An Environment for Developing Individual-Based
Ecological Simulations

by
Heather May

A THESIS

Presented to the Department of
Computer and Information Science
at the University of Oregon
in partial fulfillment of the requirements
for the Departmental Honors Program

June 2001



Acknowledgements

I would like to thank my advisor, Dr. John Conery for his patience and
assistance throughout the duration of this project. In addition, I would like to thank
Professor Daniel Udovic for permitting the use of EcoModeler to displaying the results
of the project. Special thanks go to Jim Beard for his input on the model design, and to

Jackie Carpentier for her extensive assistance with organizing and editing the paper.



Abstract

Computational modeling of ecological processes can provide a method for
performing controlled experiments and evaluating the effects of disturbance on
ecosystem health. However, the large number of biological and computational
challenges associated with the development of realistic ecological models has prevented
their use as tools for environmental management decisions. The creation of an ecosystem
modeling environment could facilifate the widespread development of ecological maodels
by helping researchers manage the large number of significant challenges in the
formulation and implementation of this type of model. This paper describes an
environment for developing forest simulation models (named FOREST), which
implements a subset of the features desired in a complete ecological modeling
environment. FOREST was able to simplify the process of developing forest simulation
models by providing the main time advance algorithm and reusable components to define
behavior of the objects in the model. If FOREST was extended into a full ecological
modeling environment, modelers could focus on implementing the biclogical

components and determining the appropriate level of detail for their simulations.



Table of Contents

Chapter 1: Introduction to Ecological Modeling
1.1 Introduction
1.2 Approaches to Ecosystem Modeling
1.3 Aggregated Models
1.4 Individual-Based Models
1.4.1 Discrete-Time Implementations
1.4.2 Discrete-Event Implementations
1.5 Conclusions

Chapter 2: Challenges to Individual-Based Modeling in Ecology
2.1 Overview

2.2 Large Data Sets

2.3 Data Input and Initialization

2.4 Analysis and Communication of Results

2.5 Model Formulation and Calibration

2.6 Overall Complexity

Chapter 3: Discrete-Event Ecological Modeling Environment
3.1 Components of a Discrete-Event Simulation Environment
3.2 Additional Features for Developing Ecological Simulations

3.2.1 Simulation Time

3.2.2 Flexibility in Event Scheduling

3.2.3 Data Input Subroutines

3.2.4 Extended Visualization Package

3.2.5 Reusable and Extendable Model Components

3.2.6 Flexible Implementation
3.3 Summary

Chapter 4: A Simulation Environment for Building Forest Models
4.1 Description
4.2 Discrete-Event Simulation Implementation
4.2.1 Simulation Time
4.2.2 Events
4.2.3 Event List
4.2.4 Event Scheduler
4.2.5 Random Number Generators
4.2.6 Initialization Subroutine and Main Contro] Thread
4.2.7 Visuvalization Methods
4.3 Model Design
4.3.1 Visitor Patterns
4.3.2 Event Handlers
4.4 Simple Growth Model
4.4.1 Entities
4.4.2 State Events
4.4.3 Scheduling Events
4.4.4 Initialization
4.4.5 Results
4.4.6 Discussion
4,5 Evaluation of FOREST
4.6 Conclusion

=B e e i ]

10
11
11
12
12

14
15
15
15
16
16
17
17
18

19
20
20
20
20
21
21
21
21
22
22
26
30
30
31
32
33
33
35
35
36



Chapter 1: Introduction to Ecosystem Modeling

1.1 Introduction

Although human activities are altering ecological processes on a global scale, the
consequences of these disturbances on ecosystem health are largely unknown. The
effects of disturbance are difficult to predict since there are a large number of
components (populations, resources, climate, topography, etc.) and interactions between
components (predation, competition, mutualism, etc.). The consequences of specific
interactions between components may be impossible to isolate in nature, due to the
infeasibility of conducting controlled experiments. However, computational modeling
allows one to perform controlled experiments on a model ecosystem, and to make long-
term predictions of the effects of different types of disturbances (Deutschman, 2000;
Levin et al,, 1997). As aresult, there has been a growing interest in using computational
models to guide ecosystem management decisions. Computational models can |
potentially provide a way for environmental managers to evaluate alternative
management strategies, by comparing the predicted short and long-term effects of each

strategy on the ecosystem (Shea, 1998).

Despite the potential benefits of computational modeling, the natural complexity
of an ecosystem presents a number of challenges to creating computer models designed
to make predictions about the behavior of a particular ecosystem (Levin et al., 1997;
AEL, STMP). This paper describes a system to facilitate the development and
calibration of computational models for guiding environmental management decisions.
The first section presents a brief history of the evolution of population and ecosystem
models, and evaluates the different approaches to these models. After evaluating the
advantages and disadvantages of each type of model, it became clear that the nature of
the problem requires an individual-based, discrete-event approach. Chapter 2 addresses
the biological and computational challenges associated with the building of individual-
based, discrete-event models. The creation of an ecosystem modeling environment
could facilitate the widespread development of ecological models by helping researchers
manage the large number of significant challenges in the formulation and
implementation of this type of model. Chapter 3 describes the desired features of an

ecological modeling environment, and chapter 4 describes FOREST, a prototype which



implements a subset of these features to create an environment for modeling forest
dynamics. Chapter 4 also discusses some possible ways to extend FOREST to include

features that will be necessary in a complete ecological modeling environment.

1.2 Approaches to Ecological Modeling

Biologists have historically recognized the value that can be gained through the
use of mathematical and numerical models to investigate questions about the underlying
causes of observed behavior of a biological system (Banks et al., 2001; Levin, 1997).
Models in general can facilitate learning by revealing how interactions between
components of the system affect its dynamics. This knowledge can then be used to
predict the future state and behavior of the system based on its current state (Banks et
al., 2001). A central challenge in ecology is understanding how large-scale community
and ecosystem properties emerge from interactions between individuals (AEL, 2001).
Ecologists have tried to gain insight into the mechanisms that determine ecosystem
complexity through the development and analysis of mathematical models based on
theories in population and community ecology. These models have traditionally been
used to test the validity of a theory by comparing the results predicted by the model with
empirical observations. Competing theories in ecology have been compared on the
basis of their ability to accurately predict the future state of the ecosystem. As a result,
mathematical models have contributed to the development of many central theories in
ecology, including competition theory and the paradox of enrichment (DeAngelis and
Rose, 1992).

Two general approaches exist to population-based ecosystem modeling, which
differ in the amount of aggregation used to represent the organisms in the ecosystem.
The first approach uses a high level of aggregation, where individual organisms in the
systemn are not represented explicitly, but the states of the system are defined by the
collective properties of the entire population (Matsimos et al., 2000). For example, in
the classic Lotka-Volterra two-species model of interspecific competition, each
population is represented by two variables corresponding to its size and competition
coefficient (Begon ct al., 1996). A population's competition coefficient is a relative
measure of the ability of its individuals to compete with individuals of the other species.

The behavior and stability of the system is completely determined by the initial size of



the populations and the value of their competition coefficients (Begon et al., 1996). In
an object-oriented model, the objects in the modetl are the populations, and changes in
state of the model through time are applied to an entire population. In an object-
oriented implementation of the Lotka-Volterra model, the size and competition
coefficient would be stored as attributes of the populations. These models try to capture
the essential dynamics that account for the observed behavior of the system, without

identifying which details are directly responsible for that behavior.

