FRACTAL LANDSCAPE SYNTHESIS IN COMPUTER GRAPHICS

by

Jay S. Gondek

A THESIS

Presented to the Department of Computer
and Information Science
of the University of Oregon
in partial fulfillment of the requirements
for the Departmental Honors Program

April 1992

Abstract

Traditional computer graphics modelling techniques have failed to capture
the complexity of natural topography. Solutions to this problem have been
found by using fractal geometry. This paper provides an introduction to frac-
tal geometry, including fractal algorithms, dimension, and self-similarity. Two
distinct categories of fractals, deterministic and random, are compared. The
random fractal, and in particular, the 1/{-noise model of fractional Brownian
motion ({Bm), simulates natural terrain. Three different methods of synthesiz-
ing {Bm are investigated: midpoint displacement, random faults, and Fourier
analysis. Images of synthesized topography are presented to aid in visualizing
the algorithmic steps and final results of each procedure. The attributes of each
method are explained, and suggestions for applying the techniques to particular

rendering problems are given.

Contents

Introduction

Fractal Geometry

Fractal Dimension e e
Fractal Classes

Fractional Browmian Motion

Random Fractal Models

Midpoint Displacement
Random Faults

Fourier Methods

Conclusion

Future Work

References

i

10

20

24

29

30

31

List of Color Plates

1 Mt. Hood in Depictionof Uof QO Seal

2 Simulation of an Earth-like Planet

1l

List of Figures

1 Construction of Sierpinski’s Triangle 3
2 Sierpinski’s Triangle 4
3 Diamond-Square Subdivision0 oL 12
4 Midpoint Displacement Example 13
5 Context Independent Subdivision 14
6 Fractal Model of Mt. Hood, 18
7 Stages of Random Faults Algorithm 23
8 Example of Fourier Method 27

iv

Plate 1: Mt. Hood in Depiction of U of O Seal

Plate 2: Simulation of an FEarth-like Planet

Introduction

Geometric modeling is an important area of computer graphics that greatly aids indus-
trial design and visualization. Creating a computer-based model requires specifying
Euclidean shapes and smooth surfaces, and carefully piecing those shapes together.
Traditional design techniques have been instrumental in the creation of complex man-
ufactured items, ranging from buildings to combustion engines. Although Euclidean
shapes can be used to describe complex industrial items, they fail to accurately de-
scribe natural phenomena such as clouds, mountains, coastlines, and oceans. How-
ever, the unlimited detail of nature can be simulated using fractal geometry.

Fractal geometry, a relatively new branch of mathematics, pertains to the
study of infinitely complex numerical sets. Despite their intricacy, fractals can be
fully described with concise sequences of iterated steps. Because fractal descriptions
are algorithmic, the advent of the computer greatly extended our ability to calculate
and visualize fractal constructs. Researchers in the field of computer graphics began
to see the potential of applying fractal algorithms to inherently difficult modelling
problems. One formidable problem is the synthesis of natural phenomena. To nu-
merically describe a natural scene, the overwhelming amount of detail required rules
out the application of standard geometry. Fractal algorithms can generate this high
level of detail, and in particular, a fractal model was developed that elegantly solves
the problem of synthesizing naturally occurring rough edges and surfaces. The focus

of this thesis is the fractal surface model and its implementation,

This thesis begins with a general section about fractal geometry. In this sec-
tion, the term “fractal” is defined, and fractal properties are discussed. The model
that produces rough surfaces, termed fractional Brownian motion, is quantified. The
next section is devoted to examining implementations of fractional Brownian motion.
This part begins with a practical discussion of landscape rendering. The following
subsection introduces the “midpoint displacement” technique for modelling fractal
terrain. Several variations of this method are discussed, and examples are illustrated
with computer generated images. The next subsection examines the “random faults”
method, a procedure that can be used to simulate planetary relief. IFinally, a terrain
synthesis scheme is described that uses the Fourier transform to strictly adhere to the
fractional Brownian motion paradigm. The conclusion compares the three implemen-
tations of fractional Brownian motion, and this thesis closes with suggestions about

Tuture applications of random fractal surfaces.

