. In the event of a discrepancy between a
cached certificate and the certificate presented by the
host, the key pinning module would fail to verify
the certificate, requiring the user to manually decide
whether or not to trust the presented certificate.
Server-side MitM Defense. Convergence relies
on network path diversity in order to validate certifi-
cates. While this is adequate for detecting local MitM
attacks at rogue access points, if a powerful adversary
such as a nation state can control all paths between
the server and the notaries, Convergence could yield
a false negative during an attack. To account for this
possibility, CertShim could tether its trust to the
DNS architecture:

convergence = true;

dane = true;

vote = 1.00;

This policy increases attack complexity by requir-
ing the attacker to control the DNSSEC resolvers and
a valid certificate from a trusted CA in addition to
all network paths to the server. We note that this
policy only works for domains that offer DANE sup-
port. In environments where DNSSEC is actively be-
ing used, the use of Convergence provides a hedge
against DNSSEC server compromises.

4.3 Maximize Compatibility

As the invasiveness of our function hooks increased,
so too did the likelihood that CertShim would

Program Success Confirmed With
libcurl Yes C program
gnutls26 Yes C program
libssl1.0.0 Yes C program
SSLSocketFactory Yes java program
perl socket::ssl Yes perl script
php curl No php script
fsockopen Yes php script
httplib Yes python script
pycurl Yes python script
pyOpenSSL Yes python script
python ssl Yes python script
urllib, urllib2 Yes python script
gnutls-cli Yes CLI execution

Table 2: Libraries and wrappers that were manually
confirmed to be supported by CertShim.

break applications. Developers could not have antic-
ipated our layering of additional certificate verifica-
tion methods on top of their code. Applications may
disable certificate verification in order to support self-
signed certificates [17], contact domains that are not
compatible with certain forms of verification, or even
have implemented their own security features such as
key pinning. As a result, CertShim’s actions could
trigger unexpected behavior.

These realities motivated the creation of our policy
engine, which offers the ability to completely elimi-
nate compatibility issues by performing application
and domain specific certificate handling. When a cer-
tificate is rejected, CertShim logs both a record of
the event and a template policy entry for the user to
edit. This log can optionally be redirected to stdout.

Regardless of the policy in effect for a given con-
nection, the CertShim hook return values strictly
adhere to the OpenSSL and GnuTLS APIs. This im-
plies that existing applications are unable to detect
the presence of CertShim while allowing CertShim
to remain entirely method-agnostic. That is, Cert-
Shim does not interfere with the logic built into ex-
isting applications since return values remain true to
the OpenSSL and GnuTLS APIs and CertShim it-
self holds no opinion on which verification methods
it should or should not use; CertShim can even be
configured to take no action for a given application
or domain. Furthermore, the success or failure of al-

10



Program Test Cmd Success
curl curl https://google.com Yes
sslscan sslscan google.com:443 Yes
lynx lynx -dump https://google.com Yes
ncat ncat –ssl-verify google.com 443 Yes
fdm Checked gmail.com over SSL Yes
fetchmail Checked gmail.com over SSL Yes
firefox Visited gmail.com (w/o plugin) No
mpop Checked gmail.com over SSL Yes
perl Perl’s IO::Socket::SSL Yes
pycurl cUrl established SSL session Yes
pyOpenSSL Socket established SSL session Yes
urllib urllib made HTTPS request Yes
w3m w3m https://google.com -dump Yes
wget wget https://google.com Yes
gnutls-cli Performed handshake procedure Yes

Table 3: Programs and libraries that were manually
tested to confirm CertShim support

ternate verification methods is translated into return
codes consistent with OpenSSL and GnuTLS.

5 Evaluation

In this section, we evaluate CertShim for both its
ability to support real world SSL usage and the per-
formance costs it imposes on SSL connections.

5.1 Coverage

Our investigation of CertShim coverage is comprised
of two parts. We first perform a small-scale survey
in which we manually test applications and libraries
to confirm support, followed by a large-scale survey
in which we conduct semi-automated source code in-
spection to estimate CertShim coverage for a fuller
distribution of software.