In an individual-based object-oriented model, the objects are the individuals and
the behavior of each individual organism is modeled explicitly. The changes in state to
a population are computed by summing over the changes in state of the individuals. An
individual-based model of interspecific competition would represent the populations as
collections of individual objects. Each individual can be assigned its own coefficient of
competition to account for variation in competitive ability between individuals of the
same species. The behavior of the model results from the outcome of interactions
between specific individuals, and therefore depends not only on the model's input but
also on which individuals interact with one another. These models try to explain
emergent behavior of a population as a result of the collective behaviors of its
individuals (Levin et al., 1997). "The essence of the individual-based approach is the
derivation of ecological systems from the properties of the individuals constituting these
systems" (Lomnicki, 1992). Despite the differences in how the populations are
represented, the final goal of both types of model is to summarize the state of the
populations in the system at some future time. The distinction between the two types is

in the method of derivation of the population state from the state of the individuals.

Since the first approach represents a population with a set of state variables, it
has traditionally been referred to as the state-variable approach. Likewise, since the
second approach explicitly represents each individual in the population, it has been
termed the individual-based approach, Unfortunately, this terminology is misleading
since all demographic models contain state variables and are based in some way on
information about individuals. As a consequence, Metz and Diekmann proposed the use
of the terms ‘i-state distribution’ and ‘i-state configuration’ to refer to state-variable and

individual-based models, respectively (Caswell and John, 1992). An individual’s i-state



encapsulates the information necessary to predict the individual’s behavior, and is used
to specify the response of an individual to its environment. This terminology illustrates
that the difference between the two types is in the way the state of the population is
obtained from the state of the individuals, either by including the complete individual
configuration or by reducing that configuration to a distribution function (Caswell and
John, 1992). However, this terminology does not intuitively convey how the
populations are represented in the model. Therefore, this paper refers to state-variable

models as aggregated models and maintains the use of the term individual-based.

1.3 Aggregated Models

The traditional approach to population modeling has been to use aggregated
models to describe the attributes of the population(s) the model is intended to represent
(Matsimos et al., 2000). The model updates the state of each population at a fixed time
interval by computing the changes in its attributes, which usually entails solving a set of
first order differential equations. Individuals within a population are often grouped into
classes according to some characteristic such as age, stage or size. Different parameters
can be applied to the equations for each class to reflect variation in the behavior of
individuals in different stages of the life cycle. Empirical observations about the
organisms in the model are typically used to determine the interactions that take place
during a time step for the individuals in each class. This appreach assumes a well-
mixed population, where every individual within a class experiences exactly the same
environment and responds in the same way. These models have traditionally been
delerministic, although some have incorporated environmental stochasticity by varying

the conditions that individuals within a class experience over time.

The simplicity and ease of understanding associated with aggregated models has
resulted in their widespread use within the field of theoretical population ecology. Since
many of the details of the individuals in the population are abstracted away, the results
from these models achieve a high level of generality. Well-developed methods exist
for deriving population properties from the collective properties of each class of
individuals through the use of differential equations, mairix algebra, or stability theory
(Caswell and John, 1992). Even though natural populations rarely satisfy the

assumptions of an aggregated model, these models can be used to predict the state of the



system in the absence of complicating factors. Specifically, these models show what to
expect in the absence of certain sources of variation including demographic stochasticity
and a spatially or temporally heterogenous environment. These models form the basis
for demographic theory, which says that in the absence of controlling factors (limited
resources, predation, etc.) populations tend to grow exponentially (Caswell and John,
1992). The observation that natural populations do not grow exponentially for extended

periods of time has prompted research into the factors that limit population growth,

Although aggregated models have made significant contributions to ecological
theory, there are a number of disadvantages to using this approach for creating models
designed to represent specific ecosystems. As previously mentioned, natural
populations rarely satisfy the conditions assumed in aggregated models. Therefore, the
predictions of the model cannot be applied to the real system unless it can be shown that
the model provides a sufficient representation of the essential elements that determine
the behavior of the system. If no significant loss of information results from the use of

aggregation in the model, then its predictions are valid for the actual ecosystem.,

However, many ecologists argue that the loss of information is significant
because the assumptions inherent to these models violate two fundamental principles in
biology (Caswell and John, 1992). The first principle states that individual organisms
display physiological and behavioral differences due to their specific genetic and
environmental influences. The nature of aggregated models prevents the inclusion of
genetic variation between individuals within the same class, since the changes in state
which occur in the model are applied to the entire class of individuals. The second
principle is based on the locality of interactions, and states that an individual is affected
more by organisms within a close proximity than others that are located farther away.
Although it is possible to include the effects of local interactions and a heterogenous
environment in an aggregated model, the incorporation of space considerably
complicates both the formulation and analysis of these models (DeAngelis and Rose,
1992). Unless all of the individuals within a class experience the same environment, the
model must maintain a list of the number of individuals in each class for each location.

The maintenance of these lists not only complicates the solution, but also increases



execution time due to the extra time needed to update the lists at each iteration of the

model.

The complications that arose from trying to narrow the generality of aggregated
models to represent specific populations has prompted the development of a different
type of model that is better suited for this purpose. Since the individual-based approach
simplifies the inclusion of biological detail about individuals, this approach can
facilitate the development of more realistic ecological models. The next section
describes the structure of individual-based ecological models and the two methods for

implementing these models.

1.4 Individual-Based Models

In individual-based ecological models, the state of each individual organism is
represented by a set of attributes (e.g. age, size, sex). Individual-based models are
conceptually simple, and consist of the following components (Matsinos et al., 2000):

e asetof interacting individuals

¢ aset of rules that describe the implementation of local interactions between
individuals and between an individual and its environment

¢ aphysical landscape with resources

The rules that define state transitions can depend solely on the state of the individual or
on the combination of the state of the individual and its environment. These rules are
typically based on empirical data or proposed theories about the behavioral and
physiological characteristics of the organisms represented in the model (Matsinos et al,
2000). Individual-based models can store more details about the individuals and the
environment than aggregated models and do not impose the assumption of a well-mixed
population. Therefore, the effects of variation between individuals and between specific
locations in the environment can be incorporated into these models. The following
sections describe two approaches to implementing individual-based ecological

simulations, which differ in the way the model is updated through time.

1.4.1 Discrete-Time Implementation
The most common approach to implementing discrete-time individual-based
models in ecology has been the development of cellular automata, a type of model

originally proposed by John von Neumann (Ellison and Bedford, 1995). Cellular



automata divide the environment into cells within a larger grid, and the changes in the
state of a cell during a time interval are determined by the state of the cell, the state of
neighboring cells, and a set of transition rules (Ellison and Bedford, 1995). The
transition rules may use information about the characteristics of the organisms in the
model to determine the next state of the each cell. Although the individuals in the
model! are the cells rather than organisms, the models are often made to be individual-
based at the level of the organism by restricting each cell to hold at most one organism
at any given point in time. A well-known cellular automata population model is J.H.
Conway’s “Game of Life”, which uses a simple set of transition rules and each cell has

only two possible states.

Cellular automata update all of the cells in the model at each time step, even
though some cells may not change in state. This approach results in inefficient use of
the processor since a significant amount of time must be spent checking each individual
cell. Additionally, since changes in state to all individuals occur at fixed time intervals,
all of the events that would occur at different times within an interval are processed at
the end of the interval. In general, the use of a discrete-time mode! to represent a
system with discrete changes in state introduces a source of error related to the length of
the time between updates. The time step must be small enough so that differences in the
timing of events within an interval does not significantly affect the validity of the results
of the model. However, the time interval needed to achieve an acceptable level of
accuracy may be too small to execute the model in a reasonable amount of time.
Therefore, recent research has been directed towards vsing discrete-cvent simulations in
order to eliminate the error introduced in continuous models (Bolte et al., 1993). The
next section describes the discrete-event approach to ecological modeling, following a

brief infroduction to discrete-event simulations in general.