Fractal Geometry

An informal definition of a fractal is “a geometric construction that exhibits detail
at all scales.” Thus, viewing a fractal under increasing powers of magnification will
not reduce the visible detail, as in Euclidean geometry, but will display an equal
amount of complexity at each level [10]. Fractals are computed with a recursive or
iterative procedure. The limit of the iteration is the fractal itself. For example,

Sierpinski’s Triangle is produced by starting with a set A containing a single closed-

Figure 1: Construction of Sierpinski’s Triangle

interval two-dimensional equilateral triangle. The iterative step, shown in Figure 1,

is the following;:

For each (two-dimensional) triangle in set A, remove a section that is a
1/4 area inverted open-interval equilateral triangle.

At the limit of this iteration, all area of the triangle has been removed, but because
only open-intervals were removed from the original closed-interval triangle, the set
will be a fully connected infinitely thin and long web known as Sierpinski’s triangle
(Figure 2). This example gives a casual look at fractal geometry. A more formal

approach involves analyzing the dimension of fractal sets.

Fractal Dimension

Benoit Mandelbrot, a pioneer in the field of fractal geometry, coined the word “frac-
tal” and defined it to mean “a set for which the Hausdorff-Besicovitch [fractional]

3

Figure 2: Sierpinski’s Triangle

dimension strictly exceeds the topological dimension” [4]. Most fractals are infinite
in size in their topological dimension, and zero in size in the next higher topological
dimension, For example, Sierpinski’s triangle has a topological dimension of one.
However, measuring the length of Sierpinski’s triangle (hereafter referred to as S)
produces an infinite result. If S is measured in the second dimension, the result is
zero, because it does not fill any area in the two-dimensional plane. It seems that the
fractal dimension of S lies between one and two.

Intuitively, the fractal dimension of an arbitrary fractal A is the dimension for
which A exhibits a finite non-zero measure. The Hausdorff-Besicovitch procedure for
determining fractal dimension measures A within an arbitrary dimension p, producing
the Hausdorff p-dimensional measure of A. One can then determine the value of
p that allows the Hausdorfl p-dimensional measure of A to take on a finite non-
zero value, producing the Hausdorff-Besicovitch dimension of A [1]. For example, S
has a fractal dimension of ln(3)’/ In(2), which is between one and two, as predicted.
The Hausdorff p-dimensional measure of S can be determined by calculating the
number of p-dimensional spheres that provide a minimum cover over S. Sieradski
[12] explained an easy way of inductively determining the Hausdorff p-measure, which
involves examining the constructive steps used to produce a fractal. Figure 1 displays
the first three constructive steps used to produce S. Assuming the diameter of the
bounding sphere of the triangle in Figure 1a is &, Table 1 shows a method of producing
the general relationship between the iterative step, and the number and diameter of

minimal-cover bounding spheres for 5. At any iteration level, the set S is contained

level diameter | spheres
So (Figure 1a) | 8(1/2)° 1
Sy (Figure 1b) | 8(1/2) 3
S, (Figure 1c) | 6(1/2)? 9

Se (Figure 2) | 8(1/2)F 3k

Table 1: Bounding Limits for Sierpinski’s Triangle

within a plane, and thus a circle can be used as the bounding sphere. If one circle of
diameter § provides a minimum cover over Figure la, then three circles of diameter
§/2 provide a minimum cover over Figure 1b. In general, it can be reasoned that 3%
circles of diameter 8(1/2)* give a minimum cover for iteration level k. These values

can be used to compute the fractal dimension and size of S:

k—oo

kP
p-measure = Hm 3 [6 (%) }

.3\
=7 i ()

To produce a non-zero finite result:

(i) =1
9p
Thus p, the Hausdoxff-Besicovitch dimension of S, is:

In3

P 2

and the “size” of S is:

: In3

00 ifp <

Hausdorfl p-measure = ¢ gn3/In2 5 ;) — In3
In2

: in3

0 if p > nz

Fractal Classes

Sierpinski’s triangle is a good introduction to fractals, but the fractals that simulate
nature belong to an entirely different category. There are two major classes of frac-
tals: deterministic and nondeterministic. In the case of a deterministic fractal, the
iterative function producing the fractal will always give the same result. For instance,
Sierpinski’s triangle is deterministic; its shape is invariant. Nondeterministic fractal
algorithms rely on input from a random number functiqn to produce a random fractal
set [8].