5.1.1 Manual Testing

Our evaluation of CertShim coverage began with
manual testing of popular SSL applications and mid-
dleware. Presently, CertShim is confirmed to sup-
port 12 different SSL implementations or wrappers,
shown in Table 2. Although it was apparent that
the listed SSL scripting wrappers all used OpenSS-
L/GnuTLS backends, it was necessary to manually

(a) Total Packages Supported (b) Packages supported by SSL
library/wrapper

Figure 5: Estimated CertShim support of SSL usage
found in Ubuntu Popularity Contest.

confirm compatibility because the wrappers occasion-
ally made use of the SSL API in unexpected ways.
For example, we discovered that CertShim does not
support php curl due to the fact that this library
statically links libcurl. Continuing with manual
testing, we selected a handful of common SSL appli-
cations to confirm CertShim support, shown in Ta-
ble 3. Of these, CertShim successfuly hooked each
application except for Firefox, which is due to the
fact that Mozilla uses LibNSS rather than OpenSSL
or GnuTLS. We discuss the broader implications of
these coverage gaps in Section 6.

5.1.2 Less Dangerous Code?

We next consider CertShim’s safe default features,
and how they protect against the SSL vulnerabilities
presented by Georgiev et al. [19]. Through manual
testing, we confirmed that CertShim would secure
the SSL communications in 100% of the SSL libraries,
89% of the data-transport libraries, and 71% appli-
cations mentioned in this work:

• SSL Libraries. Error-prone aspects of the
SSL API are identified in OpenSSL, GnuTLS,
and JSSE. CertShim enforces proper certificate
handling for OpenSSL and GnuTLS, even when
the application fails to call the verification func-
tion. We provide partial support to JSSE, which
we instrumented to ensure that hostname veri-
fication is always performed, regardless of how
the API is invoked.

11



• Data-transport Libraries. Georgiev et al.
discuss 9 data-transport frameworks that wrap
the major SSL libraries. We provide full support
to cURL, php’s fsockopen, urllib, urllib2,
httplib, python ssl, and partial support to
the Java libraries Apache HttpClient and We-
berknect. The only library that CertShim does
not support is php curl due to static linking.

• SSL Applications. We obtained the vulner-
able versions of several of the applications ex-
plored, including Lynx, Apache HttpClient, and
Apache Axis. Based on review of these applica-
tions combined with our manual tests, we con-
clude that CertShim secures the SSL commu-
nications of 12 of the 17 applications mentioned
that could be run on Linux systems. All 5 of the
unsupported applications were payment services
that had a vulnerable php curl dependency.

These findings demonstrate the power of the Cert-
Shim methodology. It also serves to show that, so
long as the API remains the same, CertShim can
protect against presently undiscovered vulnerabilities
and misconfigurations in SSL APIs and wrapper li-
braries.

5.1.3 Large-Scale Coverage Survey

On a general computing platform such as Linux, au-
tomated dynamic analysis of SSL proved difficult due
to the great variety of SSL implementations, lan-
guages, and usage scenarios. During manual testing,
we found that a thorough knowledge of an applica-
tion’s purpose and behaviors was required in order
to trigger SSL connections. As a result, we were un-
able to perform large-scale dynamic analysis of Cert-
Shim. Fortunately, based on the supported libraries
shown in Table 2, we were able to use a mix of static
analysis and manual inspection in order to arrive at
a CertShim coverage estimate for a large corpus of
applications.

As a source for real world SSL usage, we se-
lected the Ubuntu Popularity Contest [34], a service
that tracks the most commonly installed packages on
Ubuntu. Starting with the top 10,000 packages, we

Dependency Support? Pkg. Count
urllib/httplib Yes 123
OpenSSL Yes 92
GnuTLS Yes 51
cURL/libcurl Yes 48
Misc SSL Wrappers Yes 56
Total Supported 370
Total Unsupported 26

Table 4: Details of estimated CertShim support and
SSL usage in the Ubuntu Popularity Contest.

ran apt-rdepends, a tool for recursively finding li-
brary dependencies for a given package, on each pack-
age. Of these packages, we were able to recover li-
brary dependency information for 7,789 packages due
to the fact that some packages were not present in
the main apt repositories for Ubuntu 12.04. From
this list we discovered 2,949 packages that had de-
pendencies to known SSL libraries (i.e., the pack-
ages left out could not have been using SSL). We
then gathered the corresponding source files using
apt-get source. This methodology yielded 1,809
codebases, with the reduction in total packages be-
ing accounted for by the fact that one codebase can
be responsible for multiple packages. With the avail-
able source, we proceeded to check the files against
a list of keywords related to networking, SSL, and
HTTPS. After narrowing the field to source packages
containing keywords, we manually inspected the re-
maining packages to confirm that the package made
SSL connections. As CertShim only partially sup-
ports Java, these packages that were removed from
the survey.

