AN ANALYSIS OF THE POWER OF XML-
ENABLED AND NATIVE XML
DATABASES

by
Harris Zafar

An honot’s thesis submitted in partial fulfillment of the
requitemnents for the degree of

B.S. Computer and Information Science
with Honors

University of Oregon

Match 23, 2001

University of Oregon
Abstract

AN ANALYSIS OF THE POWER OF XMIL.-
ENABLED AND NATIVE XML DATABASES

by Harrts Zafar

Faculty Supervisor: Professor Chris Wilson
Department of Computer & Information Science

A thesis presented on the use of Xl\fIL in the database industry, making a compatison between
databases capable of handling XML and databases that store XML in its native form. This
papet takes an in-depth look at the differences between native XML databases and XMIL-
enabled databases in terms of their sttuctures, how they stote XML documents, and how XML

is retrieved from these databases.

TABLE OF CONTENTS

TASE Of FABULES c.vuereeimiiisiecssinerars v stsras s sssesses s bbbt bt i1
T EEOUICHOT v e vrietaeeereeresseesteseasesaneresaeseeneressssmssnssasss senstesharesassbsassbaasstsasrnsatasasserastes 1

1.1 What is XML:... crrremee et
1.2 XML Flements and Attubutes
1.3 XM_LRules
1.4 XML Schema vs. DTD sttt smas s snss s ssrsssssssasssssssssas

Related XML TechNOIOIES .. cuiucnviiiisssssssris s ssassssssseses 9
2.1 KPP et iieresreeemrerersestre et e ss e s s beba bttt ast et seasa et bast st e bbbt nra s srntresesannses O
2.2 X POIICT . cueitivereresesessevmvmsessssesssssssteisisasesssssessssssasssssssssssssrassionsessssssssnssensirrsassee 10

o RS NN SO

RelationNal DAtabases ... ceeeevceciervessssessssesissssssesssssssssesssassssssssnssenssssnssessemsssssesoddh
3.1 What is a0 RDBMSP? et vesessseseveeressssssssssassssessassasssssssasesesscass 14
3.2 XML and RDBMS... SOOI -
3.3 Mapping XML Data To Relational Data.......occeerrrssnremssrsece i 19

3.3.1 Two Inlining TechMques ..., 22
3.4 Generating XML Data From Relational Data......o..ccovevivmvnnecviveesis s, 25

3.4.1 Unsorted Outer Union Approach ..., 32

3.4.2 Sotted Outer Union APPLOACH o ensienassinsen DT
NAtve XML IDatabaASES civeerrirreraeesierersiresseresssessssesssssassssssrssssssssesssesssasssssossasassns 39
41 What is 2 Native XL Database?. ..vecceeieiesesessssesssseseessssssssssesessenns 39
4.2 What Makes An XML Database Native?rcocovnsisecnnccisrcnosecssimenee 42
4.3 Native XML DMBS vs. RDBMS and QODBMS ..o 44
4.4 Tamino... eeeetetr e vt ae st re st s se et e s s anasae st rerassesenenenerereren T
45 XML Query Language eetier e e e s etasta bbbt bbbt bbbt e beassas s nrassntarasess OO

4.5.1 XQuety 50

4,52 XIMLAQLucrreeeraeecetessesnssssciscsssinisasisssosssssssisissesssssesmassssssssesssesess 52
CONCIUSION 11rvviviresesesinsensssestsesssesesssssasssssssssssasasessssssssesessssesesesssasssesereresereresssrebsbess 55
GLOSSALY covuveaeesrirsreeass sttt st S a SRS e 58
BIbHOGIAPNY vttt e s 63

LIST OF FIGURES

Numiber Page
1. A Relational Data Model......cconerioniercessssssssssisssssssnsessssssnssnanscsssns 19
2. XML Doctment SHUCKHLIE .. cowccereeeeneneiesmcscesrsacaensseseneamssssrsssssstsasssasasssrsssse 19
3. An XML Document stored in a Relational Database ..., 19
4, Unsotted Outer Union Approach.......viciiiiiiinnnmssnsee: 34
5. Tamino XML Database AtchiteCtile. oo vrvicrisisnicieriiniiinrecncein e 48

INTRODUCTION

Indeed, the Extensible Markup Language (XMI) is emerging as the format of choice for a
various types of data, especially documents. With its ability to tag different fields, XML makes
searching simpler and mote dynamic. Since XML content is fice from presentation format -
which independent style sheets specify - XML enables the extensive reuse of information.
This allows enterprises to turn the same content into press releases, white papers, brochures,
presentations, and Web pages. For enterprise.s trying to meld incompatible systems, XML can
serve as 4 common transport technology for inoving data around in a system-neutral format.
In addition, XML is able manage all types of data, including text, images and sound, and it is

user-extensible to handle anything special.

Until now, the problem has existed as to how the XML-tagged data can be managed. One
solution that shows potential is the use databases to store, rettieve, and manipulate XML. The
idea is to place the XML data in a framework where searching, analysis, updating, and output
can proceed in a mote manageable, orderly, and well-understoed environment. Databases are

advantageous since users are familiar with them and their behavior.

However, there are many types of databases. XML can be stored in three types of databases

[30]:

1. Native XML Database (NXD) - A database fundamentally designed to store and
manipulate XML data. Data access is through XML and related standards only (ie.
KPath, XSL-T, DOM or SAX). This includes all databases whete the undetlying data
tepresentation maintains the full XML structure and associated meta-data. Access to

the data storage by means other than XML related technologics is not allowed. The

fundamental unit of stotage in an NXD is an XML document. Tamino, dbXML and

X-Hive are all database products that fall into this category.

XML Enabled Database (XEDB) - A database that has an added XML mapping
layer (provided by the database vendor or a third party) that manages the storage and
retrieval of XML, data. Data that is mapped into the database is mapped into
application specific formats, and the original XML metadata and structure may be lost.
Data retrieved as XML is not guaranteed to have originated in XML form. Data
manipulation may occut via either XML specific technologies or other database
technologies (ie. SQL). The fundamental unit of storage in an XEDB depends on 1ts
implementation. ‘The XML solutions from Oracle and Microsoft, as well as many

third party tools, fall into this category.

Hybrid XMI. Database (HXD) - A database that supports native XML storage as
well as an XML mapping layer over non- XML data. Databases such as Excelon and
Ozone fall into this category. The important thing to note is that there are different
APIs to access the objects stoted in Ozone. XPath, DOM, or SAX can be used
directly on XML data or through a mapping layer on non-XML data. On the other

hand, the API of the non-XML objects can also be used to access the data.

So which one is better to use? There really is no concreie answer as to what database is

“hetter.” There are XMI-enabled databases that handle XML fine and that are based on ttied-

and-true telational or object-otiented models. These databases typically accept XML, parse it

into chunks that fit the database schema, and then store it as usual. To retrieve XML, the

chunks are pieced back together again and retuwned.

This document takes a look at the typical XML-enabled relational database paradigm and also

at the new native XML database paradigm. The aim is to show how each handles XMI. data

not only to show how cach differ from one another, but also to display the powerful

combination XML technology makes with database technology.

2

Chapter 1

XML BASICS

11 WHAT1s XML?

The eXtensible Matkup Language (XML) is a meta-markup language that provides a format
for describing structured data. Although called a language, XML is really a tool for defining
markup languages, whete a markup language is a set of tags and attributes with various
constraints on them. One can use XML to design miniature markup languages of their own
that are tailoted to specific problem domains. For instance, XML has been used to define

WML (Witeless Matkup Language) which is the language used in WAP-communications.

On the surface, XML looks like HTMI.. Both ate detived from the Standard Generalized
Markup Language (SGML), but XML is different from HTML in syntax and semantics. It is
incotsect to say that XML is another version of HTML. HTML is a fixed markup language
based on ISO 8879:1986 SGML, wheteas XML is based on the ISO standard language ISO
8879:1988 SGML.. This is important to note not only because it shows that XML is not
HTML, but also because it means that XML, like SQL, is not vendor-specific, and hence is

more likely to remain in use for a long time.

Like HTMI., XML makes use of elements and attributes. However, where HTML specifies
what each tag and attiibute means, XML uses the tags only to delimit pieces of data, and leaves

the interpretation of the data completely to the application that reads it.

1.2 XML ELEMENTS AND ATTRIBUTES

An XML element 1s made up of a start tag, an end tag, and data in between. The start and end
tags describe the data within the tags, which is considered the value of the element. For

exarnple, the following XML element is a <professor> element with the value “Joe Smith.”
<professor>Joe Smith</professor>

‘The element name “professor” allows you to mark up the value “Joe Smith” semantically, so
you can differentiate that particular bit of data from another, similar bit of data. For example,

there might be another element with the value “Joe Smith.”
<student™Joe Smith</student>

Because each element has a different tag name, you can easily tell that one clement refers to
Joe Smith, the professor, while the other refers to Joes Smith, the student. If there were no
way to mark up the data semantically, having two elements with the same value might cause

confusion.
In addirion, XML tags are case-sensitive, so the following are each a different element.
<City> <CITY> <city>

An element can optionally contain one or more atiributes. An attribute is 2 name-value pair

separated by an equal sign (=).
<CITY z1p="97403">LEugene</CITY>

In this example, zip="97403" is an attribute of the <CITY> element. Attributes are used to
attach additional, secondary information to an element, usually meta information, Attributes
can also accept default values, while elements cannot. Each attribute of an element can be

specified only once, but in any order.

1.3 XML RULES

XML files are text files but are not meant to be read by humans. The reason they are text files
is to allow programmers to more easily debug applications. The rules, however, of XML are
much stricter than HTML. Errors in XML syntax halt document processing, and users or
applications recerve error messages instead of a best-guess interpretation of the document
structure. For mstance, a forgotten end-tag or an atiribute without quotes makes the file

unusable, while in HI'ML such practices are tolerated.

XML documents must follow rules for identifying document parts and creating nested element
structures. Elements in XML documents cannot overlap. This means that if an XML
element’s start tag appears within another clement, it must end within that same containing
element as well. For example, the following HTML code combines bold and italic formatting

by overlapping the structures:

This is bold. <i>This is bold italic. This is italic.</i>

In some HTML browsers, this text would appear as :

This is bold. This is bold italic. This is ilale,

In an XML parser, however, all processing halts as soon as the parser comes across
since the parser is looking for </i> and will not accept . To achieve the same

formatting in XML, one would use the following:

This 1s bold. <i><>This is bold italic. This is italic.</i>

This extra work results in a leap forward for interoperability. Since this creates far less
“guessing” code for the XML processor, it fits more easily in smaller-scale processing, like
embedded systems. Structural ambiguities are eliminated from XMI, documents since all

XML parsers will see the same nested element structure.

