Page |

A System for Computational Analysis of Music

Greg Cipriano

ABSTRACT:

Note-based analysis of music can unlock the mysteries of why a piece sounds like it does,
but is a time consuming process requiring a skilled analyst. While computers will never
supplant the creativity required in such a field, they can perform many of the more
tedious tasks much faster than a human. Two such tasks are key (or tonal-center)
discovery and chord elucidation,.or the process of finding chord structures in a song.
Presented here are algorithms for both, along with descriptions of their relative strengths
and weaknesses. Also included is a program called “MIDIStat”, written in Java Swing,
that implements these algorithms and provides various other statistics on a given MIDI

composition.

Page 2

INTRODUCTION

I once got in an argument with an acquaintance over the idea of tonality. He
asserted that the notes forming a musical system are a constant — that cultures pick and
choose from various patterns within this system, but that the system itself never changes.
Within the framework of what a note is — a wave propagating through space with a
fundamental frequency and numerous overtones determining its timbre, mood and color —
this meant that the collection of fundamental frequencies and their relationships between
one another (often expressed as ratios of one note to another) do not change. The notes
you can play on a piano, he said, were it.

This I found an utterly abhorrent idea and, without benefit of actual proof, argued
that he simply couldn’t be right. The notes we choose as more pleasant to listen to would
not have just been handed down from the gods, but must have grown out of our own
evolutionary predilections. Thus, it seemed to me, that since many cultures evolved in
isolation, their musical systems should reflect this.

Entirely after the fact, my proof came easily: In many purely African musical
forms, there exists a ‘blue’ note between the major and minor thirds. Both jazz and blues
adapted this idea to the Western tonal system, but not without difficulty: contemporary
blues pianists cannot hit a true “blue’ note, so most approximate by hitting both

surrounding notes at the same time.

Page 3

MUSICAL PRIMARIES

In a sense, I was arguing that different mathematical models for music exist down
to the most fundamental level: the notes being played. Others have argued that the same
is true for rhythm. In Early Jazz by Gunther Schuller, the author explains that tribal music
in Africa makes extensive use of polyrhythms, or series of rhythms layered on top of each
other.

Tribal music can carry polyrhythms (o an extreme: in some tribal songs, a dozen
parts could be playing simultaneously, with their measure bars lining up only in what
seems a coincidental manner. Yet the rthythms aren’t at all random. They have a definite
structure, one Schuller says may be completely foreign to Westerners but no less
legitimate.

Here again, the main differences occur at a mathematical level, which then should
be the logical place to start any analysis. But before the advent of computational systems,

this analysis was either painfully repetitious or superficial.

WHAT TO ANALYZE?

The structure of music can be broken down into a number of individual parts,
each antonomously analyzable. Of them, the concepts of note, scale, chord and rhythm

form a synergetic whole in music. All rely on one another.

Page 4

Nevertheless, a definite hierarchy exists - one starting with pitch frequencies at
the bottom forming notes, which form scales, from which chords are pulled out of, and
ending at the top with progressions of those chords.

In other words, a scale is merely a subset of the larger set of available notes
(which themselves are a subset of the set of available pitch frequencies).

A chord is rarely thought of outside of the context of the scale it’s played on.
There again, a chord can be thought of as a rhythmically congruent set of nofes taken out
of the framework of a scale, Granted, some atonal chords avoid basing themselves on a
particular scale, but then they only skip one level in the musical hierarchy; for even atonal
chords are a misnomer. They must somehow use notes.

Rhythm occupies a position separate from this hierarchy, but like everything else
rhythm is subservient (o tonality: including percussive sounds as specialized forms of
notes, rhythm is uséless without a note to be played.

Lastly, while alternate models for note ratios between piltch frequencies exist
throughout the world, the Western variation has been settled upon as a standard in
coinputational analysis. It is this variation that serves as the basis for the rest of this
paper. Thus the theme of this paper will be that notes are the atoms of music and provide

context for every conceivable type of analysis.

Page 5

TWO IMPORTANT STATISTICS: KEY DISCOVERY AND CHORD FINDING

While the realm of music analysis is very broad, encompassing everything from
intervallic studies to composer identification to actual n‘lusic synthesis using derived style
(such as that done by EMI — Experiments in Musical Intelligence, by David Cope), this
paper will be focus primarily on two important facets of this analysis: key discovery and
chord finding.

The former involves the finding of a song’s dominant key, while the latter
involves the rule-based mapping of simultaneoﬁsly sounding tones (o a set of known
chords. Both are well known problems that have been solved with only partial success.
And both can provide meaningful statistics when done properly that provide a basis for

quantifying a composer’s style.
KEY DISCOVERY

Crucial to the study of any piece is elucidation of the key. In written music this is
easy, as the notational requirements provide for easily spotting the key in a manuscript.
Key finding is easy because lines in staffs only encode for the ‘white’ notes on a piano.
So any of the ‘black’ notes must come from modifying them — either by sharping or
flatting.

A key is shown, then, by marking certain lines in tile staffs with sharps or flats at
the outset of the piece. Then, whenever the performer encounters notes on those lines,

unless counteracted with a natural sign before the note in the same measure, they are

Page 6

modified accordingly — either up in the case of a sharp, or down in the case of a flat. In
this manner, all notes that would otherwise exist on the ‘C” scale are changed to
accommodate other scales.

Unfortunately in the computer realm, finding a key is not as easy. MIDI — existing
strictly as a compact means to convey performance related data — does not provide any
reliable means of storing a song’s key, or for that matter, its chord information and phrase
structure (more on this later). It doesn’t need to, because while the staff in sheet music
requires a key to show performers when to sharp and flat notes, notes in MIDI are
represented as-is. Each note in the chromatic scale is represented by a different number,
which ranges from 0 for the lowest C in the MIDI scale, to 12 for the next highest C, and
upward. Each C is given a 0 {(modulo the 12 chromatic notes between two Cs), each F# is
given a 6, each E a 4 and so on.

Thus storing a key is unessential to the computer, whose only task is playing those
notes without understanding of structure. So while a MIDI file does in fact allow a key to
be stored within its meta-data fields, it is up to the encoder to give that key accurately.
And most MIDI programs don’t make this easy.

In addition, using analytical means to discover in what key a piece is written
provides further insight into the piece itself because that analysis takes into account the
piece in its entirety. This may be useful because many pieces start in a key, and then
traverse through several different modes of that key (or even change keys entirely) before
returning. A piece that behaves in this way then has many local keys and modes which
change the overall tonal-center in mysterious ways. No other reliable means exists to

quantify this overarching ‘key’ of a piece outside of computational analysis.

Page 7

VECTOR THEORY

Vector analysis depends greatly on the theories proposed by R.M. Mason in his
book “Modern Methods of Music Analysis Using Computers”. In it, he describes notes as
vectors existing in a 2D Cartesian plane. This plane is partitioned into discrete sections by
uniformly distributed rays emanating from the origin outward.

A note, then, describes a vector in two ways: the note’s tone influences its
respeclive vector’s direction (more on this later), and the amount of time the note sounds
influences its length, In this manner, a piece can be converted into the vector sum of all
its notes, with the beginning of the song located at the origin.

This sum, he asserts, ends up pointing more or less to the tonal center of the piece.
If this piece does not wander too far from its true key for too long, the tonal-center shows
what key the piece is in. Though a bit abstract, the fundamental property of notes that
solidifies Mason’s theory and makes it worth pursuing is rooted in a simple idea — the

circle of fifths.

CIRCLE OF FIFTHS

In major key harmony, the key of ‘C’ is a

great place to start learning to play the piano, as it
encompasses only the white notes. These notes are

what the staff, if no flats and sharps are present,

defaults to. So C major is said to have no sharps or

flats. On this continuum, F major has only one flat (Bb), Bb major has two (Bb and Eb),

Page 8

and so on. The complete list: (C, F, A#Bb, D#Eb, G#/Ab, C#/Db, F#/Gb, B, E, A, D, G,
C). Note that A#,Bb, D#Eb, G#/Ab, etc are considered enharmonic: they are two
different ways to labeling the same note. Under this consideration Fi#/Gb Major has
alternately 6 sharps, or 6 flats, depending on your perspective. Also note that while
moving right through this list increases the flatness of the key, it also decreases the
sharpness, again depending on perspective.

After listing this progression an obvious pattern appears: the next key on the list is
the fifth note on the scale of its previous key. (C major’s scale is CDEFG...) Another
feature worth noting is that the progression wraps back on itself, forming a ‘circle’. Thus

the name ‘circle of fifths.’
USE OF CIRCLE IN VECTOR THEORY

Mason takes advantage of another well-known property of this circle: every key
has as its members the notes that form the root of the 5 keys before it and 1 key after it.
So one way of finding the notes in Bb major is to look at this list - (ADGCFBbED).

Considering this progression, his method was to overlay this circle over a
Cartesian plane, orienting the circle itself with C major pointing upward, and inscribing
the rest clockwise around the circle. This circle represents the keys for any given series of
notes — if the notes tend to form a line straight up, they can be considered as having the
key of C as their tonal center.

But for the actual directions, note that in the list for Bb major, C appeared in the

center of the list. Mason describes this by saying that the note C legitimizes the key of Bb,

Page9

and in general the second note of any major scale legitimizes the scale itself, since these
tones form the average of the 180-degree arc (within the circle} that contains the notes for
the key.

So in his model, to find the actual direction of a vector for a given note, he
overlaid another circle of fifths, with this one having D point straight upward (as D
legitimizes C). So to find the vector for any given note, one merely finds the angle
~ represented by the note on this circle, and gives it an appropriate magnitude scaled
_ according to how long that note sounded. Adding these vectors and then comparing the

sum Lo the previous circle gives the key.

A MINOR POINT

This circle, however, is only really good for songs written in a major key. Songs
based in minor keys tend to frustrate the system, which either returns the relative major or
an arbitrarily random key. In the latter case, key discovery has failed, while in the former,
a bit more analysis can uncover exactly which minor key the author intended.

How? The relative minor to a major key, by definition, contains the exact same
notes as the major but begins (or in other words has its root) a minor third lower. In this
case, Mason contends, the relative minor to a major key shares all of the same notes, and
so should be subtend almost the same arc as that of its major. The question, then, is how
should this relationship relate to Mason’s vector circle?

Here he makes a (seemingly arbitrary) decision, In the case of C major, he says, its

relative minor, A, shares more tonally with G than with F (though it shares all of its notes

Page 10

with C). Using this logic, his vector graph is then subdivided once more with minor keys

15 degrees counter-clockwise from their relative major.
USING LESS COMPUTATIONAL METHODS OF VECTOR ANALYSIS

Songs that change key can be visually (though usually not automatically)
discovered by looking at the path the notes take in space. Looking at Bach’s fugue in C
Major, the vector begins by pointing in the key of C major, but upon modulation veers
leftward towards D, and then resumes its upward moﬁentum.

Here, the resultant vector ends at least 15 degrees counter-clockwise of C, even
though the majority of the tune is in C. Thus the overarching tonality is not precisely C,
but rather A minor — a development that Bach may or may not have intended, but

nevertheless is distinctly present in this

piece.
A number of possibilities to further

automate this process exist outside the

b scope of this paper, and are not

implemented in this version of MIDIStat.
One of them is curve fitting: the vector path

itself could be fitted by lines within a user-

definable degree of acburacy.

In this example, if the accuracy was

set fairly low, the curve might be given three lines: one for the initial vertical progression,

Page 11

a second approximating the leftward movement, and a third for the finishing vertical
progression . The accuracy would determine how many lines fitted to the data, with a
higher accuracy giving more lines, as it would follow wiggly vectors more closely.
Results could be presented in a table, or compared against chord-determining techniques
(sec below).

“Cherokee” is a song that more dramatically
shows these possibilities. Its form follows a standard " |
model for jazz songs: a chorus, then a bridge,
repeating back and forth. In Cherokee, though, the
bridge runs through chords whose roots traverse the é ‘
circle of fifths. The vector model, one would (

assume, should show a loop when this circle takes

place — which it does exactly,

CHORD DISCOVERY

Equally as critical as finding the key in a song is the notion of finding the chord
progression for a song. The theory goes: every tonal song moves through a progression of
chords which serves as a foundation to the song itself. The choice of notes at each point
in time is directly related to what chord the composer has in mind for that point. And that
choice of notes is directly related to the sound of the piece.

The underlying chords may change quickly (as evidenced by Charlie Parker’s

“Giant Steps”) as the song moves on, or may' stick around as long as desired. Whichever

Page 12

choice, the effect is very noticeable: a passage whose underlying chord does not change
doesn’t seem to ‘move on’ — the song seems to stand still until another chord takes its
place.

These foundation chords may be explicitly stated (as in a full chord being played)
or implicitly stated (as in notes being played in a scale related to a chord). But
nevertheless they are omnipresent, and fundamental to any serious analysis.

Though fundamental, only a handful of sources discuss algorithms for taking
music and reconstructing the chord pattern this music follows. The most recent ones look
for some way of using Digital Signal Processing to find chords in a waveform-sampled
music. For various reasons — discussed below — the following discussion is tailored to the

use of MIDI-sampled music. And so this methodology is of little use.

Root progression seemed a particularly good featgre to study, partly because
objective procedures for determining roots have been formulated, and partly
because it is unlikely that a composer would consciously manipulate root
progression, especially a cbmposer of linear counterpoint or of allegedly atonal

music. (Youngblood, “Root Progression and Composer Identification”, 172)

The problem of fitting chords to music had been addressed (not entirely to my

satisfaction) in older books, including a number of papers compiled in The Computer and

Music. In it, the various methods described fall into a number of categories, and indeed
several of the papers contained within this book use different, not entirely compatible

means {o achieve the desired end.

Page 13

THE INTERVAL CHECKING METHOD

In “Root Progression and Composer Identification”, by Joseph Youngblood, the
algorithm he presented to find a chord went like this: First take a measure and identify its
conslituent structures (what they call a collection of notes), Take these structures and
reduce them into their pitch classes — effectively flattening the various tones into a one
octave range. Once this is done, the structure is compared with the immediately preceding
valid structure, and if exactly the same, removed. (175)

Analysis was done measure-by-measure because of the format of his data
structures — punch cards. In a more modern variant, included in MIDIStat, chords are not
lumped into measures, but rather sampled at equally spaced time intervals, usually
dividing the measure. This ailows for a bit more flexibility in placement, as a chord can
extend over a measure.

Any valid chords found are then broken down into a sei of intervals beiween each
note. The best interval — which was explained poorly, but which could mean either the
largest interval, or more likely the most tonally pleasant — was taken as signifying the
chord, and the root of this inierval was taken as the root of the chord itself. If no best
intervals were found, or if the best interval happened to be a tritone, then the chord was
considered ambiguous and stored for comparison with the next valid structure.

As this went, chord possibilitics were reduced by assuming that a composer would

always choose (whether consciously or otherwise) to move the root of the chord as little

Page 14

as possible between changes. In the vast majority of cases, they found, this turned out to
be true.

Unfortunately, the few outside cases tend to confuse this process. But as there is
then (1) inherent ambiguity in these cases and so (2) no known way to resolve the
ambiguity algorithmically, the chords found were considered good enough.

A more glaring deficiency in this method of analysis was that YoungBlood’s
assumptions made in identifying a single chord were often wrong. Especially in more
complicated chords, as in those including upper structures beyond the root triad, the
largest interval doesn’t necessarily include the root of the chord.

For example, in an inverted F major 7, the notes rﬁay be C - E - F- A. The *best’
interval is certainly not the EF interval, since a minor second introduces dissonance to the
chord. So the computer would record FA and CE as interval candidates for the root. Say
this chord progresses to C major (a very likely move). Then the C in the previous chord
would be deemed closest to C major, and be assigned as the root of F major 7 — an
obviously false positive by the computer.

So the following chord analysis algorithm takes only one piece from this study —
that finding the minimum intervallic distance between successive chords is a valid way to
reduce the number of possible roots for a chord. Into this, MIDIStat incorporates a
second, arguably simpler algorithm, mentioned in “Music Style Analysis by Computer”,

by A. James Gabura.

Page 15

ANOTHER METHOD FOR FINDING A ROOT

In his paper, Gabura talks about a method for finding the root of a chord by
searching for the largest arc on a circle of fifths made by each set of tones in a chord. This

method produces nicer results than the one before it, but he still concedes some flaws:

This method will not produce a correct root for the dominant seventh chord ... or
for the diminished or augmented triads... it is much more practical, it has been
found, simply to list all possible chords and their roots in a table. Then a simple

look-up can be performed whenever a root is needed. (253)

HOW CHORD TYPES ARE FOUND

The following algorithm for finding chord roots and types combines the best parts
of the two algorithms presented. A Chord object contains most of the known chord types,
sorted in order from most complex to most simple — complexity determined as a function
of how ‘high’ the upper structures go from the root.

Two observations come into play in a practical implementation. First, simple
chords can (and should) be exiracted from more complex, but unknown or exotic, chords.
Second, in a typical song, the melody may in fact contradict the chord playing below it. A
prudent method would then not strive to match chords to notes exactly, but merely check

that subsets of the notes played from a specific chord.

Page 16

Using both of these observations, MIDIStat’s chord checking algorithm works in

the following manner:

(1) Take the simultaneously played notes and move them into a one-octave range. This
range is represented internally as a 12-bit number (or mask), with a bit encoding each
note in an octave — 1 as played and O as not played.

(2) Compare the mask to every known chord, from most complex to most simple. If the
mask includes 1s in all the places the chord does, then it matches, So include this
chord in the list of possible chords that the mask could represent. Comparison is
short-circuited once a match is found, since higher-order chords include lower-order
chords within them. Note the rotation of the mask, since that determines the root of
the chord (as the stored chord types are all C chords).

(3) Rotate the mask, then, repeating step (2} once for each note in a chord. In this manner,

only one chord of each root can possibly be found — the most ‘comprehensive’ type.

Note: Exact maltches are given special consideration, as they are more likely to
contain a true chord. If an exact match exists, then after the searching phase is over, all

non-exact matches are removed.

(4) If after phase one, a chord is still ambiguous (more than one likely chord was found),
then this chord is compared to the previous one, and the root with the smallest

interval wins.

Page 17

Again note that if no previous chord exists, then an ambiguous chord is compared
against the key found using vector analysis. This method is predicated on the idea that the
root of the first chord in a song will match the song’s tonal center (denoted as key by
vector analysis) . If this doesn’t turn out to be possible (either the chord in the first
measuré is indiscernible, or else no matching chord with that root was found), the first

chord will at least keep a minimal distance from the root.
CONCLUSION

Though the field of musical analysis by computer appears to be burgeoning,
relatively few programs e_xist to facilitate such analysis.

From here, a number of possibilities exist for further use of these algorithms.
Using MIDIStat, one can analyze all of the nuances of a composition, correlate the
statistics on a group of songs and even identify the ‘style’ of this work as described in
purely mathematical terms. Though MIDIStat does not perform these functions, this style
may allow a musicologist to narrow down the potential authors of a piece to a select few,
or to definitively state that a picce exhibits traits of Bach, Brahms, etc.

Musicology doesn’t have (o be tedious, and as demonstrated by MIDIStat, can
even be mechanized in unexpected ways. Though some errors will always exist in both

chord finding and key finding, a researcher can augment their own skills with these tools.

Page 18

APPENDIX A: THE PROGRAMMING OF MIDISTAT

THE BEGINNINGS OFF A MUSIC ANALYSIS PROGRAM

Included in this paper, MIDIStat demonstrates the capabilities computational tools
can give to music analysts, allowing one to read in a MIDI file and perform structural
analysis on it. Using the above philosophy, it considers notes as the fundamental building
block of a song — essentially converting the MIDI data into a large array of Note objects,
each knowing its start time, duration, pitch and velocity.

This conversion is not automatic. In fact, MIDI data is encoded as a stream of
events, some of which correspond to audible notes, others to events (patch changes, pitch
wheel). Depending on the format (MIDI O or MIDI 1), these events could either explicitly
specify a note going on or going off, or just specify a velocity — with a note going
completely off when its velocity is set to 0. In this case, a zeroed velocity is treated
exactly as if a note-off event occurred.

