APPLICATION OF
DESIGN AND ARCHITECTURAL PATTERNS

IN AJAX PROGRAMMING

by

Paul Beaudoin

A THESIS

Presented to the Department of Computer and Information Science
and the Honors College of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Bachelor of Sciences

May 2007

Copyright 2007 Paul Beaudoin

iii
An Abstract of the Thesis of
Paul Beaudoin for the degree of Bachelor of Sciences

In the Depaitment of Computer to be taken May 2007

and Information Sciences

Title: APPLICATION OF DESIGN AND ARCHITECTURAL PATTERNS

N AJAX PROGRAMMING

Approved: W

Protessor Sarah Douglds

Design patterns have been a part of software engineering for nearly three decades.
Ajax applications are a relatively new type of Web application that use client-side
scripting languages in conjunction with methods for asynchronous data request to enable
powerful applications with rich, dynamic, user-oriented interfaces. This paper addresses
the question of whether the design and architectural patterns often used in other software
fields are applicable and beneficial to Ajax development. Can the same patterns be
applied? Are new patterns uniquely applicable? This paper attempt to answer these
questions by examining 1) what design patterns are, 2) what Ajax is, and 3) how the
former can be adapied to the latter. We find that many of the patterns popular in other
realms have direct applicability to Ajax programming. We find also that there are

opportunities for new types of patterns that are uniquely relevant to Ajax.

1

v

ACKNOWLEDGEMENTS
The author expresses sincere appreciation to Professor Sarah Douglas for her
assistance in the preparation of this paper. Her advice has been invaluable. This paper has
been a long time coming, and her patience through a few false starts‘is greatly
appreciated. In addition, special thanks are due to Professor Henry Alley for participating
in the committee and for his patience serving as my advisor throughout this effort. I also

thank Professor Kent Stevens for joining the committee.

Table of Contents
1 TETOGUCTION ... eeenre e sereesee s sser e e cs s sme st es e re e s antn et sae s srbeon rmesnsesnessmsesassennssmesrsses 1
2 SOTIWATE PAtlEITIS ..o eceeie ettt s et e e s s s s s sanbeenesans 3
2.1 What's a Design Pattern? ... e ceecrcrencse s e s seesesssssesseessaesaesessnssaneenes 3
2.2 Pattern Application in SOfWATe.......cccvo et e 4
2.2.1 Software Design Pallerns.....coccvrvvioriinisnienisisiinr st issnisvesss vrssresessenes 5
2.2.2 Software Architectural Pattesns......cocevvviriiniciicsiic s 7
2,2.3 Challenges to Pattern Application in Software........c.oovvvnieeiiniccnie 9
J IVhAL'S AJAX T euerrerrersrerrieerissesssseeesrsers s see st se s st et s eenee e e s et e eranaraseseen et arennenenn 11
K70 B 5 (T3 o OO OO OO OO PO ORI TEUPOUN 11
3 LI THE WED....o it s s s e s 12
3.1.2 The Birth of Client-Side SCripting......cooiercrmiiiciic e s 13
313 BRIEE AJAXorieerrreerireisicereiiessssseaenssestesenesss e e sesessesesss stossresnsnsressnenssenseseesiasaes 14
3.2 State 0F The INAUSIIY ..ottt bt e 15
3.3 Example Ajax Application: CurrencyConVEITEr.......ccumcrcrcnmmrericssmsicnsessrsnenne 16
3.3.1 The 'Just Make It Work! Approach......c.veeeciimeenmeinnsensenneenens 17
3.3.2 The AjJax APPrOachi....coivveeermrccrsissnise s s e s s s 18
‘ 4 Pattern USe T AJAX ..o et st s st s b 21
; 4.1 General Opportunities For Pattern Appleation..........covvcoinencnseseoesinssnnnennes 21
4.1.1 Design Pattern APPHCAEONcoccoveeeiireee s 21
4.1.2 Architectural Pattern AppliCation......cccoeeirimenininsice e 24
. 4.2 Pattern Acknowledgment By ToolKits........ccooo o, 26
4,2.1 Design Patterns in TOOIKIUS.......coevvieeiinisscrsesessessinssnisisse s s sinssasesas 26
4.2.2 Architectural Patterns in Ajax Toolkiis........coiimivnnminccinisns 27
4.3 Testing the Idea of Patterns With CurrencyConvertercoiiciininnicnnniiiinnns 28
4.3.1 MVC Organization in CorrencyConverter......ou s 28
4.3.2 Practical Implications of Pattern Use in CurrencyConvericroniiennee 30
5 CONCIUSION e vereiererresererrrsssee e emeasrest et sae s e s i e e s e s are e e e ar s s ase e s s s s et s ehmnsbsaeaaessuenasa 34
5.1 Paiterns Versus Toolkits & Frameworks........cooecnincnminscn s 35
5.2 Server-Inclusive Architectural Paticmnsc.oeceevrveorcrrreric e e 36
5.3 Closing Remarks......ceccerrcrecmrereeernm s e csnssss st sssssrss s ssss st s srssssbssssssnsssanase 38
6 RETOIEICES. ..sur i crressrienc et stcren et s e sens e e e e e b ba b s s bbb bbb eeb bR bbb ans bbb 40 40
APPEIAICES «oreeererie it et b e s e AR e b s 42