Because CertShim cannot support static linking,
we also wished to determine if this was a common
practice. To do so, we installed the 395 packages
that contained SSL activity, then ran ldd, a tool
that prints shared library dependencies, against each
of the resulting files that were placed in bin or lib

directories. ldd lists packages that are dynamically
linked, and can also detect static linking. We did not
find widespread use of static linking, of 10,707 files
checked by ldd, we found only 12 that were statically
linked.

As illustrated in Figure 5a, we found that Cert-

12



Shim supported 370 of the 395 packages found to
be making SSL connections, for a coverage ratio of
94%. Our use of the word “support” can be inter-
preted as follows – this application may make an
SSL connection in execution, and if it does Cert-
Shimwill hook it. A stronger assurance about appli-
cation behavior would have required dynamic analy-
sis, which was not feasible. A summary of our results
can be found in Table 4 and Figure 5b. The miscella-
neous SSL wrappers included QSSL, Pidgin’s Purple
SSL, URLGrabber, Serf, and Neon; for each, we in-
spect the source code to confirm that they wrapped
OpenSSL or GnuTLS and used one of CertShim’s
function hooks. The unsupported packages included
previously discovered coverage gaps such as NSS, as
well as other wrappers such as KSSL and QCA, for
which we were unable to confirm support. We note
that this coverage result is an estimate; without dy-
namic analysis, it was impossible to definitively con-
firm that these applications attempted to make SSL
connections. However, we did confirm that each of
the applications had code paths that made web re-
quests with SSL-ready libraries.

5.2 Performance

We generated several benchmarks for the baseline
performance of CertShim, performing tests on a Dell
PC running a Linux 3.5 kernel with 2 GB of RAM and
a Pentium 3Ghz dual-core processor. We measured
the time it took the wget utility to retrieve a small, 9
KB file over HTTPS from a nearby web server. This
call triggers the SSL get verify result() function,
which is supported by CertShim. The throughput
of the connection to the server was approximately 80
MB per second. The server was using a CA-signed
certificate, which was validated by wget during the
course of the download. Each of these results were
averaged over 500 measurements. When CertShim
was not loaded, wget returned in 88 ms. When
CertShim was loaded without a verification mod-
ule, the operation completed in 108 ms, imposing
just 20 ms base overhead on OpenSSL. This over-
head is largely due to the CertShim hooks for the
connect() and getaddrinfo() functions, which col-
lect contextual data that is required by the hooked

OpenSSL and GnuTLS functions and write it to a
SQLite database. The policy engine demonstrated
an average run time of just 0.061 ms while parsing
the sample configuration file and initializing the poli-
cies. When using an 86 kilobyte configuration file
consisting of 392 policies, the policy engine required
an average run time of 3.075 ms. Both of these aver-
ages were observed over 1,000 iterations.

We then repeated these trials with the different
verification modules enabled. The results are sum-
marized in Table 5. The minimum time required for
Convergence verification was 108 ms, corresponding
to the case in which the client already possesses a
locally cached copy of the certificate fingerprint; The
time required to use the DANE module was 7 sec-
onds. We attribute this exorbitant cost to the fact
that our DANE measurements used https://www.

torproject.org instead of a local server. Tor has
9 IP addresses associated with this domain, each of
which was sequentially verified by the SWEDE li-
brary within our module. We benchmarked Key Pin-
ning under two use cases: verification took 130 ms
when visiting a domain for the first time, and 119 ms
when checking a previously-visited domain.