Java does almost nothing to amelioraie this sitnation. While it could provide a
means to coerce note data from the raw MIDI data, it instead places each event intact into
Java’s objectified structure.

What MIDIStat does to perform the necessary conversion, then, is to create a
Vector (an “‘unbounded’ array — an unfortunate choice of naming in Java, as it’s
completely unrelated to the mathematical notion of a vector) to hold note-on events.
Whenever a note-on event occurs, a new NoteOnEvent object is added to the end of the

Vector. This object contains information about the note’s pitch, track, start time, and

Page 19

velocity. And whenever a note-off event occurs, the Vector is scanned from the beginning
until it finds a matching (of the same pitch and track) note-on event, which is then
removed. Finally, a new Note object is added to the Note array encapsulating this
information.

This predicates on several assumptions: that the MIDI input is well-formed, and
that for every note-on event, there is a matching note-off event and vice-versa. Its note
~ building algorithm is fault-tolerant in that unmatched events are ignored, and overlapping
notes (those where two note-on events occur on the same note in the same channel before
their matching note-off events) are treated in the expecied way: any note-off event is
assumed to correspond to the first as-yet-unmatched note-on event.

This is done for all events, so what is left is an array of Notes, which are

extremely lean and better suited for analysis,

WHY MIDISTAT USES MIDI

MIDIStat began as a project to read in WAYV files, or any type of digitally sampled
sound files that happen to be music, Tt could then run through the file looking for large
blocks of a single frequency (large enough to be-a likely note) and filing those away in a
form similar to above description

I immediately ran into difficulty not because the files contained too little
information, but because I was unable to account for a fundamental property of musical

sounds: the overtone series.

Page 20

THE OVERTONE SERIES

The notes heard when a harp string is plucked, or a violin played are not merely
composed of the pure frequency the brain thinks it hears. Rather, each note is made of a
fundamental tone (usually the most prominent) which determines the overriding pitch of
the note, and a number of frequencies of various pitches and degrees of loudness above
that tone. This series of tones are unique to the instrument being played, and are what
make a piano sound like a piano, and not a clarinet, even though both are playing what is
heard as the same pitch.

Unfortunately, it is this series that thwarted all attempts to pull apart sampled
audio: whenever MIDIStat (ried to encode a note, junk notes coming from the overtone
series appeared. Further, any noise or imperfections in the recording inclﬁding drum
beats, coughs or audience sounds, contributed to a completely unusable data set.

Some packages that purport to accomplish this feat rely on a separate audio file

| that contains a characteristic sample of the instrument used. In this manner, they pattern
match between what is contained in the sample file and what appears in the music. This
gets around the problem of phantom notes from the overtone series, but incurs problems
of its own; it can only analyze simple, homogenous songs. Any other noise damages the
translation. And a song with multiple instruments, or instruments that radically change

timbre, will not turn out right.

Page 21

MIDI

The MIDI format circumvents all of these problems, but unfortunately is
inadequate to capture subtle nuances from a performance. This is less of a problem than
expected, though, since the goals of this paper are not to distinguish between performers,
but rather to collect statistics on a composer, using only his body of works and
independe_pt of interpretation of and improvisation on (performance-based or otherwise)

those wor};s.

WHAT MIDISTAT CAN DO

MIDIStat can load in MIDI files, and perform statistical analysis on those files.
The results of that analy_sis can be shown in a number of graphs, and in a table of the most
important data. MIDIStat makes careful use of the tracks in that MIDI files, allowing for
tracks to be independently analyzed, or excluded from analysis of the song (very useful
when a song contains a drum track, which contains pitches that don’t correspond to tones
but rather a type of drum).

MIDIStat can make a fairly good guess at the key (to the nearest major, anyway)
of a song or track. It can also make a fairly good guess at the chords forming a song, and
analyze statistics on those chords.

Specifics on each of its features are detailed in Appendix B..

Page 22

WHAT MIDISTAT CAN’T DO (BUT I WANT IT TO)

So far, there seems to completely reliable way for a computer to identify phrase
structure without any a priori knowledge of the song it’s analyzing. University Professor
Gary Vercase and I have carefully considered this in the context of “Eronel” — a
composition by Thelonious Monk.

“Eronel” has everything a jazz piece could hope for to aid analysis: repetitive
phrasing, fairly simple meter and a quarter-note laden bass line which spells out the
tune’s scale, and so chord structure. But despite these assets, Eronel confounded all
attempts at algorithmic description.

Using rests to delineate phrases seemed at first promising, since in the songs’
opening tag, phrases were separated by rest. But unfortunately, this idea doesn’t apply
universally: in many bars, the print version of the song describes an unbroken group of
notes as being split into two phrases — one for the ascending half, and the other for a
descending half. A computer could run through analyzing melodic movement (indeed
MIDIStat can do that.) But as evidenced by the printed score, this plan fails equally often.

Nevertheless, since the phrase structure in effect gives a performer cues as (o how
loud to play, reconstruction of phrases could wotk in reverse; a carefully coded MIDI file
could contain loudness cues for an analysis engine. Unforfunately, most music archives

don’t pay enough attention to loudness, encoding it cither as an afterthought or not at all.

Page 23
APPENDIX B: HOW TO USE MIDISTAT
MIDIStat uses Java Swing extensively for its Graphical User Interface. To that
end, all components are laid out in a hopefully intuitive manner. Starting the program is

accomplished by typing:

java -jar MIDIStat.jar

©] Bach Preludes
@ bjs_pret.mid
& (A pjs_pro2 mid
& (A bjs_preS.mid

@ (] Dsfault Group

& F) bwy7a5mid

on the command line.

Once it starts, there

are three components worth
noting, The first is the menu bar on top. All functions allowing loading and analyzing
MIDI files are accessible through the various menus.

The second is the panel on the right. On this are thiee buttons, representing (1)
adding a song, (2) removing a song or group and (3) adding a new group. These directly
relate to the tree displayed below them.

Finally, there is the desktop (the large purple region), where graphs are placed in

their own internal frames.

Page 24

THE TREE

The tree has three levels. First are groups (which can contain any number of
songs), then the songs themselves, then the individual tracks of those songs. Upon
startup, a default group is created, which is special in that it cannot be deleted, and is the
default place new songs appear when loaded.

Other groups can be made by clicking on the ‘add group’ button. Any group can
be renamed, though its name doesn’t change anything about how it functions.

When a song is loaded, it must be placed in a group. If anything in the tree is
selected, the song will appear in the same group as that selection. Otherwise the song
appears in the default group. Its tracks will appear below the song, and each can be
enabled and disabled by clicking on that track. When a track is disabled, iis notes will not
count in analysis of its song or the group that contains it.

Songs can be dragged from group to group, allowing the user to manipulate the

song list under a given group.

HOW TO ANALYZE SONGS

Any of the entities on the tree can be analyzed in the same fashion: groups of
songs, an individuwal song, or any track in a song. This is performed by selecting at least
one item in the tree, and choosing the method of analysis from the menu (more on this

later).

Page 25

Note that analysis is fully dependent on the set of songs/tracks below the item
being analyzed, and that enabling or disabling a track or moving a song to another group
takes immediate effect on.its parents.

Also note that if a selected item has no enabled tracks under it, no analysis can be
performed, and an error will sound. This happens when one attempts to analyze a group
that has no songs, a song that has no enabled tracks, or a group of songs with no enabled

_ tracks.
GRAPH-BASED ANALYSIS

‘MIDIStat allows for a number of visual representations of the underlying musical
structure, be it group, song or track. The term ‘graph’ is used to describe these visual
representations, which include note frequency, note interval graphs, as well as piano roll,
pitch count, pitch range and vector visualizations. The first two fit into the category of
static graphs, whose data fits easily into a frame, and so yequire neither scrolling nor
Zooming.

The next three are scrollable graphs — their data exists on a sheet that is as wide as
the song is long. This data can be scrolled across using a scroll bar and also adjusted for
size using a slider just below that bar.

Finally, vector visualization doesn’t need scrolling exactly, but includes a slider to

allow for zooming (which really just increases/decreases the scale of each note vector).

Page 26

NOTE FREQUENCY GRAPH

Note frequency analysis involves
;ig running through the list of notes in the

structure, dropping each note in a separate

bin based on its pitch. The resulting graph

of these bins form a histogram of the tones

in a song, much in the same way a
- histogram in a drawing program shows the number of pixels of each brightness value.

Using this graph, one can visually detell'mine both the tonal center and the
underlying key of a song. In the most simple of songs — those that stick to a single key
and refrain from modulating — the note frequency graph shows very quickly which notes
form the key, as they will have the tallest bars. For example, a song in the key of C should
have bars of negligible or no height on the C#, D#, F#, G#, and A# bars.

Even in less well-behaved songs, the majority of notes should still stick to the key,
and so this graph remains valuable.

~ Also, the majority of songs, especially in classical and pop forms, form a beli-

shaped curve upon note-frequency inspection. This curve, then, has at its highest peak the

tonal center of the song.

Page 27

NOTE INTERVAL GRAPH

The note interval graph works similarly to the

note frequency graph, only instead of note piiches, the

intervals between simultaneously sounding notes are

thrown into bins based on their size.

In songs that have multiple voices playing

. simultaneously, certain intervals usually appear as
‘favored’ intervals. In major harmony, those infervals include the major 3, perfect 5 and
perfect 6. In miﬁ01' harmony, the minor 3 would replace the major 3. This graph, then, can
facilitate the discovery of the ‘type’ of key used in the majority of the song.

The same caveats apply here as in note-frequency analysis: A song that is poorly
behaved, either modulating frequently, or having a great deal of both accidentals and ‘out’
tones can foul up this graph, invalidating any results it provides. But then those songs
defy conventional theory in general, and so are not good candidelltes for automatic,

computer-based analysis.

PIANO ROLL GRAPH

This graph is a bit out of

place in the list of graphs, as it

doesn’t analyze some facet of a

song. Instead, its function is to show the notes in a song in a form similar to the tape an

Page 28

old-fashioned player piano. In this respect, its use is primarily to both serve as a reference
for other graphs and to display what ordinarily would be put on a staff in a homogenous
manne;.

Finding contrapuntal motion on this graph is very easy, as is noticing the range of

pitches the piece roams through at any point in the song.

PITCH COUNT GRAPH

This graph samples the

song at evenly spaced intervals

of time, counting how many
notes are sounding in each interval. The resulting graph shows the complexity of the

piece at any instant, as well as the song’s change in complexity over time.

PITCH RANGE GRAPH

The pitch range graph is
similar to the Pitch Count Graph

in that it samples the data over

evenly spaced intervals. But
where the pitch count graph shows how many pitches are sounding over each time slice,
the pitch range graph shows how large of an interval exists between the lowest and

highest of those pitches.

Page 29

Of course, if only one pitch (or none at all) is sounding at a specific time, the pitch
graph will have a range of zero. But for other cases, the pitch range graph can show the
contrapuntal movement (be it oblique, contrary, or otherwise) between the outer voices.
This can be quite useful when analyzing a composers propensity toward opening up
voices (bringing them further apart} or closing them.

Also, quick jumps or discontinuities in the graph signify a composer that prefers

~ less fluidity in his or her music, a characteristic of several styles, including atonal.

| VECTOR ANALYSIS GRAPH

This graph shows the Major circle of

| fifths and a tone path in red superimposed on

t top of it in the manner described in ‘Vector

Theory’ above.

DATA ANALYSIS

In addition to the graphs available, MIDIStat also includes three other ways of
looking at a song’s data: a Note List Frame, a Chord Progression Frame and a Statistics

Frame. All use Swing-based tables (or JTables) to show their data.

Page 30

NOTE LIST FRAME
1:
| TR
T .
2:15 0.5 AB 76]
ig 20 033333334 Bbs 50 The Note List Frame shows
7:23333335 |0.33333334 CE7 55
7:2.6666665 |0.33333334 i 81 .
7-30 10 E£b7 72 the same set of data as the Piano
7:45 0.5 A5 100
7 4A 05 A4 100] .
745 0.5 C#5 100 Roll Graph, but in a different form.
3:15 lo.s AB 6
3:20 1033333334 Bb6 50
3:2333333___|0.33333334 C#7 {65 Each Note contained in the Note
32666667 |0.33333334 F7 i
3:3.0 [10 Eb7 72
3:45 0.5 AhS 100 array of an Analyzer occupies a
3:45 0.5 C#5 100

separate row of the table, while the
columns show when the note started, how long it played, the pitch 6f the note, and its
velocity.
This frame then provides one more way to view the notes in a song — with an
emphasis more on finding exact starting and stopping times as well as checking the pitch

of a note, rather than the more broad picture provided by a Piano-Roll Graph.

CHORD PROGRESSION FRAME

6:25 0.5 F# min7

7:45 0.5 A majs This frame shows the results of
10:20 0.5 B min?

10:45 15 € min?

11:30 0.5 B dim MIDIStat’s chord analysis algorithm on a
11:35 05 D min

13:25 1.5 F min7

14:15 0.5 G maj7 song, with each chord on a separate row.
14:25 0.5 F#min7

15:45 05 Amal9)

18:70 05 B min? In this frame, columns represent the
18:45 1.5 C min7

19:38 0.5 B dim)

19:35 05 D min < chord’s start time, length, and root/type.

Page 31

STATISTICS FRAME

Number of noles:

Range: 53 noles

Highast note: AT

Lowest note: £3 This frame holds on to the myriad
Mean Nole: AS
1Standard pilch deviation (fram mean): 14 noles statistics collected for an individual song,
Mean Nole {welghted): 5

Standard pitch devialion (from welghted mean): |14 noles track or entire group. Some of the more

Most often seunded nole: Ad . L.

Mumber of times it sounded: 23 obvious statistics presented here are:
EHighest number of simullaneous volces: 5 :
fLargest intervar: 47 notes Number of notes: the length of the Note
EMost freguent Interval: 10 notes
fNumber oftimes It sounded: 47

array.
Approximata Key: C mal
Key stored In file: ____cma)

Highest Note: the highest pitch played throughout the notes array
Range: the distance, in notes, between the highest note and lowest note.

Most often sounded note & how many times it sounded: goes without saying.

Highest number of simultaneous voices: the maximum number of notes sounding at any

given time throughout the song,

Largest Interval: the largest distance between simultaneously sounding notes.

Most frequent interval: the interval that sounded most often between simultaneous notes.

Also, a number of less obvious but useful statistics are presented here:
Mean note: the average note played rounded to the nearest note. This ignores how long
the notes played, factoring only their pitch.

- Standard pitch deviation: The deviation from the mean note. Gives a fair description of

the composer’s most comfortable range in a song (or track).

Page 32

Weighted mean note: Similar to mean note, but this takes into account how long a note

played, weighting longer notes more than short notes. This method is
arguably more accurate in determining the tonal mean in a song, but both
are included for comparison.

Weighted standard pitch deviation: Same as standard pitch deviation, but using the

weighted mean note rather than the unweighted.

Approximate key: takes the resultant vector from the Vector Analysis graph, and prints
out the major key associated with the 30 degree region that that vector
ended up in.

Key stored in file: Prints out the key included in the metadata of the MIDI file. As

discussed previously, this key may or may not be accurate, and is just

printed here for informational purposes.

Page 33

APPENDIX C: GLOSSARY

ATONAL - A section of music or chord lacking a tonal center, in which all tones carry
equal importance.

CHROMATIC SCALE - A scale that includes every playable note (eg every note on a
piano). Note: a chromatic scale generally doesn’t have a root, since transposing
the scale has no effect on its tone set.

CONTRAPUNTAL MOTION - describes the various ways counterpoint can move
between lines.

COUNTERPOINT - The combination of two or more melodic lines played against one
another. Counterpoint’s horizontal structure is built upon competing melodic
lines, rather than chords.

FLAT - A sign signifying fhe decrease of a note’s pitch by one half step.

HALF STEP - Like a whole step, a half step may be abbreviated as H and represents a
distance of one tone. (i.e., C# is a whole step above C).

INTERVAL - In music, the distance between two notes. Starting from a unison (an
interval of 0 half steps), musical intervals proceed npward by: Minor 2, Major 2,
Minor 3, Major 3, Perfect 4, Tritone, Perfect 5, Minor 6, Major 6, Minor 7, Major
7, Octave.,

INVERSIONS - The different forms of chords created by changing which chord member
is played as the lowest note. In this paper, all inversions of a chord are considered
isomorphic to one another.

KEY - The tonal center of a piece, based on the tonic of the scale most present in a piece.

Page 34

MAIJOR KEY - A key that, starting from its root, proceeds upward by WWHWWWH
{(see whole step, half step). META-DATA FIELD - A field in MIDI that defines
extra information beyond that needed for a performance. Meta-Data can define a
key signature, time signature, as well as composer information and raw text.

MIDI - or (Musical Instruments Digital Interface) is the generic name for a number of
protocols defining how digital musical devices (including sound cards, keyboards,
etc.) talk to each other. MIDI comes in several flavors: MIDI 0, in which all
events are grouped into one track, MIDI 1, in which up to 16 tracks can be defined
with individual instruments, and MIDI 2, which can store multiple songs in a
single file. MIDIStat cannot currently analyze MIDI 2 files .

MINOR KEY - Exists in many vartations, but ‘minor’ usually implies pure minor, which
proceeds upward by WHWWHWW,

MODE - A scale pattern made up of a set of whole and half steps.

MODULATION - A change of keys within a song, modifying the tonal center.

NATURAL SIGN - A natural note is one that has not been raised or lowered from its
named pitch. A natural sign signifies that a previously sharped or flatted note
should instead play a natural note. On a piano, naturals are the white keys.

OCTAVE - The distance between a note and the closest note of the same name, either
above or below. Almost always, an octave is measured by 12 half steps.

RELATIVE MAJOR - Noting that the major key steps are a rotation of the minor key
steps, a relative major is the major key which contains the same notes as a given
minor key (eg. C major is A minor’s relative major).

RELATIVE MINOR - see RELATIVE MAJOR.

Page 35

ROOT - the most fundamental note of a chord, often the bass note, which usualty
contains the other members of the chord in its overtones.

ROOT TRIAD - The first three notes of a chord that is constructed by proceeding upward
by either major or minor thirds. For instance, a C major triad would consist of C
(the root), E and G.

SCALE — A set of notes, as a subset of the chromatic scale, that defines a diatonic (or
fully natural) tonality centered on a tonic note.

SHARP - A sign signifying the increase of a note’s pitch by one half step.

STAFF - The five horizontal lines upon which sheet music is written.

TONAL CENTER (or TONIC) - The foundation of the scale or melody in a song or
subsection of a song.

TONIC — The note defined as a starting position for a scale, the root.

TRITONE - An interval one half-step larger than a perfect 4. The tritone is special in that
(1) it’s note vectors point in exact opposite directions on a circle of Sths, and (2)
the tritone is a fully ambiguous interval: the notes forming a tritone are always the
same distance apart, regardless of inversion.

WHOLE STEP - Sometimes abbreviated as W when used in conjunction with key, a
whole step represents a chromatic distance of two tones (i.e., D is a whole step

above C).

Page 36

WORKS CITED

Crane, Frederick and Fiehler, Judith. “Numerical Methods of Comparing Musical Styles.”

The Computer and Music. Ed Harry B. Lincoln. New York: Cornell University

Press, 1970.

Gabura, A. James. “Music Style Analysis by Computer.” The Computer and Music. Ed.

Harry B, Lincoln, New York: Cornell University Press, 1970.

Mason, R.M. Modern Methods of Music Analysis Using Computers. Peterborough, NH:

Transcript Printing Company, 1985.

Morse, Raymond William. “Use of Microcomputer Graphics to Aid in the Analysis of
Music.” Diss, University of Oregon, 1985.

Youngblood, Joseph. “Root Progressions and Composer Identification.” The Computer

and Music. Ed. Harry B. Lincoln. New York: Cornell University Press, 1970.

APPENDIX E: SOURCE CODE

CODE LAYOUT

The code layout of MIDIStat is fairly simple. The entry point is located in
MidiStat.java. This file builds the main frame of the GU], and adds several
subcomponents: A TreePanel, and a JDesktopPane.