! Al. Client-Server Redundant Objects Patiern ... e, 42

vi

F O I 111 | SO O SO TP ORIt 42
F Y, [T 1T 1 O R 42
AL3 APPICADILITY . .ooerec e s 43
AL4 Participating PAtternS.......vovveviiiciciiiniiic st sosassssssns s sssnesesss o 43
AT.5 CONSCQUEBIICES. ..evvvereere st steee e re e s mee e e s e s e b s b asbsnas s ebae o s 46
A2, CurrencyConverter MVC Breakdown........oeeiiiiinceeeeae 47
A2.1 CurrencyConverter Controller Subsystem.......coviicvninicncn 47
A2.2 CurrencyConverter Model Subsysiem.....cccvineiiinimes e 48
A2.3 CurrencyConverter View SubSysicm... v, 50
A3, Related Pallerns......covirvimimnnii e esssseesssnsesississsseas 53
A3.1 Data Access Objects PatlerN.....ccvovienreri e sicsec et 53

F N IV [(=1 T 100y gl a2 L £ 4 1 RO 53

vii

List of Figures

Figure 2.1: The Observer pattern can accommodate one or many objects (“Observers™)
that monitor a single “SUbJect”. ... 6

Figure 2.2: Model-View-Controller specifies the organization of applicalion componenis
ITIEO THTEE SUDSYSIEINS c..vesrereeeseereeraeeeseeenes e b e s sy se et s s saE s b s bbb aa e s e n bbb n s 8

Figure 3.1: Countless events coniributed Lo the development of Ajax, but most important
among them were 1) the birth of the Web, 2) the development of CGl, 3) the introduction
of client-side scripting languages like JavaScript, and finally 4) the various support
provided to programmers by browser vendors for executing asynchronous requests....... 12

Figure 3.2: The CurrencyConverter interface lets a user enter a starting amount and
currency as well as a conversion currency to retrieve a resuli.........o...oon 16

Figure 3.3: The Ajax implementation of CurrencyConverter enters a "processing” state
when computing a new reSUlt.........o v s 20

Figure 4.1: The Observer patiern is found in multiple aspects of Ajax programming...... 22
Figure 4.2: Compound State, City selection Widget........ccovveeevvencomnie et 23
Figure 4.3: Multitier Architecture an an Ajax appliCationeeeeoenevreeecesee e 25

Figure 4,4: CurrencyConverier demonstrates an MVC component organization with one
component fulfilling cach of the Controller and View subsystems and a cluster of
components fulfilling the Model SUbSYSIEML.....ccrvemrerrrcii 29

1 Introduction

Websites like Google Maps', Kayak.com, and Amazon.com's A9 search engine?
leverage a new collection of technologies and approaches we generally call “Ajax”. Ajax
enables rich, dynamic interfaces that fundamentally improve classic Web applications
through the use of new, asynchronous communication channels and the promotion of
rich, intetligent controls in the Web page.

