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Parametric Surface Representation for

Visualization of Joint Biomechanics

Abstract

In vertebrates, articulation is achieved at joints where a pair of smooth surfaces
are in gliding contact within a synovial capsule. The paired surfaces comprise a system
whose geometry consirains delimit the joint's range of movements. The biomechanical
design of a given joint can be explored by creating a 3D model of the component surfaces
and visualizing their relative movements from differing perspectives. Greater
understanding comes from systematically varying the geometry of the articular surfaces.
To explote the space of geometrical designs, software for parameterically representing
surfaces has been developed and integrated within a larger software framework for

articulating skeletal systems,
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Joint Biomechanics and Parametric Surfaces

The neck of the sauropod dinosaur Diplodocus carnegii contains 13 elongate
cervical vertebrae. Articulation between each pair of vertebrae involves three synovial
joints, a large central ball-and-socket (condyle/cotyle) plus two pair of zygapophyseal
joints {two prezygapophyses at the anterior of one vertebra articulate with a pair of
postzygapophyses ai the posterior of the next veriebra. The pair of surfaces, or facets,
within each joint are encapsulated within a synovial capsule, the surrounding ligaments
of which uitimately limits the travel of one facet relative to the other. The shape of the
joint surfaces defines the form of movement achieved within this envelope.

Joint biomechanics is partly a matter of geometry. Within the lubricating
synovial capsule a pair of surfaces are in gliding and rotational contact. The functional
significance of their geometry is not well understood. Clearly some joints have a decply
cupped, ball-and-socket (condyle/cotyle) arrangement. Others such as within the knee,
are clearly designed for one surface to roll across the other (Stevéns & Parrish, 1999).

A particularly interesting case is the system of three joints between successive
vertebrae, for taken together there is an instantaneous axis of rotation that involves up fo
six surfaces (within three joints). Visualizing their movements is challenging, even when
physically manipulating the neck bones of existing animals. The DinoMorph Project
(Stevens, dinoMorph.html) is studying the skeletal structures of dinosaurs. Currently the
emphasis is on the necks of the giant sauropods, the longest and most complex found in
any vertebrate.

While manipulating a pair of cervical vertebrae gives some rough understanding
of their functional morphology in the case of a giraffe or rhino, that is not an option for a
fossilized sauropod dinosaur. The bones are far too brittle, massive, and distorted to
permit direct manipulation. The alternative is to reconstruct a digital representation of
their geometry and place these models into articulation. By paramelrically defining 3D
surfaces one can produce a close likeness to the shapes observed in fossil specimens.
This is an economical, and often more practical means for digital modeling than direct
3D scanning, especially when the fossil material is distorted. With that in mind,
Professor Kent Stevens, my advisor for this thesis, and I began development of a

parametric surface editor.
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In parallel to the development of the surface editor, Professor Stevens and I began
making modifications fo DinoMorph, a computational paleontology tool that allows
scientists to view and manipulate dinosaur skeletons in 3D. We began making changes to
the code that allowed the visualization of the vertebral joints. In addition, DinoMorph’s
own capabilities for picking and manipulating joints were improved. Figure 1.1 shows a
Diplodocus skeleton visualized using DinoMorph,

Figure | .|

With a surface editor to model the surfaces, and DinoMorph articulate the
surfaces, research could then be done on the interactions between the joint surfaces. The
next few sections will detail the development of the surface editor, and the use of

DinoMorph to view and manipulate the vertebral joints.

Evolution of the Joint Surface Editor
In the process of modeling biological joint surfaces, the Joint Surface Editor’s
methods of defining a surface have changed several times. The definition of a surface
boundary has evolved from a bitmap editor, to a Bezier curve boundary, and on to a
Catmull-Rom spline boundary. The interpolation of the points across the surface has
matured from piecewise linear interpolation, to Bezier curves, and on then to a
combination of Bezier curves and Catmull-Rom splines. At each step in the development

process, the tools for user interaction were enhanced, until an editor was created that
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could quickly and efficiently model a joint surface. This tool became known as the Joint
Surface Editor, or JSed.

The development of JSed closely resembled a spiral evolution model. During
each phase, Professor Stevens and I would define requirements, build a prototype, and
then attempt to create joint surfaces using the prototype. The process of building surfaces
using these various editors proved invaluable in determining the feature set for the next
phase.

The evolution of JSed occurred in four major phases, each phase building upon
the strengths and avoiding the weaknesses of the previous prototype. This process

produced four distinct prototypes, which will be discussed in the following sections.