The TreePanel contains a tree managed by the TreeManager, which controls file
Joading, removing, and the finer points of managing a ITree. On this tree, each node
(besides the root) is represented by a type of Analyzer, which suppotts generic analysis
on a series of Notes. The first level below the root contains only GroupAnalyzers, the
second level only SongAnalyzers and the third and final level only TrackAnalyzers.

Onto the JDesktopPane, MIDIStat adds JInternalFrames when a user initiates
certain actions. These frames are: ChordProgressionFrame, StatisticsFrame,
NoteListFrame, and the GraphFrame.

In the latter, a number of different Graph types (all of which must implement the
MusicGraph interface) are plugged in. These form the following hierarchy:

MusicGraph {(interface)

| --- IntervalFregGraph
| --- NoteFreqGraph
| --- ScrollBarGraph (abstract)

|

| | --- PianoRollGraph

| | --- DataGraph (abstract)

| I

I | --- PitchCountGraph

| | --- PitchRangeGraph
| --- VectorAnalysisGraph

All MusicGraphs (and most Frames) consume an Analyzer, using the various
methods Analyzers provide to construct their display. None depend on any specific type
of Analyzer, so this allows any groups of songs, one song, ora sub-component of a song
to be displayed without prejudice.

Finally, Notes and Chords are atomic representations of their names. A Note
contains pitch, start, duration, and velocity. A Chord is either determined (in which case
it contains a root and upper structures) or undetermined (in which case it contains all

possible roots each of their upper structures).

impork java.awk.*;

import java.awk.event.*;

import java.util.®;

impork javax.sound.midi.*;

import javax.swing.*;

import javax.swing.plaf.metal .MetalLookAndFeel;
import java.beans.PropertyVetoException;

I*

*

LA N B

*

Midistat.java <p>

The entry point of this program, MidiStat sets up

all of the menubars, the main frame and all major GUI components
within that frame.

Qaukthor Greg Cipriano

/

public class MidiStat {

private String metal = *"javax.swing.plaf.metal.MetallLookindFeel®;
private String motif = "com.sun.java.swing.plaf.motif.¥otifLockAndFeel";
private String windows = "com.sun.java.swing.plaf.windows.WindowsLookAndFeel®;
private JCheckBoxMenulIktem groupSongs;

private JCheckBoxMenultem groupTracks;

private JDesktopPane desktop;

private JFrame frame; -

private JMenultem playSelected;

private JMenultem pauseSelacted;

private JMenuitem resumeSelected;

private JMenultem stopSelected;

private MusicPlayer musicPlayer;

private TreeManager kreeMan;

private int frameCounter = 0;

/i'i
* The entry point for the whole application. This just
* constructs an instance of the class.
®/

public static void main{Stringl} args) {
new MidiStat();
}

,i*

* This mechod makes sure the look and feel of the component
% jg set before setting up the frame.

*/

public Midistat{) {
try {
UIManager . setLookAndFeel (metal) ;
} catch {Exception e} {)
musicPlayer = new MusicPlayer (new SongEndedListener(this));
setUpFrame () ;
}

/ii

* Phis creates the frame, the desktop, and the tree panel and

* adds the latter to teo the former using a JSplitPane. Basically,
* this prepares GUL components.

tf

private void setUpFrame{} {
frame = new JFrame({"MidiStatc");
Erame. addWindowListener (new WindowaAdapter(} {
public void windowClosing{WindowEvent e) (
System.exit{0);

1}:
setUpMenuBar{} ;

// Split the frame in two, placing the desktop on the left and
// the tree on the right.

Dimension screenSize = Toolkit.getDefaultToolkitl).getScreenSizel);
desktop = new JDesktopPane{);
desktop.setPreferred8ize(new Dimension(screenSize.width - 270, screenSize.height - 150}};

JSplitPane p = new JSplitPane{JSplitPane.HORIZONTAL_SPLIT,
desktop, new TreePanel {treeMan = new TreeManager(}));
p.setDividersize(2);
frame.setContentPane (p) ;
frame.pack{):

// Center the frame in the screen.

Dimension frameSize = frame.getSizel);

int x = [screenSize.width - framesize.widkh) f 2;
int v = [(screenSize.height - frameSize.height) /f 2;
frame,setlLocation(x, ¥};

frame.show();

-t

*

well... This sets up the menu bar. Each menu item is given its own personal
anonymous ActionListener, which responds to events generated by that item. Also,
the createMenultem{....} method is used extensively to simplify things a bit
{and, quite frankly, to make sure I don't forget to attach events and names to
each menu ikem.)

/

LB B R L

private void setUpMenuBar({) {
JMenuBar menuBar= new JMenuBari():
JMenu fileMenu = new JMenu{"File");
fileMenu, setMnemcnic (KeyEvent .VK_F) ;
fileMenu.getAccessibleContexkt{) .setAccessibleDescriptiont
"File-related menu options®};

fileMenu.add{createMenulitem{"Load", "Loads a MIDI file...", KeyEvent.VK_ L,
KeyFvent .VK_L, ActionEvent.CTRI._MASK,
new ActionListener() {
public void actionPerformed{ActionEvent e} (
treeMan.addsSongs{) ;
}
N
fileMenu.add{createMenultem("Remove", "Removes selected MIDI file...", KeyFvent.VK_R,
KeyEvent.VK_R, ActionEvent.CTRL_MASK,
new ActionListener{) {
public void actionPerformed(ActionEvent e} {
treeMan. removeSelectedNodes({) ;
}
i
fileMenu.addSeparator();
fileMenu.add{createMenuitem{"Exic™, "Exit MidiStat...", KeyEvenkt.VK_X,
KeyEvent .VK_X, ActionEvent.CTRL MASK,
new ActionListener{} {
public void actionPerformed(pActionEvent e) {
System.exitc(0);

}
)

JMenu analyzeMenu = new JMenu{"aAnalyze"};

analyzeMenu. setMnemonic (KeyEvent .VK_A) ;

analyzeMenu.getAccessibleContext {} .setAccessibleDescription{
"full set of Visualization/Analyzing algorithms®});

groupSongs = new JCheckBoxMenuItem({"Group Songs”, false};
/ /groupSongs . addItemlistener (musiclistener);

groupTracks = new JCheckBoxMenultem("Group Tracks", true);
/ /groupTracks. addItemlListener (musicListener);
groupTracks.setEnabled(false);
groupsSongs . setEnabled{false};

analyzeMenu.add (groupSongs} ;

analyzeMenu.add (groupTracks) ;

analyzeMenu.addSeparator () ;

JMenu graphMenu = new Jdenu("Graph®);
graphtenu. setMnemonic (KeyEvenkt . VK_G) ;
graphMenu. add(createMenultem(*Note Freguency®,
*Draws a histogram of note frequencies in selected piece”,
KeyEvent .VK_F, KeyEvent.VK_ 1, ActionEvent.CTRL_MASK,
new ActionlListener() {
public void actionPerformed{ActionEvent e) {
showGraphs (new NoteFreqgGraph{}):
)
1)Y);
graphMenu. add (createMenuItem({”Interval Frequency”,
"Draws a histogram of intervallic frequencies in selected piece”,
KeyEvenk.VK_I, KeyEvent.VK_ 2, ActionEvent.CTRL_MASK,
new ActionListener({} {
public void actionPerformed{ActionEvent e) (
showGraphs (new IntervalFreqgGraph(});
}
)
graphMenu. add [createMenuItem{"Piano Roll",
*Draws a representation of the piece ala a piano roll.",
KeyEvent.VK_P, KeyEvent.VK_3, ActionEvent.CTRL_MASK,
new ActionbListener({) {
public void acticonPerformed{ActionEvent e} {
showGraphs {new PiancReollGraph());
}
)i
agraphMenu.add (createMenulktem{"Pitch Counts",
"Draws nurber of simultaneous pitches at each timestep.”,
KeyEvenk .VK_C, KeyEvent.VK 4, ActionBvent.CTRL_MASK,
new ActiconlListener{) {
public void actionPerformed({ActionEvent e) {
showGraphs {new PitchCountGraphi)):;
}
11y
graphMenu.add (createMenultem{"Pitch Range”,
"Draws the pitch range within each timestep.”,

KeyvEvent .VK_R, KeyEvent.VK 5, ActionFvent.CTRL_MASK,
new ActionListener() f{
public void actionPerformed{ActionEvent e} {
showGraphs {(new PitchRangeGraph()):

}
3}):
graphMenu.add(createMenultem{“Vector analysis®,
"Draws a 'vector' view of the piece."”,
KeyEvent . VK_V, KeyEvent.VK 6, ActionEvent.CTRL_MASK,
new ActionListener{) {
public void actionPerformed(ActionEvent e} {
showGraphs {new VectorAnalysisGraphi));
}
)i

analyzeMenu.add (graphtenu} ;
analyzeMenu.addsSeparator{):;
analyzeMenu.add(createMenultem("Show statistics",
*Shows statistics on a song/track®,
KeyEvent .VK_S, KeyEvenkt.VX_0, ActionEvent.CTRL_MASK,
new ActionListener() (
public woid actionPerformed{ActionEvent e) {
Analyzer[] nodes = treeMan.getSelectedNodes();
for (int i = 0; nodes != null && i < nodes.length; i++)
if (nodesiil.containsChildren{}) {

BtatiskicsPFrame sf = new StatisticsFrame{nodes([il]);

addinternalFrame(sE);
} else {
Toolkit.getDefaultToclkit{} .beep();
}

}
s
analyzeMenu.add{createMenultem("Show chord progression®,
*Shows guessed chord progression (experimental}”,
KeyEvent .VK_C, KeyEvent.VK_ 9, ActionEvent.CTRL_MASK,
new ActionListener() {
public void actionPerformed{ActionEvent e} {
analyzer(] nodes = treeMan.getSelectedNodes();
for {int i = 0; nodes '= mull && 1 < nodes.length; i++)
if {nodes(i].containsChildren()}} {
ChordProgressionFrame cpf =
new ChordProgressionFrame(nodes{i}};
addInternalFrame{cpfl;
} else {
Toolkit.getDefaultToolkit () .beep();
H

}
Yr);
analyzeMenu.add{createMenultem{"Show list of notes",
*Shows an list of notes, ordered from first to last",
KeyEvent .VK_L, KeyEvent.VK 8, ActionEvent.CTRL_MASK,
new ActionListener{) {
public wvoid actionPerformed{ActionEvent e) {
Analyzer[] nodes = treeMan.getSelectedNodes(};
for (int i = 0; nodes != null && i < nodes.length; i++)
if (nodesl[i).containsChildren(}} {
NoteListFrame nlf =
new NotelistFrame{nodes(i]);
addInternalFrame(nlf);
} else {
Toolkit.getDefaultToolkit () .beep();

}
1Y;

JMenu windowMenu = new JMenu("Window®) ;
windowMenu. setMnemonic (KeyEvent . VK_W) ;
windowMenu. addlcreateMenuItem(®"Close All Windows™,
"Closes all windows",
KeyEvent .VK_A, KeyEvent.VK_F4, ActionEvent.CTRL_MASK,
new ActionListener{) {
public void actionPerformed{ActionEvent e} {
JInternalFrame{) jif = desktop.getAllFrames{};
for {int i = 0; i < jif.length; i++) {
jif[i}.setVisible(false);
desktop.remove{jifli])):
jif[i}.dispose();:

}
1
windowMenu.add {createMenuTtem{"Minimize All Windows",
"Minimizes all windows",
KeyEvent .VK_M, KeyEvent.VK_F5, ActionEvent,CTRL_MASK,
new AcktionListener() {
public void actionPerformed(ActionEvent e) {
try {
JIncernalFrame() jif = desktop.getAllFrames();
for {(int i = 0; i < jif.length; i++)

jif[i]).setIcon(true};

} catch(PropertyVetoException pre) {
System.err.println(*Problem minimizing window!*};
H
}
Yyy:
windowMenu.add{createMenuItem{"Restore All Windows",
"Restores all windows*®,
KeyEvent .VK_R, KeyEvent.VK_F6, ActionEvent.CTRL_MASK,
new ActionListener() {
public void actionPerformed(ActionBvent e) {
try {
JInternalFrame{] jif = desktop.getaAllFrames{);
for (int i = 0; i < jif.length; i++) |
4if(il.secIcon({false);

}
} catch(PropertyVetoException pre} {
System.err.println{"Problem restoring window!~”};
}

}
Y1)
windowMenu. add {createMenuItem{*Cascade”,
*Arranges all windows in a cascade®,
KeyEvent .VEK_C, KeyEvent.VE_F7, ActionEvent.CTRL_MASK,
new ActionListener() {
public void actionPerformed{ActionEvent e) (
frameCounter = 0;
JInternalFrame(]l jif = desktop.getaAllFramesi);
for {int i = 0; i < jif.length; i++) {
int start = 5 + (frameCounter++ % 10} * 25;
jif[i).setLocation({start, start);

}
)

JMenu listenMenu = new JMenu(°Listen"};
listenMenu. setkMnemonic (KeyEvent .VK_L) ;
listenMenu.add({playSelected = createMenuItem{"Play selected item",
"Plays the selected track/song or gueues entire group.-©,
KeyEvent .VK_P, KeyEvent.VK_ P, ActionEvent.ALT_MASK,
new ActionListener{} {
public void actionPerformed{ActionEvent e} (
Analyzer a = treeMan.getSelectedWNodel);
musicPlayer.starc{al;
pauseSelected. setEnabled(true) ;
stopSelected. setEnabled(true);
}
1Y);
listenMenu.add{pauseSelected = createMenultem("Pause”®,
"Pauses the currently playing song {if any).",
KeyEvent .VK_A, KeyEvent.VK_A, ActionEvent.ALT_MASK,
new AckionListener() {
public void actionPerformed{ActionEvent e) (
musicPlayer.pause();
resumeSelected. setEnabled({trus);
pauseSelected. setEnabled(false) ;

1¥);
listentMenu.add (resumeSelected = createMenultem("Resume”,
"Resumes the currently playing song {(if any}.®.
KeyEvenk .VK_R, KeyEvent.VK R, ActionkEvent.ALT_MASK,
new ActionlListener(} {
public void actionPerformed(ActionEvent e} (
masicPlayer. resume{);
resumeSelected.setEnabled(false) ;
pauseSelected.setEnabled({true);
}
M
listenMenu,.add({stopSelected = createMenultem("Step",
"Stops playing songs.®,
KeyEvent .VK_S, KeyEvent.VK S, ActionEvent.ALT MASK,
new ActionListener() {
public void actionPerformed(ActionEvent e} [
musicPlayer.stopl(};
}

ISR
pauseSelected.setEnabled(false);
resumeSelected. setEnabled(false) ;
stopSelected. setEnabled(false);
menuBar . add{fileMenu) ;
menuBar . add{analyzeMenu) ;
menuBar . add [listendenu) ;
menuBar . add (windowtenu) ;
frame. sebJMenuBar (menuBar} ;

}

li*
* Construcks a JMenultem with the specified title, popup texk, quickkeys
* and ActionListener.
*/

private JMenultem createMenuItem{String title, String popup,
int guickkey, inkt keyevent, inkt actionevent,
ActionListener a) {
JMenuItem menu = new JMenuItem{title, quickkey};
memi:. setAccelerator (KeyStroke . getKeySiroke {keyevent, actionevent});
menu.getAccessibleContexkt () . setAccessibleDescription {popup) ;
menu.addActionlisteneria);
return menu;

}

/*'l‘

* Called by the MusicPlayer when a song stops, or when the user
* decides. This disables the pause, resume and stop controls.
*f

public void songStoppedi{) {
musicPlayer.stop{);
pauseSelected. setEnablad(false) ;
resumeSelected.setEnabled{false);
stopSelected. setEnabled{false);

}

j*i’

* Called whenever an internal frame should show up.

% This method makes sure frames are staggered on the screen
* (Specifically, with 10 spots, each 25 pixels apart}).

*/

public void addInternalFrame(JInternalFrame jif) {
int start = 5 + (frameCounter++ % 10} * 25;
jif.setLocation({start, start};
desktop.add(jif};
jif.setVisible{true);
Jjif.pack();

}

/i*

* Called whenever a graph needs to be shown. This is passed in
* a type of music graph. If nodes are selected, for cach one,
* a new MusicGraph (of the given type) is constructed and

* given the Analyzer associated with that ncde.

*/

private void showGraphs (MusicGraph mg) {
Analyzer{] nodes = treeMan.gekSelectedWodes();
for {int i = 0; nodes !'= null && i < nodes.length; i++) |
Analyzer node = nodesfi};
if (node.concainsChildren{}} {
MusicGraph newGraph = mg.createMusicGraph(node);
GraphFrame gf = new GraphFrame (newGraph) ;
addinternalFrame {gf) ;
newGraph . drawGraph | trae) ;
} else (
Toolkit.getDefaulktToolkit () .beepl);
}

import javax.sound.midi.*;
import java.ukil.?*;

Ii:*

* Analyzer.java <p>

*

* This abstract class implements many of the most important analysis

* features itself for subclasses, based on generic properties of all

* Analyzers (that is, all Analyzers contain a Note array which can be
* accessed through getNotes()}.

+

* @author Greg Cipriano

x

~

abstract public class Analyzer {
protected Chord givenKey;

protected float songLength;
protected int meanPitch, stdPitchbeviation;
protected int weightedMeanPitch, weightedstdPitchDeviation;
protected int maxSimultaneocusVoices, mosEOftenSoundediote;
protected int countOfMostOftenSoundedNote;
protected int highestNote, lowestNote, largestinterval;
protected int mostFreguentinterval;
protected int countOfMostFrequentinterval;
I**
* Ccalled whenever notes are changed. This method calls
+ other methods which initialize various statistics.
=/
protected void analyzeNotes(} {
analyzeNoteMean(} ;
analyzeWeightedNoteMeant) ;
analyzeRanges{) ;
getVoicebensity(l);
gectNoteFreguencies(};
getIntervalCounts(};
}

fi:i'

+ pescribes whether the Notes[] array is invalid and
* needs to be rebuilt.

=/

protected boolean notesInvalid = true;
/i*
* Returns a String representing the key stored
* in the MIDT file associated with this Analyzer,
+ if it exists. If noc, return "None given*®.

*/
public String getGivenKey() {
if [givenKey == null) ([return "None given"; }
else (

return givenKey.toStringl);
}
}

l*i

* Returns the highest number of voices playing simultancusly
* at any poinkt in the song.

* @see #getVoiceDensity{int).

*7

public int getMaxSimultaneousVoices() { return maxSimul taneousVoices; }

/ii
* Returns the note played most often in the song.
*
* @see #getNoteFrequencies{)
*/

public int getMostOftenSoundedNotel) { return mostOftenSoundedNote; }

lt-lr
* Returns how many times the most often played note

* gounded throughout the song.
*

* f@see #getNoteFrequencies()

*/
public int getCountOfostoftenSoundediote () { return countOfMostOftensoundediote; }
jt-ﬂ-

* Returns the average {statistical mean) note over all

the notes in the Note array. This doesn't take into
account the length of each note.

@see fanalyzeNoteMean ()
/

¥om % H

public int getMeanPitch() { return meanPitch; }

,ik
* Returns the standard deviation from the mean over
all notes.

@soe fanalyzeNoteMean ()
@see #getMeanPitchi)

L I N

*/
public int getStdPitchDeviation() { return stdPitchDeviatiocn; }

,**

* Returns the average (statistical mean) note played,
over the entire Note array, weighted according

to how long that note played.

@see #analyzeWeightedNoteMean ()
/

*
&
*
*
*

public int getWeightedMeanPitch{) { return weightedMeanPitch; }

/**
* Returns the standard deviation from the weighted mean over
all notes.

k3

*

* @see #analyzeWeightedNoteMean()
* @see #getWeightedMeanPikchi)

&

public int getWeightedStdPitchDeviation() { return weightedStdPitchDeviation; }

l*'k

* Returns the hightest note contained in the Note array.
&

* @see #analyzeRanges ()
*/

public int getHighestNote() { return highestiNote; }

/fi-
* Returns the lowest note contained in the Note array.
£
* @see #analyzeRanges()
=/

public int getLowestNote(}) { return lowestiNote; }

li*

* Returns the range of notes over the Note array.