1.4.2 Discrete-Event Implementation

Discrete-event simulations are used to model systems in which the state
variables do not change continuously, but the changes occur at discrete points in time
(Banks et al., 2001). The changes in state are defined as events, which may be bound
(i.e., the rate of occurrence is predictable) or conditional (i.e., the event occurs when a

set of conditions are satisfied). The simulation consists of scheduling and processing



events for each entity in the model. This approach requires managing and event list to
store the future events for the all of the entities. The main control loop removes the first
event from the event list, updates the simulation's current time to the timestamp of this
event and updates the state of the entity to reflect changes caused by the event. The
simulation iteratively processes events in the event list until the state of the system

reaches some predefined terminating conditions.

Contrary to discrete-time simulations, the time interval between updates varies
and each object in the model is updated at different times. Although the simulation does
not have to update every object at a fixed time step, the management of an event list
makes each individual step more complicated. Discrete-event simulations must manage
an event list to store the future events for all of the objects in the medel. However, the
effects of this tradeoff are minimal since there are many methods for implementing
sorted data structures with log(n) access times (» = number of objects in the list). In
many cases, discrete-event simulations are computationally less intense than continuous
individual-based models. The speed of execution increases since the simulation only
updates the state of an individual when processing an event for this particular individual.
The complexity involved with the implementation of a discrete-event simulation
corresponds directly to the complexity of the system. Complexity tends to increase with
the number of entities and interactions in a system, especially in systems which have a

high occurrence of conditional events.

The discrete-event approach to ecological modeling requires defining events that
correspond to the activities of the individuals in the model. Reproduction, competition,
and predation are examples of events that are commonly included in these simulations.
In addition to scheduling events for individuals, events may also be scheduled for the
environment or specific locations within the environment to reflect changes in the
availability or distribution of resources. The biggest advantage of discrete-event
ecological models is that they can accurately model the discrete changes that take place
to individuals in an ecosystem. Therefore, the effects of temporal variation in individual
actions will be reflected in the model’s results, and the significance of this variation may

be evalvated. However, many events in an ecological simulation are conditional since



they involve interactions between individuals. The simulation must provide a way to

trigger the occurrence of these events, increasing the complexity of implementation.

1.5 Conclusion

There are two major advantages to vsing an individual-based approach instead of
an aggregated approach to ecological modeling. The first advantage is that they allow
for differences in the behavior of individuals in the model due to genetic and learned
variation. Genetics can be incorporated in the model by adding a representation of
genes to the set of attributes of the individuals. The second advantage is the relative
ease in which additional details about the individuals and the environment can be added
to the model. Each individual in the model is capable of being updated in a way that
may or may not depend on temporally and spatially varying factors (Matsinos, 2000).
Since the sources of natural variation can be modeled explicitly, individual-based
models can potentially provide a more accurate representation of ecological processes.
By examining the consequences of the addition and removal of elements in the model,
ecologists can perform controlled experiments in order to investigate the mechanisms

which account for observed behavior (Shea, 1995).

Since individuals in an ecosystem experience both discrete and continuous
changes in state, a discrete-event approach can provide a more accurate representation
than a discrete-time approach. However, there are several biological and computational
challenges to applying a discrete-event, individual-based approach to ecosystem
modeling. Biological challenges result from the large amount of information needed to
formulate and parameterize individual-based models (Levin, 1997, Lomnicki, 1992).
Implementation of these models requires knowledge about the characteristics of each
individual and the factors affecting its behavior, which may not be possible to collect
through observation. The computational difficultics stem from the high level of detail
and numerous interactions included in the representation of individual-based models.
These challenges include providing efficient methods for storage and retrieval of large
quantities of data, multiple techniques for analysis and communication of results, and
minimizing the execution time (Deutschman, 2000). The next chapter addresses the
biological and computational challenges to applying an individual-based approach to

ecosystemn modeling.



Chapter 2: Challenges to Individual-based Modeling in Ecology

2.1 Overview

The computational challenges to developing individual-based ecological models
can be attributed to the higher level of detail and large number of interactions between
model components. The challenges to creating highly detailed, individual-based models
result from the large data sets, complexity of analysis and communication of results, and
the overall difficulty involved in the formulation, implementation and calibration of
these models (STMP, 1995). In fact, the creation of large-scale ecological models has
only recently become feasible, as a result of the vast improvements in computer
hardware and software and the development of parallel and distributed computing
systems (STMP, 1995). The following sections of this chapter describe the biological

sources of complexity, and the resulting computational challenges.

2.2 Large Data Sets

The development of realistic individual-based ecosystem models has been
hindered in the past by the large amounts of memory required to store the attributes for
all of the individuals in the model (Gross, 1995; STMP, 1995). The amount of main
memory needed for the simulation to run in a reasonable amount of time often exceeded
the amount available for a standard desktop computer. As recent developments have
increased the maximum amount of RAM in desktop computers and decreased its cost,
many individual-based simulations can be executed on a standard machine. However,
the memory requirements of large-scale models that include a high level of detail, many
thousands of individuals and numerous interactions between individuals can still exceed

the amount available on a standard computer today (Gross, 1995; STMP, 1995).

Fortunately; improvementsin hardware havereduced thecost of large mainframe
computers and have correspondingly increased their availability to modelers. In
addition to requiring large amounts of RAM, individual-based models often place heavy
demands on the processor. Although the calculations used to determine the effects of
interactions between individuals tend to be relatively simple, the number of interactions
in a system can be quite large (Matsinos, 2000). The resulting computational
requirements of these calculations can easily exceed the power of a single-processor

machine,

10



2.3 Data Input and Initialization

Individual-based models are considerably more difficult to initialize than
aggregated models, since the values for every atiribute for each individual in the
simulation must be determined. The two methods for initialization are to use data
collected about each individual, or to use statistical distributions based on aggregated
field data. To parameterize the model from actual observations requires an extensive
amount of information to be collected about every individual represented in the
simulation (Slothower, et al., 1996). However, it may not be possible to collect all of
the data needed to fully parameterize the model due to biclogical difficulties in making
the observations and the amount of time required for data collection. Some attributes
may have to be estimated using randomly generated variates from statistical
distributions if collecting the necessary information about each individual is not
feasible. For example, in simulations of a specific wildlife reserve, the exact location of
every individual at the beginning of the simulation may not be known from field data.
The initialization routine must provide a method to disperse individuals throughout the

model environment in patterns that match their natural dispersal patterns.

2.4 Analysis and Communication of Results

The large number of interacting factors makes the results from individual-based
models more difficult to analyze and interpret than results from state variable models
(Caswell et al, 1992; DeAngelis and Rose, 1992). Also, since most individual-based
models include some stochasticity, the simulation needs to be run multiple times with
the same parameters and initial conditions. Statistical analysis becomes necessary in
order to assess the probabilities of various outcomes resulting from each parameter set
and to determine the robusiness of the model in terms of its sensitivity to initial
conditions. Second, due to the large number of variables and the possible estimation of
parameters, there is no way to test the validity of a highly detailed ecological model
(Swartzman and Kaluzny, 1987). Instead, these models must be evaluated in terms of
their level of corroboration, which is a measure of how well a model meets its
objectives. The level of corroboration is determined through the comparison of model
output with field data over the range of conditions for which the model is to be used

(Swartzman and Kaluzny, 1987).