1.6 XML SCHEMA vs. DTD

Although XML is intolerant about syntax, it offers developers more alternatives for defining
meaning in XML documents. With XML, we can create our own markup vocabulary or
choose from a wide assortment of markup vocabularies suitable to our industry or project
type. Schemas and document type definitions (DTDS) give us the power to describe these
vocabularies, but we can also create documents using vocabularies without formal definitions.
Schemas and DTDs formally identify the relationships between the various elements that form

the document. For example, let’s take the following XML code segmeni:

<memo=
<to>All faculty</to>
<from>Jon Doe</from>
<date>28th January</date>
<subject>Faculty Mecting</subject>
<para>Don't forget about the meeting tomorrow at noon.</para>

</memo>

For this simple memo, the XML DTD might look like this:

<IDOCTYPE memo |

<IELEMENT memo (to, from, date, subject?, para+) >
<IELEMENT para (#PCDATA) >

<IELEMENT to (#PCDATA) >

<IELEMENT from #PCDATA) >

<IELEMENT date (#PCDATA) >

<IELEMENT subject (#PCDATA) >

1=

This DTD tells the computer that a memo consists of a sequence of header elements, <to>,
<from>, <date> and, optionally, <subject>, which must be followed by the contents of the
memo. The content of the memo defined in this simple example is made up of a number of
paragraphs, at least one of which must be present (this is indicated by the + immediately after
para). If the + was replaced by a *; this would mean that we would have a set with zero or
more elements. In this bastc example, a paragraph has been defined as a leaf node that can
contain parsed character data (#PCDATA), ie. data that has been checked to ensure that it
contains no unrecognized markup strings. Similardy, the <to>, <from>, <date> and

<subject> elements have been declared to be leaf nodes in the document structure tree.

For this simple memo, the XML, Schema might look like this:

<Schema name="memoSchema" xmlns="urn:schemas-microsoft-com:xml-data"
sxmins:dt="urn:schemas-~microsoft-com:datatypes' >
<Element1ype name="date" content="textOnly" dt:type="string" />
<ElementType name="from" content="textOnly" dt:typc="string" />

<LlementType name="memo" content="eltOnly" order="seq">
<elemnent type="to" minOccurs="1" maxOccurs="1"/>
<element type="from" minOccurs="1" maxQOccurs="1"/>
<element type="daie" minOccurs="1" maxOccurs="1"/>
<element type="subject" minOccurs="0" maxQccurs="1"/>
<element type="para" minOccurs="1" maxOccurs="*"/>

</ElementType>

<Elemen(Type name="para" content="textOnly" dt:type="string" />

<ElementType name="subject" content="textOnly" dt:type="string"/>

<ElementType name="to0" content="textOnly" dt:type="string" />

</Schema>

The schema begins with the <Schema> element containing the declaration of the schema
namespace and, in this case, the declaration of the “datatypes” namespace as well. (An XMI.
namespace is a collection of names that can be used as element or attribute names in an XML

7

document. The namespace qualifics element names uniquely on the Web in otder to avoid
conflicts between elements with the same name.) The fisst, “smins=‘“urn:schemas-microsoft-
com:xml-data”? indicates that this XML document is an XM, Schema. The second,
xmlns:dt="“um:schemas-microsoft-com:datatypes™,” allows you to type element and attribute

content by using the 4/ prefix on the type attribute within their ElementType and

AttributeType declarations.

XML Schema is an XMIL-based syntax for defining how an XML document is marked up. The
Schema language, which is itself represented in XML 1.0 and uses namespaces, sut;stantia]l}r
reconsttucts and considerably extends the capabilities found in XML 1.0 document type
definitions (D'TDs). DTDs have many dtawbacks, including the use of non-XML syntax, no
suppott for datatyping, and non-extensibility. For example, DTDs do not allow you to define
clement content as anything other than anothet clement or a string. For more information
about DTDs, see the Worldwide Web Consottium (W3C) XML Recommendation. XML
Schema improves upon DTDs in several ways, including the use of XML syntax, and support
for datatyping and namespaces. For example, an XML Schema allows you to specify an
element as an integet, a float, 2 Boolean, a URL, and so on. XML Schemas can become hard
to tead but they can be parsed within any XML tool. (Another draw back of a DTD is that it

requites a special editor for this.)

Chapter 2

RELATED XMI TECHNOLOGIES

2.1 XPATH

XPath is used by both XSLT and by XPointer. XPath is the XML Path Language for
addressing (referring to) parts of an XML document {i]. The XPath Recommendation is a
joint work representing the combined efforts of the XSL Working Group and the XML
Linking Wotking Group. XPath was created in order to provide a common syntax and
semantics for querying and addressing the contents of XML documents that could be used by

XSLT (XSL Transformation Language), XLink, and XPointer.

KPath gets its name fhtough its use of a path notation as in URLs for navigating through the
hierarchical structure of an XML document. It operates on the abstract, logical structure of an
XML document as a tree of nodes. XPath uses “expressions” that ate evaluated into one of
four basic datatypes with respect to a certain “context”. The way that a context is determined
differs for XSLT and XPointet. Both XSLT and XPointer extend XPaths “cote functions™,

which ate defined by its Core Functon Library.

As stated, the primaty putpose of XPath is to addtess parts of an XML document. In support
of this primary purpose, it also provides basic facilities for manipulation of strings, numbers
and booleans. XPath uses a compact, non-XML syntax to help with the use of XPath within

URIs and XML atiribute values. XPath operates on the abstract, logical sttucture of an XML

document, rather than its surface syntax. XPath gets its name from its use of a path notation as

in URLs for navigating through the hierarchical structure of an XML document [36].

XPath models an XML document as a tree of nodes. There are different types of nodes,
including element nodes, attribute nodes, and text nodes. XPath defines a way to compute a

string-value for each type of node. The primary syntactic construct in XPath is the expression,

which is evaluated to yield an object, which has one of the following four basic types:

* node-set (an unordered collection of nodes without duplicates)
e boolean (true or false)
‘e number (a floating-point number)

» string (a sequence of UCS characters)

The following is a simple example XPath expression. This example returns the fifth scene in

the second act of a screenplay [1].

/screenplay/aci[2}/scenc[5]

2.2 XPOINTER

XPomnter is the language used as a fragment identifier for any URI reference that locates a
resource of Internet media type text/xml, application/xml, text/xml-external-parsed-entity, or
application/xml-external-parsed-cnuty [37). XPointer, which is based on the XML Path
Language (XPath), supports addressing into the internal structures of XML documenis. It
allows for examination of a hierarchical document structure and choice of its internal parts
based on various properties, such as element types, attribute values, character content, and
relative position. In particular, it provides for specific reference to elements, character strings,

and other parts of XML documents, whether or not they bear an explicit ID attribute.

10

XPomter's extensions to XPath allow it to:

¢ Address points and ranges as well as whole nodes
* Locate information by string matching

e Use addressing expressions in URI references as fragment identifiers (after suitable

escaping)

The following is an example of an XPointer command [1]:
http:/ /www.holoweb.net/~lam/xmldocs#xpointer(id(simon12))

Here, the #gpointer(id(simonl2)) part is a fragment using XPointer. The actual syntax of the
fragment identifier (the # and everything following i) is defined by XPath. If multiple
xpointer() expressions are given, they are evaluated from left to right. This example could

have been written using an HTML-style XPointer:

http:/ /www.holoweb.net/ ~liam/xmldocs#simon12

2.3 XLINK

XLink 15 an XMI-based approach to link between documents. Currently, there is little
software available to support XLink directly, but XLink is still 2 good way of transporting link
inforrmation between databases[1]. XLink aliows elements to be inserted into XML
documents in order to create and describe links between resources. XLink uses XML syntax
to create structures that can describe both HTML-style unidirectional hyperlinks and much

more powerful multidirectional linking constructs. It allows XML documents to [38]:

1. Assert linking relationships among more than two resources
2. Associate metadata with a link

3. Express links that reside in a location separate from the linked resources

11

XLink works by proving you with global attributes you can use to mark your elements as
linking elements. In order to use linking elements, the declaration of the XLink namespace is

required. An example of this is as follows [1]:

<bibliography xmlns:xlink="http://www.w3.0rg/1999/xlink”>
--- Content that uses links ---

</bibliography>

This example allows the content of the bibfiapraphy element to contain XLink hypertext links.
To enable XLink in the entire document, the swilrsixdink attribute would be put on the

outermost document element desired.

2.4 XSLT

XSLT is a language for transforming XML documents into other XML documents. XSLT is
designed for use as part of XSL, which is a style sheet language for XML. In addition to
XSLT, XSL includes an XML, vocabulary for specifying formatting. XSL. specifies the styling
of an XML document by using XSLT to describe how the document is transformed mto

another XML, document that uses the formatting vocabulary [39].

XSLT is also designed to be used independently of XSI.. However, XSLT is not intended as a
completely general-purpose XML transformation language. Rather, it is designed primarily for

the kinds of transformations that are needed when XSLT 1s used as part of XSL.

A transformation expressed in XSLT describes rules for transforming a source tree mto a
result tree. The transformation is achieved by associating patterns with templates. A pattemn is
matched against elements in the source tree. A template is instantiated to create part of the

12

result tree. The result tree is separate from the source tree. The structure of the result tree can
be completely different from the structure of the soutce tree. In constructing the result tree,
elements from the source tree can be filtered and reordeted, and arbitrary structure can be

added[39].

XSLT meets the need to be able to transform information matked up in XML from one
vocabulaty to another. It is a powerful implementation of a tree-otiented transformation
language for transmuting instances of XML using one vocabulary into either simple text, the

legacy HTML vocabulary, or XML instances using any other vocabulary imaginable [40].

13

Chapter 3

RELATIONAL DATABASES

3.1 WHar 1s AN RDBMS?

Relational databases consist of a set of 7ablks, wheie each table is a set of ronds. A record, in
tutn, is a set of fekds, and each field is a paix fiekd-name/ field-value. All tecords in a particular table
have the same number of fields with the same field-names. A relational database contains
both data and metadata, that is, both data and information about data. ‘The information is of

three kinds:

1. Information about the entite Relational Database Management System (RDBMS)
2. Information about a specific database

3. Information about the columns of a result set

Conceptually, the relational model is vety simple: a set of tables that one operates into and gets
another set of tables as the result. Howevey, it is very inefficient to scan through the tables.
Dhuring the early days of relational databases, many people said they wete too slow to be of any
practical use. At that time, people wete used to navigating though ISAM (Indexed Sequential

Access Method) files or a linked structure such as IMS (Information Management System).

A fundamental benefit of relational databases is the concept of wews [28]. Database views
allow developers to present data in any number of “logical” combinations, hiding any details of
the undetlying physical stotage. In effect, views frangform the structure of one or more

undetlying tables into a mote useful ot approptiate structure for the demands of a specific

14

application. Since views can be based on other views, this mechanism offets a tremendously
powerful, layered mechanism for presenting information in any way that is approptiate for the

task at hand.

Today, relational databases employ a seties of techniques to improve performance, and most
are based on the use of indexes. The most common type of index is the B-Tree and variants,
the same used by DBF files. Some databases may use hash tables, bitmaps and other data
structutes, but the common point is that the index can speed the search for a particular row or

the sorting of a set of rows.

Yel, simply creating one ot more indexes may not help performance, as indexes can actually
degrade performance when not used the right way. An index means more writes to the disk

and a bigget log for databases that implements transactions.