Piecewise Linear Interpolation with a Bitmap Editor

The first version of JSed allowed the user to define the surface boundary using a
bitmap editor that represented the x-y plane. The points on the surface were defined
using piecewise linear interpolation in both the x and y directions. The user was able to
select any of the horizontal lines that made up the bitmap, and view that line as a spline in
side view (the x-z plane). Using a spline editor written by fellow undergraduate John
Bates, the user was able to change the z values of the currently selected spline. A 3D
representation of the surface was also displayed in the window. The user could rotate and
translate the 3D surface using the mouse. The bitmap editor and the spline editor were
both written in Java using Swing. The 3D view was written in Java using Java3dD, with
the surface represented as a series of triangle strips. J ava3D provides an object to hold
and display these strips of triangles, called a TriangleStripArray. Figure 2.1 shows

version 1 of JSed with the bitmap editor, the spline editor, and the 3D view.
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~ Figure 2.1

The primary flaw with this prototype was in adjusting the amplitude of the
surface. The x and y boundaries were easily created using the bitmap, but adjusting the z
value of any one point on the surface would create a spike. Figure 2.1 illustrates this
effect. Painstaking effort was required to perfect even a small portion of the segment. As
a result, Professor Stevens and I decided to add some area effect tools. Figure 2.1 shows
the GUT controls for some of these tools at the bottom of the screen.

The first addition was a tool that applied a segment of a sine curve to the
amplitude of the shape. It was thought, at the time, that the user could apply a sine curve,
and then apply area effect tools to specific regions of the surface to model the desired
shape. These area effect tools would raise and lower regions of the surface in either a
constant, linear, or an exponential fashion. The user would be able to conirol the area of
effect, or the rate of decay of the effect.

The first and only area effect tool created had a constant effect on the currently
selected horizontal spline. When a point on the positive side of the x axis was raised or
lowered, all points to the right of that point (points with greater x values) would be raised
and lowered with the selected point. In other words, the difference between the selected

point’s original z value and its new z value would be added to the z values of all points
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with a greater x value than the currently selected point. Likewise, when a point on the
negative side of the x axis was raised or lowered, the points to the left of that selected
point would be raised and lowered with the point.

The constant effect tool seemed to work at first, but we soon realized that it was
easy to create creases in the shape, and difficult to smooth out these creases. Again, it
took painstaking effort (o adjust all of the individual splines to create a smooth surface,
let alone the desired swmface. Figure 2.2 shows a surface created by applying a sinc
curve, and then using the constant effect tool to raise a region of the surface. Itis
apparent that smoothing out this surface would require a great deal of work.

Figure 2.2

The difficultics in creating surfaces using piecewise linear interpolation of splines
led us to research other forms of interpolation. We researched several curve types, but
concluded that Bezier curves might give the user the added control necessaty to

accurately model a joint surface.

A Single Bezier Surface Patch
Around the same time that we had decided to try using Bezier curves, [ was
thinking of possible final project topics for a Computer Graphics course I was taking.
The course had covered Bezier curves and surfaces earlier in the term, so Professor Gary

Meyer agreed to let me implement a Bezier surface editor for my final project.
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Since the interface for the previous editor seemed sound, I began writing a new
editor with roughly the same look and feel as the old editor. This new editor, however,
had completely different methods for boundary definition and surface interpolation. Like
the version 1 of JSed, this new editor had three main windows: a window looking down
on the swface (the x-y view), a window looking at the side view of the currently selected
curve (the x-z view), and a window containing the 3D view of the shape. Again, the user
was able to rotate and translate the surface using the mouse. The x-y window and x-z
window were both written in Java using Swing and the 3D window was written in Java
using Java3D. Again, a TriangleStripArray was used to display the surface. Figure 23
shows version 2 of JSed, with its three main windows and its simplified interface.

~ Figure 2.3

Figure 2.3 shows the sixteen control points defining the surface in the x-y view.
In the x-y view, the user was able to manipulate the boundary of the surface by clicking
and dragging one of the control points on the boundary. By clicking the up and down
arrows at the bottom of the screen, the user was able to select which curve would be

visible in the x-z view. Clicking and dragging any of the points in the x-z view would
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change the surface amplitude. A Bezier surface is continuous with only sixteen control
points, so it was easy to define a surface and impossible to crease the surface.