Initially, we observed that the base cost of Cert-
Shim was 900 ms. Upon further investigation, we
realized that this was due to our SQLite configura-
tion; each attempt to open a write transaction to
the database cost approximately 100 ms. To improve
performance, we disabled journaling on the database.
We note that this also disabled protections against
database corruption due to hardware failures or un-
expected interrupts. In a future iteration of Cert-
Shim, we intend to restore these protections while
imposing minimal additional performance cost by im-
plementing an in-memory database and opportunis-
tically flushing to disk during idle periods.

6 Limitations & Future Work

We now discuss several potential gaps in CertShim’s
coverage, as well as possible solutions:

Root Processes. For security reasons, LD PRELOAD

is not permitted by default for processes running as
root; however, support for root can be provided by

13

https://www.torproject.org
https://www.torproject.org


Module Real Time
OpenSSL w/o CertShim 88 ms [ 84, 92]
CertShim Baseline 108 ms [107, 109]
Convergence Baseline 108 ms [107, 110]
DANE 7 sec
Key Pinning, First Use 130 ms [120, 139]
Key Pinning, Revisit 119 ms [118, 119]

Table 5: Benchmarks for CertShim usage. 95% con-
fidence intervals are included in brackets.

symbolically linking a root-owned copy of CertShim
to the /lib directory.

Alternative Libraries. CertShim supports mod-
ern versions of two of the most popular open source
SSL libraries, libssl1.0.0 and gnutls26. There
are many other implementations available, such as
PolarSSL and NSS; we have inspected these libraries
and believe that CertShim can be extended to sup-
port them with only modest additional work. Cert-
Shim provides a blueprint for interposing on func-
tion calls in any C-based SSL library. Our approach
could be deployed on Windows’ SChannel library as
an AppInit DLL.

SSL in Java. Linux dynamic linking cannot be
used to interpose on Java libraries. However, in Sec-
tion 3.5 we demonstrate that our approach is appli-
cable in Java through instrumentation objects.

Static Linking. As our methodology is based on dy-
namic linking, CertShim cannot interpose on stati-
cally linked executables. In our evaluation, we en-
countered one instance of static linking in PHP’s
cURL wrapper. This limitation could be addressed
via static binary instrumentation through use of tools
like PEBIL [25] and DynInst [6, 8].

7 Related Work

A large body of recent work has sought to better un-
derstand and ultimately prevent SSL vulnerabilities
in non-browser software. Georgiev et al. manually
survey different layers of the SSL stack, discovering
pervasive misconfigurations of certificate validation
routines, as well as usage of SSL libraries that are bro-
ken by design [19]. Brubaker et al. specifically target
SSL libraries, generating 8 million random permuta-

tions of valid X509 certificates to perform differential
testing and discover hundreds of certificate validation
discrepancies [7]. Akhawe et al. [2] considered the
issues of TLS errors on the web and notices differ-
ences with results from OpenSSL. While these stud-
ies makes recommendations based on their findings,
there is no mechanism for retrofitting changes into
existing applications, which we make feasible with
CertShim.

Large-scale automated dynamic analysis of SSL us-
age requires knowledge of application semantics in
order to trigger SSL connections, and is therefore
difficult on general computing platforms due to the
great diversity of languages, code paths, and SSL im-
plementations; however, recent work has made use
of the constrained interfaces of mobile platforms to
perform large scale analysis. SMV-Hunter leverages
knowledge of the X509TrustManager interface and
Android WindowManager to perform user interface
automation, triggering SSL connections in hundreds
of Android apps to detect MitM vulnerabilities [43].
MalloDroid performs static analysis to identify de-
viant SSL usage in thousands of apps, but manually
audited to confirm vulnerabilities [16].

While the above studies offered recommendations
for the general improvement of the SSL ecosystem,
such as improved app market testing [16], clarifying
SSL APIs [19], or communicating vulnerabilities to
developers [7], they were unable to introduce system-
wide defenses to SSL vulnerabilities in legacy soft-
ware. An exception to this is Fahl et al’s Rethinking
SSL work, in which an Android patch is introduced
that dramatically improves app security through user
interface warnings, device-specific developer options,
and forced certificate and hostname validation [17].
While we also introduce a platform-wide defense, our
work does not require a manufacturer update, or even
administrator privileges, to put to use. Additionally,
where pluggable certificate verification is left to fu-
ture work by Fahl et al., we introduce four such mod-
ules, and the ability to use them in tandem through
policy-specified consensus votes. Our tool, Cert-
Shim, works in a considerably more complex envi-
ronment than the Android platform, where various
SSL implementations need be considered. Both our
system and Fahl et al’s experience compatibility is-

14



sues with some programs; however, rather than rely
on developers to update their applications, we pro-
vide a policy engine that allows for application- or
domain-specific certificate handling.