Most databases have some kind of quety optimizer that chooses the best path to get the data
that satisfies a given query. The query optimizer may not use any index at all, if it thinks it will

be necessary to scan most of the table.

An index may considerably speed up joins, ORDER BY and GROUP BY clauses from a
SELECT statement. It may also speed up many queries, if some conditions match the

columns and sort order of the index.

3.2 XML AND RDBMS
XML is valuable in that it is a universal data format that is text-based, is easily parsed, and

enables interoperability. Once converted into an XML data soutrce, the data within the

15

relational database can be easily accessed and manipulated by other applications and by HTML
pages. Perhaps one of the most impottant things XML allows us to do is that it provides a
simple mechanism for data exchange between osganizations, applications, and databases. The
technological clegance of being able to send a packet of data that is both human readable and
self-describing will ensure it will make invasions in areas where EDI never could. Because of

that, XML can accelerate the entire B2B revolution that is just starting now.

Kevin William, one of the authots of Professional XMI, and Professional ASP XMI, had this

to say in regards to how XML fits in with relational databases:

As a long-time relational database developer, one of the greatest challenges 1 have had fo face
is that of data import and export. XML, allows information o be transferred in a
Standardized, biman-readable format that incorporates strnctnre. Rather than writing dosens
of customized data fransformations, each company parficipating in data transfer can wrife one

- 1o and from the conmon XML format.

But is XML a database? An impoztant thing to note is how XML differs from the traditional
relational database. The main ways in which an XML document differs from the sort of data
one would find in a typical relational database include the fact that fields and data in an XML
document ate notrmally intermixed (mixed content). In an XML docwment, fields do not have
length restrictions, they can nest atbitrarily, and they have a sequence. To understand the

implications of arbitrary field nesting, take a look at some examples. A simple way to look at

this is with an HIML-like example:

16

“
<p>First item</p>
<h><p>Second item</p>
<ls=>
<pl>
<p>This 1s an Li within an of within an i</p></1i>
<p>Here’s another one</p>

</u1>

There could be hundreds of nested #, o4 or 4 elements in there, and it would all still be legal.
Since this is the fundamental nature of XML, if one is storing XML documents in a database,
they probably just have to five with it. Recursion like this is very common in XML. As a
result, there is still 2 fundamental disconnect between the flat field in the relational world and

the complex nesting field in XMI..

XML fields also have a sequence. For example, a chapter may contain a title, followed by
several paragraphs of text. If one stores the chapter in a database and then extracts it, they
want to ensure that the paragraphs reappear in the correct order. This may seem quite
obvious, but to implement it, one might end up giving each paragraph a sequence number and
using an ORDER BY clause or an SQL cursor, which is difficult to do efficiently. Some
would choose to offload some of this work onto the author by assigning each paragraph a
required Sequence Number attribute. However, what if the author wants to reverse the order
of two paragraphs, or copy part of a chapter and edit it? That author would probably forget to
change the attributes. Sorting items in the database client can be one good way of splitting up

the work so that the database server does not grind to a halt. 'This all may sound a bit drastic,

17

but consides that most relational databases were not teally designed for this sort of data and

generally work best with small data items (such as integers) rather than paragraphs.

Conversely, thete are times when one would rather use a relational database instead of a text
XMI. document. As mentioned above, an XMI. document and a relational database are not
the same. Both are much better choices than flat text files. Thete are five major problems
with flat files, one of which is brilliantly solved by XML and four by an RDBMS. XML
eliminates the need to invent a file format for each application and the need to write a patset

for this format. As for an RDBMS, it addresses the following four problems [14]:

1. Size/cache. As the size of the document (ot the number of related documents)
increases, one must implement some sort of cache because large DOM trees cannot
be kept in RAM and users will not wait for an XML parser to read the file from
beginning to end each time. Fragmentation may be an alternative to caching, but hete

too, much custom code must be written to keep these fragments in ordet.

2. Concurrent Access, If more than one user is making changes to the document(s),
some mechanism {software or convention) must exist to ensure that only one uset

makes changes to the document at any given moment.

3. Transactional Integrity. Tn a nctworked envitonment, it must be ensured that any
tequest is either processed fully, or not at all. This means that one must be able to roll

back a transaction,.

4. Security and administration. An administrator’s control over who can read, write

and update what patts of an XMI. document are very limited.

18

3.3 MAPPING XML DATA TO RELATIONAL DATA

XML information must be flattened to be in a relational model. To illustrate the difference
between relational data and XML data, consider the following figures. Figure 1 shows a
relational table as a rectangular grid. Figute 2 shows that an XML document is a tree, and

Figute 3 shows how the tree is not a rectangle.

.
- \\"‘_‘L"‘
) 4 \ ‘\w“‘x
o / # ’ L‘"ﬁe\ E "'\
./: . }f _.«-'f . -
“‘\/ i ."f /’i/
AN ;'; /,/ , o
e o k] 4 'Y 1 Y
Source: Open Source XML Database Toolkit. Souzce: Open Source XML Database Toolkit.
(NY: John Wiley & Sous, 2000}, p.166 (INY: John Wiley & Sons, 2000), p.166
Figure 1 Relational Data Model Figure 2 XML Document Structure
! o
¥ - =t
T s \
“1 A e e Boge
4) i : I # - ¥ 9 *

Source: Open Source XML Darabase "Toolkit. (NY : John Wﬂey & Sons, 2000), p.166
Figure 3 XML Document Stored in a RDBMS
With data stored in XML documents, it should be possible to quety the contents of these
documents. Ideally, one should be able to issue queries over sets of XML documents to

temove, combine, and analyze their contents.

An XML document is an example of a semi-sirncinred data set. It is tree-structured, with each

node in the tree described by a label. Hence, semi-structured query languages and query

19

evaluation techniques can be used to issue these queries over the XML documents (which is
covesed in more depth in Chapter 3). While this approach is feasible, one could very possibly
find other approaches that can even leverage relational technology to provide quety capability
over XML documents. It is, indeed, possible to use standard commercial relational database
systems to evaluate powerful queries over XML documents, with the existence of a DTD or

XML Schema.

How to store XML data/documents in a relational database really depends on how flexible
one wants to be. Intra Extra Digital hetp://www.iedigitalnet) is a company located in
London, which uses the following technique to store XMI, data into a relational database.
They use a simple technique in which they have a table for atiributes and 2 table for elements.
The atttibute table has a join on the element table to say what element the attribute belongs to,
while the element has joins to itself to say whom the parent of an element is. This allows them

to store an object-like tree structure and generate XML documents from any point in the tree.

Relational database systems are matute and scale very well, and they have the additional
advantage that in a relational database, XML data and traditional (structured) data can co-exist,
making it possible to build applications that involve both kinds of data with little extra effort.
Relational databases, however, have been built to suppost traditional (structured) data and the
requitements of processing XML data are vastly different from the requirements to process
such traditional data. To optimize the use of relational database systems for XML, recent
work has concentrated on models and algorithms to extract the schema from XML. The goal
of that wotk is to analyze the semi-structured data and {possibly) the quety workload of the

target application in order to find the best-approximated schema. This way, the XML data can

20

be stored in the relational database with little off cuts, and schema extraction makes it also

easier to formulate queties

Thete atc several ways to approach the problem of quetying XML documents using relational
databases. One apptoach is to process the DTD (ot XMT, Schema) to generate relational
schema. Then, the XML documents can be patsed {conforming to DTDs) and loaded into
tuples of relational tables in a standard commercial DBMS. Next, the semi-structured queries
(such as XML-QL or XQL} can be translated over XML documents into SQL queries over the

corresponding relational data. Finally, the results can then be converted back to XML.

It is important to note that there are a number of limitations in current relational database
systems that, in some instances, make using relational technology for XML queries cither
awkward or inefficient. Relational technology proves awkward for queries that require
complex XML constructs in their results and may be inefficient when fragmentation, due to
the handling of set-valued attributes and sharing, causes too many joins in the evaluation of

sitple queries.

Tteaditionally, telational schemas have been derived from a data model such as the Entity-
Relational model. This translation is straightforwatd since there is a clear sepatation between
entities and their atiributes. Fach entity and its atttibutes are mapped to a selation. When
converting an XML Schema (or D'TD) to telations, it may be temping to map each element in
the Schema to a relation and map the attributes of the clement to attributes of the relation.
Howevet, there is no cottespondence between elements and attributes of the Schema and

entities and attributes of the ER-model. What would be considered ‘attributes” in an ER-

21

Model are often most naturally represented as elements in an XML Schema. Thus, directly

mapping elements to relations is likely to lead to excessive fragmentation of the document,

331 Two Inlining Techniques

In thew article ([17]), the people at the University of Wisconsin-Madison present two
techniques for storing XMI. documents in a relational database system. They describe the
Basic Inlining Technique, the Shared Inlining Technique, and then explain a hybrid of these
two. The Basic Inlining Technique solves the fragmentation problem by inlining as many
descendants of an element as possible into a single relation. However, this basic technique
creates relations for ezery element because an XML document can be rooted at any element in
the Schema or DTD. This technique was developed by examining DTDs instead of XML
Schemas. Let us refer to the following extract from an example XML document and its

related DTD presented in this article [17] to illustrate this technique:

<book>
<ttte>My XML Book</title>
<author id= “doe”>
<namc>
<firstname™>John</firstname>
<lasmame>Doe</lastname™>
</name>
<address>
<city>Lugene </ city>
<state>OR</state>
<zip>97403</zip>
</address>
</author>
</book>

22

<IELEMENT book (booktitle, author)

<IELEMENT article (ttle, author®, contactauthor) >
<IELEMENT contactauthor EMPTY>

<IATTLIST contactauthor authorID TDREF IMPLIED >
<IELEMENT author (name, address) >

<IELEMENT name (firstname?, lastname) >
<IELEMENT firstname (#PCDATA) >

<IELEMENT lastname (#PCDATA) >

<|[ELEMENT address ANY >

Using this Basic Inlining technique, the aunthor element would be mapped to a relation with
attributes firsinanie, lasiname, and address. In addition, relations would be created for firsiname,
lastname, and address. The researchers at the University of Wisconsin-Madison admit that they
must address two complications: set-valued attributes and recursion. Looking at this previous
example, when creating a relation for ar#ick, the set of authors cannot be inlined because the
traditional relational model does not support set-valued atiributes. Instead, what must be used
1s the standard technique for storing sets in a relational database by creating a relation for ashor

and linking au/hors to artieles using a foreign key.

Using inlining only would necessarily limit the level of nesting in the recursion. For that
reason, the recursive relationship is expressed using the notion of relational keys and by using

relational recursive processing to retrieve the relationship.

As a resuit of the Basic Inlining Technique, the XML document above would be converted to

the following tuple in the book relation:

(1, My XML Book, John, Doe, <city>Eugene</city> <state>OR</state><zip>97403</zip>, doe)

The ANY field, address, is stored as an un-inierpreted string. Hence, the nested structure is

not visible to the database system without further support for XML. One important thing to
23

note here is that if John Doe is the author for multiple books, then the author informaton will
be tepeated for each book since that information is tepeated in the cotresponding XML

documents.