* Equivalent to getHighestNote{) - getLowestNote() + 1.
*

* @see #analyzeRanges ()

* @see #getBighestNote()

* @see #getLowestNote()

*7/

public int getRange() { return {getHighestNote() - getLowestNoktel) + 1); }

/**
* Returns the largest interval existing between

* simultanecusly playing notes in the Note array.
*

* @see #getIntervalCounts()
*f

public int getLargestInterval{} [return largestInterval; }

/1\'*
* Returns the most freqguently played interval between

* gimultaneous notes.
L 3

* @see fgetIincervalCounts()
*/

public int getMostFrequentInterval(} { return mostFrequentInterval; }

*

/
Returns how often the most frequently played interval
was played.

@see #getMostFrequentInterval()
Bsee #getintervalCounts|()

L

.

public ink getCouncQfMostFrequentInterval ()} { return countOfMostFrequencInterval;}
I*i

* Returns the length of the song, in beats.
*

* @see #fanalyzeRanges {}

*/

public float getSongLength{) { return songlLengti; }

/i’*

* Returns the number of notes contained in the ‘notes' array.
* 1f the array happens to be null, this returns 0;

=

public int getNumNotes(} {
Note[] notes = getiotes(};
if (notes == null) return 0;
else f
return notes.length;
}

}

,i’i

¥ Get an array of chords, sampled a fixed number (4)
* of times per beat.

xf

public Chord(] getChords(} {
Note(] notes = getNoktes{};:
float samplesPerBeat = 4f;
int numSamples = {inkt) {getSongLength{) * samplesPerBeat) ;
int[) count = new int[numSamples];

// This may be too tricky...
// Keep note data in a bit field {integer)

for (int i = 0; i < getNumNotes{}; i++) {
int stark = (int) (notesii).getTimeOn{} * samplesPerBeat) ;
int end = (int) {(notesli].getTimeOEf({} * samplesPerBeat} ;
int pitch = notes[i).getPictch{) % 12;

for {int j = start; j < end &&k j < numSamples; i++) {
if {{count(j]l >> pitch) % 2 == 0} (
count[j] += 1 << pitch;
}

}

// Now weed out duplicate and undetermined chords.
/! Also, for chords that don't know chelr identity,
/! reduce possibilities based on previous chord.

Veckor progression = new Vector();
int progSize = 0;
float sampleWidth = 1 / samplesPerBeat;
for (int i = 0; i < numSamples; i+t) |
chord ¢ = new Chordlcount{il, 1 / samplesPerBeat, sampleWidth);
if (c.getTypel() !'= Chord.NOTACHORD) {
if (progSize > @) {
Chord oldChord = (Chord) progression.elementAt{progSize - 1};
if (c.getTypel) == Chord.UNKNOWN) (
¢ .reducePossibilities{oldChord};

}

if (oldChord.equals{c)} {
float diff = c.getStart{) - oldChord.getEnd();
oldChord. incLength{diff + sampleWidth};

} else {
progression. add(c);
progSize+t;
} else {

/! First real chord found. So reduce possibilities
!/ based on the key found using vector analysis.
c.reducePossibilities (getKeyVector());
progression.addie);

progSizet+;

]

/! Convert the vector back into an array and recurn;

int numChords = progression.size(};
Chord(] p = new Chord{numChords];
for {int i = 0; i < numChords; i++) {
pli] = {Chord) progression.elementAc (i) ;
}

return p;

}
,**

* Returns an integer representing the key in the range
* from 0 to 12, 0 == C major.

x/

public int getKeyVector{} {
double[] position = new double(2);

Notel] notes = gektNotes{);

for {int i = 0; i < notes.length; i++) {
notes[i] .addvVector{position, 1);

}

double xPos = pesition(0];
double yPos = position(1];
double angle = Math.atan({yPos / XPos);

if {xPos < 0)

angle = Math.PI / 2 - angle;
} else {

angle = 3 * Math.PT1 / 2 - angle;
}

int quadrant = (int} {6 * angle / Math.PI + Math.PI / 6);
int key = (gquadrant * 7} % 12;
return key;

Returns the range of notes the song goes through, sampled at
'interval' times per beak. If absoluteCount is true, this
array contains two values for each sample: the lowest note,
followed by the highest note. Otherwise, the array contains
just one value: the range {or difference between these values).

s W F % F ¥ W

public int[] getPitchRange{int interval, boolean absoluteCount} (
Note[] nokes = getNotes();
int width = {int) {getSonglLength{) * intexwval);
inkt(] lowNote = new inkl[widkch];
for (int i = 0; i < width; i++) { lowNote([i] = 512; }
int[]) highNote = new int[width];:
for (int i = 0; i < width; i++} { highNote[i] = -1; 1}
for (int: i = 0; i < nokes.length; i++} [
int start = {int) {noktes[i].getTimeOn{) * interwval}:
int end = {int) {notes[i].getTimeQff{} * interval):;
int ‘pitch = notes[i].getPitch{);
for {int j = start; j < end && j < width; j++) {
if (pitch > highNeote[j]) { highNote(j) = pitch; }
if (pitch < lowNote{jl} (lowNote(j)] = pitch; }
}

if {absoluteCount) {
int {] r = new int(2 * width):
for (int i = 0; i < width; i++} (
r[2 * i] = lowNoteli];
rf2 * 1 + 1} = highNotel[i];

}
return r;
} else {
for (inc i = 0; i < width; i++) (
highNote([i] —= lowNote[i];
return highiote;
)]
}
/i‘-j-

* Counts the number of times each note sounds. Returns

* an arvay of the size of the range containing this info.
* This method also initializes 'mostOftenSoundedNote’,

* and 'countOfMostOftenSoundedNote' .

*/

public int[] getNoceFrequencies()
Note[]l notes = getNotes({);
int(] noteCount = new intlgetRangel)]:
countOfMostOftenSoundedNote = 0;
for {(int i = 0; i < getNumMotes({}; i++} {
int pitch = notes[i).getPikch(} - lowestNote;
noteCount [pitchl++;
if {noteCount(pitch] > countOfMostOftenSoundedNote) (
mostOftenSoundedNote = noctes[i).getPitchl);
countOfMostOftenSoundedNote = noteCounktlpitch};
}
}
return noteCount ;

)

I**
* Returns how many notes are playing simultanecusly, sampled at
* 'interval' times per beat. This method alsc initializes
* 'maxSimultaneousVoices”.
*/

public int[} getVoiceDensitylint intexrval) {
Note[) notes = gechNotes(};
int width = (int} {getSongLength() * interval};
int[] count = new int[width];

maxSimultaneousVoices = 0;
for (int i = 0; i < getNumNotes(); i++} {
int start - {int) {notes[i).getTimeOn{} * interval);
int end = (int) {(notes[il.getTimeOff({) * interval);
for (int j = start; j < end && J < width; j++} (
count(jl++;
if (count[j] > maxSimultaneousVoices} {
maxSimul taneousVoices = count(jl:
}
)
}

recurn count;

—

»

Runs through the array of Notes collecting the number of times

aceurs. This method also initializes 'largestInterval’,
'‘mostFrequencinterval' and ‘countOfMostFrequentInterval ' .

@returns an array containing these intervals.

P I

S

public¢ int[] getIntervalCounts() {

Note|] notes = getNotesl);

int[] intervalCount = new inkt(128];

largestInterval = 0;

countOiMostFrequentInterval = 0;

for (int i = 0; i < getNumNotes({); i++) {
float start = notes[i] .getTimeOnd);
float end = notes([i}.getTimeDEL(};

a specific interval (counted when two notes are sounding simultaneously)

for (int j = i + 1; j < noktes.length && notes(j).getTimeOn{) < end; Jj++)

int ip = notes[i].getPitch{};:

int jp = notes[j}.getPicch(});

int interval = (ip > jp)} ? ip - Jp : jp - ip;

if (interval » largestInterval} { largestInterxval

intervalCount [intervall++;

if {intervalCount(intervall] > countOfMostFrequentInterval}
mostFreguentInterval = interval;
countOfMoskFrequentInterval = intervalCount [interval];

}

}

return intervalCount;
}/ii
* analyzeNoteMean{) finds both the mean and the standard
* deviation of the pitches of all notes. These stacistics are
* grored in local variables: 'meanPitch' and 'stdPikchDeviation’.
*7

protected void analyzeNoteMean() (
Note{] n = getNotesl();
int numNoktes = getNumNotes();

/7 'zero' local statistics
meanPitch = 0;
stdPitchDeviation = 0;

for {int i = 0; i < numNotes; i++) {
meanPictch += nlil.getPitchi();
}

// meanPitch and stdPitchDeviation are valid
/7 only if the number of notes is greater than 1.
/! {NOTE: meanPitch still works if numNotes == 1),
// it just doesn't need further calculation
// (meanPitch = ni{0].pitch and stdPitchDeviation = 0}
if {numiotes > 1} f{
double preciseMean = {double) meanPitch / {double) numNotes;
double devSum = 0;
for {int i = 0; i < numNotes; i++) [
devSum += Math.pow({double) n(i).getPitch() - preciseMean,

meanPitch = (int) preciselean;
stdPitchDeviation = {int) Math.sgrt{devSum / (numNotes - 1)}

}

Ii't-
analyzeWeightedNoteMean{) finds both the mean and the standard
+ deviation of the pitches of all notes. These stakistics are
* gtored in local variables: 'weightedMeanPitch' and
* ‘yeightedStdPitchbDeviation'.
+*
/
protected void analyzeWeightedNoteMean{} {
Notel[]l n = getNokes{);
int nunNotes = getNwmNotes():

// '"zero' local statistics

interval;)

{

2);

weightedMeanPitch = 0;
weightedStdPitchDeviation = 0;

// temporary floats...
float tempSum = 0;
float lengthSum = 0;

tor (int i = 0; i < numNotes; i++) {
tempSum += nfi].gekPitch{) * n{i}.getDuration(};
lengthSum += n[i].getDuration();

}

// same sort of thing goes for weightedNoteMean, etc
/{ as in regular noteMean.
if (numNotes > 1) [
double preciseMean = {(double) tempSum / (double) lengthSum;
double devSum = 0;
for (int i = 0; i < numNotes; i++} {
devSum += Math.pow((double} nli].getPitch{} - preciseMean, 2);
}

weightedMeanPikch = {int) preciseMean;
waightedStdPitchDeviation = (int) Math.sqrt(devSum / (numNotes — 1));

}

,*i‘

* analyzeRanges{) finds the lowest and highest notes in the song,
* as well as its total length (in beats). These statistics are

* stored in local variables: 'lowestiNote', 'highestNote' and

* 'songLengkh'.

*f

protected void analyzeRanges({) {
Note[]l n = getNotes({):

// ‘'zero' local sctatistics.
lowestNote = 512;
highestNote = 0;
songLengkth = 0;

for {(int i = 0; i < getNumNotes(); i++) {
int pitch = n{i).getPikch{);
if {pitch > highestNote) { highestiote = pitch;)
if (pitch < lowestNote) { lowestNoke = pitch; }

floakt noteBEnd = n(i] .getTimeOff{} + 1;
if (noteEnd > songlLength) { scongLength = noteEnd;)

}

j**
* To be filled in by subclasses, returns the notes
* contained in the Analyzer.
*/

abstract public Note[]l getNotes{);

Iii
* Returns the shortest representation of the Analyzer...
* This will appear on the JTree Node associated ’
* wikth this Analyzer.
*7

abstract public String toStringl();

j*i

* Returns a detailed Scring describing the Analyzer...
* titles most internal frames.

*/

abstract public String getFullTitlel);

I**
* Returns a Sequence for this Analyzer, so MusicPlaver
¥ gcan play the song. Defined in subclasses.
*/

abstract public Seguence getSequencel};

/*i

* Returns whether this Analyzer contains other enabled
* Analyzers subordinate to it.

* Bxample: GroupAnalyzers contain Songanalyzers,

* which contain Trackinalyzers.

*/

abstract public boolean containsChildrent();

import java.util.?*;

*

/
Chord. java <p>

Encapsulates a chord, which knows its root,
type, starting time and length.

ok ok ko % W R

@author Greg Cipriano

et

public class Chord {
private Vector possibleChords = new Vectbor{);
private boolean exactMatchFound = false;

private float length;
private float start;
private int rootPitch;
private int type;

public static final int MAJ3 = 1 + 16;
public static final int MIN3 = 1 + 8;

public static fimal int MAJ = MAJ3 + 128;
public static final int MIN = MIN3 + 128;
public static final int AUG = MAJ3 + 256;
public static final int DIM = MIN3 + 64;

MARI3 + 512;
MIN3 + 512;
MAJ3 + 2048;
MIN3 + 1024;
MAJI + 1024;
MAJ + 512;
MIN + 512;
MAaT + 2048;

public static final int MAJ6NOS
public static final int MINGNOS
public static fipal inkt MAJ7NOS
public static final int MIN7NOS
public static final int DOM7NO5
public static final int MAJG
public static final int MING
public static final int MAJ7
public static final int MIN7Y MIN + 1024;
public static final int DOM7 MAJ + 1024;
public static final int FULLDIM7 = DIM + 512;
public static fipal int HALFDIM7 = DIM + 1024;
public static final int MAJONOS = MAJ7NOS + 4;
public static final int DOMINOS = DOM7NOS + 4;
public static final int MININO5 = MIN7NOS + q;
public static final int MAJY9 = MAJ7 + 4;
public static final int DOM9 = DOM7 + 4;
public static final int MINS = MIN7 + 4;

wonowonn

j**
* Signifies that the notes given in the notemask
* do not form a legal chord, among the known chord types.
*/

public static final int NOTACHORD = -1;

/**

* gignifies that the notes given map to more than one

+ chord, and that reducePossibilities() needs to be called.
*

* @gee #ireducePossibilities{int)

7/

public static final int UNKNOWN = -2;

,ii

+ The list of legal chords this chord can map to, in order

* fyrom smallest to largest. Chords will be tried in reverse order,
* with more 'full' chords the first have matching attempted.

*/

private static int[} chordlList = { MAJ, MIN, AUG, DIM, MAJ6NOS, MING6NOS,
MAJTNOS, MINTNOS, DOM7NOS, MAJG, MING,
MAJ7, MIN7, DOM7, FULLDIM7, HALFDIM7,
MAJONOS, DOMONOS, MININOS,
MAJS, DOMS, MINI};

,1\'*
* Entry point for testing the Chord class.
*f

public static void main{String(] args} {
int mask = 0;
for (int i = 0: 1 < args.length; i++) {
mask += (int) Math.pow{2, Double.parseDoublelargs[i]}};

1
Chord ¢ = new Chord(mask, 0, 1);
System.ocut.printinic);

}

I**

* Eyplicitly construct a chord with the given root, type,
* gtarting ctime and length.

*/

public Chord(int rookt, int t, £loat st, float clength} {
rootPitch = root % 12;
Lype = k&;
start = st;
length = clength;
}

Iii
* Constructor for the chord. This uses a notemask, and
* tries to match that mask to one of the known patterns
* by rotating and comparing. If a macch is found, the amount
* this was rotated determines the root.
*

public Chordl{int notemask, float st, float clength} (
type = notemask;
for {int i = 0; i < 12; i++) {
addlfMatch{type, i):;
type = (type * 2) % 4095; //Rotate mask
} .
int numFound = possibleChords.sizel);
if (numFound > 0) {
if (exactMatchround} f{
for (int i = 0; i < possibleChords.sizel); i++) {
PossibleChord p = (PossibleChord}l possibleChords.elementAt(i);
if {!p.exactMakch) {
possibleChords. remove (D) ;

}
numFound = possibleChords.size(};
}
if (numFound > 1} {
type = UNKNOWN;
} else {
PossibleChord p = (PossibleChord} possibleChords.elementat{0};
rootPitch = p.root;
Lype = p.type;

} else {
type = NOTACHORD;

start = st;
length = c¢lengih;

/i’*
* Compares the mask to all known chord types, starting with
* higher order chords. This checks if given mask INCLUDES
* the notes of a given chord, and records also whether the
* mask is EXACTLY the same as that chord. Those that match
* exactly will be given preference.
k3

/

private void addIfMatch{int mask, int rotation) {

// Traverse the list of legal chords from largest (most full)
// to smallest. If a match is made, return immediately —-

// since large chords are more accurate and include small

// chords.

for (int i = chordList.length — 1; i >= 0; i—-) {

f/ Check if mask contains all of chordList's notes
// and possibly more
if {(({mask & chordListfi]} == chordiist(i]} {

int possRoot = (12 - rotaktion} % 12;

boolean exactMatch = {mask == chordList[i]);
exactMatchFound |= exactMatch;

possibleChords.add (new PossibleChord{possRoot, chordList[i], exacktMatch));
//8ystem.out.println({chordList[i} + = " + Note.toNote[possRoot));
//System.out.printin();

rekturn;
}
}
}
/‘l’\l'
* Returns a string representation of this chord.
*/

public String toStringl} {
String out = Note.toNote(rootPitch, false);
if {(type == MAJ) [out += " maj";)
else if (type == MIN) { out += " mdin"; }
else if (type == MAJ? type == MAJINO5) { out += " maj7*; }
else if {type == MIN7 type == MIN7NOS5) { out += " min7";)}
else if (type == DOMY type == DOM7NO5) { out += " dom7"; }
else if {(type == DIM) { out += " dim"; }

AUG) { out += " aug"; !}
MaJ6 I' type == MAJGNO5) (out += * majée";

else if (Lype
else if {type
else if (type
else if (type
elge if (type

MING type MING6NOS) [out += ® minb";
FULLDIM7} (out += " dim7®";)
HALFDIM7) { out += " 1/2 dim7"; }

else if (type MATS type == MAJINO5) { out += " maj9";
else if (type DOMS type == DOM2NO5) { out += * dom®";
else if {type MIN9 type == MINOSNOS5) { out += " min9";

UNKNOWN) { out = °T00 MANY CHOICES!!!"; J

else if (type =
NOTACHORD) { out = "ERROR: NOT A CHCRD!!";

else if (type
else {

out = "ERROR: UNKNOWN TYPE";
}

return out;

T T (| 1 1 [1 A 1

I 4 T | T 1 | I | 1)

}

/**

* Returns the root of the chord, hopefully after
* that root has been uniquely determined.

*f

public int getRootPitchl) { return rootPitch;}

l*i

* Returns the type of chord this is, ameng the
* possibilities.

*/

public int getType{} { return type; }

/**
* Returns the length of this chord, in beats.
*f

public float getLength() { return length; }°

/i‘t
* Returns when this chord came into effect, in beats.
=

public fleoat getStart{) { return start; }

I*i

* Returns when this chord ends. Equivalent to
* getStart() + getLength().

*f

public float getEnd() { return getStart() + getLengthl); }

l:‘l‘i‘

* Reduce the possibilities given the last chord.

+ Hands off the chords root to reducePossibilities(int).
f

public void reducePossibilities{Chord lastChord) {
. reducePossibilities{lastChord.getRootPitch{});
}
/

L

Reduce the possible chord down to one probable choxd
based on the distance the rookt moves from the last chord.
This is predicated on the assumption that a composer
will move the root as little as possible between
consecutive chords...

/

oMW K R % *

public void reducePossibilities{int oldRoot) {
int bestRoot = 0;
int bestType = 0;
int bestDistance = 1000;
for {int i = 0; i < possibleChords.size(}; i++} {

PossibleChord pc = (PossibleChord) possibleChords.elementAt(i);

int possRoot
int possType
int distance

po.root;
pc.type;

// account for wrapping of chromatic scale
if (distance > 6) (distance = 12 - distance; }

bestRoot possRoot;

bestType possType;
bestDistance = distance;

if (distance < bestDistance) (

}

}
rootPitch = bestRoot;
type = bestType;

I**

)

(possRoot > oldRoot) ? possRoot - oldRoot
: oldRoot - possRook;

* Overrides equals({) in Object. Here, a chord equals
* another chord when it has the same root pitch and
* the same type.