Rather than re-architecting SSL stacks in the OS,
other work has invasive strategies to protecting SSL
that actually closely mirror the attack behaviors.
MYTHIS uses a local MitM network proxy as an SSL
security layer on android [11]; by anchoring its se-
curity in a single-path network probe, MYTHIS de-
tects rogue access points [40], but not attacks near
the server or network interior. Huang et al. embed
flash scripts in browser code that “phone home” to
the server, allowing websites to detect the presence of
forged certificates [24]. CertShim also behaves sim-
ilarly to an attack by hijacking dynamic library calls;
however, our solution is a more general one that per-
mits multiple trust models and detects wider classes
of attacks.

Various proposals in the literature adopt a similar
deployment strategy to CertShim. Provos et al. [36]
implement privilege separation (Privsep), modifying
a small portion of the OpenSSH source code to per-
mit different parts of an application run at differ-
ent privilege levels. They demonstrate that this
approach allowed for interoperability and negligible
performance costs. Watson et al. [46] present Cap-
sicum, a capability-based sandboxing mechanism for
UNIX, through the introduction of a library that re-
places basic UNIX operations such as fork and exec.
They present Capsicum-compliant versions of several
popular utilities (e.g. tcpdump, gzip), and perform
microbenchmarking to demonstrate small overheads
on the modified system calls. The DNSSEC-Tools
project provided Libval, a shim for the DNS library
that facilitated the rapid adoption of DNSSEC [44].
Our work differs from the Libval in that we target
multiple SSL implementations used by a greater di-
versity of programs, override additional functions in
the Linux networking stack to track SSL flow context,
and employ a modular design that supports multiple
verification methods.

8 Conclusion

This paper has introduced CertShim, a mechanism
that immediately improves the security of Internet
communications by interposing on SSL APIs, and
even permits the retrofitting of legacy software to
support SSL trust enhancements such as Convergence
and DANE. Moreover, we have presented a practical
mechanism for polling the results of multiple verifi-
cation methods, further promoting the adoptability
of CA alternatives by overcoming their usage limi-
tations. We have also shown that 94% of the SSL
usage in Ubuntu’s most commonly installed packages
are supported by CertShim, and that CertShim
secures applications against some of the most infa-
mous SSL vulnerabilities explored in the literature.
This work significantly increases system-wide secu-
rity of SSL communications in non-browser software,
while simultaneously reducing the barriers to evalu-
ating and adopting the myriad alternative proposals
to the certificate authority system.

Acknowledgments

We would like to thank Jun Li, Paul van Oorschot,
and Patrick Traynor for their valuable comments and
insight. This work is supported in part by the US Na-
tional Science Foundation under grant numbers CNS-
1118046 and CNS-1254198. Braden Hollembaek was
funded in part through an NSF REU supplement.

Availability

The code, documentation, and example output to
CertShim will be released immediately upon pub-
lication.

References

[1] libconfig - c/c++ configuration file library. Available:
http://www.hyperrealm.com/libconfig/.

[2] Akhawe, D., Amann, B., Vallentin, M., and Sommer,
R. Here’s My Cert, So Trust Me, Maybe? Understanding
TLS Errors on the Web. In Proceedings of the 22nd In-
ternational World Wide Web Conference (WWW 2013)
(Rio de Janeiro, Brazil, May 2013).

15

http://www.hyperrealm.com/libconfig/


[3] Alicherry, M., and Keromytis, A. D. Doublecheck:
Multi-path verification against man-in-the-middle at-
tacks. In Computers and Communications, 2009. ISCC
2009. IEEE Symposium on (2009), IEEE, pp. 557–563.

[4] Amann, B., Sommer, R., Vallentin, M., and Hall, S.
No Attack Necessary: The Surprising Dynamics of SSL
Trust Relationships. In ACSAC ’13: Proceedings of the
29th Annual Computer Security Applications Conference
(Dec. 2013).