The Basic Inlining Technique is good for only patticular types of queries, such as a query to list
all book authots. For other querics, though, the Basic Inlining Technique will be quite
inefficient, such as a query to list all authots having the last name Doe. Such 2 quety will have
to be executed as the union of five separate queties. As pointed out before, one other great

disadvantage of the Basic Inlining Technique is the latge number of relations it creates.

The Shated Inlining Technique aims to solve the problems of the Basic Inlining Technique by
ensuting that an element is reptesented by exactly one relation only [17]. The main idea
behind this technique is to identify the elements that are represented in multiple relations by
the Basic Inlining Technique (such as firstwame, lastwame, and address elements in the above
example) and to share them by creating sepatate relations for these clements. One prominent
feature of the Shared Inlining Technique is the small number of relations compated o the

Basic Inlining Technique.

The element sharing in this technique has query processing implicadons. For exaple, a
selection query over all authors accesses only one relation using the Shated Inlining Technique,
whereas it would access five relations using the Basic Inlining Technique. Even though the
Shated Inlining ‘Technique addresses some of the shortcomings of the Basic Inlining
Technique, and even shates some of its strengths, the Basic Technique still performs better in

one impottant aspect. The Basic Inlining Technique is better in reducing the number of joins

24

starting at a patticular clement. Hence, the researchers from the Univetsity of Wisconsin-
Madison briefly mention the idea of a hybrid approach that combines the sharing featutes of
the Shared Inlining Technique with the join reduction properties of the Basic Inlining

Technique.

When sioring aata in the database, it is often acceptable to throw away much of the
information about a document (such as its name and D'TD) as well as its physical structure
(such as entity definition and usage, the order in which atttibute values and sibling elements
occur, the way in which binary data is stored, CDATA sections, and encoding information).
Similarly, when retrieving data from the database, the resulting XML document is likely to
contain no CDATA or entity usage (other than the predefined entities lt, gt, amp, apos, and
quot) and the order in which sibling elements and attributes appea is likely to be the order in

which the data was returned by the database.

One consequence of ignoring information about the document and its physical structute is
that storing the data from a document into the database and then reconsttucting the document
from that data (a process called “round-tripping”) often results in a different document, even
in the orthodox sense of the term. Whether this is acceptable depends on each individual’s

needs and might influence one’s choice of database and data transfer middleware.

3.4 GENERATING XML DATA FROM RELATIONAL DATA
When mapping information from traditional (i.c. relational) data models to XML, thete is no
single right answes. Instead, there are a variety of possible methods. At one end is the custom

mapping of individual pieces of information from the database into a “predetermined” schema

25

{e.g. an industry standard interchange format). This method implies considerable custom code
to execute the mappings between the two loosely coupled schema (that of the database and

that of the predetermined schema).

At the other end is a ‘data-dump” of the entire contents of a database with the intention of re-
creating the database with all of its relationships and data intact. This method tends to yield a
mechanical mapping onto a generic metadata schema. XMI. Metadata Interchange (XMI),
promoted by the Object Managemént Group, 1s one such generic metadata schema. In this

method, the schema is not about the business; it is about the metadata concepts themselves.

Both methods are common and helpful ways of modeling relational data. Both, however, have
their drawbacks: the need for considerable custom code, and the complicating of the business
concepts. Lee Buck, Chief Technology Officer of Extensibility Inc., set forth an approach that
lies between these two extremes and applies it to relational databases [21]. This approach
provides mechanical mappings of key database structure concepts while preserving the
concept that the schema should be about the business information. This approach has the
advantage of generating easily understandable schemas which fit with existing data structures
and which leverage XML concepts such as ID/IDREF. This approach is not guaranteed to
provide 100% reliability when round-tripping data from an RDBMS to XML back to an
RDBMS, but when possible, Lee states these limitations are identified, along with probable

workarounds.

Let’s take a sample relational database to explain the methods. The following is an employee
database (partally referenced from the Advanced XML atticle on the website of Extensibility,

Inc) consisting of four tables to monitor employee performance and the employee’s sales.
26

TABLE EMPLOYEE

NUM LONGINT PRIMARY KEY
FNAME STRING 32
LNAME STRING 32
HIRE_DATL DATE
TERM_DATE DATE MAY BE NULL
TABLE PERFORMANCE_REVIEW
EMP_NUM LONGINT PRIMARY KEY FOREIGN KEY
REVIEW_DATE DATE PRIMARY KEY
REVIEW TEXT
TABLE SALE
SALE _ID INT PRIMARY KEY
EMP_NUM LONGINT FOREIGN KEY
SALE_DATE DATE
TABLE ITEM
ITEM_ID INT PRIMARY KEY
SALE_ID INT FOREIGN KEY
PRICE INT

There are multiple ways of simply expressing this data in XML form. A simple way of doing
s0 is (o begin by having an element named after the table. This element will correspond to 2
row of data with attributes containing the values of each of the columns. This schema is often
called a#iribute normal form. So, an example of an XML document with information drawn from

the above example may look like this:

<EMPLOYEE
NUM = "12345'
FNAME = Joe’
LNAME = ‘Smith’
HIRLE_DATE = 3/15/01" >
</EMPLOYEE>

Another simple way of expressing this data in XML form is to begin, again, by having an

clement named after the table, corresponding to a row of data with sub-clements containing

the values of each of the column data. This schema is often referred to as elment normal form.

27

An example of an XML document with the information drawn from this sample example may

then look hike thus:

<EMPLOYEE>
<INUM>12345</NUM>
<INAME>Joe</IF'NAME>
<LNAME>Smith</LINAME>
<HIRE_DATE>3/15/01</HIRE_DATE>
</EMPLOYEE>

As noted by Lee Buck of Extensibility Inc [21], although this may be a good start at
representing our relational data in XML form, there are several essential enhancements that

can be made to this model

1. Support for datatypes information
2. Retention of key relationships

3. Teveraging of XMI’s TD/IDREF facilities

Traditional data sources are inclined to be strongly typed. While an XMIL document, by
definition, will represent its mformation in textual form, maintaining information about the
underlying data type is cntical. While a complete list of datatypes is an intangible goal, a
practical set has been collected from the various schema submissions to the World Wide
Consortiurn (W3C). This set includes string, boolean, int, float, number, date, time, and
dateTume. Such datatyping ability 1s not included in a DTD. Therefore, to have support for

datatypes information, one would use an XML Schema, as discussed in Chapter 1.

28

Much of the power and complexity of mapping data to XML comes from mapping the
relationships between pieces of data. In the relational world, this equates to the modeling of

primary-foreign key relationships.

A primary key offers 2 unique value by which a single row of a particular table may be
accessed. XML has a comparable concept of an ID attribute, which provides unique access to
an element. Many implementations of the Document Object Model (DOM) provide indexed
access to such elements, which makes leveraging the similarities often desirable. The problem,
however, is that XML IDs must be unique across the entire document, while a primary key is

unique only within that column.

To provide the necessary global utiqueness, a supplemental paeyID attribute can be used to
hold a version of the primary key data that is made globally unique. Doing so takes advantage
of two facts: 1) the primary key is unique within the context of the element type that contains
each row (typically named after the table itself), and 2) the element type’s name is unique
within the document. Hence, in order to make the locally unique name globally unique, the
key value is assigned the element name. For example:
<EMPLOYLE pkeyID> = "EMPLOYELE.12345">

<NUM>12345</NUM>

<FNAME>Joe</FNAME>

<LNAME>Smith</LNAME>

<HIRE_DATLE>3/15/01</HIRE_DATE>
</EMPLOYEE>

The existence of foreign keys within a table is what binds different tables together. Just as
XML’s ID concept presented a useful counterpart for primary keys, so too its IDREF concept

provides a powerful counterpart to foreign keys. Of course, issues of uniqueness scope
29

intervene here as well. A similar technique is used to accommodate them. A new IDREF
attribute is created for the table element whose name is derived from the column name (with
an _IDref appended). Values in a document will be constructed in a similar fashion as for

pkeylD attributes. For example:

<EMPLOYEE pkeylDd = “EMPLOYEE.12345">
<NUM>12345</NUM>

<PERFORMACE_REVIEW EMP_NUM_IDyef = “LMPLOYLE.12345">
<EMP_NUM>12345</EMP_NUM:>

There is an alternative to the method described above in some cases. This technique takes
advantage of the fact that, in XML, relattonships may be deduced from context (specifically
containment) as well as through id/idref relationships. So, in the above example,
PERFORMANCE_REVIEW clements can be associated with their corresponding

EMPLOYEE elements by placing them inside the latter. For example:

<EMPLOYLE NUM_id = “EMPLOYEE.12345"
NUM = “12345
FNAME = ‘Joe’
LNAME = ‘Smith’
HIRE_DATE = 3/15/01>
<PERIFORMANCE_REVIEW
REVIEW_DATL = 4/15/01°
REVIEW = ‘bad’ />
<PERFORMANCE_REVIEW
REVIEW_DATE = 5/15/01
REVIEW = ‘better” />
</EMPLOYEE>

It should be noted that this is not always desirable and is often not even possible. The

following conditions must be met for this to be appropriate:
30

1. The foreign key must not be nullable (i.e. optional).
2. Itmust be the only foreign key so modeled in the table.
3. Evety desired row must refer to a row that will be included.

4. ‘'The foreign key musi not point to the same table.

IF XML is to tealize its potential, some mechanism is needed to publish relational data as XML
documents. Towards that goal, one of the major challenges is discoveting a way to efficiently
structute and tag data from one or more tables as a hierarchical XMI. document. Different
alternatives are achievable, depending on when this processing occurs and how much of it is

done inside the relational engine.

To publish telational data as XML documents, an implementation to efficiently carty out the
conversion is needed. Given a language specification for converting relational tables to XML
documents, an implementation to carty out the convetsion raises many challenges. Relational
tables are flat, while XML documents ate tagged, hierarchical and graph-sttuctured. What is
the best way to go from the former to the latter? In order to answer this question, people at
the TBM Almaden Research Center wrote an asticle entitled “Efficiently Publishing Relational
Data as XML Documents,” in which they characterize the set of alternatives based on whether
tagging and structuring ate done eatly or late in query processing. They then refine this set
based on how much processing is done inside the teladonal engine and explore vatious

alternatives within this space.

Comparing the alternatives using a commercial database system, they concluded that an
“unsorted outet union” approach (based on late tagging and late structuring) is attractive when

the resuling XML document fits in main memory, while a “sorted outer union” approach

3

(based on late fagging and eatly structuring) performs well otherwise. The tesults also
illustrated that constructing an XML document inside a relational engine is considerably more
efficient than doing so outside the engine. Hence, constructing an XML document inside the
relational engine has a two-fold advantage. It allows existing SQI, APIs to be reused for XML

documents, and it is also much mote efficient.