Of the sixteen control points, each set of four control points in the horizontal and
vertical direction made up one Bezier curve, for a total of eight Bezier curves. A Bezier
curve is a cubic polynomial curve segment made up of four points, P1, P2, P3, and P4.
The starting and ending tangent vectors of the curve are defined by the vectors <P1P2>
and <P3 P4>. This means that P1 and P4 are the starting and ending points of the curve,
and are therefore interpolated by the curve. The points P2 and P3 are not interpolated by

the curve, as they define the vectors tangent to the curve at P1 and P4. The four control

points and their resulting Bezier curve can be clearly seen in Figure 2.4.
Figure 2.4

Several techniques for drawing Bezier curves and surfaces exist. The technique
discussed in my Computer Graphics class was recursive subdivision, one of the easiest
methods to implement and most efficient to run. The technique involves breaking up a
curve into two segments, and determining the control points of those two curves. We
then subdivide each of those curves into two smaller curves. After just a few
subdivisions, interpolating all of the new control points will approximate the Bezier curve
specified by the original four control points. T wrote the following procedures to return
the points on a curve. The method getCurrentPoints is called with the number of
subdivisions, which in turn calls the method subdivideCurve to subdivide the curve. The
method subdivideCurve calls itself recursively until the curve reaches its desired order.

The points on the curve are then returned.

private Point3d[] controlPoints = new Pelnt3d[4);
private Point3d[] curvePolnts;
private int Index;
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/{ gets the points on the curve based on a number of subdivislons
public Palnt3d[} getCurvePolnts{int numbivisions) {

curvePolnts = new Point3d[(Int)(Math.pow(2, numDivisions+2))];
Index = 0;
subdivideCurve{controlPolnts, numDivislons, 0);

return curvePoints;

} /f method getCurvePoints

J/ subdivides a curve from four polnts to elght polnts
private vold subdivideCurve(Point3d[] points, Int numDivislens, int order) {

JJ checks to see if the order is still less than the deslred number of
// subdivions
If {order < numDlvislons) {

J/ arrays to hold the subdivided pleces
Point3d{] a = new Polnt3d[4];
Point3d[] b = new Polnt3d[4];
for(inti=0; 1 < 4;i++) {

a[l] = new Polnt3d();

bll] = new Point3d(};
Y for

/1 subdivides the curve

f calculates af0] as points[0]
a[0).x = points[0].x;

a[0].y = points[0l.y;

a[0).z = polnts[0].2;

JI calculates a[1] as {points[0] + points[1])/2
a[1).x = {points[0].x + points[1].x)/2;
a[1].y = {points[0].y + pointsf{1].y)/2;
af[1].z = (points{0].z + points{11.2){2;

J/ calculates a[2] as a[1)/2 + (paints[1] + points[2])/4
a[2].x = a[1).x/2 + {points[1].x + points[2].x}/4;
a[2)y = a[1].y/2 + (points[1].y + points[2].y)/4;
a[2).z = a[1].z/2 + (points[1].z + points[2).z}/4;

J1 catculates b[2] as (polnts[2] + polnts[3})/2
b[2].x = {polnts[2].x + points[3].x)/2;



Parametric Surface Representation for Visualization of Joint Biomechanics 10

b2}y = (points[2].y + points[3).y)/2;
b[2).z = (polnts[2].z + points[3].2)/2;

J/ calculates b[3] as v[3]
b[3].x = points[3].x;
b[3}.y = points[3].y;
b[3).z = points[3).z;

J/ caulculates b[1] as (polnts[1] + polnts[2])/4 + b[2]/2
b[1].x = {points[1].x + points{2).x)/4 + b[2}.%/2;
b[11.y = (points[1].y + points[21.y)/4 + b[2).y/2;
b{1].z = (poinis[1].z + points[2].z)/4 + b{2).z/2;

/f calculates a[3] as (a[2] + b[1])/2
a[3]x = (a[2).x + b[1].x)/2;
a[3ly = (al2)y + blil.y)/2;
a[3}.z = (a[2).z + b[1].2)/2;

}/ calcutate b[0] as a[3]
b[0].x = a[3].%;
b[0).y = al3l.y;
b[0}.z = a[3].z;

/f recurse on each plece

subdivideCurve(a, numDivisicns, order+1);
subdivideCurve(b, numbDivisions, order+1});

HY/AL

J/ else store the plece in the point array
else {

/1 stores the points
for(Inti=0; 1 <4; 14++4) {
curvePoints[Index++] = pointsfi];
} i for
} /f else