Being an especially new and popular technology, a lot of Web Developers have
scrambled to gain Ajax proficiency quickly. Best practices have yet to be firmly
established and the notion of 'clegance'—already a nebulous concept—has little
precedent in Ajax development. As a result, ‘quick and dirty' solutions are more prevalent
than manageable, extensible implementations. Design and architectural patterns have
long been thought to aid software development by promoting proven, abstract solutions
to common problems. As the Ajax approach is still maturing, an investigation of the
application of patterns to Ajax development appears to be a fruitful area of inquiry.

In this paper, I will look at opportunities for the application of similar patterns to
Ajax development. To lay the groundwork for specific analysis, this paper begins with a
gencral description of design and architectural patterns as they have traditionally been
applied to software development. An introduction to Ajax technologies follows this,
which summarizes the history of technological development that lead to Ajax and
provides a basic example application. Using an example Ajax application, we look at
whether or not patterns can be applied naturally and beneficially fo Ajax development.

We look at whether or not the existing industry toolkits and frameworks provide support

1 See htip/imaps.google.com
2 Seehup://AD.com

to this end. Finally, we look at whether or not pattern application has a future with Ajax,

and what such application we are likely to see.

2 Software Patterns

To begin, let us discuss pattern application in the software field in general. The
pattern idea is deceptively intuitive. It is not difficult to define, but it is sometimes
difficult to distinguish pattern approaches from alternatives. Let us look at what patterns
are and where they came from to lay the foundation for a more detailed look at their

application.

2.1 What's a Design Pattern?

We start with an examination of the peculiar popularity of Christopher Alexander's
“A Pattern Language: Towns, Buildings, Construction.” At face value, Aléxander's book
joins a vast library of architectural documentation extending several thousand years into
the past. However Alexander's “A Pattern Language” embodied a fundamentally different
perspective on architectural technique compared to his predecessors. The documentation
efforts that preceded Alexander were comparatively pragmatic in nature, favoring the
praciical over the abstract. Alexander contended that the challenge of producing good
architecture was more complicated than merely replicating form and function. He
described a timeless “quality without a name” produced b]} good architecture—a quality
not adequately captured in the popular language of his industry. His work produced a
collection of “patterns” that described a “problem which occurs over and over again in
our environment, and then describes the core of the solution to that problem™ (Alexander,

Ishikawa, & Silverstein, 1977, page x').

1 This phrase occurs in the introduclory chapter “Using this book™, which is numbered with roman numerals.

4

As an example, Alexander's 88™ pattern is the “Street Café”. Alexander notes that a
street café frequently serves as a quiet oasis on the edge of a busy path. The street café
adds balance to a busy street by allowing one to “sit lazily, legitimately, be on view, and
watch the world go by.” (Alexander et al., 1977, page 437). One consequence of allowing
an idle entity like a street café to tempt the edges of a fast-paced boulevard of strolling
pedestrians is increased socialization. Healthy neighborhoods are supported by familiar
neighbors, and one way to promotie familiarity is by creating mediums for idle
socialization (i.e., the café) immediately adjacent to active ways (i.c., the street).
Alexander describes the street cafe as a pattern that accomplishes just that.

By defining about 250 such patterns, Alexander created a new language that
architects could employ when addressing common challenges—A{ike the challenge of how

best to promote socialization in a commercial area.

2.2 Pattern Application in Software

Although “A Pattern Language” is one of the best selling books in architecture
(Mehafty, 2007), the book also strikes a chord with computer scientists, who find that his
observations in the architectural discipline resonate with challenges in their own. In
computer science and software engineering, there's a notion of elegance that's difficult to
quantify and often expressed by example. Countless solutions éxist for a given problem,
yet frequently only a few produce the solution that will be optimally intuitive, flexible,
and robust. Comptter scientists found that Alexander's pattern approach could be used to
identify these elegant practices at a high level of abstraction.

A distinction is frequently made between design patterns and architectural patterns.

Ty

Design patterns usually address a limited challenge like how two specific types of
components should communicate. Architectural patierns on the other hand impose
constraints on the application as a whole. The distinction is not important immediately to
the di;v.cussion at hand except to demonstrate the different levels of granularity with

which patterns can be applied. Let us look at design patierns, followed by architectural

patterns.