11



Due to the large data sets and number of simulations required, effective
communication of the results often requires graphical displays. Graphical visvalization
of the data can facilitate understanding of complex relationships, but only if the data are
presented in a such a way thal patterns are easily recognizable to the human eye.
Recently, there has been an increased awawreness of the crucial role that visualization
plays in the analysis and interpretation of results from ecological simulations
(Deutschman, 2000},

2.5 Model Formulation and Calibration

Resulting from the inherent complexity of ecological systems, an important step
in building ecosystem models is determining which details to include. As a general
guideline, a model should include only those aspects of the system that affect the
problem under investigation, but should contain enough detail to permit valid
conclusions to be drawn about the real system (Caswell et al, 1992). However, no
complete methodology exists for determining which details in a complex system control
particular ﬁspects of the larger system (AEL, 2001). As stated by Levin et al.,

The problem becomes one of the central problems in science: determining

what is signal and what is noise by understanding what detail at the level of

the individual units is essential to understanding more macroscopic

regularities (1997).
Levin et al. warn against creating models which include more detail than can be
measured or parameterized. The output from such models may appear realistic, but
does not represent any real system. Many modelers suggest developing simple
individual-based models with as few parameters and assumptions as possible
(DeAngelis and Rose, 1992). Additional details can be added and removed in an
attempt to identify which local interactions affect the broader scale patterns and which
are noise (Levin et al., 1997). This approach requires extensive simulations that vary
the parameters and level of detail in the model. Hov#ever, this approach is necessary to

improve the realism of the representation of the system and the corresponding accuracy

of the model’s predictions.
2.6 Overall Complexity

The absence of the widespread development of individual-based ecosystem

models as tools for environmental management decisions can be attributed to the

12



computational complexities associated with building and analyzing these models and to
the lack of communication and collaboration between modelers (STMP, 1995).
Development has been limited by the ability of any single team of researchers to deal
with the conceptual complexities involved in the formulation, implementation,
calibration and debugging of ecological models (STMP, 1995). Some models are so
complicated that they are comprehensible only to the developers, making it virtuaily
impossible to communicate the structure of the model to others. The inability to explain
the model structure has prevented the use of these models as decision making tools for
ecosystem management, since policy makers (and the public) are unlikely to trust a
model they do not understand (STMP, 1995). Furthermore, these models have typically
taken teams of experls 2-5 years to develop, which is too long to wait to make a
management decision. If the goal is endangered species protection, creating a model to
test management strategies is impractical since the population may be irreparably

harmed in the time it takes to develop the model.

Additionally, the lack of communication and collaboration between modelers
has resulted in different groups of researchers encountering similar challenges in the
design and implementation of ecological models. The similarities between ecosystems
and hierarchical nature of ecosystems suggest the possibility of creating models with
reusable and extendable components, to reduce the amount of redundancy in model
creation. One way to facilitate collaboration between modelers and to reduce the
complexity associated with building ecosystem models would be to provide an
integrated development environment (IDE} designed specifically for developing and
evaluating individual-based ecological simulations. The next chapter describes the

essential features of such an environment.

13



Chapter 3: Discrete-Event Ecological Modeling Environment

Although there are a considerable number of general-purpose simulation
modeling environments (SME) currently in existence, the most successful SME’s have
been designed for relatively narrow domains (Banks, et al., 2001). In addition to
standard discrete-event SME features, an ecological modeling environment should also
provide tools to assist with the formulation, implementation and analysis of results of
ecological simulations. The next two sections describe the components common to all
object-otiented, discrete-event simulation environments and the additional features

specific to ecological modeling.

3.1 Components of a Discrete-Event Simulation Environment
The following list describes the standard features of discrete-event simulation
modeling environments (Banks et al., 2001).

Clock: The clock is simply a variable to keep track of simulation time.
Event: Events are used to update the state of the model entities. The event object
typically contains the time of occurrence, type of event, and the entities involved.

¢ Fufure Event List (FEL): The event list is a data structure (sorted by event time)
used to hold all of the future events until their time of execution.

¢ Random Number Generators: These generators provide random variates from
statistical distributions.

e Initialization Subroutine: The state of the system at the beginning of the
simulation is created in the initialization subroutine. This routine includes creating
all of the objects in the simulation and setting the initial values for all attributes of
the objects.

e Main Control Thread: The main program advances the simulation through time by
processing events in order from the future event list.

» Methods for Analysis and Display of Results: These methods gather statistics
from cumulative results and print a report at the end of the simulation. Most of the
newer SME’s also provide graphs and other tools for visualization of the results.

The amount of programming required by the user varies considerably between
environments, depending on the level of generality of the environment (Banks et al,
2001). Since the SME proposed in this paper would be targeted specifically at
simplifying the process of building ecological models, it would have a relatively low
level of generality for a simulation environment. However, the environment needs to
have a high level of generality within this specific purpose, in order to accommodate

many different types of ecosystems and questions of investigation.

14



3.2 Additional Features for Developing Ecological Simulations
In addition to the components of a discrete-event SME, an ecological modeling

environment should also contain the features described in the following sections.

3.2.1 Simulation Time

In most SME's, time is stored as an integer or floating point number and is
computed relative to the initial time of the simulation (Banks et al., 2001). However,
some events in an ecological simulation should be restricted to occur during certain time
periods. For instance, many organisms reproduce only once a year in the spring and
may mate only during a specific time of day. It may be difficult or impossible to
accommodate this level of detail in a simulation which only stores time as a number
relative to the starting time. Some models have broken up the year into seasons and
specify which events occur during each season (Ellison and Bedford, 1995). One
disadvantage to this approach is that it requires that the event scheduler is aware of the
current season, in order to know what events to schedule. Another disadvantage is that
it does not allow for variation in the time ranges of events for different species in the
simulation. This approach is acceptable in situations where all of the species

represented in the model have the same temporal patterns.

However, even though many species have similar temporal patterns, slight
variation in these patterns may have significant effects on community dynamics. For
instance, although most species male in the spring, the actual time of reproduction
varies considerably between species. Since these differences are not included in the
model, the effects of variation are excluded from the model’s results. An ecological
SME should provide methods to simplify the addition of time range restrictions to
certain events for individuals in the model. The user should be able to specify the exact
time range for all events for each species, so that the results may include the effects of

temporal variation between species.

3.2.2 Flexibility in Event Scheduling
The SME should allow maximum flexibility in the scheduling of events during
the simulation. Rather than restricting events to be scheduled in only one way, events

should be allowed to be scheduled using different methods. For example, movement of

15



an organism in the model may be triggered by the need to eat, mate, or escape predation.
However, some models may also include random movement, where the time of
movement may follow a statistical distribution. The simulation should allow the same
event fo be scheduled both ways; in response to the occurrence of some other event or

according to a statistically determined rate of occurrence.

3.2.3 Data Input Subroutines

Since ecological models can be parameterized by data collected about
individuals or by applying statistical analysis to data collected about the populations, the
SME should provide methods for both type of input. It is rarely possible to get all
values for all of the attributes for every individual from field data, so the user should be
able to choose which method to use for each attribute in the simulation. Large amounts
of data may need to be entered to parameterize the model, so techniques need to be

available to simplify the process of initialization (Slothower et al., 1996).

3.2.4 Extended Visualization Package

Visualization of the results of an ecological simulation must usually be
implemented at various scales to allow the user to extrapolate all of the desired
information. This package should include methods for displaying static and dynamic
information about the state of the model environment throughout the duration of the
simulation. In addition to graphs that summarize the results from multiple simulations,
a graphical display may also be used to illustrate the results of one particular simulation
run. The large number of individuals present in a simulation may prevent the explicit
visual representation of each individual within the entire environment. The environment
should allow the user to view the distributions for various subgroups of the population,
such as a particular species or subgroups within a species including males, females, or
individuals within a certain age group. In a view of a subset of locations, the
distribution of individuals could be shown explicitly, which may reveal patterns not
recognizable in the condensed view of relative densities. It may not be possible or
desirable to show all attributes of the individuals in the same view, but instead

implement multiple views to show different subsets of attributes.

16



3.2.5 Reusable and Extendable Model Components

Rather than creating all models from scratch, the components and behaviors
implemented in one model should be resuable so they can be extended in other models.
The simulation environment could provide abstract base classes for the components of
an ecosystem, since ecosystems have a natural hierarchical structure and commonalities
exist between groups of organisms in different ecosystems. The species present in an
ecosystem are often broken down into groups according to functional roles of producer,
primary consumer (i.e., herbivores), secondary and higher order consumer (i.e.,
camivores), and decomposers (Begon et al., 1996). Figure 1 shows the flow of energy

through the functional groups in an ecosystem.