} /f method subdivideCurve

After writing procedures to get the points on a Bezier curve, the next step was (o

write procedures to get the points on the Bezier surface defined by the sixteen control
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points, Since recursive subdivision was used to interpolate the curves, it made sense to
use the same technique to interpolate the surface. Iused the recursive subdivision
algorithm that was presented by Professor Meyer in my Computer Graphics class. The
algorithm used the procedures above to split each of the four horizontal curves into two
separate curves, crealing a total of eight points along each horizontal curve. In effect, this
subdivision created eight vertical curves. For each of the eight vertical curves, the above
procedures were again used to divide each curve into two curve segments. The result was
a new patch containing four smaller patches. Each of these patches was then subdivided,
and so on until the desired surface order was reached. After just of a few subdivisions,
the surface would contain enough points to appear smooth. The 3D figure in Figure 2.3
is the product of three subdivisions. The surface has a total of 256 points.

Professor Stevens and I then began (esting the new editor. We were delighted to
see that it had many of the desired surface interpolation properties. Most joint surfaces
are fairly simple, and the editor allowed us to quickly create a simply surface. We found,
however, that creating the desired surface boundary shapes was not as easy.

Joint surfaces usually have complex boundaries. Using a single Bezier curve for
each of the four sides of the surface allowed for just four inflection points, namely at the
four corners of the shape. Without inflection points along the sides of the surface, it was
difficult to create a concave shape, and impossible to create an accurate boundary for
certain joint shapes. Using this editor, we were able to model condyles and cotyles, but
not zygapophyses. To solve the boundary problem, we decided to add a bitmap editor to
the current editor with the hope that it would allow us to fine-tune the boundary of the

surface.

A Bezier Surface Patch with a Bitmap Editor
The next incarnation of JSed involved taking the implementation for the previous
phase, augmenting it, and adding a bitmap editor. The first major task was to rewrile the
surface interpolator so that it could produce a surface of n x n points for any integer n
within practical limits. With an arbitrary surface resolution, we could then use a bitmap
editor to “cut” a shape out of the patch. Using recursive subdivision, the number of

points was bound by the number of subdivisions, The number of points on the surface
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was equal to 4°n where n was the number of subdivisions. After reading up on efficient

interpolation techniques, I decided to employ a technique knows as forward differences.

To understand how the forward differences technique works, we must first look at how a
cubic curve is calculated by brute force. A point on a Bezier curve is defined

parametrically as follows:

The Bezier geomelry matrix IS
Gb = [P1x, P1y, P1z, 1

P2x, P2y, P2z, 1

P3x, P3y, P3z, 1

P4x, P4y, P4z, 1]

The Bezler basis matrix Is

Mb=1{-1, 3,3, 1
3,-6,3 0
3,300

1, 0,0 0}

A point Q Is defined by
QD) = [t~3, 172, ¢, 1]* Mb* Gb

The forward differences technique is an improvement on the brute force method.
Where the brute force method requires 10 additions and 9 multiplies to derive each 3D
point, forward differences requires only 9 additions per 3D point (Foley et al. 1990). The
climination of the multiplies greatly improves the efficiency of interpolating a curve.

Forward differences uses a new matrix called a difference matrix, created with a
specified curve resolution. Again, we multiply the geometry and basis matrices to get the
coefficient matrix, but now we multiply the coefficient and difference to get a set of
deltas. The deltas can then be used to successively derive each point on the curve. The

difference matrix is computed as follows:

S = 1/curve resolution

The difference matrix Is

E=(0, 0,01
§43, 572,5, 0
6573, 25°2,0,0
6573, 0, 0, 0]
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D=E*Mb*Gb

The first column of D is Dx = X, dx, d2x, and d3x
The second column of D is Dy = v, dy, d2y, and d3y
The thirg column of D is Dz = z, dz, d2z, and d3z

I used the following code to return the points on a curve using forward

differences:

J/ an array of 3d points to held the Individual points on the curve
Point3d[] curvePolnts = new Point3d[res+1];

/[ stores the first polnt on the curve
curvePoints[0] = new Polnt3d(x, v, z);

// loops through the rest of the points on the curve
for (Int1 = 1; i <=res; I4++ ) {

J/move to next points through deltas
X +=dx; dx += d2x%; d2x += d3x;
y +=dy; dy +=d2y, d2y += d3y;
z+=dz, dz +=d2z; d2z += d3z;