2.2.1 Software Design Patterns

The seminal 1994 book by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, documented
23 design patterns in object-oriented’ software engineering. Now in its 36th printing, the
book follows the spirit of Alexander's work by laying down a common vocabulary of
abstract solutions to common problems that arise in software development.

Let us consider the Observer pattern, which we will return to frequently
throughout the paper. Observer is applied to situations where one or multiple objects-—the
Observers—wish to monitor changes in another object—the Subject. The pattern specifies
that the Subject provide a method by which objects may register themselves as Observers
of that object. Although the Subject maintains this collection of Observers, the Subject
need not know anything about the Observers, with one exception: Observers must
implement a single method (“notify update™) by which the Subject can notify them of
Subject changes. When a change occurs in the Subject that the Subject internally

determines to be of interest to an object observing it, the Subject notifies all interested

1 Object-oriented programming is one of dozens of overlapping programming paradigms. This particufar approach—
perhaps the most popular at the {ime of his writing—prescribes thinking about application structure in terms of
interacting “objects™ that encapsulate logically refated functionality and data.

Observers by calling their “notify update” methods. In this way, Observers learn that a
change has occwired in the Subject, which they may subsequently reinspect. (See Figure

2.1.A for a simple example of this relationship.)

o o nolify updale o nolify updale
Subject . Suvhject = = Subject q
gt R wh inspect o—g—-- inspec!
nolity updale inspect nolify update inspect updale
_ S updale
bi Observer | + Observer F-; Observer - . Observer <4
i ' ! 1
i : . !
A) Single Observer 8) Single Observer wilh ability 1o C) Mullipte Observers , one allering Subject
alter Subject

Figure 2.1: The Observer pattern can accommodate one or many objects (“Observers™) that monitor
a single “Subject”.

Figure 2.1 represents three levels of complexity the Observer pattern can acquire.
In figure 2.1.A, we see a single Subject is monitored by a single Observer, This is the
simplest manifestation of the pattern. Figure 2.1.B shows a common variant of the pattern
where the Observer wishes to alter the Subject in addition to monitoring it. When the
Observer effects change on the Subject, the latter will notify all observing objects of the
change—including the object that execﬁted the change. In this way, the Observer is made
passively aware of the effect its changes are having on the Subject. Figwre 2.1.C
demonstrates that the pattern allows multiple Observers to share a single Subject.

The Observer pattern is useful because it enforces a decoupled relationship between
the communicating objects. The Subject need not know anything about the objects that
observe it nor what they will do as a result of changes in the Subject. This makes it easy

to add and remove Observers as needed. Additionaily, it allows one to more easily alter

the Observer without disrupting the Subject—and vice versa.

Observer exemplifies software design patterns by defining a generally applicable
solution to a common problem. The solution is not associated to a specific language or
environmeni. Like the other 23 patterns described by Gamma et al. in 1994, it merely

advises a high-level component organization commonly found to succeed.

2.2.2 Software Architectural Patterns

Architectural patterns might be said to be a refinement of design patterns,
Significant overlap is found between architectural patterns and design patterns, and the
terms are sometimes used interchangeably.! Some paiterns traverse these categories by
being applicable as design patterns in one scenario, and just as applicable as architectural
patterns in another.”

No discussion of patterns can escape invoking Medel-View-Controler—or MVC,
as it is known with equal familiarity among computer scientists. MVC emerged from
some of the first experiments with graphical user inferfaces in Smalltalk-80 (Gamma et
al., 1995, page 4), It specifies a triad of subsystems:

e Model: The object or data that is the subject of the application
¢ View: One or more displays representing the Model
o Controller: The components directly manipulable by the user
For example, in a document editor such as Microsoft Word, the Model comprises

the collection of raw data objects that stores text and formatting; the View comprises the

1 Gamma et al. refer to Model-View-Controller as a design patiern, suggesting that architectural pattems may be a
subset of design patterns. (Gamma et al., 1995, page 4}

2 The Observer patiem—previously described—normally refers to wo or more componenis within a system, bul one
can imagine an application whose top-down organization consists of two or more families of components that
inleract in much the same way.

objects responsible for producing an intelligible presentation of the Model on a user's
monitor; and the Controller handles keyboard and mouse input.'