Ideally, a nondeterministic, or random, fractal algorithm will always produce
different results. In practice, random numbers are generated by pseudo-random num-
ber functions. If two identical instances of a particular pseudo-random number gen-
erator are initialized with the same parameters, they will produce identical output.
Varying the parameters of the implemented pseudo- random number function allows a
single algorithm to output many different results. Another difference between random
and determinmistic fractals is how the fractal property of self-similarity manifests.

Random fractals are not self-similar in the way that many deterministic fractals

are. Subsections of a random fractal are not identical to the whole; they cannot

be scaled and overlapped onto the whole as was the case with Sierpinski’s triangle.
Because random fractals are the result of a stochastic process, their properties can
be best quantified using statistics. Although random fractals are not self-similar,
sections of a random fractal have the same statistical properties of the whole, “modulo

a vertical scaling factor” [8]. This property is known as “statistical self-affinity”.

Fractional Brownian Motion

Many random fractal constructs that closely resemble the rough fractal surfaces seen
in nature are based on fractional Brownian motion (fBm). FBm, if viewed as a
waveform, has the property that the expected value of the mean-square fluctuation
in amplitude at frequency f is proportional to 1/f%, where f is a constant that
describes the roughness of the Brownian curve [9]. This inverse power law simply
means that points that are close in space (sampled at a high frequency) are going to
have relatively similar amplitudes. Points that are sampled at a low frequency may be
far apart in amplitude. This model is evident in many surfaces formed in nature. For
example, if elevation is substituied for amplitude, this model approximates change
in elevation over distance in a mountain range. Why the simple 1/ f- noise paradigm
describes many natural systems is a mystery. Richard Voss has done a considerable

amount of work with the 1/f phenomena, and he explains:

Little is known about the physical origins of 1/ f, but it is found in many
physical systems: in almost all electronic components from simple carbon
resistors to vacuum tubes and all semiconducting devices; in all time stan-
dards from the most accurate atomic clocks and quartz oscillators to the
ancient hourglass; in ocean flows and the changes in yearly flood levels
of the river Nile as recorded by the ancient Egyptians; in small voltages

8

measurable across nerve membranes due to sodium and potassium flow;
and even in the flow of automobiles on an expressway. 1/f-noise is also
found in music. [9}

Clearly there are many interesting modeling applications that could exploit 1/ f-noise.
The focus of this thesis is the exploration of 1/f*-noise random fractal models that
simulate natural topography.

To approximate natural fractal surfaces such as topography or clouds, the
values assigned to § must be limited. Assigning low values to # will produce results
that are too rough. As f approaches zero, the resulting surface approaches completely
uncorrelated white noise, Conversely, high values of # produce surfaces that a.re
smooth and highly correlated. Voss claims that choosing # from the interval (1, 3]
works well for simulations of nature. With this restricted range of g, the fractal
dimension D) can be estimated as D = E + (3 — 8)/2, where E is the topological
dimension [9]. For example, as the § associated with a topographic relief varies from
one to three, the estimated fractal dimension of the relief will vary from two to three.
Thus, random fractal algorithms use /8 as a control parameter to vary the correlation

of elevation points.

Random Fractal Models

Attempts to simulate natural topography have led to several procedures that model
fractional Brownian motion. Depending on the specific application, there are a num-

ber of features that a fractal procedure must have. One of the most important aspecis

of any fBm method is its mathematical correctness. If the terrain generating proce-
dure does not accurately implement the 1/ f-noise model, the results will be flawed.
For many applications, the ability to add detail to an existing topography database
is essential. If a computer animation is to use fractal terrain, then the dynamics of
the viewpoint may require changes in the resolution of the terrain and extensions to
the terrain in any direction. The underlying geometry of the fractal surface must also
be considered; not all implementations of the {fBm paradigm generalize to any surface
shape. At this time, there is no particular [Bm algorithm that encompasses all of these
features. Three random fractal procedures are presenied, along with descriptions of

their abilities and shortcomings.

Midpoint Displacement

One of the most widely used techniques for generating random fractal surfaces is
midpoint displacement, often referred to as recursive subdivision. Many published
fractal mountains are the result of a midpoint displacement scheme. This model
received notoriety after it was used to produce a planet surface for the Genesis scene
of Star Trek II: The Wrath of Khan [9]. Loren Carpenter, who was responsible for
tue Star Trek scene, combined research efforts with Alain Fournier and Don Fussel
to publish some of the initial midpoint displacement methods [3].