[5] Arkko, J., and Nikander, P. Weak Authentica-
tion: How to Authenticate Unknown Principals without
Trusted Parties. In Security Protocols, B. Christianson,
B. Crispo, J. Malcolm, and M. Roe, Eds., vol. 2845 of
Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2004, pp. 5–19.

[6] Bernat, A. R., and Miller, B. P. Anywhere, Any-time
Binary Instrumentation. In Proceedings of the 10th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools (New York, NY, USA, 2011), PASTE ’11,
ACM, pp. 9–16.

[7] Brubaker, C., Jana, S., Ray, B., Khurshid, S., and
Shmatikov, V. Using Frankencerts for Automated Ad-
versarial Testing of Certificate Validation in SSL/TLS Im-
plementations. In Proceedings of the 2014 IEEE Sympo-
sium on Security and Privacy (San Jose, CA, May 2014).

[8] Buck, B., and Hollingsworth, J. K. An api for runtime
code patching. Int. J. High Perform. Comput. Appl. 14,
4 (Nov. 2000), 317–329.

[9] Carly, R. Internet Security provider Comodo’s CEO
Named “Entrepreneur of the Year” by Info Security
Products Guide. Available: http://www.comodo.

com/news/press_releases/2011/02/comodo-CEO-

entrepreneur-of-the-Year-infosecurity-global-

excellence-award.html, February 2011.

[10] Clark, J., and van Oorschot, P. C. SoK: SSL and
HTTPS: Revisiting Past Challenges and Evaluating Cer-
tificate Trust Model Enhancements. In Proceedings of
the 2013 IEEE Symposium on Security and Privacy (San
Francisco, CA, May 2013).

[11] Conti, M., Dragoni, N., and Gottardo, S. MITHYS:
Mind The Hand You Shake - Protecting Mobile Devices
from SSL Usage Vulnerabilities. In Security and Trust
Management, R. Accorsi and S. Ranise, Eds., vol. 8203
of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 65–81.

[12] Ducklin, P. The TURKTRUST SSL Certificate Fiasco
– What Really Happened, and What Happens Next?
Available: http://nakedsecurity.sophos.com/2013/

01/08/Available: the-turktrust-ssl-certificate-

fiasco-what-happened-and-what-happens-next/,
January 2013.

[13] Eastlake, D., et al. Transport Layer Security (TLS)
Extensions: Extension Definitions.

[14] Eckersley, P. Sovereign Key Cryptography for Internet
Domains, 2011.

[15] Edge, J. Mozilla and CNNIC. Available: http://lwn.

net/Articles/372386/, February 2010.

[16] Fahl, S., Harbach, M., Muders, T., Baumgärtner, L.,
Freisleben, B., and Smith, M. Why Eve and Mallory
Love Android: An Analysis of Android SSL (in)Security.
In Proceedings of the 2012 ACM Conference on Com-
puter and Communications Security (New York, NY,
USA, 2012), CCS ’12, ACM, pp. 50–61.

[17] Fahl, S., Harbach, M., Perl, H., Koetter, M., and
Smith, M. Rethinking SSL Development in an Appified
World. In Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer &#38; Communications Security
(New York, NY, USA, 2013), CCS ’13, ACM, pp. 49–60.

[18] Fisher, D. Microsoft Revokes Trust in Five Dig-
inotar Root Certs. Wired. Available: http:

//threatpost.com/microsoft-revokes-trust-five-

diginotar-root-certs-mozilla-drops-trust-staat-

der-nederland-cert, September 2011.

[19] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R.,
Boneh, D., and Shmatikov, V. The most danger-
ous code in the world: validating SSL certificates in
non-browser software. In Proceedings of the 2012 ACM
conference on Computer and communications security
(Raleigh, NC, USA, 2012), CCS ’12, ACM, pp. 38–49.

[20] Gibbs, S. Heartbleed bug: what do you actually need to
do to stay secure? Available: http://www.theguardian.

com/technology/2014/apr/10/heartbleed-bug-

everything-you-need-to-know-to-stay-secure.

[21] Grigg, I. VeriSign’s Conflict of Interest Creates New
Threat. Financial Cryptography 1 (September 2004).