*/

public boolean equals{Object ¢) {
if {c instanceof Chord} (
return (getRootPitch{)} == ({Chord) c).getRootPitch() &&
getType(} == ((Chord} c}.getTypel());

return false;

}

’*i’

* A similar chord was found, so coalesce the two
by increasing this chord's length.

=/

public void incLength(fleat 1) { length += 1; }

/E*

* Convenience method to set the root pitch of this
* chord.

*/

public void setRootPitch{int p} { rootPitch = p;)

/i*

* A simple structure to hold on to this chord's
* possibilities...

*/

private class PossibleChord

/** one possible root for this chord */
public int root;

/** the type of this chord, as one of the known kypes */
public int type;

/** if this chord matched EXACTLY one of the known patterns */
public boolean exactMatch;

/**

* Constructs a chord with the given root, type and
* match ¢uality.

*/

private PossibleChord{int r, int &, boolean b) {
root = r;
type = t;
exactMatch = b;

impeork java.awk.*;
import javax.swing.*;
import javax.swing.table.*;

Iii

* ChordProgressionFrame.java <p>

*

* ChordProgressionFrame shows a list of the guessed choxds
* in a song, assuming a maximum of 2 per measure wikth

* duplicates removed.

*

* @author Greg Cipriano

*/

public class ChordProgressionFrame extends JInternalFrame {

/t*

* Constructs the frame, setting up all of the cells of the

+ Jrable, adding that table to a scroll pane and that pane

* ro the frame itself. If there are no recognizable chords

* in the song, add a label with an error message (50 user

* at least gets some feedback that chord elucidation failed.)

=/

public ChordProgressionFrame(Analyzer a} {
super (a.getFullTitle{) + *: Chord Progression®", true, true, true, Erue) ;
a.analyzeNotes{};
chord[] chords = a.getChords();
JCompenent © = null;
if {chords.length 1= 0) {
Sering(l[] columnValues = new string(chords.length] [3]);
for {int i = 0; i < chords.length; i++) {
string start = {(int) chordsfi) .getStart({}) / 4 + 1) + *
{chordsii].getStart{) % 4 + 1);
stark;
Floak.toString(chords{i].getLengthi{)};
chords(il.tosStringl();

+

columnValues{i] [0]
columnValues [1] [1)
columnValues (i) [2]

1

¢ = createTable{columnvalues};

} else {
¢ = new JLabel {"No Chords foundi®, JLabel.CENTER};

}
setContentPane{new JScrollPane(c)); .
setPreferredSize {new Dimension{360, 260});
pack(};

}

Ii*
+ Creates a JTable with the entries denoted by columnvValues and che
+ column headers: "Starting Measure®”, "Length”, and *Chord®.

* Other parameters -- including making it uneditable, and making
* the TableModel specific -- are also added to this JTable.
*7

private JTrable createTable(final string(]1(] columnValues) {
final String(]l columnNames = { "Measure:Beat®, "Length", "Chord" };

TableModel dataModel = new AbstractTableModel{) {
public String getColumnName {int col) |
return columnNames [col];
H

public int getColumnCount(} { return columnValues (0] - length; }
public int getRowCount{) { return columnvalues.length; }
public boolean isCellEditable(int row, int col} { return false; 1
public Object getValueAt{int row, int col} {
return columnvalues([row] [coll:
}
}:
JTable table = new JTable{dataMedel);
table.getColumnModel().getColumn(Z).setMaxwidth(SSI;
return table;

import java.awt.*;
import java.awt.event.*;
import javax.swing.?*;

/

L

DataGraph.java <p>

DataGraph is an abstract graph set up to draw integral data.

It leaves up to sub-classes to define (1) what that data

is and (2) what its maximum value is. Minimum is assumed to be 0.

Qauthor Greg Cipriano

* o o K W o %k R

.

public abstract class DataGraph extends ScrollBarGraph {
private final Stringl[] titles = { "Samples per beak" };
private final int[] defaultvalues = (30 }; .
private final int PREFERREDWIDTH = 500;
private final int PREFERREDHEIGHT = 200;
private final int OFFSET = 12;
private JPanel view;
private JPanel innerPane;
private JLabel label;
private Image offscreenI;
private Graphics backPage;
private Tmagelcon icon;
private int beaktSize;

/i*

* Stores the Analyzer this graph works with, protected
* so thakt only subclasses can get at it.

*f

protected Analyzer analyzer;

,i‘.i‘

* The maximum value this data set attains, used
* for providing scale in the graph.

*/

proktected int maxValue;

l*i
* The data to be rendered.
*f

protected int(] data;

/ir*
* Empty constructor. Doesn't set up anything. Used when an
* object class is needed.
*/

public DataGraph{) (}

/*1-
* Real constructor. Takes an Analyzer, and sets up the
* view's scrollbar and panel.
*/

public DacaGraph{Analyzer a) {
analyzer = a;
analyzer.analyzeNotes{);
innerPane = new JPanel();
innerPane.setPreferredSize(
new Dimension[PREFERREDWIDTH, PREFERREDHEIGHT + OFFSET));
innerPane.addComponentListener(this};

scrollbar = new JScrollBar (JScrollBar.HORIZONTALY) ;
setVariable(0, defaultValues(0]), false};
view = new JPanel {new BorderLayout(}):;
scrollbar. setBlockIncrement (PREFERREDWIDTH - 20} ;
scrollbar.addAdjustmentListener {this);
view.add{innerPane, Borderlayout.CENTER]};
view,add{scrollbar, BorderLayout.SOUTH};

}

public String(} getVariableTitles{) { return titles; }
public intl[] getbDefaultValues() { return defaultValues; }
public JComponent getView{) { return view; }

/**
* Draws the graph, creating the offscreen image and graphics conktexis
* if they haven'kt been created yet.
*/

public void drawGraph{boolean repainktIcon} {
int starkt = scrollbar.getValuel();
int height = PREFERREDHEIGHT + OFFSET;

int widith = innerPane.getSize ()} .width;
int end = start + width;

// Set up the back buffer if necessary, making it the size of
// the screen, so if the frame holding this graph is resized,
// it's still big enough.

if (offscreenI == null) {
int screenWidth = Toolkit.getDefaultToolkit().getScreenSize().width;

setupBackBuffers (screenWidth, height};
)

backPage.setColor {Color.white);
backPage.fillRect (0, 0, width, height};
backPage.sekColoriColor.red);

// Draw data as vertical lines

int scalar = {height - OFFSET) / maxValue;

for (int i = 0; i < width && (i + start) < data.length; i++) {
int h = dacali + start] * scalar;
backPage.drawbine (i, height, i, heighkt - h);

}

// 4 quarter-notes per measure
int measureSize = 4 * beatSize;

// Draw measure dividing lines. Also draw measure numbers.

backPaqe. setColor (new Color (100, 100, 100));

int measureNumber = start / measureSize + 1;

for [int i = measureSize — (start % measureSize); i < end + measureSize; i #= measureSize)
backPage.dvawLine(i, 0, i, height);
backPage.drawString("" + (measureNumber++}, i - meagureSize / 2, OFFSET - 2}

}
backPage.drawLine(0, OFFSET, widcth, OFFSET):

//Draw horizontal lines dividing view according to possible data values.
backPage. setColor{Color.black}:
for (int i = height; i > OFFSET; i -= scalar) {
backPage .drawLine (0, i, width, 1i);
}

if (repaintIcon} {
// A hack to get the icon to paint REALLY fast. :)
icon.paintIcon{label, label.gekGraphics(),
0, {innerPane.getSize(} . height - height} [2);

}

/**
* Create offscreen images, graphics contexts
* for the data graph.
*
f

public void setupBackBuffers(int width, int height) {
offscreenl = view.createImage {width, height};
innerPane.setBackground (Color.gray});
innerPane.setLayout {(new BorderLayout(]));
jinnerPane.add{label = new JLabel (icon = new ImageIcon{offscreent))., BorderLayout .WEST) ;

innerPane.validatel();

backPage = offscreenI.getGraphics();
backPage.setFont (new Font ("Serif®, Fonk.BOLD, 11));

}

,‘l'i-

* gets the variable at 'varnum' with the value. If redraw
* ig set, repaint the graph to reflect this change. This
* also updates the scrollbar's extent and position.

*/

public void setVariable(int var¥um, int value, boolean redraw) (
if {vardum == 0) {
int newPosition = 0;
if {(beatSize '= 0) {
newPosition = {scrollbar.getValue(} * value} / beatSize;

}
beatSize = value;
serollbar. setValues (newPosition, innerPane.getSizel) .width, 0, data.length};

}
if {redraw) { drawGraph{true); }

imporkt java.awt.*;
import jawvax.swing.?*;
impork javax.swing.event.*;

Pk .
* GraphFrame.java <p>

GraphFrame is an JInternalFrame that contains
a MusicGraph and a number of horizontal JSlider bars

to listen to.

@author Greg Cipriano
/

L R R

below it -- based on what values the MusicGraph wants

public class GraphFrame extends JinternalFrame implements Changelistener

private MusicGraph mg;
private int numSliders:
private Jslidexr[] sliders;

/**

* Construct the frame according to the given MusicGraph...

* pdd as many scrollbars as the graph has controllable variables,

* gquerying the graph for bhoth default values and the title for each.
*f

public GraphFrame {MusicGraph mg) {

super img.toString(), true, true, true, true);
this.mg = mg;

string[) optionsTitles = mg.getVariableTitles();
int[] values = mg.getDefauvltValues(};
JComponent view = mg.getViewl();

if {optionsTicles == null) {
// Here, no scrollbars are needed, so
// just make the frame hold just a scrollpane.
setContentPane (new JScrollPane{view});
} else {
numSliders = values.length;
sliders = new JSlider [numSliders];

JPanel options = new JPanel{};
options.setLayout {(new BoxLayout (options, BoxLayouk.Y_AXIS));
for (int i = 0; i < numSliders; i++) {

JLabel title = new JLabel (" " + optionsTitles([i] + =:
sliders{i]l = new JSlider (JSlider.HORIZONTAL, 1, 120, wvalues{il};

gliders[i].setMajorTickSpacing{10);
sliders[i].setPaintTicks{true);
sliders(i]).addChangelListener {this);
JPanel oneOption = new JPanel{);
onelpcion.setlayout (new BorderLayout());
oneOption.add{title, BorderLayout.WEST);
onefption.add{sliders(i], BorderLayouk.CENTER] ;
options.add{onelption) ;

)

JPanel content = new JPanel{};
content.setLayout (new BorderLayout());
content .add(view, BorderLayout.CENTER);
content.add{options, BorderLayout.SOUTH) ;
setContentPane (content);

}

/*i
* Listen to a change in the slider bar, updating the
* MusicGraph to that change.
*f

public void stateChanged{ChangeEvent e} (
Object source = e.getSourcel);
for {(int i = 0; 1 < numSliders; i++) |
if (source == slidersfi)} {
mg.sebVariable (i, sliders[i).getValue(), true);
}

imporkt java.ukil.*;
import javax.sound.midi.*;

/*i

* GroupAnalyzer.java <p>

x

* Manages a group of songs {Songhnalyzers), providing analysis
* on these. This class provides facilities to add and remove

* gonghnalyzers from its internal Vector, and also has various
* methods which provide analysis cepabilities above that provided
* by the base Analyzer class.

¥

* @author Greg Cipriano

*/

public class GroupAnalyzer extends Analyzer {
private String groupName;
private Vector songhnalyzers = new Vector(}:
private Notel] notes;

,*i

* Jpitializes a GroupAnalyzer, which must have a name
* and which initially contains no SongAnalyzers.

*/

public GrouphAnalyzer{String name) { setiName (name};)

/*i

* Changes the name of this Group. When this Grouphnalyzer
* ig placed in a JTree, this name is whab appears in the
* tree's view.

*/

public void setName{String name} { groupName = name; }

f*i'

* Returns a boolean as to whether this group contains
*+ at least one active song (a song with at least one
* active track}.

*/

public boolean containsChildren{) {
for (int i = 0; i < songAnalyzers.size(); i++) (
if ({{SongAnalyzer) songAnalyzers.elementAt(i)) .containsChildren()) {
return true;
}

return false;

}

,**

* padds a Songhnalyzer to this objects vector.

+ This should invalidate the notes, requiring them to be
* rebuilk.

*/

public void addSonghAnalyzer {SongaAnalyzer sa) {
songhnalyzers.add(sa);
sa, setGroupAnalyzer {this);
invalidatce{};

}

[**

* Removes a SongAnalyzer to this objects vector. It
* ga is null, nothing should happen. Otherwise, this
* ghould invalidate the notes, requiring them to be
* yebuilb.

*/

public void removeSongAnalyzer {(Songanalyzer sa) {
songAnalyzers.remove{sa) ;
invalidatel();

)

,**

* Called to force Note array to be recomputed the next
* gime it's accessed.

*f

protected void invalidate() { notesInvalid = true; }

I**

* Construct a Note array if necessary by gathering up

*+ a1l the notes referenced by all Songhnalyzers underneath
* this Grouphnalyzer.

*f

public Note[] getNotes() {
if (notesInvalid) {
int totallLength = 0;
int counter = 0;

for {(int i = 0; i < songAnalyzers.sizel(); i++) {
totalLength += ({SongAnalyzer) songAnalyzers.elementAt(i)).gecNumNokes({}:

}

if (totalLength == 0) [
notes = null;
return notes;

notes = new Note[totalLengthl;

for {int i = 0; i < songAnalyzers.size()}; i++) {
SongAnalyzer sAnal = (Songhnalyzer) songAnalyzers.elementAt({i);
Notel]l n = sAnal.getNotes{};
int numNotes = sanal.getNumMotes({);
for {int j = 0; j < numNotes; j++) (
notes[councer++] = nljl;
}
}
Arrays.sort{notes):; // Make sure the notes are in
f/ order of bime.
notesInvalid = false;
)]
return notes;

}

public String toString{) { return groupName; }
public String getFullTitle() { return "Song Group: " + toString(); }

/i*
* A GroupAnalyzer shouldn't play a song... it'd just be a mess.
* S0 return null.
*/

public Sequence getSequence() { return null; }

!‘ki
* Return the standard deviation between the mean pitches
* in all SongAnalyzers underneath this Groupanalyzer.
=/

pulrlic int gecGroupMeanPitchbDeviation{) (
int sumPitch = 0;
for {int 1 = 0; i < songAnalyzers.size{); i++) {
sumPicch += {{SongAnalyzer) songAnalyzers.elementAt(i}).getMeanPitch{):
}

double preciseMean = {double) sumPitch / {double) scongdnalyzers.size();
double devSum = 0;
for {int i = 0; i < songAnalyzers.sizel); 1++) {
devSum += Math.powl((double) {(SongAnalyzer) songAnalyzers.elementhAt(i)).getMeanPitch()
- preciseMean, 2);
)
return {inkt) Math.sqrt(devSum / (songAnalyzers.sizel() - 1)};

import java.awt.*;
import javax.swing.*;

,**

* IntervalFregGraph.java <p>

*

* Draws a graph representing the number of times

* pach interval occurs throughout the song, starting on

* the left with a unison, and working right towards larger
* intervals.

*

* @author Greg Cipriano

*

h

public class IntervalFregGraph implements MusicGraph (
private Analyzer analyzer;
private JPanel view;
private final int noteWidth = 5;
private final int PREFERREDHEIGHT = 200;
private final int OFFSET = 30;

Ii-*

* Empty conscructor. Doesn't set up anything. Used when an
* gbject class is needed.

*f

public IntervalFreqGraph() {}

I'k*

* Real constructor... takes an Analyzer, and sets up
* the panel that will soon be drawn upon.

*f

public IntervalFreqGraph{Analyzer a} (
analyzer = a;
analyzer.analyzeNotes();
view = new JPanel();
view.setPreferredSize {new Dimension{
{a.getLargestInterval{) + 2} * noteWidch, PREFERREDHEIGHT + OFFSET}) ;

}

Ii-j-

* Returns the title of this graph, using the
* shortened version of the aAnalyzer's title.
xf

public String tostring{} { return "IntFreq: * + analyzer.toString();)

,*i’
* Factory for creating IntervalFregGraphs.
*/

public MusicGraph createMusicGraph(Analyzer a) {
return new IntervalFregGraphia);
}

public Stringl) getVariableTitles() { réturn null; }
public int[] getDefaultValues({) { return null;)}
public JComponent getView() { return view;)

/*i
* Actually draw the graph. First interval counts
* gre fetched from the analyzer, then statistics
* needed to scale the data are also fetched. Graphics
* gontexts and images are created, then drawn upon.
*/

public void drawGraph(boolean repainticon} (
int[] intervalCount = analyzer.getIntervalCounts({};
int largestInterval = analyzer.getLargestInterval();
int counkOfMostFrequentInterval = analyzer .getCountOfMostFrequentInterval () ;

int width = view.getSize() .width;
int height = view.getSize() .height;
float scalar = (float) {height - OFFSET) / countOfMostFrequeniIntexval;

// Set up graphics contexts —- once, since drawGraph() is only
/i ever called once.

Image offscreenl view.createImage (width, height);

Graphics backPage = offscreenI.getGraphicsi);
backPage.setColor{Color.white);

backPage.fillRect {0, 0, width, height);

/7 Tf interval counts are high, reduce the number of times
// interval lines are drawn.

int step = 1;
if (counktOfMostFrequentInterval > 50) { step = 10; }
if (countOfMostFrequentinterval > 200) { step = 50; }

// Draw horizontal inkerval lines across graph

backPage.setColor {new Color {200, 200, 200));

for (int i = 1; i < countOfMostFrequentInterval; i += step) {
int h = height - OFFSET - {int) (i * scalar);
hackPage.drawLine{0, h, width, h);

}

// Now draw the data
backPage.setColor (Color.red);
for (int i = 1; i <= largestInterval; i++) {
int h = (int} (intervalCountl[i] * scalar);
backPage. fillReck (nokeWidth * (i + 1), height - OFFSET - h,
noteWidth - 1, h);
}

// Draw the lines and numbers on bottom.

backPage.setColor{Color.black) ;

backPage.drawLine{0, height - OFFSET, width, height - OFFSET};

backPage.setFont (new Font("Serif®", Font.BOLD, 11)}};

int ogctave = 0;

for {int i = 0; i < width; i += 12 * noteWidth) {
backPage.drawl-ine(i, height - OFFSET, i + 7, height - 8};
backPage.drawLine{i + 7, height - 8, i + 12, height - B};
backPage.drawString(** + {(loctave++) * 7), i + 15, height - 5};

}

// And finally lay everything out
view.setLayoult {new BorderLayout()};
view.setBackground(Color.gray);
view.add{new JLabel {new ImageIcon{offscreenI)), BorderLayout.CENTER);
view.validate({};
}

lt*
* getVariable does nothing here, since there are no
* yariables to change.
*f

public void setVariable(int varNum, int value, boolean redraw) {}

import java.io. File:
imporkt javax.swing.filechooser.*;

Ii*

* MidiFilter.java <p>

*

% an extension of FileFilter to make the dialog
* box ignore files other than those ending with *mid".

*

* @author Greg Cipriano

*/f

public class MidiFilter extends FileFilter (

j**
* Update accept({File} to filter Files out if
* they don't conform to the *.mid
* pattern.
*f

public boolean accepti{File £} {
if{f 1= null) ([
if (f.isDirectory{)) { return true; }

String extension = °";
String filename = £.getName{)};
int i = filename.lastIndexOf£('.'};
if{i>0 && i<filename.length(}-1) {
extension = filename.substring(i+l).toLowerCase(};

return (extension.equals{"mid")};

rTerturn false:

}

public String getDescription() {
return "Midi files {*.mid}";

import java.awk.*;
import javax.swing.*;

*

/
MusicGraph.java <p>

An interface to a graph, including the most important
functions that a graph must support.