The Fourmier, Fussel, and Carpenter algorithms are based on the recursive
subdivision of a surface. The surface to be subdivided is usually represented as a

two-dimensional array of height values, referred to as a height field. During the

10

recursive subdivision, height values are assigned to each point of the height field.
The position of any height value in the array can be interpreted as two- dimensional
coordinates. The height value provides the third coordinate, and with this data, the
surface can be tessellated and displayed in three dimensions.

At the start of a midpoint algorithm, the height values of the four corners of
the array are initialized with Gaussian random numbers, and scaled according to a
user-defined standard deviation s. New points are approximated by averaging the
height of neighbors. Then, the new points are offset by a Gaussian random number
scaled according to s’ = s(1/f%/?). Scaling by 1/f?/? is necessary to provide an
expected mean square fluctuation of 1/ f# at frequency f. This process iterates until
f exceeds the resolution of the array. With each full iteration of the algorithm,
the resolution of the defined fractal doubles. In theory, the limit of iterations will
produce an infinitely complex and rough surface. Because the computer is bounded
by memory limitations, the size of the array will determine the limit of iteration, and
the data generated will represent only an approximation of the fractal.

A example of a recursive subdivision scheme is shown in Figure 3 [3]. After the
first full iteration, the height field will have nine defined height values, as represented
by black dots in Figure 3a. Figure 3b shows that new data points are interpolated
by averaging neighboring points, resulting in the grey dots. The new points are then
offset by a Gaussian random number, with the expected value of the offset being
proportional to 1/f#/%. As Figure 3¢ shows, one more pass completely doubles the

resolution. Figure 4 illustrates this process with the height values plotted as elevation

11

. ? _.)ee_ ?__)e —P
N SN\ S A

Q o ?3@ - 9 - QE «@® - ¢

/7NN T v 1 v

[—— [W ¢ ® [W— ? == ? D=l
NN S boroboor

] © ? — @ = ? «® >0

VAN ZEEN T ¢ 1 v

® ' ‘ @ _;.@.(_. .._;.e 4—.

a b c

Figure 3: Diamond-Square Subdivision
points of a fractal landscape. Figures 4a, b, ¢, and d are the result of one, three,
five, and seven iterations, respectively. Miller [7] refers to this particular method as
“Diamond-Square Subdivision”.

Djamond-Square subdivision is a context-dependent process because the weights
of neighboring points from all sides are used to estimate new data points. Many pop-
ular methods of recursive subdivision are context independent; they do not use all
neighboring points to aid in approximating new points during the recursive process
[7). For example, Pokorny and Gerald [11} presented the method of context inde-
pendent subdivision that is shown in Figure 5. This subdivision technique is more
efficient than the Diamond- Square method; it doubles the resolution of the fractal
surface with one pass, interpolating the white and grey points from the neighboring

black points. However, this technique contains several problems with mathematical

12

Figure 4: Midpoint Displacement Example
One, three, five, and seven iterations of the diamond-square algorithm are shown.

13

IN N

@ o o ¢

1/ N1 N

........................... ?._)e —-@Par-Q=@
INJEN Y

© O Q o ©

1/ N1/ N

® i . @ Q@O .(_.‘

a b

Figure 5: Context Independent Subdivision
and visual correctness. As shown in Figure 5, the white midpoints are calculated by
averaging the four neighboring black points. The grey points result from averaging
only two neighbors. Clearly this inconsistency will result in discontinuities because
of the lack of correlation between the grey points and half of their neighbors. These
regions of discontinuity bisect the elevation data at all levels of recursion and form
unsightly creases in three-dimensional rendered height fields [7).