[22] Hickman, K., and Elgamal, T. The SSL protocol.
Netscape Communications Corp 501 (1995).

[23] Hoffman, P., and Schlyter, J. The DNS-Based Au-
thentication of Named Entities (DANE) Transport Layer
Security (TLS) Protocol: TLSA. Tech. rep., RFC 6698,
August, 2012.

[24] Huang, L.-S., Rice, A., Ellingsen, E., and Jackson,
C. Analyzing Forged SSL Certificates in the Wild.

[25] Laurenzano, M., Tikir, M., Carrington, L., and
Snavely, A. PEBIL: Efficient static binary instrumenta-
tion for Linux. In Performance Analysis of Systems Soft-
ware (ISPASS), 2010 IEEE International Symposium on
(March 2010), pp. 175–183.

[26] Laurie, B., Langley, A., and Kasper, E. Certifi-
cate Transparency. Available: ietf. org-Certificate Trans-
parency (06.01. 2013) (2013).

[27] Liang, J., Jiang, J., Duan, H., Li, K., Wan, T., and
Wu, J. When HTTPS Meets CDN: A Case of Authenti-
cation in Delegated Service.

[28] Marlinspike, M. More tricks for defeating SSL in prac-
tice. Black Hat USA (2009).

16

http://www.comodo.com/news/press_releases/2011/02/comodo-CEO-entrepreneur-of-the-Year-infosecurity-global-excellence-award.html
http://www.comodo.com/news/press_releases/2011/02/comodo-CEO-entrepreneur-of-the-Year-infosecurity-global-excellence-award.html
http://www.comodo.com/news/press_releases/2011/02/comodo-CEO-entrepreneur-of-the-Year-infosecurity-global-excellence-award.html
http://www.comodo.com/news/press_releases/2011/02/comodo-CEO-entrepreneur-of-the-Year-infosecurity-global-excellence-award.html
http://nakedsecurity.sophos.com/2013/01/08/
http://nakedsecurity.sophos.com/2013/01/08/
the-turktrust-ssl-certificate-fiasco-what-happened-and-what-happens-next/
the-turktrust-ssl-certificate-fiasco-what-happened-and-what-happens-next/
http://lwn.net/Articles/372386/
http://lwn.net/Articles/372386/
http://threatpost.com/microsoft-revokes-trust-five-diginotar-root-certs-mozilla-drops-trust-staat-der-nederland-cert
http://threatpost.com/microsoft-revokes-trust-five-diginotar-root-certs-mozilla-drops-trust-staat-der-nederland-cert
http://threatpost.com/microsoft-revokes-trust-five-diginotar-root-certs-mozilla-drops-trust-staat-der-nederland-cert
http://threatpost.com/microsoft-revokes-trust-five-diginotar-root-certs-mozilla-drops-trust-staat-der-nederland-cert
http://www.theguardian.com/technology/2014/apr/10/heartbleed-bug-everything-you-need-to-know-to-stay-secure
http://www.theguardian.com/technology/2014/apr/10/heartbleed-bug-everything-you-need-to-know-to-stay-secure
http://www.theguardian.com/technology/2014/apr/10/heartbleed-bug-everything-you-need-to-know-to-stay-secure


[29] Marlinspike, M. New tricks for defeating SSL in prac-
tice. BlackHat DC (Feb. 2009).

[30] Marlinspike, M. SSL and the Future of Authenticity.
Black Hat USA (2011).

[31] Marlinspike, M. Trust Assertions for Certificate Keys.

[32] Mills, E. Comodo: Web Attack Broader
Than Initially Thought. CNET. Available:
http://news.cnet.com/8301-27080_3-20048831-

245.html?part=rss&tag=feed&subj=InSecurityComplex,
March 2011.

[33] Myers, M. Revocatoin: Options and challenges. In Fi-
nancial Cryptography (1998), Springer, pp. 165–171.

[34] Pennarun, A., Allombert, B., and Reinholdtsen, P.
Ubuntu Popularity Contest. Available: http://popcon.

ubuntu.com/.

[35] Pieter Lexis. SWEDE - A Tool To Create and Ver-
ify TLSA (DANE) Records. Available: https://github.

com/pieterlexis/swede.