// stores the current point
curvePoints[l] = new Point3d(x, y, z);

3} I for

Jf returns the polnts on the curve
return curvePoints;

Using Bezier curves with n points on each curve, I was then able to create
surfaces with n x n points, for any integer n. To create the surfaces, I used a technique
similar to the recursive subdivision technique used in version 2. The new technique
involved calculating the points on each of the four curves in the horizontal direction.
These points were then stored in a point array of size 4 x n. The points on each of the n
vertical curves were then calculated, and stored in an array of size n x n. With the surface
containing n x n points, an n-1 x n-1 bitmap was able to control the starting and ending

points of each triangle strip on the 3D. By controlling the starting and ending points of
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cach triangle strip, a shape could be “cut” out of the Bezier patch. Iused the following

code to generate the points on the surface:

/f gets the poelnts on the surface based on a surface resclution
public Point3d[1[] getSurfacePolnts(int res) {

Point3d[1[] s = new Point3d[4][res+1);
Polnt3d[)[] surfacePelnts = new Point3d[res+1][res+1);

/f calculates the curves in the s direction
for (int1=0; 1 < 4; 14+4) {

/ gets the curve and stores itin s
s[i] = new BezlerCurve(controlPoints[i]).getCurvePolnts(res);

Y/ for

J/ calculates curves in the t direction
for (intl = 0; | <= res; i++) {

// gets the points in the t direction
Point3d[] tControlPolnts = {s{0O][il, s[1][i), s[21[i1, s[31[11};

{ gets the curve and stores it In surfacePoints
Point3d[] t = new BezlerCurve(tControlPoints).getCurvePaints(res);

for (intJ = 0; j <= res; j++) {

// stores t[j] in surfacePolnts[{][1}
surfacePoints[j][i] = Wi);

} #f for

Y/ for
return surfacePoints;

} // method getSurfacePolnts

The interface for this version of the edilor resembled a combination of the
interface from versions 1 and 2. The editor had the same look and feel as version 2 of the

editor, but contained a bitmap editor in the x-y view like the first version. The user could
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select one of the four horizontal Bezier curves to view and manipulate in the x-z view.
As with version I and 2, a three-dimension window allowed the user to rotate and
translate the surface. A new feature was added that would allow the user the to lock the
center of the surface to any z value. This feature allowed the user to create a surface with
any amplitude and ensure that the center of the surface would remain at the origin of the
surface’s local space. The three main windows, along with the interface controls of

version 3 are shown in Figure 2.5,

Figure 2.5

Upon testing this editor, Professor Stevens and I thought we had a winner. We
began modeling zygapophyses, and were pleased with the resulting shapes. We didn’t
run into any trouble until we created a condyle for cervical vertebra 15 in the cervical
vertebrae of a Diplodocus. Upon seeing the results in DinoMorph, it became appearant
that the method for defining the surface boundary needed to be refined. The condyle had
a relatively steep amplitude. The steep amplitude caused the surface, which was cut out
by the bitmap editor, to have inconsistent z values around its boundaries. This

inconsistency had not been a problem when modeling zygapophyses, because the
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zygapophyses have small amplitudes. Figure 2.6 illustrates the problem with inconsistent
z values, and how using a bitmap editor to define a boundary causes the surface to have

rough, blocky edges.

Figure 2.6

We decided that we needed a smooth boundary for the surfaces. The smooth
boundary of the second prototype was pleasing with its four Bezier curves, but they
didn’t give the user enough control over the boundary. After some discussion, a
consensus was reached: using two Bezier curves for each side of the boundary would

give the user an extra inflection point and maintain a smooth boundary.

Catmull-Rom Spline and Bezier Curve Surface Interpolation with a Catmull-Rom
Spline Boundary

For the next prototype of JSed, the bitmap editor was removed and curves were
again used describe the boundary of the surface. This time, however, we used more
control points to describe the surface. In order to accommodate two Bezier curves per
boundary side, seven control points were needed along each side. With seven control
points along each boundary side, the surface was defined by a total of 49 control points.
Each row and column of seven points described a curve defined by two Bezier curve

segments, for a total of twenty-eight Bezier curve segments. The advantages and
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disadvantages of using two Bezier curve segments to describe a curve were almost
immediately obvious.