Although the Diamond-Square subdivision scheme has fewer shortcomings
than context independent methods, it does not eliminate all artifacts. Using four
neighboring points instead of two to estimate new values increases the accuracy of
the model, but does not fully correlate all points. Because of this lack of correlation,
“creasing” is still apparent, although not as obvious, in the the output. This pro-

cedure also exhibits another artifact known as “tenting”. Tenting produces pointed
g gp p

14

peaks at control points and other other points of relatively high elevation [7). This
occurs when a particular elevation value is much higher than surrounding values,
resulting in newly interpolated points that are heavily weighted by the many low
points, Relatively low elevation points similarly produce an inverted tenting artifact.
Musgrave has shown that midpoint displacement artifacts may sometimes be used to
add aesthetic appeal to images. He has used the tenting artifact to give a “storybook
castle” look to some of his landscape renderings [8].

Much attention has been given to the visual artifact problems associated with
the midpoint displacement techniques. Shortly after the publication of “Computer
Rendering of Stochastic Models,” where Fournier et al. present several recursive sub-
division techniques, Mandelbrot replied to Communications of the ACM denouncing
this method [5]. The crux of Mandelbrot’s argument was that the mathematical
impurity of the recursive subdivision method led to a.rtifécts described as “peculiar
‘crumpled paper’ texture and a very conspicuous grid of parallel lines along relief
breaks”. Although recursive subdivision generates conspicuous artifacts, it is one of
the fastest random fractal techniques available, and thus cannot be ignored.

Several attempts have been made to ameliorate the artifact problem. Miller {7)
proposed a new method of subdivision, which he calls “Square-Square Subdivision”.
Miller’s square-square procedure was adapted from computer aided design methods
and generates a fractal surface that is biquadratic (continuous in the first derivitive,
and thus insuring a continuous slope). Although this scheme eliminates artifacts that

are inherent in other methods, it has two major drawbacks: the generated surface does

15

not pass through user defined control points, and because the surface is biquadratic,
it lacks the fine-scale rough appearance that is visible in other models. Another ap-
proach, suggested by Mandelbrot, uses hexagons instead of squares as the geometric
shape of the “tiles” used in the recursive subdivision [9]. According to Mandelbrot,
because hexagons cannot be exactly recursively subdivided (i.e., precisely filled with
smaller hexagons), the boundaries between tiles of subdivision will overlap, trans-
forming the straight-line creasing evident in other models to a more natural looking
“crumpled” curve. Voss proposed a method of reducing artifacts, called “successive
random additions,” that adds 1/f-scaled random displacement to the entire height
field at each level of recursion {9]. This filter can be applied to any midpoint displace-
ment scheme, and has the effect of disrupting the creasing patterns that are formed
during subdivision. With several methods available to eliminate artifacts, the mid-
point displacement methods are viable options for the production of random fractal
surfaces.

One strong advantage of the midpoint displacement technique is that the
height field can be initially seeded with user-defined values. As the iterations of
the algorithm increase the data resolution, the general form defined by the initial
data is maintained. For example, if one point in the. center of the height field is
initially seeded with a high elevation value, as the algorithm runs, this seed will have
the effect of increasing the elevation of points generated around it. These additional
points, in turn, influence the elevation of neighboring points. At the end of the it-

erations, the one user defined point will be a mountain peak, having influenced all

16

surrounding points to, in general, form a slope to the peak.

The method of seeding the height field and then applying a midpoint dis-
placement algorithm was used to generate a photo- realistic image of Mt. Hood, as
seen in Plate 1 and Figure 6. The initial height field was seeded with 1000 elevation
points, taken from a contour map. Clearly, if only these initial 1000 elevation points
were tessellated and rendered, the size of the polygons defining the surface would be
relatively large, giving the mountain an artificial geometric appearance. The 1000
elevation points were uniformly distributed over a height field of much higher reso-
lution. Applying the diamond-square midpoint algorithm to this seeded height field
produced over one million data points, adding random, rough detail to the image,
but maintaining the shape defined by the points from the contour map. The fractal-
generated height field was then overlaid onto a larger height field, and low-land ter-
rain surrounding the mountain was randomly generated and smoothly fused with the
mountain data. The “creasing” artifact was almost completely eliminated by using
Voss’s successive random additions method. The “tenting” artifact was controlled by
passing the fractal data through a filter that adjusted any data points that deviated
from their neighbors by a significant amount. Part of the surrounding terrain was
seeded to produce a low elevation area to be “filled” with water, as seen ia Plate 1.
The water surface was created by using a relatively smooth random fractal height
field as control data for a bicubic spline surface.