* * ¥ ¥ * % * %

Qauthor Greg Cipriano

~

public interface MusicGraph {

/*1’
* Should return a string representation of the Graph,
* Declared here to force this behaviour.
=/

public String toString();

/i*
* A factory method allowing any subclass to automatically
* create MusicGraphs of its type upon reguest.
*/

public MusicGraph createMusicGraph{Analyzer a};

/**
* Rebturns an array of Strings representing the titles for
* yariables... these will appear at the bottom of the frame tchis
* graph is placed in (if not nulil).
*/

public Stringl) getVariableTitles{);:

/**
* Gets the default values associated with each variable.
* This array must be the same length as the array returned by
* getvariableTitles{).
*/
public int{] getDefaultValues();
,ti’
* Return the JComponent that will be placed in the frame.
*/
public JComponent getView();
/ii’
* Draws the graph onto the view, optionally repainting.
*/
public void drawGraph{boolean repaintIcon) ;
/**
* Sets a variable (represented by varNum) to value. If redraw is true,

* drawGraph() will also be called to update the view to the change.
*/

public void setVariable(int varNum, int value, boolean redraw}:

impork jawvax.sound.midi.*;

,i*
* MusicPlayer.java <p>
*
* MusicPlayer performs one task: it allows a controller {(MidiStat.java)
* to start, stop, pause and resume a MIDI file player -- called sequencer.

* JMF takes care of all the details.
*
* @author Greg Cipriano
*

Sy

public class MusicPlayer implements Runnable {
private Thread thread;
private Sequence sequence;
privakte Sequencer sequencer;
private boolean songDone = false;
private boolean paused = false;

,**

* Construct the Music player, creating a sequencer, and registering
* the given SongEndedListener's inktentiocn to listen to MetaEvents

* generated by the current sequencer.

*/

public MusicPlayer (SongEndedListener sel) {
try {
sequencer = MidiSystem.getSeguencer(};
sequencer .addMetaEventListener (sel) ;
} catch (MidiUnavailableException e} {
¢.printStackTrace{);
System.err.println{"Bad news... no MIDI!"};

]

/*i

* Entry point for the song playing Thread. This starts
* the sequencer playing.

®/

public void run() {
if {sequence i= null) {
sequencer.start{);
}

}

/**
* Starts the song playing, stopping a previous song if it
* was either playing or paused.
*/

public void start(Analyzer m) {
if (!songDone) { stopll; }

try {
sequence = m.getSequencel);
if (sequence != null) {

sequencer.openl};
sequencer . setSeguence { sequence) ;
songhone = false;

thread = new Thread{this);

thread. secPriority {Thread.MA¥X PRIORITY);
thread.start(};

} catch {Exception e} {
e.printStackTracel);
System.err.printin("Can't Start..."};

}

/*i’
* Pause the currently playing song (if any).
x/

public void pause{) f
if (sequence !'= null) {
sequencer.stop(};
}
}

j*i
* Resume the currently paused song.
&

public void resume() {

if [sequence !'= null} {
sequencer.start{};
)

}

Iii
* Stop the song, if it was playing. This also nullifys

* both the sequence itself and the thread dedicated to playing it.
*f

public void stop() {
if (thread != null) {
thread.interrupt (};
}

thread = null;

seguence = null;

if {sequencer.isOpen(}) {
sequencer.sktop(};
gsequencer.claosel();

}

songbone = true;

import java.util.?*;

I'i'*

* Note.java <p>

*

* An object representing one note, which

* has a starting time, duration, velocity and pikch.
k3

* @aukthor Greg Cipriano

*

~

public class Note implements Comparable {

/** Fach note in a standard octave as a string */
private final static String(} notes = { "C*", "C#", "D",
I!Ebl' IE!I’ IF!, IF#H' IGII' IAbI‘ .A.; lel‘ -Bl);

/** A good place to keep precomputed angles */
private static double[) directions;

/** The time when this note comes on {in beats) */
private float timeOn;

/** How long this note sounds (in beats} */
private float duration;

/** How hard this note was hit */
private int wvelocity;

/%* The pitch (represented as an int} */
private int pitch;

f/ Initialize the directions array... This just sets
// up 12 evenly spaced points (X, y) around the
/4 unik circle
static {
directions = new double(24];
for {(int i = 0; i < 6; i++) |
double angle {(double)} {Math.PI * i) / 6;

directions[2 * i] = Mach.cos(angle);
directions[2 * 1 + 1] = -Math.sin{angle);
directions[2 * i + 12} = ~directions[2 * i];
directions[2 * i + 13} = -directions[2 * i + 1];
}
}
/i‘*

* Construct a note, started at time t, of duration d,
* yelocikty v and pitch p.
*/

public Note(float t, float d, int v, int p) {
timeOn = k;
duration = d4;
velocity = v;

pitch = p;
}
!**
* Returns the time this note came on.
*/

public float getTimeOn() { return timeOn; }

l**
* Returns how long this note is.
*f
public float getDuration() { return duration; }

/t* .
* Returns when this note ends.
*7

public float getTimeOff() { return timeOn + duraktion;)

/ii
* Returns this note's piktch.
*/
public int getPitch() { return pitch; }

Ii*
* Returns this note's velocity [loudness).
=/

public int getVelocicy(} { return velocity; }

I**
*+ Tmplements compareTo() in the comparable interface (Makes sorting work).
* This is implemented so that the note's start time sets up its

* reolative order.
*7

public int compareTo(Object o} {
Note n2 = (Note) o;
if (timeOn < n2.getTimeOn()} { return -1; }
else if (timeOn > n2.getTimelOn{)) { return 1; }
else { return 0; }

}

/*i
* A string representation of this note. <P>
* Returns: timedOn + * " + duration + " " + getNote() + " " + wvelociky
*/

public String toString{} {
return {(timeOn + " " + duraticn + " " + getNote() + " " + velocity);
}

/**
* Equivalent to calling Note.toNote(this.pitch);
*/

public String getNote{) { return Note.toNote{pitch); }

!**
* adds the vector representing this note to the
* given array in place.
*/

public void addVector{double(]) array. double scalar} (
int p = {{piktch % 12 + 7} * 7} % 12;
array(0] += {double} duration * scalar * Note.directicns[2 * p];
array[1] <= {double} duration * scalar * Note.directions[2 * p + 1];

}

/**
* Equivalent to calling Noke.toNote{pitch, false)
*/

public static String toNote{int pitch) {
return toNote{pitch, true);

}

I*i
* Converts the given pitch into a String representing this note.
* For example: 60 == "C5", 88 == "G#5", etc.

* If returnOctave is true, append the octave to the end of the string.
*7

public static String coNote{int pitch, boolean returnOctave) {
String r = Note.notes[pitch % 12};
if (returnOckave)
return ¥ + picch / 12;
} else {
return r;

}

import java.awkt.®;
import javax.swing.*;

*»

NoteFreqGraph.java <p»

Draws a graph representing the number of times
each pitch was played, starting at the lowest
note contained in the Analyzer on the left
and moving towards the highest on the right.

@author Greg Cipriano

L B A B

S

public class NoteFregGraph implements MusicGraph {
private Analyzer analyzer;
private JPanel panel;
private final int OFFSET = 30;
private final int PREFERREDHEIGHT = 200;
privacte final int noteWidth = 5;

/*i

* Pmpty constructor. Doesn't sekt up anything. Used when an
* object c¢lass is needed.

7

public NoteFregGraphi) {}

/ii

* Real constructor... takes an Analyzer, and sets up
* the panel that will soon be drawn upon.

*/

public NoteFreqgGraph{aAnalyzer a} {
analyzer = a;
analyzer.analyzeNotes({);
panel = new JPanel{};
panel.setPreferredSize (new Dimension(
{analyzer.gectRangel) + 2} * noteWidth, PREFERREDHEIGHT + OFFSET)};

}

/ti
* Returns the title of this graph, using the
* ghortened version of the Analyzer's title.
>/

public String toString{) { return *"NoteFreq: " + analyzer.toString(); }

/i*
* Factory for creating NoteFregGraphs.
*f

public MusicGraph createMusicGraph(Analyzer a} (
return new NoteFreqgGraph(a)
}

public String[] getVariableTitles() { return null; }
public int[] getDefaultValues{) { returm null; }
public JComponent getViewl} { return panel; }

,**

* Actually draw the graph. First note frequency counts
* are fetched from the analyzer, then statisktics

* needed to scale the data are also fetched. Graphics
* conktexts and images are created, then drawn upon.

*/

public void drawGraph{boolean repaintIcen) (
int[] noteCount = analyzer.getNoteFrequencies();
int highCount = analyzer.getCountOfHostOftenSoundedNote(};
int lowestNote = analyzer.getLowestNote();

int width = panel.getSizel) .width;
int height = panel.getSize{).height;

// Create graphics contexts and the offscreen image
Image offscreenl = panel.createImage (width, height);
Graphics backPage = offscreenl.getGraphics(j;
backPage.setColor(Color.white);

backPage.fillRect (0, 0, widkth, height);

/7 aActually draw the data
backPage.setColor (Color.red) ;
float scalar = (fleat) (height - OFFSET} / highCount;
for {int i = 0; i < noteCount.length; i++} {
int h = (ink) (noteCountl[i] * scalar};
backPage . fillRect {noteWidth * {i + 1), height - OFFSET - h,
noteWwidth - 1, h);

// Draw the lines and note names (the C's of each scale)

// on the bottom

backPage.setColor{Color.black) ;

backPage.drawLine (@, height - OFFSET, width, height - OFFSET);
backPage.setFont{new Font{"Serif", Font.BOLD, 11}};

// Find the position of the lowest C relative to the lowest note.

int lowestC = ({13 - lowestNokte % 12) % 12) * noteWidth;

int lowestOctave = lowestNote /7 12 + 1;

for (int i = lowestC; i < width; i += 12 * noteWidth} {
backPage.drawline{i, height - OFFSET, i + 7, height - 8};
backPage.drawline(i + 7, height - 8, i + 13, height - 8j;
backPage.drawString(*C" + (lowestOctave++), i + 15, height - 5);

H

// Pinally lay out and components
panel.setLayout {new BorderLayout()};
panel.setBackground (Color.gray) ;
panel .add {new JLabel {(new ImageIcon(offscreenI)), BorderLayoukt.CENTER) ;
panel .validate();

H

,**

* getVariable does nothing here, since there are no

* yariables to change.
xJ

public void setVariable(int varNum, int value, boolean redraw} {}

import java.awt.¥®;
impork javax.swing.*;
import javax.swing.table.*;

It*

* NoteListFrame.java <p>

k4

+ NoteListFrame uses a JTable to show a list of all notes in the song,
* ordered by time of occurrence in each row. Columns are the properties
* of a note: time on, duration, pitch and velocity.

&

* @auchor Greg Cipriano

*f

public class NoteListFrame extends JInternalFrame {

/:I-*

* Constructs the frame, setcing up all of the cells of the
* JTable, adding that table to a scroll pane and that pane
* to the frame itself.

¥

public NoteListFrame{Analyzer a) {
super{a.getFullTitle() + "3 Note List", true, true, true, truej;
Notel] notes = a.getNotesl();
Seringl[) [] columnValues = new Stringinotes.lengthl] {41;
for (int i = 0; i < notes.length; i++} {
String timeOn = {{int} notes(i] .getTimeon{) / 4 + 1) +
+ {notes[i] .getTimeOn(} % 4 + 1);

columValues|[i] (0] = timeOn;

Float.toString(notes[i].getDuration(});
Note. coNote{notes[i] .getPitch{});
Integer.toString(notesli].getVelocity()];

columnValues (i) [1]
columnValues[il [2]
columnValues (i) {3]

I n

)
sebContencPane {new JScrollPane(createTable(columnValues))];

setPreferredSize{new Dimension{450, 300));
pack();
}

li*
* Creates a JTable with the entries denoted by columnValues and the
% ecolumn headers: "Time On*, "Duration”, "pitch" and "Velocity.

+ Other parameters -- including making it vneditable, and
* making the TableModel specific -- are added to this JTable.
*}

private JTable createTable{final String[]i] columnvValues) {

final String[) columnNames = { "Time On {M:B}", "Duration", "Pitch",

TableModel dataModel = new AbstractTableModel ()
public String getColumniame (int col) {
return columnNames[coll;
}

public int getColumnCount () (rekturn columnValues (0] .length; }
public int getRowCounk {) { return colurmValues.length; }
public boolean isCellEditable(int row, int col) { return false;
public Cbject getValueAt (int row, int col) {

return columnValues([row]} {coll;

}
}i
JTable table = new JTable{dataModel};
recurn table;

}

*Velocity"

}:

import java.awt.*;
import java.awt.evenkt.*;
import javax.swing.*;

,**

* PiancRollGraph.java <p>

@

* pianoRollGraph is a scrollable graph that shows the music
* in a form similar to an old-fashioned player pianoc roll.
* The roll puts the lowest notes at the bottom, with higher
* notes above. For ease of identification, the 'C' in each octave
* is colored gray in the background.

£l

* @author Greg Cipriano

=f

public class PianoRollGraph extends ScrollBarGraph {
private final String() titles = { "Beat Length" };
private final int[) defaultValues = { 30 };
private final int PREFERREDWIDTH = 500;
private final int NOTEHEIGHT = 3;
private final int OFFSET = 12;
private int beatSize;
private Analyzer analyzer;
private JPanel view;
private JPanel innerPane;
private Image background;
private Image offscreenI;
private Graphics backPage;
private Notel] notes;
private JLabel label;
private ImageIcon icon;

li’i

* Empky constructor. Doesn't set up anything. Used when an
* object class is needed.

4/

public PianoRollGraph{} (}

lii
* Real constructor. Takes an Analyzer, and sets up the
* yview's scrollbar and panel.
=

public PianoRollGraph({analyzer a) {
analyvzer = a;
analyzer. analyzeNotes();
notes = analyzer.getNotesl();
innerPane = new JPanel();
innerPane.setPreferredsSize (new Dimension{PREFERREDWIDTH,

(analyzer.getRange(} + 3)

innerPane.addComponentListener (this) ;

scrollbar = new JScrollBar{JScrollBar .HORIZONTAL} ;
setVariable{0, defaultValues[0], false);

view = new JPanel {new BorderLayoub{)};
scrollbar.setBlockIncrement {PREFERREDWIDTH - 20);
scrollbar.addAadjustmentListener {this};
view.add{innerPane, BorderLayouk.CENTER};
view.add({scrollbar, BorderLayout.SOUTH) ;

}

,*t
* Pactory for creating PianoRollGraphs
*f

public MusicGraph createMusicGraph({Analyzer a) {
return new PianoRollGraph(a);
}

/**
* Returns a string representation of this PianoRollGraph.
*f

public String toString() {
return analyzer.getFullTitle() + =: Piano Roll";

}

public String[] getVariableTitles{) { return titles; }
public int[] getDefaultValues(} { return defaultValues; }
public JComponent getView() { return view; }

/**
* Implements drawGraph{)} in the MusicGraph interface
* to draw the Piano Roll. Here, if the offscreen buifer

* hasn'tc been seb up yet, do that, too.
*/

public void drawGraph(boolean repaintIcon) {
int width = innerPane.getSize{).width;

* NOTEHEIGHT + OFFSET)};

int height = (analyzer.getRangel() + 3) * NOTEHEIGHT + OFFSET; // height of piano roll
int start = scrollbar.getValue():

int end = start + width;

int lowestNote = analyzer.getLowestNotel(};

// Set up the back buffer if necessary, making it the size of

// the screen, so if the frame holding this graph is resized,

/4 it's still big enough.

if (offscreenI == null) {
int screenWidth = Toolkit.getDefaultToolkit() .getScreenSize().width;
setupBackBuffers{screeniidcth, height);

backPage.drawimage (background, 0, 0, view};

// 4 quarter-notes per measure
int measureSize = 4 * beatSize;

// draw measure numbers and lines

backPage.setColor{new Color (100, 100, 100}};

int measureNumber = start / measureSize + 1;

for (int i = measureSize - (start % measureSize); i < end + measureSize; i += measureSize)
backPage.drawLine{i, 0, i, height);
backPage.drawString("" + (measureNumber++), i - measureSize / 2, OFFSET - 2);

}

// Now draw all of the notes as red bars
backPage.setColor {Color.red};
for (int i = 0; i < notes.length; i++) {
int starcTime = {int} {notes[i].getTimeOn(} * beatSize};
if (startTime < end) {
int length = {int) {notes([il.getDuraticn() * beatSize);
int endTime = startTime + length - start;
if (endTime > 0) {
int h = height - {notes(i).getPitch() - lowestNote + 2} * NOTEHEIGHT;
startTime = (startcTime < stark} 7 0 : startTime - start;
length = endTime - startTime;
backPage.fillReckt (startTime, h, length, NOTEHEIGHT);

}
} else {

i = notes.length;
}

}

if {repaintIcon) {
// B hack to get the icon to paint REALLY fast. :)
icon.paintIcon(label, label.getGraphics{}.
0, (innerPane.getSizel().height - height) / 2);

}

li-*

* Create the graphics contexts and images necessary to draw

* this graph. This includes predrawn note-separating lines, as
* well as the more ordinary double-buffering images.

*f

public void setupBackBuffers(int width, int height) {
offscreenl = view.createImage {width, height};
innerPane. setBackground({Color.gray):
innerPane.setLayout (new BorderLayout(});
innerPane.add{label = new JLabel (icon = new Imagelcon(cffscreenI)), BorderLayout.WEST);
innerPane.validate({);

backPage = offscreenl.getGraphicsl();
backPage.setFont (new Font("Serif", Font.BOLD, 11}};

background = view.createImage{width, height);
Graphics bg = background.getGraphics{};

bg.setColor {Color.white) ;
bg.£illRect (0, 0, width, height);

// Paint the lines separaking each note

bg.setColor (new Color (140, 140, 140));

for (inkt i = OFFSET; i < height; i+= NOTEHEIGHT} {(
bg.drawlLine (0, i, width, i};

]

// Paint the gray bars representing the 'C's for each octave
bg.setColor (new Color{220, 220, 220});

int lowestNote = analyzer.getLowestNoted);

int low = lowestNote % 12;

int lowestC;

if {low == 0} (

// C is the lowest note... special case
lowestC = height - 2 * NOTEHEIGHT:
} else {

lowestC = height - (14 - lowestNote % 12) * NOTEHEIGHT;
}
for (ink i1 = lowestC; i > OFFSET; i -= 12 * NOTEHEIGHT) {
bg.£fillRect (0, i, width, NOTEHEIGHT):

)

/**
* Sets Lhe variable at 'varnum' with the value. If redraw
* is set, repaint the graph to reflect this change. This
* also updates the scrollbar's extent and position.
*/

public void setVariable(int varNum, int wvalue, boolean redraw)
if (varNum == 0) {
int newPosition = 0;
if {beatS8ize != 0) {
newPosition = {scrollbar.getValuel) * value) / beatSize;
}

beatSize = value;
int songLength = (int) (analyzer.getSongLength() * beatSize);
scrollbar.setValues (newPosition, innerPane.getSize().width, 0, songLength);

}
if (redraw) (drawGraph({true});)

frx

*
*
*
*
E
*
*

*/

PitchCountGraph. java <p>

A variant of a data graph who's data is

the number of pitches playing per time period
[{sampled according to the value of the JSlider).

@author Greg Cipriano

public class PitchCountGraph extends DataGraph (

/*i

* Empty... does nothing.
*/

public PitchCountGraph(} ()

,'k"

* The maximum value this graph can attain is
* gtored in a.getMaxSimultaneousVoices()

*f

public PitchCountGraph (Analyzer a) {
super{al) ;
maxValue = analyzer.getMaxSimultaneousVoices();

}

/‘l-i'
* A PitchCounktGraph factory.
*/

public MusicGraph createMusicGraph{Analyzer a) {
return new PiktchCountGraph(a);
}

ji*

* Return a string representation, so the frame this
* graph is placed in can be titled correctly.

*/

public String toString{}
return analyzer.getFullTitle{) + ": Piktch Counts®;
1

/t*

* Extends the setVariable() method to reanalyze voice density
* data due to a change in sampling frequency.

=/

public void secVariablelint varNum, int value, boolean redraw) {
if (varNum == 0} {
data = analyzer.getVoiceDensity(value);
super.setVariable (varNum, value, redraw);

/"i

* pPitchRangeGraph.java <p>

&

* p variant of a data graph who's data is

* the range formed by simultaneously playing pitches.
* {sampled according to the value of the JSlider}.
* This range is, of course, 0 if only one pitch is
playing in any given sample.