On the positive side, the endpoint of the first Bezier curve segment describing the
curve was the same as the starting point of the second curve segment. The points being
equal ensured that the curve was CO continuous, meaning that there were no breaks in the
curve. The point where the endpoint of the first curve segment and the starting point of
the second curve segment met was the fourth of the seven control points, and therefore
the midpoint of the curve. Since Bezier curves interpolate their endpoints, the midpoint
of the curve was interpolated. With the midpoint of each curve interpolated, the user had
cven more precise control over each curve, and control over key points such as the point
at the center of the surface.

On the negative side, the third, fourth, and fifth point on each curve had to remain
collinear. If these three points were not collinear, meaning that they did not lie on the
same line, the curve would lose its C1 continuity. C1 continuity indicates that a curve
preserves slope through all of its control points. If a curve was not C1 continuous, a
crease would appear in the curve. With a crease in any one curve, the surface would also
crease,

Enforcing C1 continuity was easy, but it was difficult to control the surface with
continuity enforced. Controliing each curve remained intuitive, but manipulating the z
value of a point on a horizontal curve could have drastic effects on the z value of a point
on another horizontal curve. This effect was caused because Cl continuity needed to be
preserved not only in the horizontal direction, but also in the vertical direction. The third,
forth, and fifth point on each vertical curve also needed to remain collinear. The result
was that the user would raise one region of the surface, only to inadvertently lower
another region. This lack of control over the surface made it almost impossible to
accurately model a shape. Figure 2.7 shows a curve composed of two Bezier curve

segments, with C1 continuity enforced.

Figure 2.7




Parametric Surface Representation for Visualization of Joint Biomechanics 18

It was evident that curves composed of two Bezier curve segments could not be
used to inferpolate the entire surface. This conclusion was unfortunate because the
curves composed of two Bezier curve segments provided the user with a quick and
efficient way of approximating the cross section of a shape. It seemed that we could use
another type of curve to describe the boundary and vertical curves, while still using
curves comprised of two Bezier curve segments for the horizontal curves,

I found a type of spline described in Foley, van Dam, Feiner, and Hughes (1990)
known as the Catmull-Rom spline. The Catmull-Rom spline had two important benefits
that made it attractive: the spline interpolates all but the first and last of its control points,
and it maintains C1 continuity. Continuity is preserved because the curve passes through
each control point in a direction parallel to the line connecting the points on either side of
the control point. For a Catmull-Rom spline described by m points, the curve is
composed of m-3 curve segments, each defined by a separate geometry matrix. The

Catmull-Rom geometry and basis matrix are as follows:

The Catmull-Rom geometry matrix is
Ges = [Pi-3x, Pi-3y, Pi-3z, 1

Pi-2x, Pi-2y, Pi-2z, 1

Pi-1x, Pi-1y, Pi-iz, 1

Pix, Piy, Piz, 1].

The Bezler basls matrix Is
Mes=1[-1, 3,-3, 1
2,-5 4, 1
-1, 0,1, 0
0, 2, 0, 0]

A point Q Is defined by
Q) = [t73, 122, ¢, 1] * 12 Mes * Ges

Using the forward differences technique discussed earlicr, I was able to efficiently
interpolate the curve segments between the second and second-to-last control points. By
adding two more control points, both invisible to the user, T was able to produce a curve
that interpolated all of its visible control points. The first invisible control point was
collinear with the first and second control points of the spline, forcing the first segment of

the curve to leave the first visible control point tangent to the vector between the first and




[
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second visible control points. Recall that this is exactly the way that a Bezier curve
leaves its first control point. Likewise, the second invisible point was collinear with the
last and second to last visible control points. A Catmull-Rom spline is pictured in Figure
2.8.

Figure 2.8

The Catmull-Rom splines interpolated all of their visible control points, meaning
that each of their visible control points is an inflection point. It seemed that a method for
defining the boundary of a surface had finally been found. By making slight
modifications to the surface interpolation technique employed in version 3, I was able to
create a shape that was interpolated using both Bezier curves and Catmull-Rom splines,
Catmull-Rom splines were used to describe all seven of the vertical curves and the two
horizontal boundary curves. C1 continuous curves comprised of two Bezier curve
segments were used to describe the five interior horizontal curves. By using Catmull-
Rom splines to define the boundary, seven inflection points were available per boundary
side, and each boundary side remained C1 continuous. By using Catmull-Rom splines
for interpolating the five interior vertical curves, the user was assured that manipulation
of a point on a horizontal curve would have almost no effect on any other horizontal
curve. With a new method for defining the boundary of the surface, as well as a new
method for interpolating the surface, it was time to build a new prototype.