Figure 1: Energy Flow in an Ecosystem

Sunlight

Higher Order Consumers

T

Secondary Consurmers

Z} A Dacomposars

Primary Consumars

1

> Producers

Since organisms within a group have similar attributes and behavior, these organisms
would extend the same base class in the model hierarchy. Programmers could extend

these base classes to implement functionality specific to their models.

3.2.6 Flexible Implementation

The user should be allowed to decide the level of abstraction used in the
implementation of each event in the simulation. The causes of some events may not
need to be modeled explicitly, if the details about the event are inconsequential to the
results. These events may be scheduled based on an empirically estimated rate of

occurrence. The details necessary to include in a model depend not only on the

17



organisms being represented, but also on the particular question(s) being investigated.
For instance, a forest model designed to investigate the effects of variation in seed
dispersal ranges of different species may not need to specify the causes of tree death.
However, a model for investigating the effects of herbivory on tree health would want to
identify the cause when an individual tree dies. Ideally, the simulation environment
should allow the user to easily change which organisms and behaviors are included in
the model and how each behavior is implemented. This would allow modelers to
perform extensive sensitivity analysis to explore the underlying determinants of system
behavior and to change which details are included in a model when research yields new

information about the behavior of the system.

3.3 Summary

An environment targeted at the development of ecosystem models could reduce
the time for model development and calibration, by providing the main time advance
algorithm, an event scheduler and library routines for components common to all
ecological simulations. This type of SME would allow users to focus on the biological
challenges of simulation modeling, rather than on the computational challenges of
implementing a simulation. The next chapter describes FOREST, an environment for
developing and evaluating computational models to simulate forest dynamics. FOREST
implements a subset of the features described above, and could be extended to include

all of the components of a full ecological modeling environment.

18



Chapter 4: A Simulation Environment for Building Forest Models

FOREST
(Forest Object-oriented Reusable Ecosystem Simulation Template)

" 4.1 Description

FOREST is a discrete-event ecological simulation environment written in Java,
designed to reduce the time and complexity involved in the development and calibration
of individual-based forest simulation models. FOREST is based on the premise that a
fundamental step in the process of building an ecological model is determining which
details to include. Therefore, FOREST"s class heirarchy was designed to allow the user
to dynamically determine the entities and events in the model, as well as the
implementation of each event. FOREST was also designed to accommodate users with
different amounts of programming experience. In addition to the abstract class
heirarchy, FOREST could promote reuse of model components by providing a library of
concrete implementations of the entities and events commonly included in a forest
simulation. Therefore, users with minimal programming expericnce counld create
models with the existing components, while experienced programmers could extend
these components to create more detailed models. The library would be a collaborative
effort, where programmers could add the components they implemented so that other

modelers may vse these components in their models.

Since FOREST's main goal is to assist the modeler in identifying the appropriate
level of detail, the focus was on building the simulation engine and a class hierarchy
which would support the development of reusable model components. Much less
emphasis was placed on developing techniqueé for initialization from user input,
analysis and visualization of the results, and communication between entities in the
model. As a result, FOREST would need to be extended to include these features to
provide a complete enviromment for developing ecological simulations. Section 4.2
describes the implementation of the components of the simulation engine and section
4.3 describes the class hierarchy and the implementation of of the organisms. An

example model implemented in FOREST is described in section 4.4.

19



4.2 Discrete-Event Simulation Implementation

FOREST provides all of the features common to discrete-event simulation
modeling environments, and extends some of these features to assist modelers in
developing ecological models. The following sections describe how each feature was

implemented in FOREST.,

4.2.1 Simulation Time

Java’s GregorianCalendar class keeps track of simulation time. This
implementation provides a straightforward way to restrict the occurrence of events to
certain time periods during the simulation. Temporal differences in behavior between
species can easily be included in the model, by assigning a range of times when the

event may occur.

4.2,2 Events

The Event class is used to store all of the data necessary to process an event.
This data includes the object receiving the event, the time of occcurrence, and the name
of the event. In order to accommodate continuous changes in state, events for which the
time of last occurrence needs to be known must implement the interface
TimeDependentEvent. This interface is just used as a tag to tell the object
receiving the event to record the time that this event last occurred, so no methods need
to be implemented in Event. If the first occurrence of an event should be scheduled
when the model is initialized, it must implement InitialEvent. Again, no methods
need fo be iinplemented in Event since this interface is used to signal the simulation

environment to schedule this event when the model is initialized.

4.2.3 Event List

FOREST uses Java's TreeMap class to store the future events for the
simulation. The event list is sorted by time of occurrence, and ensures log(n) time for
insertion and deletion of events (n = number of events in the list). Choosing the next
event to process can be done in constant time since the event at the head of the list

always has the smallest timestamp.

20



4.2.4 Event Scheduler

A scheduler is provided that will determine when to schedule the next
occurrence of an event based on the parameters passed to it, and then place the event in
the event list at this time. If the scheduler is passed an integer, it will schedule the next
occurrence of the event for the number of time units in the future specified by the value
of the integer (in FOREST, time units correspond to days). The scheduler may also be
passed a random number generator and a list of parameters, in which case it will get the
next random variate from the given generator and schedule the event accordingly.
Although some simulation environments provide automatic scheduling, FOREST lets
the user schedule the events in order to achieve maximum flexibility in when and how

events are scheduled.

4.2.5 Random Number Generators

FOREST provides methods for the generation of random variates from unifori,
normal, binomial and exponential distributions. The parameters for the distribution are
set at the time the generator is called for the next random variate. This implementation
was chosen since the parameters do not need to be known when the generator is

instantiated and the same generators can be used by multiple objects.

4.2.6 Initialization Subroutine and Main Control Thread

At the beginning of the simulation, the initialization subroutine randomly
disperses the individuvals throughout the model environment and initializes the event list
by scheduling the first occurrence of each InitialEvent in the simulation. The
main control thread then executes events from the event list in chronological order until

there are no more events to process or the user terminates the simulation.

4.2.7 Visualization Methods

FOREST uses EcoModeler, a set of visualization tools for populatiﬂn models, to
display the results of the simulation. EcoModeler provides methods for viewing
aggregate population data (e.g. total size) and individual data (e.g. location) as well as
static (e.g. age distribution) and dynamic data (e.g. population size vs. time). However,
since EcoModeler was originally designed to display data from aggregate models, it

does not provide all of the desired features for displaying the results from individual-

21



based models.

4.3 Model Design
The following objects are provided in FOREST's base class heirarchy.

¢ LivingQOrganism - This is the abstract base class for all living entities in the

model. The attributes in this class are the individual's birthdate and species.
.« Species - This class is just a data structure to contain all of the species-

specific information for LivingOrganisms,

¢« Population - This class contains a collection of LivingOrganisms, and
methods that return aggregate information about the individuals (e.g. total size,

average age).

* Environment - The environment is implemented as a two-dimensional array

of cells, where each cell can hold at most one IrivingOrganism at a time.

In order to assist the modeler in identifying the appropriate level of detail,

FOREST's model heirarchy was designed to allow the user to dynamically change the

implementation of certain events and examine the effects of such changes. The general

technique for increased flexibility of implementation and reuse of components is to

separate the behavior of an object from the data used to characterize the object's internal

state. This technique allows the user to add, remove, and change the implementation of

certain behaviors of an object, without making changes to the object itself. The design

is a modification of visitor patterns, a design technique outlined by Gamma et al.

(1995). Section 4.3.1 describes the motivation for and limitations of visitor patterns,

while section 4.3.2 discusses the implications for FOREST's variation on visitor

patterns.