In order to understand the numetous alternatives for publishing relational data as XML
documents, the solution set is chatacterized based on the key differences between relational
tables and XML documents. Specifically, XML documents have tags and nested structute,
whereas relational tables do not. Hence, in converting from relational tables to XML
documents, tags and structure must be added somewhere along the way. One apptoach is to
do tagging as the final step of query processing (late tagging), while another approach is to do
it eatlier in the process (eatly tagging). Similatly, structuring can be done as the final step of
query processing (late structuring) ot it can be done eatlier (early structuring). Hach alternative

in this set has variants depending on how much work is done inside the relational engine.

3.41 TUnsorted Outer Union Apptroach

In the class of altetnatives that postpone tagging and structuring, both tagging and structuring
are done as the final step of constiucting an XML document. Hence, the construction of an
XML document is understandably split into two phases: () content creation, where relational
data is produced, and (b) tagging and structuting, where the relational data is sttuctured and
tagged to produce the XML document. We first deal with content creation. We consider only

“inside the engine” approaches so that database functionality, such as joins, can be exploited.

32

One simple approach to producing the needed content is by joining all of the source tables. In
our example, this would be done by joining the Employee, Performance Review, Sale, and
Item tables. Note that the joins relate parents to their children. This approach has the benefit
of using regular, set-oriented relational processing, but it also has a setious pitfall in that it has
both content and processing redundancy. To see this, consider what the result of these joins
would look like. Each employee’s information would be repeated at least SA * IT times,
where SA is the number of sales associated with the employee and IT is the number of items
pet sale. The problem is that multi-valued data dependencies ate created when a hierarchical
structure is represented as a single table. This not only increases the size of the result, but also
the amount of processing to produce it, both of which are likely to severely impact

performance.

To remedy this, the people at the IBM Almaden Research Center identified the unsorted
outer union approach. They saw that the number of tuples in the relational result grows as
the product of the number of children per parent. They discovered that if they could limit
the result’s size to be the sum of the number of children per parent, redundancy could be
reduced. To achieve this, the representation of a given child of a parent must be separated
from the representation of the other children of the same parent. For example, one tuple of
the telational result should represent eithet a performance teview or a sales order associated

with the employee, not both.

To execute this apptoach, each path from the root-level table to the leaf-level table is
computed using joins. In our example, thete atre two paths: Employee—Performance_Review

and Employee—Sales—Item. Hence, Employee is joined with Performance_Review (one path)

33

and Employee is joined with Sale, which in turn is joined with Item (second path). The

computation is shown in Figure 4.

Performance Review Employee Sale
Right Outer Join Left Outer Join Item

noon, foenree, Iy o\ biee e e doe, i, tomne, osge, hiee dire,

et ey

Left Outer Join

noen, s e, hiee die, rem due,

<T0C_ 11D, ke Llare e T, pse

Outer Join

e [e, looones hive dareernt sl
e e evnew sl 1T sk e,
o T e

Figure 4 Unsorted Outer Union Approach

Recall the use of outer joins. In an outer join between /bk! and fable2, tabke] rows without a
matching /abk2 row appear exactly once in the result, with the result of columns inherited from
table2 assigned null values. In a left outer join, #bk! rows without a maiching abk2 row
appear in the result, but not vice versa. In a right outer join, #bk2 rows without 2 matching
fablel row appear in the result, but not vice versa. In a full outer join (the last join in Figure 4),

both zable? and /able2 tows that do not have a match appear in the result.

The final step in the process of creating the relational content is to join together all the tuples
representing leaf-level elements in the XML tree (by use of the outer union in Figure 4) into a

single relation. The obvious way to do this is to union the content corresponding to each leaf

34

level element. There is, however, some difficulty with this stratepy since the tuples
corresponding to different leaf-level elements are not required to have the same number or
types of columns. In order to handle this variety, a separate column is allocated in the result of
the union for each distinct column in the union’s input. For each tuple representing a specific
leaf-level element and its ancestoss, only a subset of these columns will be uvsed and the rest

will be set to null.

To keep track of the source of each tuple (i.e. to differentiate a performance_review taple from a
sale tuple), a fpe column is added to the result of the outer union as well. This approach is
called the Path Outer Union approach since it computes each path from the root-level table to

a leaf-level table and outer unions them.

The Path Outer Union approach removes much of the data redundancy (and associated
computation redundancy) of the Redundant Relation approach. This is because children of
the same parent are represented in separate tuples. On the other hand, there still exists some
data redundancy. In particular, parent information is repeated with every child of that parent
{ie. employee information is repeated with every sale). One way to get around this is to feed
the parent information directly into the outer union operator and to carry only parent ids along
with the children. This reduces data redundancy, but it increases the number of tuples in the
tesult because each parent is now represented by a separate tuple. This approach is referred to
as the Node Outer Union approach to distinguish it from the earlier Path Outer Union
approach. One concern with the Outer Union approaches is that the number of columns in

the result increases with the width and depth of the XML document.

35

Now that the relational content is constructed for the creation of the XML document, the final
step is to tag and suructure the results. If this is completed inside the relational engine, it can
be executed as an aggregate function. Such a function would be invoked as the last processing
step, after the relational content has been created, and this (single) aggtegate funciion would

logically put together all XML fragments.

In order to tag and structute the results, two things must be done: (1) all siblings in the desired
XML document must be grouped under the same patent and (2) information from each tuple
must be extracted and tagged to produce the XML result. An efficient way to group s.iblings is
to use a main-memory hash table to look up the parent of a node, given the parent’s type and
id information (including the ids of the parent’s ancestors). Thus, when a tuple containing
information about an XML element is seen, it is hashed on the element’s type and the ids of its
ancestots in order to determine whether its parent is alseady present in the hash table. If the
parent is present, a new XML element is created and added as a child of the patent. If the
parent is not present, a hash is performed on the type and ids of all ancestors excluding the
patent in order to determine if the grandpatent exists. If the grandpatent exists, the parent is
created and then the child is created. If the grandpatent is also not present, the procedure is
repeated until an ancestot is present in the hash table or the root of the document is reached.
After all the input tuples have been hashed, the entite tagged structured can be written out as

an XML file.

'The main drawback of using this hash-based tagging mechanism is that petformance can
degrade rapidly when thete is inadequate memoty to hold the hash table and the intermediate

result.

36

3.4.2 Sorted Outet Union Approach

The main problem with the previous approach is that complex memory management musi be
performed in the hash-based tagget when memory is scarce. To eradicate this problem, the
people at the IBM Almaden Reseaich Center found that the relational engine could be used o

produce “structured content”, which can subsequently be tagged using a constant space tagger.

The key to structuring relational content is to order it the same way that it needs to appear in

the result XML document. This can be achieved by ensuring that:

1) All information about a node in the XML tree occuss either before or along with the
information about the children of that node in the XML tree. This essentially says that

patent information occuts before, or with, child information.

2) All tuples representing information about a node and its descendants in an XML tree
occur together. This ensures that information regarding a particular node and its

descendants is not mixed in with information about non-descendant nodes.

3) The relative order of the tuples matches that of any user-specified order. This is to

handle user defined ordering requests.

Performing one final relational sott of the unstructuted relational content is enough to ensute
these properties. To ensute conditions 1 and 2, all that is needed is to sort the result of the
Node OQuter Union on its ID fields, with the IDs of pareat nodes occurting higher in the sost
otdet than the IDs of children nodes. Hence, in Figure 4, sotting the result on the composite
key (num, sale_ID, item_ID) will guarantee that the result is in documment order. Tuples
having null values in the sott fields must occur before tuples having non-null values, meaning
that null values must sott low when in sorted order. Condition 1 is then satisfied since a tuple

corresponding to a patent node (i.e. Employee) will have null values for the child IID columns
37

(ie. sale_ID). To ensute that tuples with null values in sorted columns occur first, parent
tuples (employees) will always occur before child tuples (sales). Also, since the patent’s 1D
occuts befote a child’s ID in the sort otder, the children of a parent node are grouped together

after the parent, thus satisfying condition 2.

The Sotted Outer Union approach has the advantage of scaling to large data volumes because

relational database sorting is disk-friendly.

Once structuted content is created, the next step is to tag and construct the resulting XML
document. Since tuples attive in document order, they can immediately be tagged and written
out as they ate seen. The tagger only needs memoty to remember the parent IDs of the last
tuple seen. These IDs are used to identify when all the children of a particular parent node
have been seen so that the closing tag associated with the parent can be written out. For
example, after all the items of a sales order have been seen, the closing tag for sales order
(</sale>) must be wiitten out. To identify this, the tagger stores the ID of the current sales
otder and compares it with that of the next tuple. Hence, the storage needed by the tagger is

propottional only to the level of nesting and is independent of the size of the XML document.

38

Chaprer 4

NATIVE XML DATABASES

4.1 WHAT IS A NATIVE XML DATABASE?

A native XML database is a database designed from the ground up for storing XML, data,
preserving all data struciure with no mapping required for storage. All query operations,
indexing, transactions, setver logic and all other database operations are specifically tailored for
the needs of wotking with XML data. Tamino and dbXML are native XML databases,
Excelon, XHive and Ozone ate object databases with an XML layer added, and Otracle and

MS SQL setver are, of course, relational databases with mapping layers.

Native XML databases and Object databases with XML layers will look quite similar to the
user and administrator and can be 'considered roughly equivalent from that perspective.
Relational databases, however, have the added butden of mapping, which complicates and
slows down the process of wortking with XML data. Each approach has strengths and
weaknesses. For many applications where legacy data is involved, the relational approach is
probably better, but for applications where XML is a primary concern, a native XML database

will generally provide an easier solution.

There are several reasons to use existing database types, and existing database products, to
store XML even if it is not in its native form. First, felational and object-otiented databases
are well known, while native XML databases are in their infancy. Second, as a result of the

familiarity with relational and object-otented databases, users understand their behavior,

39

especially in regards to performance. There is an unwillingness to move to a native XML
database whose characteristics — especially scalability — have not been tested relatively as much.
Finally, telational and object-osiented databases are reliable choices in the corporate mind. It

falls into the old “nobody ever got fired for buying X rationale.

On the other hand, there are sevetal criticisms of the use of relational databases to store XML.
For example, one of the attractive features XMI. possesses is its hierarchical organization,
which database tables eliminate. As shown in the previous chapter, relational databases must
map XML to telational tables and, therefore, fatten XML structures into rows and columns
each time data is needed. Uche Ogbuji, principal consultant at Fourthought Inc. in Boulder,
Colo., says XML is 2 mismatch with relational databases. “You can do tricky joins associating

XML type to a database tow to make them work, but they’re hard to maintain,” he says.

Relational databases cannot handle data with dynamic structure, which is the key to XML’s
extensibility. An XML database must be able to store and tetrieve any well-formed XML
document, even if the D'TD or XML Schema of the document is not available. An RDBMS,
however, needs schema definitions for each table (so a document with an unknown tag would
requite a change request for a new schema definition) to be built and approved before it can

be put into production.