Professor Stevens and I agreed that the new version of JSed was capable of
synthesizing the shapes we desired, With that in mind, we worked on perfecting the user
interface. Functionality was added to prompt the user for the width, length, and height of
the shape whenever a new shape was created. The width, length, and height information
was added to the 3D window in the form of calipers. Several other modifications were
made, including changing the layout of the windows, adding point picking and
manipulation capabilities to the 3D window, and providing symmetry tools. Figure 2.9
depicts the final version of JSed, using both Catmull-Rom splines and Bezier curves, with

the user interface improvements and the symmetry tools.
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Figure 2.9

LD A
4

SREII

Previous versions of JSed used a x-z view window with width greater than its
height. To accurately model a cross-section of a shape, we needed a view with an aspect
ratio of one. Due to this constraint, the x-z view window was moved on top of the x-y
view window, and the 3D window was enlarged so that all three windows have an equal
width and height.

To give the user increased control over the boundary of the surface, point picking
and manipulation was added to the three dimensional window. Small spheres were added
around the boundary of the surface. These spheres can be picked and dragged around by
the user, manipulating the boundary. Changes to the boundary in the three-dimension
window are reflected by changes in the x-y view window. The 3D picking was
accomplished by modifying the mouse picker code writien by fellow undergraduate Niels
Albarran.

To assist the user in the rapid synthesis of a surface, two symmetry tools were
added. An option was added to enforce symmetry along the x-axis and an option was
added to enforce symmetry across the y-axis. With the x-axis symmetry enabled, the

regions of the surface on either side of the x-z plane are identical. Likewise, with y-axis



Parametric Surface Representation for Visualization of Joint Biomechanics 21

symmetry enabled, the regions of the surface on either side of the y-z plane are identical.
With both symmetries enabled, all four quadrants of the surface are identical.

With these modifications, JSed has reached a stable form. JSed can quickly and
efficiently model biologically accurate joint surfaces. Functionality has been added to
save and load surfaces in .pat format, and to export surface in .obj format, The .obj files
outputted by JSed can be read into LightWave, or any Java3D application, such as
DinoMorph. With an editor to synthesize joint surfaces, the surfaces and they ways in

which they interact can now be studied.

Modeling Biological Joint Surfaces

‘The initial modeling of the joint surfaces occurred in two phases. The first phase
involved creating accurate representations of the condyles, cotyles, and zygapophyses
using JSed. For the second phase, the shapes were assembled to create accurate
reproductions of vertebrac. With the vertebrae constructed, we were able to study the
ways in which the joint surfaces interact under manipulation of a vertebral joint. These
two phases occurred in parallel, with surfaces being refined as we visualized them as
parts of vertebrae.

When dealing with fossils, it is difficult to articulate pairs of vertebrae because of
postdepositional distortion. Professor Stevens and I decided to model the thirteenth and
fourteenth cervical veriebra (C13 and C14) of the Diplodocus neck because they have
little obvious distortion. The condyle of C14 fits well into the cotyle of C13, and the
prezygapophyses of C14 fit well with the postzygapophyses of C13, Finding a pair of
vertebra that fit together was the first step to understanding they ways in which they
interact, Using several photocopies of the vertebrae (Hatcher, 1901; plates III-VI) we set

out to model the surfaces.

Modeling the Joint Surfaces using JSed
The first surface modeled was the right postzygapophysis of C13. Using Two
photocopies of C13, a lateral view and a posterior view, we were able to estimate the
width, length, and height of the postzygapophysis. From the lateral view, we were also

able to see the boundary of the surface. From the posterior view, we were able to sec the
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curvature of the postzygapophysis. Using the two photographs, we were able to model
the surface using JSed. Since the postzygapophyses of C14 and the prezygapophyses of
C13 have similar surfaces, C14’s right postzygapophysis surface was used to represent
the prezygapophyses of C13. Figure 3.1 shows the lateral view photocopy of the right

postzygapophysis, and a lateral view of the surface created with JSed.

Figure 3.2 depicts the posterior view photocopy of the right postzygapophysis,
along with a posterior view of the swface created with JSed.