The ability to set control points that influence the outcome of the midpoint

algorithm can be one of the most valuable features of this technique. This model also

17

Figure 6: Fractal Model of Mt. Hood

18

Figure 6 (cont): Fractal Model of Mt. Hood

19

has a relatively fast execution time. The asymptotic time complexity of the described
midpoint algorithm, if applied to an n by n height field, is O(n?). Although this
technique has several advantages, there are disadvantages that affect the quality of
images produced. As has already been discussed, in the field of natural phenomena
modeling, the midpoint displacement technique is infamous for producing artifacts.
These artifacts manifest as a “crumpled paper,” or a “creased” look in final images,
producing results that are less than realistic [5). Another disadvantage of the midpoint
technique is that the geometric representation of the height field must be able to be
subdivided in an equal and recurrent manner. The next mode! of fractional Brownian
motion discussed in this thesis, the random faults technique, has the advantage that

it can produce a rough fractal surface of general shape.

Random Faults

The random faults algorithm is very simple. Given a set of data that represents a
general surface, the algorithm intersects the surface with a randomly generated plane,
the site of the fault, and then offsets all of the points on one side of the plane by a
pre- determined random number [9]. The following algorithm will calculate the effect
of one fault on a set D of three-dimensional data points:

Generate a random plane P. P must, on the average, bisect the dataset D.

Calculate a Poisson random number K.
For each point d in D:

If d is on the same side of the plane as the normal to the plane, offset d
by distance R, in the direction normal to the tangent.

20

After a sufficient number of applications of the above algorithm, the 1'esuit of
any one fault disappears, and the data set represents a random fractal surface [9)].
Intuitively, this technique works because of simple probability. If the intersection of
the random plane with the dataset dictates that some particular point P be offset,
then the chances are very high that close neighbors to P will also be on the same
side of the plane, and thus also offset. The farther a point is from P, the less likely
that it will be offset. This follows the Brownian motion paradigm; Brownian motion
dictates that the elevation of any given point is similar to that of its neighbors, and
the elevations of distant points may not be similar at all.

More formally, this model produces fBm with B held constant at 2, corre-
sponding to a fractal dimension of 2.5. Brownian motion can be interpreted as “the
cumulative displacement of a series of independent jumps” {9]. For instance, a {Bm

function B(t) can be calculated by summing white noise:

where W (i) is a white noise function with Poisson distribution. This equation pro-
duces fBm with the mean square variation at frequency f proportional to 1/ f2. The
actual mean variation will be proportional to 1/ f. For example, if W produces values
in the range [0,1] and B(t) is evaluated for ¢ = 1...16, then for two points (¢; and
t,) sampled at frequency f = 2, the expected value of |B(,) — B(t2)| is (8)(1/2) = 4.
If ¢, and t; are sampled at frequency f = 4, then E(|B(t,) — B(t2)]) is (8)(1/4) = 2.
From this example, it should be clear that in relation to each other, the expectations

of these points are scaled proportionally to 1/f. In a similar fashion, the summation

21

of random faults on a sphere produces a fBm suiface scaled proportionally to 1/f.

Applying the random faulis technique to a sphere is an effective method of
simulating the topography of an entire planet. Figure 7 illustrates the results of
increasing numbers of iterations of the random faults algorithm on a sphere. Plate
2 shows the use of this technique to synthesize an image of an earth-like planet and
a moon. The planet was calculated using the random faults method, and a smooth
blue sphere was overlapped over most of the rough terrain, giving the appearance of
oceans. The atmosphere was the result of another application of the random faults
method. For the clouds, the data points of a spherical height field were not used
to determine terrain height, but were instead used to calculate the transparency or
opacity of clouds.

As previously mentioned, the advantage of the random faults method is that
it can be applied to an arbitrarily shaped surface. Usually, this technique is not used
if other algorithms will suffice, because the random faults method is slow. If an n
by n height field is processed with m random faults, then the time complexity of the
algorithm is O(n*m). Well over n faults are generally needed for an n by n height
field, so the time complexity will usually be worse than O(»®). In more concrete
terms, the midpoint displacement algorithm generated the data for Plate 1 in about
ten minutes. Using the random faults algorithm, the surface of the planet in Plate 2
was generated on the same computer in nine hours. This poor time complexity limits

the usefulness of the random faults method.