Organizing an application's components into the MV C iriad can benefit application
architecture by decoupling functionally disparate objects. This allows, for example,
changes to occur in the application display—or View—without necessitating change in
the Model. Conversely, changes in the Model can be made independent of the View. As
Figure 2.2 demonsirates, View components share a relationship with Model objects
similar to that shared by Observers and Subjects in the Observer pattern discussed above,
The flexibility obtained by this organization frequently improves application guality by

reducing maintenance costs and the complication of adding new features.

Relay user interaclion evenls

4

— —
: Issue cornmands

lo update View H
1 b -

| Controller i » View -
i ! ; ;

I

Examines/ updates

I Notification of change
composilion in Modet
of Model *
v
Issue commands -
lo update Model
T L Model

* Note that View is somelimes pravented from directly effecting Model changes

Figure 2.2; Model-View-Controller specifies the organization of
application components into fhree subsystems.

The most important characteristic of architectural patterns is shared by design

patierns: patterns describe abstract solutions to problems that happen over and over. By

! Some additionally assign all functionality not naturally assignable to other components 10 the Controlier, such as
View management.

familiarizing oneself with the langnage of sofiware patterns, one taps into a collective
wisdom that enables the application of proven sirategies—even to challenges one has

never solved before.

2.2.3 Challenges to Pattern Application in Software

Not everyone appreciates the pattern movement started by Christopher Alexander
in 1977, Design patterns are often criticized on the grounds that they are mere
pedagogical exercises that would be more usable if laid down concretely as part of a
language—or provided as a usable library. Design patterns are not code, after all. They
can not be directly integrated into a program one is writing; they must be summoned and
applied cognitively when one approaches common challenges. Critics claim that many of
the challenges met in this way would be better served by real language support or
libraries.

As an example, consider the Iterator pattern (Appendix A3.2 “Iterator Pattern™),
which has been used to demonstrate that design patterns can sometimes formalize proven
technique without providing the benefit of codified language support (Baker, 1992). Pexl,
for example, provided native language support for the Iterator concept for years before
Java came along. Java's conscious omission of a language-level Iterator construct brought
the Tterator pattern to the forefront because programmers no longer had a baked-in
method by which to achieve Iterator functionality (Dominus, 2006). Programmers, in
essence, had to apply the Iterator pattern ancw every time the functionality was required
as a result of a language insufficiency.

Looking even further back, Dominus points out that a frequent practice among

10
machine language coders of the 1950s and 1960s was to designate a common block of
code to be accessed in two or more places. Had there been a "patterns” buzz in the 1950s
and [960s, we might have talked about a "Subroutine” pattern. Subroutines are now an
integral part of all modern functional languages.

Given this history, it is possible that design pattems serve merely to presage library
or language-level codification. Ultimately, the important question is whether patiern
application is a worthwhile activity—regardless of its end. If paiterns benefit programs in
lieu of library and language support—and if libraries and language enhancements serve
often fo realize the essential tenants of those patterns—paiterns siill benefit development
in the interim.

However one feels about patterns personally, they appear frequently in software
development and computer science theory. Patterns have become a major common
language in computer science, since they allow us to speak at a high level about ways to
approach challenges without concern for languages and platforms. We will retwn to
patterns in the chapter that follows. For now, let us look at the set of technologies of

greatest interest to this paper: Ajax.

11

3 What's Ajax?

Ajax is one of the latest acronyms to emerge from the acronym factory that is the
tech industry. To understand the technologies involved—and the special buzz around this

particular acronym—we need first to lay some historical groundwork,

3.1 History

Ajax relies on a number oi' Web technologies, detailed descriptions of which arc
beyond the scope of this discussion. Nevertheless, a brief history is important to illustrate
how Ajax fundamentally departs from its fechnological roots. Figure 3.1 notes a few of
the milestones covered in the historical summary that follows, beginning with the birth of

the Web.