Additionally, translating XML to and from the database requites substantial processing,
especially for latge or complex documents. This performance factor may be most
inconvenient when dealing with one of XML’s strong points: ptoducing Web pages from
format-independent content. The problem is that the resulting pages may not load quickly

enough. Frequently, a client tequires a certain relational database to be used, regardless of its

40

approptiatencss to the task. In such cases, Ogbuji says he prefers placing a wrapper around
the relational database to handle the XML translation. Though a feasible option, there is a lot

of overhead in such an approach.

One way around these difficuldes is to stoge the data in a native XML database. This
immediately eliminates the need for translation between XML and the database. A new breed
of such native XML databases is now emerging. Databases tailoted for the storage of XML
data represent an exciting new oppottunity for improvement in the storage and manipulation
of data and metadata. For a large set of applications, an XML database will often far surpass

traditional data storage mechanisms in convenience, ease of development, and petrformance.

A numbes of applications exist that ate ideally more suited for XML databases. Examples of

such applications include:
« Corporate information portals
+ Membership databases
» Product Catalogs
¢ Parts Databases
» Padent Information tracking

+ Business-to-Business document exchange

Since native XML databases represent a new technology, there has been (up to this point} no
concerted effort to develop specifications specifically for the market. This lack of
specifications inevitably increases the learning cutve for employees, prevents product

interoperability and eventually slows the adoption of the products.in the market place. To
41

tackle these issues, a decision was made to start the XML:DB initiative, which hopes to bring
standatds to the XML database industry and to make XML databases the standard foolset used

by IT departments worldwide.

Formally defined, a native XML database is a database whose internal data structutres map
directly onto the hieratchical format of XML [22]. Usets of a native XML database would not
be encouraged to distingnish between some external “interchange” format and an internal
“cfficient” format, nor to design applications that distinguish “business data” from “document
content.” Tn a native XML database, such distinctions are meaningless. What is appealing to
people is the way working with XML allows one to think, the tools it allows one to use, the
flexibility that it gives over how to manage data, and the ecase with which data can be
exchanged between entities. It is also appealing because XML is a tool of the Internet age and
therefore, by extension, so are XML databases. Native XML databases use schemas and
Document Type Definitions (DTDs) to describe, store and locate data. As a tesult, some ate

claiming it runs faster than the relational databases can.

4,2 WHAT MAKES AN XML DATABASE NATIVE?

An XML database is a collection of XML documents and theit paits, maintained by a system
having the means to administer and conttol the collection itself and the information
tepresented by that collection. It is mote than merely a repository of structuted documents or
semi-structured data. As is tiue for the administration of other forms of data, management of
persistent XML data requites capabilities to deal with data independence, integration, access
rights, vetsions, views, integrity, redundancy, consistency, tecovety, and enfoicement of

standards. Even for many applications in which XML is used as a transient data exchange

42

format, there temains the need for petsistent storage in XML form to preserve the

communications between different parties in the form understood and agreed to by the parties.

The XML:DB initiative (http://www.xmldb.org) has defined three classes of XML database
system, supporting native XML daiabases (designed to store and manipulate XML
documents), XML-enabled databases (providing XML interfaces to other forms of stored
data), and hybrid XML databases (accessible through XML and other interfaces), and thete ate

a variety of database system prototypes and products in each of these classes.

For an XML database, one essential semantic issue is document equivalence: when ate two
documents or docurnent patts the same? This question is impottant in satisfying requirements
for evidence and atchiving, for version management, for metadata management, and (as is true

of all forms of data) for query optimization.

The XML 1.0 specificatdion defines the components of XML documents, pattitioning them
into logical structures (“declarations, clements, comments, character references, and processing
instructions, all of which are indicated in the document by explicit markup”) and physical
structures (entities, which may include entity references). ‘The text stored within these
structures may cotrespond to character data, markup, white space, or end-of-line markers.
'The specification is clear in stating which of these components must be provided to an
application by an XML processor and which text tepresentations must be considered to be
identical by all XML processors. It is expecied that all XML applications will “view”

documents in terms of these components.

43

It is very naive to assume that general-purpose XML database systems can be built using
models that ignore the documents’ structure, just as it is wrong to use models that ignote the
enterprise data teptesented by those documents’ content. In general, reconstruction of an

original XML document from the data stored in an XML database must be possible.

4.3 NATIVE XML DBMS vs. RDBMS AND OODBMS

Relational DBMSs hold a small fraction of the wotld’s data, for several good reasons. They
tend to require professional administration. They require data to be tabular and to cotrespond
to a previously stated schema, which promotes integrity but discourages rapid developtnent
and change for irregular data ot data whose structure change rapidly. For document data,
semi-structured data models offer a promise of addtessing all but the first objection. But for

now, they lack the features needed for robust systems.

As semi-structured data becomes more widely shared, and is processed more automatically,
otganizations will need data management abilities over this data, such as powerful quertes,
integrity, updates, and vessioning [33]. XML data can be stored directly in relational systems
(by encoding its graph), but relational operators ate inadequate for the opetations usets want.
Object-otiented database vendots have even begun addressing this need by extending their
capabilities to support XML. Reladonal systems are also moving in this ditecton. For
efficiency, these products will often use highly tuned indexed sttuctures, rather than just store

XML as text,

XML is a universal convention for desciibing information that not only structures data

according to formal critetia, but also according to content features. Because XML is so

44

flexible, it can be used for a great number of purposes. In addition, XML bluts the distinction
between structured data and unstructured documents because XML can describe text
documents, as well as fields in traditional relational database tables. Only database engines that

make native use of XML can use its complete functional range.

The long-texm goal for database suppost of XML and other semi-structured data may be best
seen in the database research community. Researchers are addressing the challenges [16} of
interfacing to semi-structured data, and of managing that data. Other projects ate studying the
use of graph-structured data models (such as that which underlies XML) as a common
representation for heterogeneous information sources, including both structured and semi-

structured sources.

Compared with an otdinary relational or object database, semi-structured databases offer

sevetal capabilities [33]:

1. Itregular structure. Document data is frequently quite variable in structure, especially
if constructed from multiple sources. Relational systems can model some irvegularity
by having missing attributes as nulls. However, SQL is complex with null values, and

cutrent storage structutes can have excessive overhead.

2. Tag and path operations. Conventonal database languages allow manipulation of
element values, but not element names. Semi-sttuctured databases provide operatots
that test tag names (i.c., “find all authots that have a FirstName element”). They also
include operators that manipulaie paths. For example, one can have path expressions

with wild cards, to ask for a FirstName element at any depth within a Book clement.

3. Hieratchical model. Some data is most naturally modeled as a hierarchy. For this

data, hierarchical languages simplify data manipulation.

45

4. Sequence. Unlike tables, document sections ate ordered, so sequence must be
represented. In quety processing, especially joins and updates, sequence introduces

significant complexity.

These features have been demonstrated in tresearch samples and are likely to appear in
commercial products in the next few years. However, it is still uncertain how the market will
be split among the three approaches: (1) layered over an object database, (2) layered over a

relational database, or (3) directly over some new data manager.

For applications involving regulatly structured data, XML tools will not replace such databases.
Thete 1s too much functionality to implement quickly and migration would be too traumatic.

Still, XML is rapidly gaining a role for even highly structured data as an interface format.

Whenever required (i.e., to publish the information on the Web, or send it over the wire for e-
commerce), XML versions of appropriate views of the data can be created. Sometimes, these
will be created on the fly, in response to user queties, while for other applications (especially
where the data is nonvolatile or users don’t need completely current information) the XML
may be created in advance. Already, some vendors (i.e. Oracle and IBM) have released tools
for creating XML extracts of databases, and these tools can possibly become more powetful.

Import utilities are also being customized to accept XML,

There are several benefits of publishing database contents as XML. First, the XML output
includes its own schema information. So, for anyone who understands the tags used, the
information is self-describing. Also, XML reduces the need for multi-site systems to migrate

to a new interface all at once. With XMI Schema, one can keep patt of the format open. 1f

46

new tags are inserted, those sites equipped to use the new information can do so, while parsers

for other sites will ignore it.

4.4 TAMINO

While relational databases can create a context for data through tables, columns, joins, etc.,
they work best with data that fits into this structure. Once the data has been extracted from
the database, its meaning completely relies on the processing applications that process it
further. In complex environments, this often leads to problems that are difficult to fix, such as
unexpected applicatton behavior, lack of scalability, and maintainability. If data is sent outside

the enterprise, the context is entirely unpredictable.

That has led Software AG to design a virtual database management system called Tamino,
which includes a high-performance native-XML database. Supporting all kinds of data types,
this combination makes up a scalable architecture for the following: Storage Publishing

and Exchange of Electronic Documents

Based on a small and fast XML engine that is able to natively process XML, Tamino XML
Database is the first virtual DBMS that permits direct storage, integration, and exchange of
XML data. This guarantees high performance and scalability since an extra layer for data
conversion to and from XML is not needed. Moreover, unexpected changes in the format of
a data stream, which is a key feature of XML, can be processed based on the embedded
metadata. Tamino delivers XML information with great performance for transaction-oriented
applications within enterprises or on the Web. Tamino can also integrate data from existing

databases into XML structures.

47

Tamino (which is an acronym for “Transaction Architecture for the Management of INternet
Objects”) is the world’s first native XML Information Server. It is a complete Web-enabled
data management system for data exchange and application integration and is a technology
that can turn enterprise data into Internet objects. Tamino establishes a highly reliable,
scalable and open environment, extending enterprise transaction logic to the Internet.
Tamino’s XML technologies, which include Data Map, X-Port, X-Node, ctc., allow data

scattered over the enterprise (or even between business partners) to be connected.

Tamino incorporates an XML engine on top of an integrated native-XML data store.
Furthermore, Tamino XML Database provides virtual DBMS capabilities. The product
enables users to view all integrated external heterogeneous data sources by making their
content available to the XML world in XML format and in real-time. This means that Tamino
provides integrated access to existing legacy data residing in external data sources (ie.
Relational DBMS or data created by Office applications). The architecture for Tamino XML,

Database is displayed in Figure 5.

Source: Tamino XML Database. 20 March, 2001. Software AG (hetp:// www.software;g.com/ tamina/)

Figure 5 Tamino XML Database Architecture

48

The main functional components of this architecture are as follows:

+ XML Engine =» A high pesformance, robust server that allows Tamino to store
XML objects natively in and retrieve them from a natve-XML data store and vatious

other data sources,

o Tamino X-Node = An integraton component that allows access to existing
heterogencous databases with traditional data structures, regardless of database type or

location

« Data Map = The knowledge base, which contains XML metadata, such as DTDs
(document type definitions), style sheets, relational schemas, etc., defning the rules

according to which XML objects are stored and composed.

+ Tamino Manager = An administtation tool implemented as a client-server
application that is integrated into the System Management Hub, which is Software
AG?’s multi-platform environment for the unified management of Software AG

products.