22

Figure 7: Stages of Random Faults Algorithm
These images illustrate the application of 16, 64, 256, and 1024 random faults.

23

" Fourier Methods

Several methods of fractal terrain synthesis rely on the use of the Fourier transform.
The Fourier transform is an important tool with applications ranging from natural
sciences to signal processing; it has been referred to as “the prism of science” [10].
A prism separates white light into its spectrum of constituent colors; similarly, “the
Fourier transform identifies and distinguishes the different frequency sinusoids (and
their respective amplitudes)... [of] an arbitrary waveform”, thus producing a spectral
(frequency domain) representation of the wave [2]. Conversely, the inverse Fourier
transform produces a time or spatial domain waveform from its spectral representa-
tion. Together, the Fourier transform and its inverse provide a means to synthesize
or filter an arbitrary waveform based on its spectral representation.

Recall that the model of fractional Brownian motion dictates that the ex-
pected value of the mean square variation in amplitude at frequency f is propoz-
tional to 1/ f. Because this describes the relative scale of the frequency components
of an fBm waveform, the Fourier transforms may be used to synthesize fractal terrain.
A straightforward method of producing two-dimensional fBm involves rescaling the
spectral representation of a random waveform. With this method, a two-dimensional
height array is initially filled with random numbers. Applying the Fourier transform
to this array will result in a spectral representation with completely uncorrelated am-
plitudes. A 1/f-noise filter is applied to the spectral field, scaling values at frequency
f by 1/ /8%, The application of the 1/f- noise filter changes the random spectral

representation to a spectral description of fractional Brownian motion. The inverse

24

Fourier transform is used to convert the data back into its spatial representation, thus
producing a random fractal height field [6]. This filtering process involves the appli-
cation of both the forward and inverse Fourier transforms. Saupe presents a more
efficient method, spectral synthesis, which only requires one Fourier transform [9].

Spectral synthesis, as its name implies, involves the direct creation of an fBm
frequency spectrum. An fBm spectral map is constructed by assigning, at each fre-
quency f, a random amplitude with an expected value proportional to 1 [P 1t is
also important to randomly time-shift the spectrum, thus preventing symmetry in
the peaks and valleys of the individual sinusoids. For a spectral representation H, an
individual frequency f is shifted a constant i, producing ' by the following:

H'(f) = H(f)(cos(2m fto) — tsin(2x fiy))

where 1 = v/—1 [2]. This transform can be applied to all frequencies, with ¢, assigned
at random, effectively eliminating symmetry of frequency components. Although
time-shifting produces a complex spectral map, because the real part of the frequency
domain is based on an even function (cosine) and the imaginary is odd (sine), applying
the inverse Fourier transform will produce only a real spatial-domain height field [2].
As previously mentioned, this procedure eliminates the use of the forward Fourier
transform. Synthesizing the height field can be done with a better asymptotic time
complexity than a Fourier transform, thus improving the time constant of the entire
process.

Figure 8d (left) is an example of a swrface created using the Fourier spectral

synthesis method. The spectral representation of this surface is shown to its right.

25

In the spectral map, the center of the height field corresponds to the amplitudes
of low-frequency waveforms that constitute the fractal surface. Values at increasing
radii from the center of the field correspond to amplitudes of increasing frequencies.
Figures 8a through d illustrate the scaling of amplitude as frequency varies, and
also help to show how the summation of sinusoids form a complex surface. Figure
8a displays the low-frequency components of the fractal surface in both spatial and
spectral domains. Because of the 1/f scaling, we can expect the higher frequency
sinusoids to be of smaller amplitude. This is evident in-Figure 8b through d, which
show the results of adding an increasing number of frequency components to the
fractal surface.

Visually, the results of the Fourier techniques are better than both midpoint
displacement and random faults. The Fourier methods are the most mathematically
correct of the three models, but each is only an approximation to true Brownian
motion. The time complexity of the Fourier method is dictated by the implementation
of the Fourier transform. A fast Fourier transform is typically used, with a time
complexity of O(n?log,n) for a two-dimensional n by n height field. A disadvantage
of the Fourier techniques is that they must be applied to rectangular height field.
Also, the initial height field cannot be seeded, resulting in lack of user control over

the final landform distribution.