+

* @author Greg Cipriano

=/

public class PitchRangeGraph extends DataGraph {

/"i’
* Pupty... does nothing.
*/

public PitchRangeGraph{) (}

/**

* The maximum value this graph can attain is
* gtored in a.getRangel()

*/

public PitchRangeGraph{hAnalyzer a) (
super{a};
maxValue = analyzer.getRange();
}

/*i
* A PitchRangeGraph factory.
=

public MusicGraph createMusicGraphiAnalyzer a) {
return new PitchRangeGraph{a}l;
}

l**
* Return a string representaktion, so the frame this
* graph is placed in can be titled correctly.
=/

public String toString() {
return analyzer.getFullTitle() + ™: Pitch Range";
}

/*i

* Extends the setVariablel) method to reanalyze pitch range
* data due to a change in sampling frequency. :
*/

public void setVariable(int varNum, int value, boolean redraw)
if {varhNum == 0} {

data = analyzer.getPitchRange{value, false};

super.setVariable {varNum, wvalue, redraw);

impork java.awb.*;
imporkt java.awt.event.*;
imporkt javax.swing.*;

,i*

* ScrollBarGraph.java <p>

*

* An abstract type of Music Graph that fills in the basic
* framework for suppoerting a scrollbar and the events

%= that go along with it.

&

* @aulthor Gred Cipriano

x

~

public abstract class ScrollBarGraph implements MusicGraph,
AdjustmentListener,
ComponentListener {
protected JScrellBar scrollbar;

/**
* Fired from the scrollbar. Just redraw the graph to reflect the change.
*7

public void adjustmentValueChanged{AdjustmentEvent e} { drawGraph(true); }

I**

* Called whenever the view is resized. This readjusts the scrollbar,
+ and calls for a redraw (but not repaint, since resizing a window
* will automatically call for a repaint.)

=/

public void componentResized{ComponentEvent e} {
scrollbar.setValues{scrollbar.getValue({},
{ (Component) e.getSourcel)).getSize() .width,
0,
scrollbar.getMaximum{()}]} ;
drawGraph{false);
}

public void componentHidden {ComponentEvent e} (}
public void componentShown (ComponentEvent e) {}
public void componentMoved (ComponentEvent e) {}

/ir*

* Force subclasses to deal with back-buffers in a
* homogenous way. This method is where they should
* create graphics contexts and images needed

* for a refreshable scroll pane.

*7

public abstract void setupBackBuffers{int width, int height};

import java.io.*;
import java.util.*;
import javax.sound.midi.*;

,i‘k

* SongAnalyzer,java <p>

+*

* A SongAnalyzer is represents an individual song,
* and contains as many TrackAnalyzers as that song
* contained tracks [(with valid notes).

*

* @author Greg Cipriano

*7

public class SongAnalyzer extends Analyzer {
private int midiType;
private int numTracks = 0;
private Groupanalyzer group;
private Seguence song;
private String fileName;
private Vector trackhnalyzers;
private Note(] notes:
private Vector metaData = new Vector(}:

lir'l-
* Entry point for testing this class.
*7

public sktatic void main{stringl] args} {

try {
SongAnalyzer m = new SongAnalyzer{new File(args[0]));
m.printMessages{);
m.prinkNotes{);

} cactch(Exception e} {
e.printStackTrace{);
System.out.println("Invalid File: " + args[0) + "!*);

}

,'!ri'

* Constructor for a Song Analyzer... takes in a (hopefully valid)
* file name and builds up all tracks.

*7

public SongaAnalyzer(File £} {
if (f = mull) {

try {
song = MidiSystem.getSequencel(f);
fileName = f£.getName();
midiType = MidiSystem.getMidiFileFormat(f) .getTypel();
addTracks (song.getTracks());

} catch {InvalidMidiDataException e) { e.printStackTracel(); }

catch (IQFxception e} (e.printStackTrace({};)}

}

public String toString({) { return fileName;)
public String getFullTitle() { return fileName; }

f** .
* Return the tracks (TrackAnalyzers} contained in this SongAnalyzer.
=/

public Vector getTrackanalyzers() { return trackanalyzers; }

I**

* A convenience method that returns how many tracks this song
* conktains...

*7

public int getNumTracks(} {
return getTrackaAnalyzersi).sizel(};

)

I**

* Returns the sequence contained in the File passed inkto this
* SongAnalyzer.

*f

public Sequence getSequence{) { return song;)}

,*i’
* Let this SongaAnalyzer know which group it's contained in,
* just in case it needs to tell the group about its status.
*}

public void setGroupAnalyzer (GroupAnalyzer g} { group = g; }

/*i
* Return all notes contained in all active trackanalyzers, lumped
* into one notes array and sorted according to start times.

*f

public Notel[l getNotes{) {
if {notesInvalid) {

int totalLength = 0;

int counter = 0;

for {int i = 0; i < getNumTracks(}); i++) (
Trackanalyzer thAnal = {Trackhnalyzer) trackAnalyzers.elementAt({i);
if (tAnal.getactive()) {

totalLength += (([Trackanalyzer) trackAnalyzers.elementAt(i)).getNumNotes();

}

}

if (totallength == 0} { return null; }
notes = new Note[totalLengthl;

for {int i = 0; i < getNumTracks{}; i++} {
TrackAnalyzer tAnal = {Trackinalyzer) krackinalyzers.elementAtb{i):;
if {caAnal.getActive()) {
Notel] n = tAnal.getNotes();:
for (int j = 0; j < n.length; j++) {
notes[counter++] = n(jl;
}
}
}
Arrays.sort(notes);
notesInvalid = false;
}
return ncktes;

}

l‘l'*

* Returns whether at least one of its tracks

* is active. This is a valid method because tracks
* always contain at least one note.

*/

public boolean containsChildren() {
for (int i = 0; i < getNumTracks(); i++) {
if ({{Trackanalyzer) trackAnalyzers.elementAt{i)).getActivel)} {
return true;
}

return false;
}

/**

* Called to force Note array to be recomputed the next
* time it's accessed.

*/

protected void invalidatef) {
notesInvalid = true;
group.invalidate(};

/**
* print debug info about this MIDI file.
*/

public void printMessages(} {
System.out.printin{"Midi Type: " + midiType):
System.out.println("Resolution: ® + song.getResolution()};
System.out.println({"Length (ms): " + song.getMicrosecondLength()};
float divtype = song.getDivisionTypel}:
if {(divtype == Seguence.PP)) {
System.out.println{"Division Type: PPQ"};
} else if (divtype == Sequence.SMPTE _24) {
System.out.println{"Division Type: SMPTE_24");
} else if (divtype == Seqguence.SMPTE_25) {
System.out .println{"Division Type: SMPTE_25");
} else if {(divtype == Sequence.SHMPTE_30) f
System.out.println{"Division Type: SMPTE_30%);
} else if (divtype == Sequence,SMPTE_30DROP) {
System.out.println{"Division Type: SMPTE_30DROP");
}
System.out.princln(});
Track[] t = song.getTracks();
for {int i = 0; i < t.length; i++) {
System.out .prinktln{"--——————— |+ i+t "}
int s = t[i).sizel();
for (int j = 0; J < s; j++) (
MidiEvent me = t[il.get{j};:
MidiMessage mm = me.getMessage();
long eventTime = me.getTick{)};

System.out .print (eventTime) ;

byte([] message = mm.getMessagel};
for (int k = 0; k < mm.getLength{); k++) (

System.ouk.print{* = + {int} (messagel[k] & OxFF)});
}
System.out.printlin(};
}
System.out.printin{};

}

Iii’

* Tell each contained TrackAnalyzer to print its notes out ko
* standard output (for debugging}.

*/

public void printNotes() {
for {int i = 0; 1 < getNumTracks({}; i++) {
{{Trackhnalyzer) trackPnalyzers.elementAt{i)}.printNotes():
System.out .printlni);

}

/ii

+ add all tracks into this SongAnalyzer. If midiType = 0, there
* is only one track, otherwise loop through them, calling

* createTrackAnalyzers on each.

&

* RAsea #oreateTrackanalyzers (Track)

*/

private void addTracks (Track(] t) throws InvalidMidiDataException {
if (midiType == 0) {
trackanalyzers = createTrackAnalyzers(cf0]);
} else if (midiType == 1) {
trackinalyzers = new Vector(});
int numfracks = t.lengtch;
for {(int i = 0; i < numTracks; i++) {
trackAnalyzers.addall (createTrackanalyzers{tl[il));

)
} else {

throw new InvalidHMidiDataException();
}

}

/i-ﬂ'

* Separate all tracks contained in the individual
* JMF Track, creating a new Trackanalyzer for each.
* This returns a vector containing them all.

*/

private Vector createTrackAnalyzers(Track t) {
float resolution = {float) song.getResolution{};

// Create 16 vectors, which can hold individual

{7/ tracks ferreted out of the one Track {not all

// will be used, though).

Vector[] v = new Vector[16];

for (int i 0; 1 < 16; i++) { v[i] = new Vectori); }

Vector noteOn = new Vector(};

int vel = 0;
for {(int i = 0; i < bt.size(); i++} {
// Get all info about this current event,
// including time, pitch, and various messages...
MidiFvent me = t.get[i};
long eventTime = me.getTick();
MidiMessage mm = me.getMessagel);
int eventType = mm.getStatus({) / 16;
int voice = mm.getStatus{) % 16;
byte(] message = mm.getMessagel);
int pitch = toInt (messagel(l]};
if {eventType == 9} {
vel = toInt(messagel2]);
}

// Add note on events, or deal with a note going off by
// creating a Note capturing this info.

it (vel !'= 0 && eventType == 9) {
noteln.add (new NoteOnEvent (pitch, voice, vel, eventTime});
} else if {eventType == 8 || {eventType == 9 && vel == 0}) (
for (int j = 0; j < noteOn.size(); j++) [
NoteOnEvent noe = {NoteOnEvent) noteOn.elementhAt (j);
if (noe.pitch == pitch && noe.voice == voice) {
float start = noe.time / resolution;
float dur = (eventTime - noe.time} [/ resolutiocn;
v([voice] .add{new Note{start, dur, noe.velocity, pitch}};
notedn.remove {noe) ;
j = noteOn.size{};

}
)]
} else if (eventType == 15) {

7/ Add metadata to a vector to give to trackdnalyzers.

// They then can use this information to reconstruct the correct
// tempo and (sometimes) the correct patch, as well as other

// miscellancous data.
metabData.add{me};

// Here, pitch is actually the metadata type... not pitch.
if (pitch == 89 && givenKey == null} [

// The MIDI file has encoded what it thinks the key is.

// First comes the key, in terms of the number of sharps and flats

// convert this to a noke value...

// Second comes the keys tonality (Major or Minor).
// Create a chord from this info.

int key = (int) (messagel3) * 7 + 96} % 12;

if {messagef(d] == 0} {

givenKey = new Chord{key, Chord.MAJ, 0, 0);
} else (

givenKey = new Chord(key, Chord.MIN, 0, 0);
}

}

// Now that all notes have been found, create TrackAnalyzers [or
// each non-empty Ltrack.

Vecktor r = new Vector();
for (int i = 0; i < 16; i++) |
if (vIil.size() > 0) (
Object{] o = v[il.toArrayl);
Note{] n = new Note[o.length];
for (int j = 0; § < o.length; j++) { n[j] = (Note) olj): 1}
Arrays.sort{n};
Trackanalyzer ta = new TrackAnalyzer(n, this, ++numTracks,
r.add{tal;
}
)
return r;

}

,1'1'
* Converts the signed byte contained in MIDI into an int
* that Java can more easily deal with.

*/
private int toTnkt{byte b} { return (int)(b & OxFF); }

1=

* A quick class/struct that is used for creating TrackAnalyzers.
* This does little more than encapsulate a NoteCn event.

*f

private class NoteOnFEvent [
public int pitch;
public int voice;
public int velocity;
public long time;

NoteOnEvent {int p, int v, int vel, long t} {
pitch = p;
voice = Vi
velocity = vel;
time = &;

metabatal;

impork javax.sound.midi.*®;

/ii

* SongEndedListener.java <p>

*

* A class listening in on the song. All this does at the

* moment is check on whether the song has finished playing.
* 1f so, MidiStat wants to know so it can update

* its menu items to reflect the new status.
*
*
Ed

@author Greg Cipriano
/

public class SongEndedListener implements MetaEventListener {
MidiStat midiStat;

public SongEndedListener (MidiStat ms) { midiStat = ms; }

/1\'*
* Called when a meta event occurs... if the type is 47, the song
* has just finished, so let the music analyzer know.
*/

public wvoid meta({MetaMessage m) {
if {m.getType{} == 47) {
midistat . songStoppad({) ;
}

impork java.awt.*;
impork javax.swing.*;
import javax.swing.table.*;

/

»

StatisticsFrame. java <p>

SratisticsFrame uses a JTable to show various statistical properties
of its given Analyzer. Further, if the analyzer is a GroupaAnalyzer,
several more statistics are performed that relate specificially to the

combined statistics of the

MWW A R * ¥ kKA

@author Greg Cipriano

~

group.

public class StatisticsFrame extends JInternalFrame (

,i’*

* Constructs the frame, setting up all of the cells of the l
* JTable, adding that table to a scroll pane and that pane

* to the frame itself.
*x/

public StatisticsFrame (Ana

super{a.getFullTikcle{) + ": Statistics®, true, true, true, true);

a.analyzeNotes{);

if (a instanceof GroupAnalyzer) {

String(][) columnVa
{

{
(
{
{
{
{
{
{

{
{

Integer.tcoString{

lyzer a) [

lues = { { "Number of notes:", Integer.toString{a.getNMumNotes()) },

*Range:", Integer.toString(a.getRange{)} + " notes" },

"Highest note:", Note.toNotela.getHighestNote{)} }.

*Lowest note:", Note.toNotela.getLowestiote()} 1,

I

"Mean Note:", Note.toNote{a.getMeanPitch{)) },

"sStandard pitch deviation {(from mean):", Integer.toSktring{
a.getsStdPiktchDeviation{)} + " notes" },

-I' L] }'

*Mean Note (weighted):", Note.toNote{a.getWeightedMeanPitchl)) 1],

"Standard pikch deviation (from weighted mean):",
Iinteger.toString{a.getWeightedsStdPitchDeviation{}) + " notes” },

II’ -]‘

"Most often sounded note:", Note.toNote(
a.gektMoscOftenSoundediote{}) },

"Number of times it sounded:*, Integer.toString({
a.getCountOfMostoftenSoundedNotel)) },

"Highest number of simultaneous voices:*,

a.getMaxSimultanecusVoices{)} },
l', nn }'
*Largest interval:®, Integer.toString(
a.getLargestinterval{}) + * notes" },
"Most frequent interval:", Integer.toString(
a.getMostFrequentInterval (}) + * notes® },
"Number of times it sounded:", Integer.toStringl
a.getCountOfMosiFrequentInterval ()} 3},
ll‘ L] }’
"Approximate Kevy:®, Note,toNotel
a.getKeyVector{), false} + " major" },
P !
"Mean pitch (per song) deviation:", I
Integer.toString (
{ {GroupaAnalyzer} a).getGroupMeanPitchbDeviation()) } };

setContentPane {new JScrollPane{createTable{columValues}));

} else {

o, ot ety

oy p—

—

string(]1[} columnValues = { (*Number of notes:*, Integer.toStringla.getNumNotes(}) }, '

"Range:", Integer.toString(a.getRange()} + * notes®]},
*Highest note:”", Note.toNote{a.getHighestNote(}) }.
"Lowest note:", Note.toNote{a.getLowastNote()) 1},
ll’ amn)'
"Mean Note:", Note.toNotela.getMeanPitch{)) },]
"Standard pitch deviation {from mean):", Integer.toStringl
a.getstdPitchDeviation{)) + * notes" },
om nh
’ r
"Mean Note (weighted):", Note.toNotela.gebtWeightedMeanPitch{}) }, |
*Standard pitch deviation {(from weighted mean):",
Integer.toString{a.getWeightedstdritchDeviation()) + " notes" }, (
Il' L] ',‘
"Most often sounded note:™, Note.toNobel
a.getMostOftenSoundedNotel)) 1}, !
"Number of times it sounded: ", Inkeger.toString(
a.gekCountOfMostOftenSoundedNote(}} }, I
"Highest number of simultaneous voices:",

Inkteger. toStringl

a.gecMaxSimultanecusVoicesi)) }.

e, mm oy,

*Largest interval:", TInteger.toString(|
a.getLargestInterval({)) + * notes" },

"Most frequent interval:", Integer.tcoString{
a.getMoscFrequentInterval()) + * notes™ },

"Number of times ik sounded:", Integer.toString(‘
a.getCountOfHMostFrequentInterval ()} },

e mnm }’

{ *aApproximate Key:", Note.toNete(
a.getKeyVector{), false) + " maj" },
{ "Key stored in file:", a.getGivenKey() } };
setContentPane (new JScrollPane{createTable {columnValues)}};
}
setPreferredSize{new Dimension (360, 260));

pack();

}

/ii
* Creates a JTable with the entries denoted by columnValues and the
* column headers: "Statistic® and "vValue". Other parameters —- including
* making it uneditable, and making the TableModel specific -- are
* added to this JTable.
*7

private JTable createTablel(final Stringl{][] columnvalues) {
final String(] columnNames = { *Statistic®, ®"Value®" }:

TableModel dataModel = new AbstractTableModel{) {
public String getColumnMName (ink col} |
return columiNames[col];
}

public int getColumnCount() { return columnValues(0].length; }
public int getRowCount{) { return columnValues.length; }
public boolean isCellEditable{int row, int col} { return false; }
public Object getValueAt{int row, int col) {

return columnValues(row] [col];
}

Yi ™

JTable table = new JTable(dataModel);
table.getColumnModel () .getColumn{l) . secMaxWidch(70);
return table;

import java.util.*;
import javax.sound.midi.*;

li*

* TrackhAnalyzer.java <p>

*

* p Trackanalyzer is the 'smallest' type of Analyzer. It contains
* only a single immutable track as both an array of Notes and

* a Java Media Frameworks Sequence.

*

* @author Greg Cipriano

*/

public class Trackdnalyzer extends Analyzer [

private boolean active = true;

private int trackNumber;

private Segquence Song;

private Seguence singleTrack;

private Notel) notes;

private Vector metabData;

private Analyzer parent;

l*i

* Construct a Trackhnalzer, giving it its notes, iks parent
* Analyzer and its track number.

*/

public TrackAnalyzer{Notel] n, Analyzer a, int number, Vector md} {
notes = n;
song = a.getSeqguencel);
trackNumber = number;
parent = aj;
metaData = md;

}
/=*
* Return its full title: "parentname -- trackname®
*/
public String getFullTitledl)
return parent.coString() + " -- ° + coString{);
}
,-k*
*+ Returns a short description of this track.
*/

public String toString{) { return "Track #" + trackNumber; }

/*i-
* Returns encapsulated notes.
*/

public Notel] getNotes(} [return notes; }

/i*

* Return the Sequence representing this track, creating one
* if necessary. This sequence is an abstraction of the MIDI
* sequence, and is required for the JMF to be able to play
* this track.

f

public Sequence getSeguence() {
if {singleTrack == mull) [
int resolution = song.getResolutionl);
try {
singleTrack = new Sequence{song.gethivisionTypel(},
resoluktion) ;
Track t = singleTrack.createTrack();

for (int i = 0; i < metaData.sizel); i++) (
t.add({MidiEvent) metaData.elementAt{i}):;
}

for (int i = 0; i < notes:length; i++) {
ShortMessage sml = new ShortMessagel(};
sml.setMessage [ShortMessage .NOTE _ON, 1,
notes[i) .getPitch{), notes(i].getVeleocity(});
long startTime = {long} {notes[i].getTimeOn(} * resolution);
MidiEvent start = new MidiEvent(sml, starcTime};
t.add{start);

ShortMessage sm2 = new ShortMessage();
sm2 . setMessage { Shortiessage .NOTE_OFF, 1,
notes[i].getPitch(}, notes[i]).geiVelocity{}};
long endTime = (long)
{(notes(i] .getTimeOfE£{))} * resolution};
MidiEvent end = new MidiEvenkt{sm2, endTime);
t.add{end};

]
} catch (InvalidMidiDataException e) {}

}

return singleTrack;

}

!**
* Ogverrides getGivenKey in Analyzer to provide
*+ the Song's key (instead of the track's).
*/

public String getGivenKey(} {(
return parent.getGivenKey(};
}

,ii
* Prints out all noktes in the track.
*/

public void printNotes() {
System.out.println{this);
for {int i = 0; i < notes.length; i++) {
System.out.println{notes(i]);
}
}

,**

* Sets whether or not this track should be
* included in its song's analysis.