« Tamino X-Tension = Server extensions that are user-defined function plug-ins of
the Tamino XML Database setver which handles data in some specific way that

cannot be anticipated by a standard function provided by Tamino

Tamino uses XML as its primaty means fot structuring, organizing and stoting information.
The advantages of XML -based storage over traditional databases are compelling
Administration effort is considerably reduced as well because Tamino can easily structure any
well-formed XMI. document and create a structural definition (DTD), even if none exists.
Modification of information structure can be done on the fly. Sophisticated and powertul full-
text queties can be executed with XQuety, Tamino’s XPath-based query mechanism for
document retrieval. Query parametets cause Tamino to apply the rules from the approptiate

schema in the data map, thus extracting information from the source and returning it as XML..

49

4.5 XML QUERY LANGUAGES

To have a native XML database, this implies that there must be some way of querying the
XML data. Several languages have been constructed in hopes of efficiently querying data from
XMI. documents. For the scope of this papet, three such query technologies will be examined:

XQuety, XML-QIL, and XSLT.

451 XQuety

As already explained, XML is capable of labeling the information content of div_erse daia
soutces, including structured and setrli—sttuct;JIed documents, telational databases, and object
repositoties. A query language that uses the structure of XML wisely can express queties
actoss all these kinds of data, whether the data is physically stored in XML or viewed as XML
via middleware. Because query languages have typically been designed for specific kinds of
data, most existing ptoposals for XML quety languages are robust for patticular types of data
soutces but weak for other types. Among existent XML query languages is a new query
language called XQuery, which is designed to be broadly applicable across all types of XML
data sources. This is the newest cutrent technology, as the W3C just released its Working

Draft for XQuery on the 15" of Februaty, 2001.

XQuery is designed to be a small, easy to implement language in which queties are concise and
easily understood. It is also flexible enough to query a broad range of XMI. informaton
soutces, including both databases and documents. The Query Working Group has identified a
tequitement for both a human-teadable query syntax and an XML-based quety syntax.
XQuery is designed to meet the fitst of these two requirements. An alternative, XML-based

syntax for the XQuety semantics will be defined separately.
50

Important 1ssues remain open in the design of XQuery. Some of these issues deal with

relationships between XQuery and other XML activities, for example:

* The semantics of XQuery are defined in terms of the operators of the XML Query
Algebra.

¢ 'The type system of XQuery is the type system of XML Schema. Work is in progress
to ensure that the type systems of XQuery, the XML Query Algebra, and XML
Schema are all completely aligned.

* XQuery relics on path expressions for navigating in hierarchic documents. It expects
these expressions to conform to the semantics of XPath, mentioned in Chapter 2.

XQuery is a functional language in which a query is represented as an expression. XQuery
supports several kinds of expressions. Flence, its queries may take numerous different forms.
The various forms of XQuery expressions can be nested with full generality, so the notion of a
“sub-query” is natural to XQuery. The input and output of a query are instances of a data
model called the XML Query Data Model. This data model is a refinement of the data model
described in the XPath specification, in which a document is modeled as a tree of nodes. .
"The following is an example query, which looks in the second chapter of the document named

“zoo.xml” and finds the figure(s) with the caption “Tree Frogs.”
document(“zoo.xml”)/ chapter([2]// figure[caption = “Trec I'rogs”]

XQuery provides a core library of built-in functions for use in queries. One of these core
functions is used in the above example (dowmend), which returns the root node of a named
document. The XQuery core function library contains all the functions of the XPath core

function library, all the aggregation functions of SQL (such as ayg, sum, connt, max, and min), and

51

a number of other useful functions. For example, the distine function eliminates duplicates

from a list, and the empty function returns TRUE only if its argument is an empty list

In addition to the built-in functions, XQuery allows usets to define their own functions. Each
function definition must declate the datatypes of its parameters and resuit. It must also
provide an expression (the “body” of the function) that defines how the result of the function
is computed from its parametets. When a function is called upon, its atguments must be valid
instances of the declated patameter types. The result of a function must also be a valid
instance of its declared type. These rules ate checked using the type-inference rules of the

XML Query Algebra.

452 XML-QL

XML-QL (developed by rescarchers from the University of Pennsyivania, AT&T Labs,
INRIA, and the University of Washington and submitted to the W3C in August 1998) uses
path exptessions and pattems to extract data from the input XML data. It has vatiables to
which this data is bound, and it has templates, which show how the output XML data is to be
constructed. Both patterns and templates use the XML syntax. When restricted to relational
data, XML-QL is as expressive as telational calculus or relational algebra. XML-QL can
extract data from existing XML documents and construct new XML documents. It can also

suppoit both ordered and unordered views on an XML document.

XML-QL assumes a semi-structuted data model in which data is represented as an edge-
labeled graph. Vatiables in XML-QL ate bound io nodes in the semi-structured data model.

In tetms of XML, this means that vatiables are bound o element content, not to elements.

52

The capabilities described for XML-QL are often similar to those provided by the XSL
transformation and paitern languages. Both approaches are block structured and template
oriented. Both offer the ability to return trees or graphs, create new elements in the output,
and query XMIL.. The biggest differences are syntactic. XSL uses a URL-like syntax for
specifying pattetns, queries, and the mherent XML document structure to set the limits of
query blocks. XML-QL uses an XML-like query-by-example patiern to select data and explicit
keywords to delimit blocks. On the other hand, although XML-QL shares some functionality
with XSL, XMIL-QL supports more data-intensive operaitons, such as joins and aggregates,

and has better support for constructing new XML data, which is required by transformations.

KXML-QL uses element patterns to match data in an XML document. The following example
is taken from AT&T’s research web page for XML-QL. Tt produces all authors of books
whose publisher 15 “Addison-Wesley” in the XML docoment “bib.xml” Any URI (uniform

resource identifier) representing an XMI.-data source may appear on the right-hand side of IN.

WHERE <bib><book>
<publisher><name>“Addison-Wesley”</name></publisher>
<title> St </title>
<author> $a </author>

</book></bib> IN “bib.xml”
CONSTRUCT Sa

Informally put, this query matches every <book> element in the XMI. document bib.xml that
has at least one <title> element, one <author> element, and one <publisher™> element whose
<name> element is equal to Addison-Wesley. For each such match, it binds the variables $t
and $a to every ttle and author pair respectively. Note that variable names are preceded by $

to distinguish them from string literals in the XML document (i.e. Addison-Wesley).

53

With many query languages in existence, this provides XML developers different options for
how to query XML documents or XML databases. This may also be a disadvantage since this
means there is no standard way of querying XML. Though W3C has already established a
working draft recommendation for XQuery, there are still those who use XML-QL to query
XML data. Regardless, this illustrates the emergence of native XML databases in which XML

data can be stored in its native form and can also be rettieved via an XML query language.

54

CONCLUSION

With the I'T market ever-changing, new technologies emerge. XML has been around fox a few
years now, but it has only been until recently that it was realized how powetful XML storage in
a database can be, With a few firms accepting this idea, along came a new idea of storing
XML in its native form, as opposed to mapping it to the relational schema of tables and

columns.

Relational databases bave the advantage of being around for such a long time. With this time,
telational technology has matured, and people understand the power it possesses. Relational
databases are a great choice for a firm because people already understand that technology.
Native XML database technology is siill very much in its infancy. Storage in a native XML
database does eliminate the overhead of mapping XML data to the database’s schema and can
operate at an impressive pace. However, with so much of the wotld’s data safely nestled in
telational databases, not many are eaget to make the leap over to XML databascs. Yet, the
gradual change and acceptance of XML technology can be seen. The power of the XML
language has been understcod, which is why major database vendors are adding that extra

XML mapping layet into their products.

In addition, many expect that the major database vendors will soon offer their own native
XML databases in response to demand for XML processing that Web-based e-commetce
applications will requite. This will let information technology departments that must buy from

specific vendors all they need, getting native XML functionality from their approved vendots.

55

Demand for XML will expand; new uses will include Internet search engines that use XML
tags, c-commesce systems that must produce output rapidly, electronic data interchange with
XML tags, data reuse and content personalization. The move to XML databases to handle
such applications will proceed in turn. As XMI. standards are being developed further, the
future of XML and its related technologies is very bright. Undoubtedly, XML will play a
central role in data communication. To the extent of naiive XML databases’ role in the future

of IT, that remains to be seen, but things ate looking very promising.

56

57

GLOSSARY

Attribute

XML structural construct. A name-value pait, separated by an equals sign, included inside a
tagged element that modifies cerain features of the element. All attribute values, including
things like size and width, are in fact fext sttings and not numbets. For XML, all values
must be enclosed in quotation matks.

Cascading Style Sheets (CSS)

Formatting descriptions that provide augmented control over presentation and layout of
HTML and XML elements. See also Extensible Stylesheet Language.

Character data

All the text content of an element or attribute that is not matkup. XML differentiates this
plain text from binary data.

Document element

The element in an XM, document that contains all other elements. It is the top-level
clement of an XML document and must be the first element in the document. There is
exactly one document element, no patt of which appears in the content of any other
element. The terms root element and document element are interchangeable.

Document entity

The starting-point for an XML patser. Unlike other entities, the document entity has no
name and cannot be referenced. It is the entity in which the XML declaration and
document type declaration can occur.

Document Object Model (DOM)

A platform- and language-neutral interface that allows programs and scripts to dynamically
access and update the content, structure and style of documents. The Document Object
Model provides a standard set of objects for representing HTML and XML documents, a
standard model of how these objects can be combined, and a standard intetface for
accessing and manipulating them.

Document Type Declaration

XML structural construct. Consists of matkup code that indicates the grammar rules, or
Document T'ype Definition (DTD), for the particular class of document. The document
type declaration can also point to an external file that contains all or patt of the DTD. It
must appeat following the XML declaration and preceding the document element. The
syntax of the document type declaration is <IDOCTYPE content>.

58

Document Type Definition (D'TD)

Can accompany a document, essentially defining the rules of the document, such as which
elements are present and the structural relationship between the elements. It defines what
tags can go in your document, what tags can contain other tags, the number and sequence
of the tags, the autibutes your tags can have, and optionally, the values those atttibutes can
have. Sce also schema.

Element

XML structural construct. An XML element consists of a start tag, an end tag, and the
information between the tags, which is often referred to as the contents. Elements used in
an XML, file are described by a D'T'D or schema, either of which can provide a description
of the structute of the data.

Entity

XML structural construct. A file, database recotd, or anothet item that contains data. The
primary purpose of an entity is to hold content—not structure, tules, or grammar. Hach
entity is identified by a unique name and contains its own content, from a single character
inside the document to a large file that exists outside the document.

Extensible Linking Language (XLL)

An XML vocabulary that provides links in XMI, similar to those in HTML but with more
functionality. In addition to offering URL-based hypetlinks and anchors, XLL also supports
linking to an atbitrary position in a document and multidirectional links. page level.

Extensible Matkup Language (XML)

A subset of SGML that is optimized for delivery over the Web, XML provides a uniform
method for desctibing and exchanging structured data that is independent of applications or
vendois.

Extensible Stylesheet Language (XSL)

A language used to transform XMI-based data into HTML o other presentation formats,
for display in 2 Web browser. The transformation of XML into formats, such as HTML, is
done in a declarative way, making it often easier and more accessible than through scripting.