[36] Provos, N., Friedl, M., and Honeyman, P. Preventing
Privilege Escalation. In Proceedings of the 12th USENIX
Security Symposium (2003), pp. 231–242.

[37] Psyced.org. Certificate Patrol. Available: http://

patrol.psyced.org/.

[38] Rivest, R. L. Can We Eliminate Certificate Revoca-
tion Lists? In Financial Cryptography (1998), Springer,
pp. 178–183.

[39] Sandvik, R. Security Vulnerability Found in Cy-
beroam DPI Devices (CVE-2012-3372). Available:
https://blog.torproject.org/blog/security-

vulnerability-found-cyberoam-dpi-devices-cve-

2012-3372, July 2012.

[40] Shetty, S., Song, M., and Ma, L. Rogue Access
Point Detection by Analyzing Network Traffic Charac-
teristics. In Military Communications Conference, 2007.
MILCOM 2007. IEEE (Oct 2007), pp. 1–7.

[41] Singel, R. Law Enforcement Appliance Subverts
SSL. Available: http://www.wired.com/threatlevel/

2010/03/packet-forensics, March 2010.

[42] Soghoian, C., and Stamm, S. Certified Lies: De-
tecting and Defeating Government Interception Attacks
Against SSL. In Financial Cryptography and Data Secu-
rity. Springer, 2012, pp. 250–259.

[43] Sounthiraraj, D., Sahs, J., Greenwood, G., Lin, Z.,
and Khan, L. SMV-HUNTER: Large Scale, Automated
Detection of SSL/TLS Man-in-the-Middle Vulnerabilities
in Android Apps. In Proceedings of the 19th Network and
Distributed System Security Symposium. (2014).

[44] SPARTA, Inc. DNSSECTools: DNSSEC Software Li-
braries and Tools. Available: http://www.dnssec-tools.
org/.

[45] Vratonjic, N., Freudiger, J., Bindschaedler, V.,
and Hubaux, J.-P. The Inconvenient Truth About Web
Certificates. In Economics of Information Security and
Privacy III, B. Schneier, Ed. Springer New York, 2013,
pp. 79–117.

[46] Watson, R., Anderson, J., Laurie, B., and Kennaway,
K. Capsicum: practical capabilities for UNIX. In Proceed-
ings of the 19th USENIX Security Symposium (2010).

[47] Wendlandt, D., Andersen, D. G., and Perrig, A. Per-
spectives: Improving SSH-style Host Authentication with
Multi-Path Probing. In USENIX 2008 Annual Technical
Conference (Boston, MA, 2008), ATC’08, pp. 321–334.

17

http://news.cnet.com/8301-27080_3-20048831-245.html?part=rss&tag=feed&subj=InSecurityComplex
http://news.cnet.com/8301-27080_3-20048831-245.html?part=rss&tag=feed&subj=InSecurityComplex
http://popcon.ubuntu.com/
http://popcon.ubuntu.com/
https://github.com/pieterlexis/swede
https://github.com/pieterlexis/swede
http://patrol.psyced.org/
http://patrol.psyced.org/
https://blog.torproject.org/blog/security-vulnerability-found-cyberoam-dpi-devices-cve-2012-3372
https://blog.torproject.org/blog/security-vulnerability-found-cyberoam-dpi-devices-cve-2012-3372
https://blog.torproject.org/blog/security-vulnerability-found-cyberoam-dpi-devices-cve-2012-3372
http://www.wired.com/threatlevel/2010/03/packet-forensics
http://www.wired.com/threatlevel/2010/03/packet-forensics
http://www.dnssec-tools.org/
http://www.dnssec-tools.org/

	Introduction
	Background
	CA Alternatives

	Design
	Threat Model & Assumptions
	System Goals
	CertShim
	Function Hooks
	Verification Modules

	Policy Engine
	Java Instrumentation

	Analysis
	Override Insecure SSL Usage
	Enable SSL Trust Enhancements
	Consensus Verification

	Maximize Compatibility

	Evaluation
	Coverage
	Manual Testing
	Less Dangerous Code?
	Large-Scale Coverage Survey

	Performance

	Limitations & Future Work
	Related Work
	Conclusion