~Figurg 3.2

The second shape modeled was the condyle of C14. Using JSed, we modeled the
shape in much the same way we modeled right postzygapophysis of C13. By using a
photograph of the lateral view of the condyle, we were able to capture the curvature of
the shape, With a photograph of the anterior view of the condyle, we were able to
visualize the boundary of the surface. Figure 3.3 illustrates the lateral view photograph

of the condyle along with a lateral view of the surface created by JSed.
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Figure 3.3

Figure 3.4 shows the anterior view photograph of the condyle next to an anterior

view of the surface created using JSed.

Figure 3.4

The cotyie of C13 has a curvature almost identical to that of the condyle of C14;
the cotyle of C13 was synthesized by simple modification to the boundary of the condyle
of C14. A photograph of tﬁe postetior view of C14 aided in the modification to the
boundary. Figure 3.5 shows the posterior view photograph of the cotyle of C14, along
with a posterior view of the surface created using JSed.

Figure 3.5
o "\L‘li.
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Figures 3.1 through 3.5 demonstrate Jsed’s capability to synthesize surfaces that
accurately represent their biological surface counterparts. With suifaces to portray the
prezygapophyses and condyle of C14, and the postzygapophyses and cotyle of C13, we
were ready to model the vertebrae C13 and Cl14.

Analyses of the Joint Surfaces using DinoMorph

Modeling vertebrae containing the joint surfaces was not too complicated once
the surfaces had been created using JSed. By augmenting the existing length, width, and
height data for each vertebra, along with data on the position and orientation of the
prezygapophyses and posizygapophyses, Professor Stevens and I were able to put the
shapes together in 3-space. The right prezygapophysis and postzygapophysis were
reflected across the y-z plane to create the left prezygapophysis and postzygapophysis.
Using a cylinder to represent the centrum of the vertebra, we were able to visualize a
vertebra using DinoMorph. Figure 3.6 shows the Jateral view photograph of the anterior
of C14 and the posterior of C13, along with the vertebrae visualized using DinoMorph.
Figure 3.6

Once the vertebrae were loaded into DinoMorph, we were able to adjust the
proximal and distal attachments of each vertebra to attach the vericbrae at a joint. We
realized that rotating the cotyle about the condyle at the joint caused the condyle and
cotyle fo collide with even a minor deflection. By moving the centers of rotation about

the % and z axis back from the joint, we were able to create a sweeping motion of the
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cotyle over the condyle. Tilting the z-axis forward allowed the postzygapophyses to slide
over the prezygapophyses. In the process of adjusting the axes, we had created a system
that allowed the joint a reasonable amount of deflection. Figure 3.7 shows the lateral
view of the coupled vertebrae (C13 is rendered in wireframe) and the adjusted axes (the
x-axis is red, the y-axis is green, and the z-axis is blue).

Figure 3.7

With a system for joint rotation established, it was possible to make initial
observations about the behavior of a joint. By watching for collisions between the
surfaces, we were able to attain some basic information about how the surfaces slide
across each other, and the amount of deflection allowed by the joint. Figure 3.8 shows a
lateral cross-section of the condyle and cotyle colliding with -6 degrees of deflection

about the x-axis.
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Figure 3.8

Figure 3.9 illustrates a posterodorsal view of contact between the right
prezygapophysis of C14 and the right postzygapophysis of C13 with -6 degrees of
deflection about the x-axis and 2 degrees of deflection about the y-axis.

IMinois

Figure 3.9

Figure 3.10 depicts a dorsal view of contact between the left prezygapophysis of
C14 and the left postzygapophysis of C13 with —6 degrees of deflection about the x-axis

i and 6 degrees of deflection about the z-axis.



Parametric Surface Representation for Visualization of Joint Biomechanics 27

‘Figure 3.10

Observations such as these are just the first step in understanding the ways in
which the joint surfaces interact. Many questions remain about how these surfaces
govern the movement of joints. The shape, angle, and position of a vertebra’s
prezygapophyses and postzygapophyses seem to have as much control over possible
deflection as the the vertebra’s condyle and cotyle shapes. Further research will show
the significance of these shapes, angles, and positions.

The development of JSed allowed us to model the articular surfaces of actual
vertebrae using multiple views from the original published monographs. Modifications
to DinoMorph allowed us to assemble vertebrae in 3D and to manipulate each vertebral
pair. In addition, DinoMorph was modified so that the center of rotation of each axis
could positioned and tilted in any direction in order to approximate the actual axes about
which rotations occurred. Now that tools exist for accurately creating joint surfaces and
for building vertebrae using those surfaces and articulating them, the biomechanical

principles underlying their geometry can be further studied.
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