Invalid document

Documents that don’t follow the XML tag rules. If a document has a DTD or schema, and
it doesn't follow the rules defined in its DTID ot schema, that document is invalid as well.

Mixed content

Element types with mixed content are allowed to hold either character data alone or
character data interspersed with child clements.

59

Namespace

A mechanism that allows developers to uniquely qualify the element names and
relationships and to make these names recognizable. By doing so, they can avoid name
collisions on elements that have the same name but ate defined in different vocabulaties.
They allow tags from multiple namespaces to be mixed, which is essential if data is coming
from multiple sources.

Reference node

The refesence node for a search context is the node that is the immediate parent of all
nodes in the search context. Every search context has an associated reference node.

SAX
See Simple API for XML.

Schema

A formal specification of element names that indicates which elements are allowed in an
XML document, and in what combinations. It also defines the structure of the document:
which elements are child elements of others, the sequence in which the child elements can
appear, and the number of child elements. A schema is functionally equivalent to a DTD,
but is written in XML. A schema also provides for extended functionality such as data
typing, inhetitance, and presentation rules. Consequently, the new schema languages are far
mote powetful than DTDs.

SGML
See Standard Generalized Matkup Language.

Simple API for XML (SAX)

An XML API that allows developers io take advantage of event-driven XML paising.
Unlike the DOM specification, SAX doesn't tequite the entire XML file to be loaded into
memoty.

Simple Object Access Protocol (SOAP)

Provides an open, extensible way for applications to communicate using XML-based
messages over the Web, regardless of what opetating system, object model, or language
they use. SOAP provides a way to use the existing Internet infrastructure to enable
applications to communicate ditectly with cach other without being unintentionally blocked
by firewalls.

Standard Generalized Matkup Language (SGML)

The international standatd for defining descriptions of structure and content of electronic
documents. Despite its name, SGML is not a language in itself, but a way of defining
languages that are developed along its general principles.

60

Valid XML

XML that conforms to the rules defined in the XML specification, as well as the rules
defined in the DTD or Schema. Because all of this parsing and checking can take time
and because validation might not always be necessary, XML suppotts the noton of the
well-formed document.

wW3C
See Wotldwide Web Consottinm.

Well-formed XMI.

XML that follows the XML tag rules listed in the W3C Recommendation for XML 1.0, but
does not have 2 DTD or schema. Well-formed XML documents ate easy to cteate because
they don't requite the additional wotk of creating a DTD. Well-formed XML can save
download time because the client does not need to download the DTD, and it can save
processing time because the XML parser doesn't need to process the DTD.

Wotldwide Web Consortium (W3C)
A standards body physically located at MIT and vittually at that sets standards for XML,
HTML, XSL, and many other Web technologies.

XILL
See Extensible Linking Language.

XML
See Extensible Markup Language.

XML-Data

A language used to create a schema, which identifies the structute and constraints of a
patticular XML document. XML-Data catties out the same basic tasks as DTD, but with
mote power and flexibility. Unlike D'TD, which requites its own language and syntax,
XML-Data uses XML syntax for its language.

XML document
A document object that is well formed, according to the XML recommendation, and that
might (or might not) be vald.

XML patser

A software module used to tead XML documents and provide access to their content and
structure. The XML parser generates a hierarchically structured tree, then hands off data to
viewers and other applications for processing, and finally returns the results to the browser.
A validating XML patset also checks the XML syntax and tepotts etrors.

61

XPath

The tesult of an effort to provide a common syntax and semantics for functionality shared
between XSL Transformations (XSLT) and XPointer. The primary puspose of XPath is
to address parts of an XML document. It also provides basic facilities for manipulation of
strings, numbers and booleans.

XML Pointer Language (XPointer)

A W3C initiative that specifies constructs for addressing the internal structures of XML
documents. In patticulat, it provides for specific reference to elements, character strings,
and other patts of XML documents, whether or not they bear an explicit ID attribute.

XML Query Language (XQL)

An extension to the capabilities of XSL that will provide for searching into, and data
retricval from, XML documents. It provides ways to manipulate XML 1n order to ctreate
new documents, to conttol the content of existing documents, and to manage the ordering
and presentation of these documents along with XSL.

XML Schema

See schema,

XSL Transformations (XSLT)

Provides two "hooks" for extending the language, one hook for exiending the set of
instruction elements used in templates and one hook for extending the set of functions
used in XPath exptessions. These hooks are both based on XML namespaces.

62

BIBLIOGRAPHY

[1] Quin, Liam. Open Sonrce XML Database Toolkit. New York: Wiley Computer Publishing,
2000

[2] Sturm, Jake. Derveloping XMI, Solutions. Redmond, Washington: Microsoft Press, 2000

[3] Nakhimovsky, Alexander & Myers, Tom. Professional Java XML Progranming. UK:Wrox
Press, 1999

[4] Abiteboul, Setge, Peter Buneman, and Dan Suciu. Data On The Web: From Relations o
Senistructured Data and XMI.. San Francisco, California: Morgan Kaufmann Publishers,
2000

[5] Bouttet, Ronald. XML Database Produds. Nov. 2000.
http:/ /www.tpboutret.com/xmil/XMLDatabaseProds.htm

[6] Boustet, Ronald. XA _Aud Databases. Nov. 2000
htip:/ /www.tpbouttet.com/xmil/XMLAndDatabases.htm

[7] Mattin, Byyan. An Introduction o the Extensible Markup Language (XML). Jan. 2001
http:/ /www.personal u-net.com/~sgml/xmlintro.htm

[8] SpiderPro. KickStart XML Tutorial. Jan. 2001
http:/ /www.spidetpro.com/bu/buxmlm001 html

[9) MSDN Online Library. Microsoft XML 3.0 — XML Developer's Guide — XML Glossary.
Nov. 2000.
http:/ /msdn.microsoft.com/library/default.asp?URL=/library/ psdk/xmlsdk/zmls6g53.htm

[10] MSDN Online Libtary. Microsoft XML 3.0 - XML, Tutorial. Nov. 2000
http:/ /msdn.microsoft.com/library/psdk/xmlsdk/xmlt7k18.htm

[11) Williams, Keven, et. al. XML Siructunres for Existing Databases. Jan. 2001
http:/ /www-106.ibm.com/developerworks/library /x-struct/?dwzone=xmi

[12] Tash, Jeff. Differences Between an RDBMS And An XML Document. Oct. 1999

http:/ /wrww.planetit.com/techcenters/docs /entexprise_apps_systems-
data_management/opinion/P1T1999101250004

[13] Heinemann, Chartles. Creating XML Data Sonrces front Relational Databases. Mar. 1998
http:/ /msdn.mictosoft.com/xml/articles /xmi030998.asp

63

(14] ITER. EAQ DBDOM. Feb. 2001. hitp: / fwwwiter.co.il/projects/dbdom/faq.html

[15] Ambler, Scott. Mapping Objests To Relational Databases. Oct. 2000
http:/ /wwnw.ambysoft.com/mappingObjects. pdf

[16] Widom, Jennifer. Data Management for XMI: Research Directions. Apil 1999.
htip:/ /www-db.stanford.edu/~widom/xml-whitepaper.html

[17] Shanmugasundaram, Jayavel, Kristin Tufte, Gang He, Chun Zhang, David DeWitt, and
Jeffrey Naughton. Refational Databases for Querying XML Dociments: Lintitations and
Opportuntties. VLDB Conference, Sept. 1999

[18] Shanmugasundaram, Jayavel, Eugene Shekita, Rimon Bart, Michael Carey, Bruce Lindsay,
Hamid Pitahesh, and Besthold Reinwald. Efficiently Publishing Refational Data as XMI .
Documents. VLDB Conference, Sept. 2000

[19] Beauchemin, Bob. The XML Fikes. Sept. 2000
http:/ /www.sglmag.com/Articles /Index.cim? ArticleTD=9161&pg=2

[20] W3C. XML Representation of a Relational Database. July 1997
http:/ /www.w3.org/XML/RDB.html

[21] Buck, Lee. Modeling Relational Data in XML, Masrch 2001
hitp:/ /www.extensibility.com/tibco/resoutces /modeling.htm

[22] Champion, Michael. Native XML vs. XML -enabled: The Difference Makes a Difference. Match
2001. http:/ /www.softwareag.com/xml/library/champion_nativextnl.htm

[23] DeJong, Jennifer. Sroring XMI. Data. Dec. 2000.
http:/ /www.sdtimes.com/news/019 /speciall.him

[24] Software AG. Tawino XML Database Specification. March 2001
htip:/ /www.softwateag.com/ tamino/

[25] Klemz, Janet. 1 Birdseye View of XMI ... Jan. 2001.
http:/ /mes.uww.edu/mesms /950-780/ Klemz]M28/Research1.htm

[26) OASIS. The XMI. Cover Pages. March 2001. heip:// www.oasis-open.otg/cover/

[27) W3C. W3C Recommendation XML 1.0 Specifieation. Oct. 2000.
htip:/ [www.w3.org/ TR/REC-xml

[28) Muench, Steve. Usiug XML and Relational Databases for Internet Applications. Jan. 2001
http:/ /technet.oracle.com/tech/xml/info /htdocs/ relational/index.htm

64

[29] Dejesus, Edmund X. XML Enters the DBMS Arena. Oct. 2000.
http:/ /www.computerwotld.com/cwi/story/0,1199,NAV47_STO53026,00.humnl

[30] XMI DB Initiatire for XML Databases. Jan. 2001, http:/ /www.xmldb.org/index.html

[31] Chinwala, Maria, Rakesh Malhotra, and John A. Miller. W3C Progress Towards Standards For
XML Databases. March 2001.

[32] Rosenthal, Aaron, Len Seligman, and Roger Costello. XMI, Databases, and lnteroperability.
Federal Database Colloguium, AFCEA, San Diego, 1999

[33] Seligman, Len and A. Rosenthal. The Inmpact of XMI_ on Databases and Data Sharing.
Dec. 2000

[34] Deutsch, Alin, Mary Fernandez, Danicla Flotescu, Alon Levy, and Dan Suciu. A Query
Language for XML, 1999. http:/ /www.research.ait.com/~mff/files/final html

[35] W3C. XQwery: A Query Langue for XMIL. W3C Working Draft. Feb. 2001.
http:/ /werw.w3.org/ TR /xquety/

[36} W3C. XML Path Language (XPath) Version 1.0. W3C Recommendation. Now. 1999.
hitp:/ /www.w3.otg/ TR/xpath

[37) W3C. XMI. Pointer Language (XPointer) Version 1.0. W3C Last Call Wosking Draft.
Jan. 2001. http://www.w3.org/ TR /xptt

[38] W3C. XML Linking Language (XLink) Version 1.0. W3C Proposed Recommendation.
Dec. 2000. http://www.w3.org/ TR /xlink/

[39) W3C. XSL Transformations (XSLT) Version 1.1. W3C Working Draft. Dec. 2000.
htip:/ /www.w3.org/ TR /xslt11/

[40] Holmon, G. Ken. What is XSI.T? Aug. 2000.
http:/ /www.xml.com/pub/a/2000/08 /holman/index.html

65