4.3.1 Visitor Patterns

In a traditional object-oriented heirarchy, adding new functionality to the

objects requires adding a method to every class in the heirarchy. Figure 2 shows a

simple example of a class heirarchy implemented using the traditional approach to

object-oriented programming.

22



Figure 2: Traditional Object-oriented Heirarchy

abstract LivingOrganism
abstract grow()

/X

Animal Plant
grow() grow()

The arrows in the figure signify that Animal and Plant extend
LivingOrganism. In order to add reproduction as a behavior of a
LivingOrganism, each class in the heirarchy must include the method

reproduce (). This requires modifying and recompiling all the existing classes in the

heirarchy, a time-consuming process in large systems.

Visitor patterns were created to allow additional functionality to be added to a
system at a later date without the need to modify the existing components of the system
(Gamma et al., 1995). This is accomplished by implementing additional methods
outside of the original class hierarchy, in Visitor classes. The Visitor pattern
requires implementing two class heirarchies: one for the elements in the system and one
for the visitors that define operations on the elements. New operations can be added by
creating a new subclass in the Vigitor heirarchy. Visitor patterns use a technique
known as double-dispatch, where the method that gets invoked depends on the kind of
request and two types of receivers. "This is the key to the Visitor pattern: The
operation that gets executed depends on both the type of Visitor and the type of Element
it visits." (Gamma et al., 1995). Figure 3 shows how the heirarchy in Figure 2 would be

structured using Visitor patterns.

23



Figure 3: Visitor Pattern Heirarchy

abstract LivingOrganism abstract Visilor
abslract acceplVisitor(Yisitor v) abslracl visilAnimal{Animal a)
/ \ abslract visitPlant(Plant p)
Animal Planl GrowthVisilor
accepiVisitor(Visitor v) acceplVisitor(Visilor v) visitAnimal(Animal a)
visilPlant(Plant p)

All classes in the hierarchy are prepared to accept a visitor object via an
accept (Visitor v) method. Inside the accept method, the visitor's visit method
for this object invoked and the object being visited passes itself as a parameter.

Invoking this method gives the visitor a reference to the visited object and access to all
of its public methods. Inside the visitor classes, there is a visit method for each object in
the hierarchy. The example below illustrates how Visitor patterns could be applied to a

simple ecosystem model.

Example 1: Visitor Patterns

abstract public c¢lass LivingOrganism {
protected double height;
public double getHeight(} { return height; }
public void setHeight{double h} { height = h;}
abstract public void accept{Visitor v);

}

public class Plant extends LivingQrganism{
// plant size is determined by height and stem diameter
protected double stemDiameter;
public void accept (Visitor v) {v.visitPlant({this};}
public double getDiameter () {return stemDiameter;}
public void sektDiameter (double d) {stemDiameter=d;}

}

public class Animal extends LivingOrganism {
public void accept{Visitor v) (v.visitAnimal(this);}

}

24



abstract public class Visitor {
abstrack public void visitPlant (Plant p);
abstract public void visgitAnimal (Animal a);

}
public class GrowthVisitor extends Visitor {

// when a plant grows, its height and stem diameter increase
public void visitPlant (Plant p} {
p.setHeight {p.getHeight*plantGrowthRate*timestep) ;
p.setDiameter (p.getDiameter*plantGrowthRate*timestep) ;

}

// when an animal grows, only its height increases
public void visitAnimal {(Animal a) |
a.setHeight {a.getHeight*animalGrowthRate*timestep) ;
}
}

public class Driver (
public static void main (String [) args) {
Animal a = new Animal();
Plant p = new Plant();
GrowthVisitor gv = new GrowthVisitor():;

// make the animal grow
a.accept{gv);

// make the plant grow
p.accept{agv);

In this implementation, adding the behavior 'reproduce’ to the objects can be
accomplished by simply creating a new Visitor subclass, and implementing the
vigitAnimal () and visitPlant () methods. The class heirarchy for the

elements in the system does not need to be modified or recompiled in this approach.

Although Visitor patterns simplify the addition of new functionality to existing
classes, there are two drawbacks to using this approach. The first stems from the fact
that some of the operations defined on object are implemented outside of the object.
"As a result, the pattern often forces you to provide public operations that access an
element's internal state, which may compromise encapsulation.” (Gamma et al., 1995).
Additionally, Visitor patterns actually complicate the addition of new classes into the
hierarchy since each Visitor class must be modified to visit the new class. For

example, if we wanted to add the class Fungus to the hierarchy, a visitFungus

25



method would have to be added to every visitor class. Even though this example has
only one concrete visitor class, there may be many visitors in an actual implemenfation.
For this reason, Visitor patterns have been recommended only for systems whose class

hierarchies are unlikely fo change.

The appeal of the Visitor pattern results from the fact that the methods of an
objects can be added or removed without modifying the model class heirarchy. The
implementation of a method can also be easily redefined by removing the current visitor
and creating a new visitor for this function. However, two consequences of using the
Visitor pattern conflict with the goals of FOREST. The requirement of a static class
heirarchy is too strict for an environment designed to facilitate the calibration of
ecological models. The users should be able to decide which entities to include in their
models, since this will depend on the specific goals of the model and the corresponding
appropriate level of detail. Additionally, the implementation of a certain behavior for
all objects in the heirarchy must be placed in a single Visitor class. It should be
noted that the grouping of related behaviors is usually considered one of the advantages
to using Visitor patterns. However, this implementation complicates the process of
changing the behavior of just one particular entity (or a subset of the entities) in the
heirarchy, which may be desired in the process of calibration. Therefore, FOREST uses

a modified version of Visitor patterns, as described in the next section.

4.3.2 Event Handlers

The goal in designing FOREST was not only to simplify the process of adding
functionality to a hierarchy, but also to allow modelers to add new classes. FOREST
modifies Visitor patterns so that the modeler can specify which entities and behaviors
arc implemented in the model. Accomplishing this goal required a higher level of
modularization than commonly used in object-oriented heirarchies. As a result, the
entities in the model are used only to encapsulate data, rather than both methods and
data. Instead of grouping the implementation of a behavior into one class, FOREST
creates a separate class to implement this behavior for each object in the heirarchy.
FOREST assigns an EventHandler for each behavior that an entity participates in
during the simulation. Figure 4 shows the relationships between the entities and
EventHandlers in FOREST, using standard (UML) notation.

26



Figure 4: Event Handler Heirarchy

_________ 7____________ Evanl
DRIVER EveniReceiver getEventRecaiver()

inlerface EvantReceiver

receiveEvent(Event &)
Eveniiviapper getEventiappoer()

EventiMapper
"~ [EveniHandler getEventHandler{Siring eventName)

1]
1
3

abstract LivingQrganism abshracl EvanlHandler
receiveEvant(Evant e) abstract processEvent(Event )
EventMapper gelEvaniivlappan)) / \
" R AnimalGrowthEH FlanGrowthEH
Animal Plant
processEvent(Event ) processEvant(Event )

The Eventclass is simply a data structure to hold all information needed to process
the event. The EventReceiver is the object for which the event affects. In order to
accommodate inferactions between organisms, events can contain multiple objects as
long as one of the objects is designated as the receiver. Since EventReceiver isan
interface, any object in the model can receive events. Each receiver must contain an
EventMapper, which is just a hashtable that maps events to their appropriate
EventHandlers. In order to process an event, the receiver must be queried to get
the appropriate handler for this particular event. The processEvent (Event e)
method in the handler class is then invoked, and the actual processing of the event takes

place in the EventHandler class.

In FOREST, each species has its own set of EventHandlers, which implement all of
the behaviors for individuals of that species. This implementation allows for species-
specific behavior to be incorporated into the model, although it does not require a
different EventHandler for each species. The following example shows how the same
ecosystem model in the Visitor pattern example would be implemented using

EventHandlers.