*7

public void setActive({boolean b) {
active = b;
{ {SongAnalyzer) parent).invalidate{);
}

/**

* Retuvrns whether this track should be included
* in a song's analysis,

*/

public boolean getActive() { return active;)}

/=*
* Switch this track's active status.
*f

public void changedctive(} { setActive{'getActive()}; }

’i*
* Returns whether this is analyzable... always true.
=/

public boolean containsChildren{) { return true; }

import javax.swing.*;
import javax.swing.tree.*;
import javax.swing.event.*;
import java.io.File;

import java.util.*;

import java.awb.*;

import java.awkt.evenkb.*;

f**
* TreeManager.java <p>
*x
* TreeManager not only Manages a JTree and its associated Model (allowing only specific
* pperations), it also listens to mouse events from the former.
&
* @author Greg Cipriano
=/

public class TreeManager implements Mouselistener, MouseMotionListener {
private int newGroupCounter = 1;
private CustomJTree tree;
private CustomTrecModel treeModel;
private DefaultMutableTreeNode root;
private DefaultMutableTreeNode defaultGroup;
private DefaultMutableTreeNode lastParent;
private DefaultdutableTreeMNode originalParent;
private DefaultidutableTreeNode draggedNode;
private Toolkit toolkit = Toolkit.getDefaultToolkit(};
private boolean dragIsLegal = false; // true when a legal drag
// is happening
Ii*
* Constructs the this TreeManager, creating a new TreeModel,
* adding the root node and a default GroupAnalyzer. Listeners
* are added abt this point, too.
*/

public TreeManager({} {
rook = new DefaultMutableTreeNode("Groups®};
treeModel = new CustomTreeModel {(rooct}):;
defaul tGroup = addGroup("Default Group");

final CustomRenderer customRend = new CustomRenderer();

tree = new CustomJTree{treesModel);

tree.setlellRenderer (customRend) ;

tree.setFditable(true);

tree.setTnvokesStopCel lEditing (true) ;

tree.getSelectionModel () .setSelectionMode
{TraeSelectionModel .DISCONTIGUCUS_TREE SELECTION} ;

tree.setShowsRootHandles {true) ;

tree.addMouseListener(this};

tree.addMouseMotionListener (this);

}

!**
* Return the JTree, so others can use it.
*/

public JTree getTreel) { return tree; }

,*i‘

* This pops up a JFileCheooser, where the user can select which
* MIDT songis) te open. These are encapsulated in SongAnalyzer
* files, and added to the tree using addSongAnalyzeri).

* @see MidiFilter

*/

public void addSongs() {
JFileChooser chooser = new JFileChooser("." + File.pathSeparator + "MIDI"};
MidiFilter midiFilter = new MidiFilter();
chooser.setMultiSelectionEnabled [true);
chooser.addChoosableFileFilter (midiFilter);
chooser.setFileFilter{midiFilter});

ink returnVal = chooser.showOpenbDialog(tree);
if {returnval == JFileChooser.APPROVE_OPTION) {
File[) files = chooser.getSelectedFiles();
for {(int i = 0; 1 < files.length; i++) {
addSonganalyzer (new Songanalyzer{(files[il}});

saelectNonel) ;

}

/**

* Adds A SongAnalyzer at the last selected position. If no position

* ig selected, it is added to the default group. This SongAnalyzer is
* gelected, and expanded to show its tracks.

*/

private void addSongAnalyzer (SongAnalyzer sAnalyzer) {

if (sanalyzer.toString() != null) {
DefaultMutableTreeNode parent = null;
TreePath parencPath = tree.getSelectionPathl();

if (parentPath == null || parentPath.getLastPathComponent(} == root) {
parent = defaultGroup;
} else {

parent = (DefaultMutableTreeNode) (parentPath.getPathComponent(l));
}
DefaultMutableTreeNode songNode = new DefaultMutableTreeNode (sAnalyzer);

trecModel . insertNodeInto (songNode, parent, parent.getChildCount()};
{{GroupAnalyzer) parent.getUserObject()).addSonghnalyzer (shnalyzer);
Vector ta = sAnalyzer.getTrackBnalyzers();
for {int i = 0; i < ta.size{); i++} {

Defaul tMutableTreeNode krack =

new DefaultMutableTreeNodel((TrackAnalyzer) ta.elementAt{i}, false};

treeModel . insertNodeInto{track, songNode, i);
)]
TreePath tp = new TreePath(songNode.getPathl));
ctree.addSelectionPath({tp):
tree.scrollPathTovisible(tp);

}

/*1-
* Adds a GroupAnalyzer with title "name™ into the TreeModel, returning
* a DefaultMutableTreeNode if anyone needs it.
=/

public DefaultMutableTreeNode addGroup(String name) {
GroupAnalyzer ga = new Grouphnalyzer {name} ;
Defaul tMutableTreeNode dn = new DefaultMutableTreeNode(ga);
treeModel. insertNodeInto{dn, rook, 0);
return dn;

}

/**
* Add an unnamed group ("New Group" and a counter) to tree.
*/

public void addGenericGroupl) {
addGroup("New Group " + (newGroupCounter+t));
}

!i*

* Returns an array of Analyzers conktained in each selected node.
* If any node doesn't contain an Analyzer (like the root) then
*¥ ik isn"t added.

*/

public Analyzer[] getSelectedNodes(} {
Vector nodes = new Vector{);
TreePathl] currentcSelections = kree.getSelectionPaths();

for {(int i = 0; currentSelections !'= null && i < currentSelections.length; i++} (
DefaultMutableTreeNode node = (DefaultMutableTreelNode)
currencSelections(i] .getLastPathComponent{);
Object nodeInfo = node.getUserObject(};
if (nodeInfo instancecf Analyzer} {
nodes . add{ncdeInfo} ;
}

}

ink size = nodes.sizel();

Analyzerl[] a = new Analyzer|[size];

for (int i = 0; i < size; i++) { ali) = (Analyzer) ncdes.get(i); }
return a;

}

/**
* Returns the Analyzer contained in the selected node (or the last
* gelected node if more than one are selected). Returns null if
* the node is the root, or under exceptional circumstances {which shouldn't
* happen.)
*f

public Analyzer getSelectedNode() {
TreePath currentSelection = tree.getSelectionPathi();
Defaul tMutableTreeNode node = (DefaultMutableTreeNode)
currentSelection.getlastPathComponenk{);
Object nodeInfo = node.getUserObject{);
if {(nodeInfo instanceof Analyzer) { return {Analyzer) nodeInfo; }
else return null;

}

/*-1-

* Removes all nodes currently selected {except the root node and

* the default group). This requires some updating of Analyzers, depending
* on what was removed.

*/

public void removeSelectedNodes{) {
boolean doBeep = false;
TreePath(] currentSelections = tree.getSelectionPathsi{);
if (currentSeleckions !'= null) {
for (int i = 0; i < currentSelections.length; i++} {
Defaul tMutableTreeNode curreniNode = (DefaultMutableTreeNode)
{currentSelections(i).getlLastPathComponent());
DefaultMutableTreeNode parent = (DefaultMutableTreeNode)
{currentNode.getParent(}};
if (parent !'= null && currentNode != defaultGroup) {
Object removed = currentNode.getUserObject(};
if (removed instanceof Trackanalyzer} {
return;
) else if {removed instancecf SongAnalyzer) {
GroupAnalyzer oldGroup = {(GrouphAnalyzer} parent.getUserObject{):
oldGroup. removeSongaAnalyzer ({Songhnalyzer) removed);

treelodel . removeNodeFromParent {currentiNode) ;
} else { doBeep = true; }
}

}
if (doBeep) { toolkit.beep(); }

l*-}
* Tterates across all nodes, selecting each.
*7

public void selectaAll{} {
Enumeration e = root.breadthFirstEnumeration{);
while {e.hasMoreElements()) {
Defaul tMutableTreeNode p = {DefaultMutableTreeNode)
c.nextElement {} ;
TreePath tp = new TreePath({p.getPathi))};
tree.addSelectionPathi{tp) ;

}

/i*
* Removes all selection paths from the tree.
x/

public void selectNone{} { tree.removeSclectionPaths({tree.getSelectionPaths{})};)

/*-.l'

* This is called when a mouse was pressed on the ktree and seks up for a drag
* [and lets mouseDragged{} and mouseReleased{} do work) if the mouse was

* pressed on a node containing a SongAnalyzer. Otherwise if the mouse was

* pressed on a Trackhnalyzer node, change its active status and notify
* the ktree.
*/

public void mousePressed(MouseEvent e} {
TreaPath tp = tree.getClosestPathForLocation(e.getX({(}, e.get¥{)};
DefaulktMutableTreeNode tn = {DefaultMutableTreeiNode)
tp.getLastPathComponent () ;
Objeck © = tn.getUserCbject();
if (o insktanceof SongAnalyzer) {
dragIslegal = true;
draggedNode = tn;
originalParent = lastParent = {DefaultMutableTreeNode} (tn.getParent());
tree.setCursor {(new Cursor{Cursor .MOVE_CURSOR));
} else if {o instanceof Trackanalyzer} {
Rectangle rect = tree.gecPathBounds{tp);

//Check if click is EXACTLY on a X-checkbox...
//if so, change status

if {e.gebX() < rect.x + 16 && e.getX() > reck.x) {
({TrackAnalyzer) o) .changelctivel);
tree.treeDidChange(};

}
}
}
l*t
* Ag a drag occurs, this dynamically changes the TreeModel whenever
* a3 the mouse enters a TreePath it wasn't in before -- moving the node
* there.
*7

public void mouseDragged (MouseEvent e} {
if (dragTsLegal) {
TreePath tp = bree.getClosestPathForLocation(e.getX{), e.get¥());
if {tp.getPakthCount() > 1) [
DefaultMutableTreeNode potenktialParent =
{PefaultMutableTreeNode} (tp.getPathComponent(1));
if (potentialParent != lastParenkt) {
treeModel . removeNodeFromParent (draggedNode} ;
treeModel . inseriNodeInto (draggedNode, potentialParent,
potentialParent.getChildCount(});

tree, eXxpandPath (new TreePath{potentialParent.getPath({})};
lastParent = potentialParent;

]

/*i

* When a drag is complete (if it was legally initiated}, this

* ypdates both the GroupAnalyzer that the SongAnalyzer came from and
* the Grouphnalyzer that the SongaAnalyzer should go to.

*f

public void mouseReleased{MouseEvent e) {
if t{dragIsLegal) {
if {originalParent != lastParent) {

GroupAnalyzer oldGroup = (GrouphAnalyzer) originalParenkt.getUserObject{);
oldGroup. removeSongAnalyzer { {SongAnalyzer) draggedNode.getUserObject());
GroupAnalyzer targetGroup = {GroupAnalyzer} lastParent.getUserObject();
targetGroup . addSongAnalyzer { {SonghAnalyzer) draggedNode.getUserObject()):

]

draglisLegal = false:;

tree.setCursor (new Cursor (Cursor.DEFAULT CURSCR]))

}

public woid mouseEntered(MouseEvent e} {)
public void mouseExited (MouseEvent e} {}
public void mouseMoved (MouseEvent e) {1}

public void mouseClicked{MouseEvent e} {}

/i*
* A custom class that allows only Group Analyzers to have their name
* changed on the tree.
=/

protected class CustomITree extends JTree {
CustomITree {DefaultTreeModel t) { superi{t); }

/1-*
* The overridden method -- returns if the object contained
* in the selected cell is a GroupAnalyzer.
*7
public boolean isPathBEditable(TreePath path) {
DefaultMutableTreeNode node = (DefaultMutableTreeNcde) path.getLastPathComponent();
return [node,getUserObject{) instanceof GroupAnalyzer);
}
}
/i*

* A DefaultTreeModel will automatically change the Object in its structure
* when a JTree cell is done being edited. Unfortunately, it forgets what type
* this cell was and overwrites it with a String of the name the cell was renamed

* Lo... So this changes that behavior to rename the GroupAnalyzer with said String,
* without replacing it.
*/

protected class CustomTreeModel exktends DefaultTreeModel [
CustomTrecMedal (DefaultMutableTreeNode n) { superi{n); }

I**
* The overridden method.
*7

public veid valueForPathChanged(TreePath path, Object newvalue} {

DefaultMuktableTreeNode aNode = {DefaultMutableTreeNode)path.getlastPachComponenti);

Groupanalyzer ga = {GroupAnalyzer) aNode.getUserObject();
ga.gsetName{ {(String) newValue]);
nodeChanged {aMNode) ;

}

/*i’
* A custom renderer that supports a tree icon based on
* the state of the cell it
*f

protected class CustomRenderer extends DefaultTreeCellRenderer {
Imagelcon active;
Imagelcon inactive;

public CustomRenderer() (
active = new ImageIcon{"imagesfactive.gif®);
inactive = new Imagelcon("images/inactive.gif®};

}
/*t

* Called when the cell needs repainted. This overrides the
* default renderer, checks activity on the track analyzer

* {if that is the object represented by this cell) and
* paints a respective icon determined by that track's state.
=/

public Component getTreeCellRendererComponent
JTree iree,
Object value,
boolean sel,
boolean expanded,
boolean leaf,
int row,
boolean hasFocus) {

super.getTreaeCellRendererComponent (tree, value, sel, expanded, leaf,
row, hasFocus);
Object node = ({DefaultMutableTreeNode)l value}.getUserObject(};
if (node instanceof Trackdnalyzer} {
if {{{TrackAnalyzer) node) .getActivel()) {
setIcon{active);
} else {
setTcon({inactive);
}

return this;

} .

import java.awk.*;
impork java.awt.event.*;
import javax.swing.*;

I*i

* TreePanel.java <p>

*

* A TreePanel is a panel that includes three buttons on top
* and two on the bottom for managing a tree (which is in the
* center.)

*

* @author Greg Ciprianc

*/

public class TreePanel extends JPanel {

/*

* Construct a Tree Panel, passing in a TreeManager and hooking

* it to each constructed button. These include: Add Song, Delete Song/Track/Group,
* Create Group as well as Select all and Select none.

* The treeMan controls a JTree. This added to a JScrollPane, which is also added to
* this panel.

*

public TreePanel (final TreeManager treeMan) f
JToolBar topToolBar = new JToolBar();
JPanel botcomPanel = new JPanel();

topToolBar.add{createButton{ "images/add.gif",
"Click Here to add song{s) to the list.",
new AccionListener(} {
public void actionPerformed{ActionEvent e)
treeMan.addSongs{);

}
i

topToonlBar.add{createButton { "images/remove.gif",
"Click Here to remove song{s), tracksi{s) or group(s) from the list.®=,
new ActionlListener{}) {
public void actionPerformed(ActionEvent e) {
creeMan.removeSelectedNodes() ;

}
P
topToolBar .add (createButton ("images/addgroup.gif”,
"Click Here to create a new Group.",
new ActionlListener() {
public void actionPerformed(ActionBEvent e} {
treeMan. addGenericGroup() ;

}
M
topToolBar . setFloatable{false};

JButton selectAll = new JButton(®"Select All"};
selectAll addActionlLiskcener (new ActionlListener{) {
public void actionPerformed{ActionEvent e} {
LreeMan.selectAll{};
}

I
JButton selectNone = new JButton("Select None");
selectiNone.addactionListener (new ActionListener{) {
public void actionPerformed{ActionEvent e) {
treeMan.selectNone{) ;
}
}¥;

bottomPanel .add(seleccAll);
bottomPanel . add(selectNone) ;

setLayout (new BorderLayout()}):;
add{topToolBar, BorderLayout.NORTH) ;
add(new JScrollPane({treeMan.getTree(}), BorderLayouk.CENTER};
add({bottomPanel, BorderLayouk.S0UTH]};
}

/*i
* Convenience method, s0 I can create buttons with a minimum of code.
*/

private JBukton createButton{String iconFileName, String title, ActionListener a} {
JBukkon b = new JButbton(new ImageIcon{iconFileName)});
b.setToolTipText(title);
b.addActionListener{a};
return b;

import java,awt.*;
import javax.swing.*;

»

/
VectorhnalysisGraph. java <p>

A VectorAnalysisGraph is where vector analysis
results are drawn. ..

@author Greg Cipriano

L B

-

public class VectorAnalysisGraph implements MusicGraph (
private Einal String(] titles = ("Zoom Factor® };
private final int{] defaultValues = { 5 };
private final int GRAPHWIDTH = 400;
private final int GRAPHHEIGHT = 400;
private Analyzer analyzer;
private Image offscreeni;
private Graphics backPage;
private JPanel view;
private JLabel label;
private ImageIcen icon;
private double scalar;

// This image is static so it only need be loaded once.
private static Image circle = new ImageIcon{®"images/circle.gif").getimage();

Iii

* Empty constructor. Doesn't set up anything. Used when an
* object class is needed.

i/ .

public VectorhnalysisGraphi) {}

/i"l'

* Real constructor... takes an Analyzer, and sets up
* the panel that will soon be drawn upon.

*7

public VectorAnalysisGraph(Analyzer a) {
analyzer = aj;
analyzer.analyzeNoktes();
setVariable (0, defaultValues(0], false);
view = mew JPanel (new BorderLayout{]);
view.setPreferredsize (new Dimension{GRAPHWIDTH, GRAPHHEIGHT)});

}

,*i

* Returns a string representaticn of this graph.

*f
public Skxing toString{} {

refurn analyzer.getFullTicle(} + ": Vector Analysis®;

}

/i*

* A VectorAnalysisGraph factory.

*/

public MusicGraph createMusicGraph{analyzer a) {
return new VectorhnalysisGraphla);

}

public String[l getVariableTitles({} { return titles; }
public int(] getDefaultValues{) { return defaultValues; }
public JComponent getView() { recurn view;)

l*‘l'
* This draws the graph, creating graphic conktexis if needed.
*/

public void drawGraph(boolean repaintIcon) {
Note[] notes = analyzer.getNotes(};

// Create ordinary graphic context and image
/! for double-buffering.

if {offscreenl == null} (
offscreenl = view.createImage (GRAPHWIDTH, GRAPHHEIGHT);
backPage = offscreeni.getGraphics{);
view.setBackground{Color.gray};
view.add({label = new JLabel (icon = new Imagelconloffscreenl}));
view.validatel();

// Draw background image first
backPage .drawImage{circle, 0, 0, view};
backPage.setColor (Color.black);

// Then draw the vectors themselves

backPage.setColor{Color.red);

double[] position = new double[2]);

double[] oldPosition = new double[2];

0ldPosition(0) = position[0] = GRAPHWIDTH / 2;

oldPosition([l) = position[1l] = GRAPHHEIGHT / 2;

for {int i = 0; i < notes.length; i++) {
notes{i}.addVector (position, scalar);
backPage.drawline{(int) position(0]), (int) position([i],

(int) oldpPosition([0]}, (int) oldPosition([1));
position[0];
position([1]);

oldPosition(0]
oldPosiktion(1]

}

// A hack to get the icon to paint REALLY fast. :)
icon.painticon(label, label.getGraphics(),
{view.getSize({) .width — GRAPHWIDTH} / 2,
{view.getSize{) .height —~ GRAPHHEIGHT) / 2);
}

/**
* Called when zoom slider has changed. This updates the 'scalar'
* variable, and then redraws the graph.
*/

public void setVariable(int varNum, int value, boolean redraw) {
if {varNum == 0} {
scalar = {double} {30 * value) / analyzer.getSongLength();
if {(redraw) { drawGraph{true); }