26

Figure 8 (cont): Example of Fourier Method

Conclusion

Fractal modeling is important in computer graphics, and many fractal models have
worked successfully in the field of natural image synthesis. Models of fractional Brow-
nian motion approximate the correlated and random detail of naturai topography. In
this thesis, three primary models of fBm were discussed: midpoint displacement,
random faults, and Fourier techniques. For general purpose rendering of random
mountains and rough fractal surfaces, the Fourier methods produce excellent, real-
istic results. The Fourier methods execute relatively fast, and are the most math-
ematically correct interpretations of fractal Brownian motion. If one needs control
over the distribution or shape of the resulting height field, the midpoint displacement
algorithm must be used. For instance, the midpoint displacement technique was used
to produce a photo-realistic image of Mt. Hood, as seen in Plate 1. The random
faults technique is extremely slow, but is simple to implement and is quite versatile.
Using random faults, a fractal surface of any shape can be generated. If one wants,
for example, to create a fractal surface in the shape of a torus, the random faults
method is the primary option. Research and experimentation suggests that there is
no fBm algorithm that will work adequately for all cases, but individual techniques

are well suited for specific applications.

29

Future Work

Procedures that model fractional Brownian motion have primarily been used to syn-
thesize natural topographic relief. Since their introduction, the basic random fractal
techniques have been extended to simulate eroded terrain, clouds, and ocean waves.
Although the fBm paradigm plays a significant role in the simulation of natural phe-
nomena, it has received little attention from other areas of computer graphics. In
particular, the random fractal model has the potential of providing a more accurate
and natural means of simulating light scattering for surface illumination and shading,.
Many natural and man-made surfaces exhibit fractal roughness at a microscopic level.
These microscopic surface characteristics affect the reflection of light and ultimately
determine the surface’s appearance. In theory, statistical surface roughness properties
could be measured and used as control parameters for a model of fractional Brownian
motion. Once the computer representation of the surface is generated, the interaction
of light with the surface could be simulated, providing data to accurately shade an
arbitrarily shaped object with those specific surface qualities. This example is quite
removed from terrain synthesis, but as previously mentioned, many natural systems
display the 1/ f-noise fBm model. Because this model is so prevalent, it seems that

there are numerous random fractal applications that have yet to be discovered.

30

References

[1) Barnsley, Michael. Fractals Everywhere. San Diego: Academic Press, 1988.
[2) Brigham, E. Oran. The Fast Fourier Transform. New Jersey: Prentice-Hall, 1974.

[3) Fournier, Alain, Don Fussell and Loren Carpenter. “Computer Rendering of
Stochastic Models.” Communications of the ACM 25 (1982): 371-384.

[4) Mandelbrot, Benoit B. The Fractal Geometry of Nature. San Francisco: W.H.
Freeman, 1983.

[6] Mandelbrot, Benoit B. * Technical Correspondence: Comment on Computer Ren-
dering of Fractal Stochastic Models.” Commaunications of the ACM. 25 (1982):
581-583.

[6] Mastin, Gary A., Peter A. Watterberg, and John F. Mareda. “Fourier Synthesis
of Ocean Scenes.” IEILE Computer Graphics and Applications. Mar. 1987: 16-23.

[7] Miller, Gavin S. P. “The Definition and Rendering of Terrain Maps”. Compuler
Graphics. Aug. 1986: 39-47.

[8] Musgrave, F. Kenton. “Uses of Fractional Brownian Motion in Modelling Na-
ture.” SIGGRAPH 1991 Course Notes: Fractal Modeling in 3D Compuler
Graphics and Imaging. {Las Vegas]: ACM, [1991]. 5-34.

[9] Peitgen, Heinz-Otto, and Dietmar Saupe, ed. The Science of Fractal Images.
New York: Springer-Verlag, 1988.

[10] Pickover, Clifford A. Computers, Pattern, Chaos and Beauty. New York: St.
Martin’s Press, 1990,

[11] Pokorny, Cornel K. and Curtis I'. Gerald. Computer Graphics: The Principles
Behind the Art and Science. Irvine: Franklin, Beedle and Associates, 1989.

[12] Sieradski, Allan J. “Fractals with Computers.” Lecture. University of Oregon.
Eugene, 20 Jun. 1991.

31