27



Example 2: Event Handlers

abstract public class LivingOrganism implements EventReceiver(
protected double height;
protected Species species;
protected EventMapper eventMapper:
public LivingOrganism (Species species) {
this.species = species;
eventMapper = species.getEventMapper();
H

public double getHeight {) { return height; }
public void setHeight (double h) { height = h; }
public void receiveEvent (Event e) ({
EventHandler eventHandler = eventMapper.getEventHandler (e} ;
eventHandler.processEvent (e) ;

}

public void addEventHandler (String eventName, EventHandler
eventHandler) {
// assign this EventHandler to this event
eventMapper .put (eventName, eventHandler};

}

public class Plant extends LivingOrganism {
// plant size is determined by height and stem diameter
protected double stemDiameter;
public double getDiameter () {return stemDiameter;}
public void setDiameter (double d)} {stemDiameter=d;}

}

public class Animal extends LivingOrganism{ }

abstract public class EventHandler {
abstract public veid processEvent (Event e);

}

public class PlantGrowthEH extends EventHandler
// when a plant grows, its height and stem diameter increase
public void processEvent (Event e) {
Plant p = (Plant)e.getEventReceiver();
p.setHeight (p.getHeight*plantGrowthRate* timestep) ;
p.setDiameter (p.getDiameter*plantGrowthRate*timestep) ;

}

public c¢lass AnimalGrowthEH extends EventHandler(
// when an animal grows, only its height increases
public void processEvent (Event e) {
Animal a = (Animal)e.getEventReceiver();
a.sgetHeight (a.getHeight*animalGrowthRate*timestep) ;

}

28



public class Driver {
public static void main (String [] args) {
Animal a = new Animal{):
Plant p = new Plant();
Event e = new Event{“arowth”);

// create the associations between events and event
// handlers

a.addEventHandler (“*growth”, new AnimalGrowthEH());
p.addBventHandler {“growth”, new PlantGrowthEH(});

// make the animal grow
a.receiveBvent{e);

// make the plant grow
p.receiveEvent(e);

By associating a different EventHandler for each species, reusable modules can
be developed for the behavior of each species. A new model could be created that uses
components from more than one existing model. This design facilitates reuse more than
the traditional use of inheritance through class hierarchies, since a new model could
reuse or extend parts of an existing model without having to extend the class hierarchy.,
Another advantage of this design is that it altows the user to choose how events are
implemented at runfime. This means that modelers may casily change the
implementation of a model and investigate the effects of the changes on the dynamics of

the system.

Although FOREST's use of EventHandlers alleviates the need for a static class
hierarchy in the traditional application of visitor patterns, this implementation results in
some new tradeoffs. This design results in a large number of EventHandlexr classes
since a new class may have to be created for each (species, behavior) combination. The
methods of an object are dispersed throughout the EventHandlexr heirarchy, instead
of being encapsulated within the object. Additionally, invoking the appropriate event
handler for an object is slightly more complicated since the association is between
EventHandler classes and objects rather than Visitor methods and objects. This require
an additional step in processing an event, since the events must be mapped to their

appropriate handlers by the EventReceiver.

29



The flexibility in model development comes at the expense of increased complexity
in the design and implementation of the base class heirarchies. However, the process of
developing and calibrating new models is simplified once the EventReceiver and
EventHandler heirarchies are implemented. The modeler just needs to implement
the entities (in EventReceiver classes) and events (in EventHandler classes),
and define the associations between the two types of objects. Once some entities and
events have been implemented and added to the library, these components may be used
in new models by creating the desired associations. To facilitate the development of
realistic ecological simulations, the benefit of modular development outweighs the

tradeoff of increased complexity of the base class heirarchy.

4.4 Simple Growth Model

To demonstrate the ability to create forest simulation models in FOREST, a simple
model (GrowthModel) was developed to simulate tree growth. The model represents
an ecosystem with three species of trees which differ in life history characteristics. The
behaviors simulated in the model are growth, seed dispersal and death. Although this
model was not parameterized from ficld data, this example shows how to use the
environment provided by FOREST when the parameters are known or can be estimated.
The model consists of entitics and two types of events; state events and scheduling
events. State events represent the behaviors in the model and are used update the state
of the entities, and scheduling events are used to schedule the occurrence of the state
events. The following sections describe how the entities and events were implemented

in GrowthModel.

4.4.1 Entities

The only entitics in GrowthModel are the trees, implemented in the class Tree,

o Tree

The Tree class stores the height and diameter of the tree, and provides methods
for getting and setting these values. Since Tree extends LivingOrganism, it
implements EventReceiver and inherits the receiveEvent,
setlLastUpdate and getLastUpdate methods. The interface for the Tree class

is given below.

30



Attributes:
double height;
double diameter;
Methods:
double getHeight();
setHeight();
double getDiameter () ;
setDiameter () ;

‘e Species
The species-specific parameters needed to process the events are stored in the
Species class. Each specics contains attributes for the mean and maximum number of
seeds produced during a reproductive event. The Species class also contains the
mean and maximum values of the dispersal range of seeds, as well as the growth rafe

and death rate for individuals of the species.

Atfributes:
double meanOffspring;
double maxQOffspring;
double meanDispersalDistance;
double maxDispersalDistance;
double growthRate;
double deathRate;

Methods:
double getMeanOffspring(};
double getMaxOffspring() ;
double getMeanDispersalDistance();
double getMaxDispersalDistancel(};
double getGrowthRate();
double getDeathRate():;

4.4.2 State Events
Since the state events correspond to the behaviors in the model, the state events in
this model are seed dispersal, growth and death. The following sections describe how

each state event was implemented in GrowthModel.

» Seed Dispersal

When a dispersal event occurs, the number of seeds to disperse is determined by
generating a random number from a binomial distribution, using the appropriate
parameters for this species. For each seed, the dispersal distance is determined by

generating a random number from another binomial distribution. A uniform random

31



variale is then used to determine the direction of dispersal. The seed will survive only if

this location is not currently occupied by another tree.

* Growth

GrowthModel provides two EventHandlers with different implementations of
tree growth to show that the implementation of an event can be easily redefined. The
first implementation calculates growth using a linear equation with a species-specific
slope. The second implementation takes shading into account by decreasing growth for
trees that have neighbors in adjacent locations. This version is implemented by
querying the environment for the number of trees surrounding a certain tree, and
reducing the tree’s growth by 5% for each adjacent tree. The user may choose which

implementation is applied in the simulation when the model is initialized.

Since Growth is a continuous event, it implements TimeDependentEvent.
Since the size of all of the individuals in a population should be updated at the same
time, Growth events are scheduled for the entire population. The EventHandler
first iterates through the population and updates each individual’s size, and then
schedules the next Growth event for this population for the current time plus the time
interval between updates. If the time of the next occurrence is outside the growth

period for this species, the event is not added to the event list.

s Death

When a death event occurs, the EventHandler removes the (ree from its current

population and location.

4.4.3 Scheduling Events

Since FOREST does not provide a mechanism for triggering the occurrence of
an event based on the state of the object, the modeler must implement the scheduling of
the events in the model. Growth events should be scheduled at fixed time intervals
throughout the growth period, seed dispersal events need to be scheduled once a year,
and death should be scheduled once for each tree. Since GrowthModel schedules

events based on statistical properties of the population, and the following events are

32



scheduled for the entire population. All of these events implement InitialEvent,

and are used to initialize the event list at the start of the simulation.

» Schedule Seed Dispersal

Dispersal cvents are scheduled for each population at the beginning of that
species’ reproductive time of year. This event handler iterates through all of the
reproductive individuals in the population and schedules a seed dispersal event for each
one. The time of dispersal for each individual in the population is determined by
generating a random variate from an exponential distribution. After scheduling the
dispersal events for all of the individuals, the next occurrence of this event is scheduled

for the beginning of the reproductive season of the next year.

» Schedule Growth
Since Growth events are self-generating (i.e., the next occurrence of the event is
scheduled during the processing of the event), this class only needs to schedule the

occurrence of the first event of the growth season.

¢ Schedule Death

The time of death for an individual is determined at birth and follows an

exponential distribution with species-specific mean value.

4.4.4 Initialization

The model is initialized from a data file, which creates the populations and sets the
initial values for all of the attributes of the trees. The model uses the random dispersal
method provided by FOREST to disperse the individuals in all of the populations

throughout the model environment.

4.4.5 Results

The output of the simulation consists of information about the populations (e.g.
total size vs. time, average height) and about the simulation itself (e.g., current time,
number of events processed). The position of each individual tree within the
environment is also displayed on a two-dimensional grid. Figure 5 shows the initial

state of the model.

33



Figure 5: Model Initial State

[ELEE

At the beginning of the simulation, no events have been processed so most of the
values shown on the screen are zero. The next two figures show the changes in the
results after the simulation has run for 100 days. Figure 6 displays the population vs.
time view as a graph to and Figure 7 displays this view as a table so that exact values

may be determined.

i %0 14D
s potessed (10690 20 1350 920 _1ad
unld et evan 1.0

34



Figure 7: Output after 100 days (table display)

{3 ALOIA V ewan EraMadiin ctary

31950 (1680

4.4.6 Summary

Even though the implementations of the behaviors in GrowthModel may not be
realistic, this model shows that users can define the level of detail in their simulations.
This model uses a fairly low level of detail on the individual level, although the amount
of detail can be increased by extending the Tree class and adding more attributes and

by implementing additional Events and EventHandlers.

4.5 Evaluation of FOREST

FOREST was able to reduce the time needed to implement an individual-based
forest simulation (GrowthModel), by providing the discrete-event simulation
components, extending these components to facilitate the development of ecological
models, and implementing a model class heirarchy that supports modular development.
The development time was reduced since the model only had to implement the entities
and their behaviors, rather than an entire simulation and class heirarchy from scratch.
However, the full benefits of using the EventHandler implementation would only be
realized once a library of component modules had been developed, and techniques

implemented for initialization of the mode!l and analysis and visualization of the results.

35




A new model could be created that uses or extends components from more than one
existing model, decreasing the time needed for formulation and implementation of the
Iﬁodel. Additionally, modelers could investigate the issue of relevant detail by varying

. the type and implementation of the events in the simulation and examining the effects of

the alterations on the simulation results.

Since FOREST did not implement any extensive techniques for analyzing and
visnalizing the results, some desired features are missing for communicating the results
of the model to the user. In GrowthModel, since all three populations are shown in
the same color, there is no way to distinguish which population an individual belongs to
in the location view. Because EcoModeler was not designed for viewing data about
individuals, it does not provide a method to distinguish the populations in the view of
locations. However, such a method would be desired if the modeler wanted to examine
the spatial patterns of distribution for each species. Another desired feature would be to
show the relative sizes of the individual trees in the location view. These methods may

be needed to allow the user to extract the desired information from the model’s resulis.

4.6 Conclusion

Although computational models have the potential of becoming useful tools for
guiding mhnagement decisions, their use has been limited due to the time and
complexity involved in developing models to represent specific ecosystems. This
complexity may become managable in a modeling environment designed to facilitate
collaboration between modelers and to assist in the implementation and calibration of
ecological models. The creation of this type of environment would allow modelers to
focus on the biological challenges to ecosystern modeling of implementing the
behaviors of the entities in the model and determining the appropriate level of detail for

the model’s purposes.

FOREST was able to simplify the process of developing forest simulation models
by providing the main time advance algorithm and reusable components to define
behavior of the objects in the model. Since no interactions between individuals were
included in FOREST, there was no nced for communication between the entities in the

simulation. If the model needed to include interactions, the environment would need to

36



provide a mechanism for communication between the objects in the model to trigger the
occurrence of conditional events. A full ecological simulation environment wouid need
such a mechanism as well as techniques for initialization and parameterization of the

model, and additional techniques for analysis and visualization of the results.

37



References

. American Association for the Advancement of Science. 2001. Analyzing
Ecological Models (AEL).
http://www.sciencemag.org/feature/data/deutschman/eco_model.htm

. Banks, J., 1.S. Carson II, B.L. Nelson, D.M. Nicol. 2001. Discrete-Event
System Simulation New Jersey: Prentice-Hall, Inc.

. Begon, M., J.L. Harper, C.R. Townsend. 1996. Ecology. Oxford: Blackwell
Science Litd.

. Bolte, 1.P., J.A. Fisher, D.H. Ernst. 1993. An object-oriented, message-based
environment for integrating continuous, event-driven and knowledge-based
simulation. Proceedings: Application of Advanced Information Technologies:
Effective Management of Natural Resources. ASAE. June 18-19, Spokane,
WA.

. Caswell, H., and A.M. John. 1992. From the Individual to the Population in
Demographic Models. In Individual-Based Models and Approaches in
Ecology, eds. D.L. DeAngelis and L.J. Gross. New York: Chapman and Hall.

. DeAngelis, D.L., and K.A. Rose. 1992. Which Individual-Based Approach is
Most Appropriate For a Given Problem. In Individual-Based Models and
Approaches in Ecology, eds. D.L. DeAngelis and L.J. Gross. New York:
Chapman and Hall.

. Deutschman, D.A. 2000. The Role of Visualization in Understanding a
Complex Forest Simulation Model
http://sigpraph.org/publications/newsletier//v34n1/contributions/Dentschman.

html

. Ellison, A.M. and B.L. Bedford. 1995. Response of a Wetland Vascular Plant
Community to Disturbance: A Simulation Study. Ecological Applications. 5:
109-123.

. Folse, I.L., .M. Packard, and W.E. Grant. 1989. AI Modelling of animal
movements in a heterogeneous habitat. Ecological Modelling. 46: 57-72

10. Levin, S., B. Grenfell, A. Hastings, and A.S. Perelson. 1997. Mathematical

and Compuiational Challenges in Population Biology and Ecosystems
Science. Science 275: 334-341.

11. Lomnicki, Adam. 1992. Population Ecology from the Individual Perspective.

In Individual-Based Models and Approaches in Ecology, eds. D.L. DeAngelis
and L..J. Gross. New York: Chapman and Hall.

12. Matsinos, Y.G., W.F. Wolff, and D.L. DeAngelis. 2000. Can Individual-Based

Models Yield a Better Assessment of Population Variability? In Quantitative

38



Methods for Conservation Biology, eds. S. Ferson and M. Burgman. New
York: Springer.

13. Maxwell, T., and R. Costanza. 1994. Spatial Ecosystem Modeling in a
Distributed Computational Environment. In Toward Sustainable
Development: Concepts, Methods, and Policy, eds. J.C.J.M van denBergh, J
van der Straaten. Washington, D.C: Island Press.

14. Slothower, R.L., P. Schwarz, and K. M. Johnston. 1996. Some Guidelines For
Implementing Spatially Explicit, Individual-Based Ecological Models Within
Location-Based Raster GIS.
http:/fwww.sbg.ac.at/geo/idrisi/gis _environmental modeling/sf_papers/slotho

wer_roger/sf23.himl

15. Spatio-Temporal Modeling Page. (STMP) 1995.
http:/fkabir.cbl.umeces.edu/SMP/MVD/SMod.himl

16. Swartzman, G.L., and S.P. Kaluzny. 1987. Ecological Simulation Primer.
New York: Macmillan Publishing Co.

39