12

1993 1999 2006
Discussions on Microsoft introduces 1IEY launched wilh nalive
www-tatk mailing list yeild - xpt HTTPRequest support XMLHTTPRequest
CGl specification in IE5 suppori

1990 2007
L | 1 |
| |) | L

1991 1995 2002

Tim Bemers-Lee JavaScript deployed Mozilla introduces native
announces his WWW with Netscape XMLHTTPRequest Support

Figure 3.1: Countless events contributed to the development of Ajax, but most important ainong
i them were 1) the birth of the Web, 2) the development of CGI, 3) the introduction of client-side
\ seripting languages like JavaSeript, and finally 4) the varions support provided to programmers by
‘ browser vendors for executing asynchronous requests.

e 3.1.1 The Web

‘ The Web arose from an internal project at CERN in Switzerland. Tim Bemers-Lee
worked as an independent contractor at CERN in 1980. One of his projects was to
address the problem of the sharing and cross-referencing of information among

‘_ physicists. Berners-Lee envisioned a new naming convention for hypertext references!

“to allow links to be made to any information anywhere” (Berners-Lee, 1991).

Importantly, the Web's original intention was as a mechanism allowing documents
written in HTML to reference other documents writien in HIMUL on any Web server

anywhere in the world. Core to this idea was the notion that Web servers set aside a

“document root” as a repository for publicly accessible files, Any request submitted to

the server for a document within that root tolder would be returned.

I Hypertext is the name given the convention of including links inside text documenis 1o other documenis. The
concept precedes these events by almost 40 years, It first appeared in Vannevar Bush's Atlantic Monthiy article “As
We May Think,” in which he described the Memex, a mechanical device capable of calling up comprehensive
cross-referenced information from multiple medivms on demand. (Bush, 1945)

Server developers quickly identified new possibilities in this simple idea. In
particular they noticed that a request for a file on a server need not refer to an existing file
at all. A request is just a path?® (e.g. /currency_converter), so why not let a program
running on the server dynamically generate the document to be returned every time the
path is requested? This breakthrough marked the beginning of server-side Web
programming, which paved the way for the fifteen years of Web application development

that followed.

3.1.2 The Birth of Client-Side Scripting

When one considers that Tim Berners-Lee had a lot of trouble generating inferest in
his World Wide Web in 1984, one finds the growth of the Web following 1990
astonishing. Early text-only browsers on limited platforms were replaced by multimedia
capable browsers like the ViolaWWW browser in 1992 and Mosaic® in 1993. In addition
to multimedia, some browsers began to support a new concept called client-side scripting.
Client-side scripting allowed one to use a special lightweight language to program
behaviors that execute on the client's computer alongside display of the web page. One
could, for example, detect the user's browser and dynamically ﬁrite content into the web
page.

The rise of client-side scripting was a foundational achievement because it created
a new symmeiry between server and client. Both server and client now had the capacity

for dynamic behavior. With a decent programming environment and a little creativity,

2 HTTP requesls actally comprise quite a bit more information, but for the sake of the discussion at hand it suffices
to think aboul them as conlaining just a path,

2 Mosaic became an early version of the Nelscape browser still in production (although il retains only marginal
popularity at writing). The Nelscape code base was made public in 1998 as the open source browser Mozilla, an
early predecessor to today's Firefox. (Metzger, 2007)

14

almost anything is possible, This was now true on both sides of the client-server divide.

3.1.3 Enter Ajax

Even with the explosion in availability of multimedia capable browsers and
dynamic elements at both client- and server-sides, a glaring challenge prevented Web
applications from achieving the rich, dynamic interactivity possible in desktop
applications. That challenge was the document-modeled architecture of the Web. Recall
that Berners-Lee designed the Web as a method to request richly interlinked
documentation; he didn't foresee an interest in rich, dynamic interfaces such as Web
email and Google Maps. Web applications emulated desktop application functionality
within the context of the Web's original document-request model. A Web application had
to be designed as a series of pages. Many activities one hoped to achieve with the Web
application had to be mapped to a specific type of document request. Application
functionality could exist at both ends of the client-server divide, but active
communication between elements was constrained to large, jarring page requests that
typically tore down the current page, replacing it with an entirely new page—an
obnoxious and sometimes confusing experience for the user of the application.

Programmers began experimenting with ways to bridge the client-server divide and
allow components on one side to communicate actively with those on the other. Early
attempts employed brilliantly quirky concoctions of hidden frames, hidden images and
cookies, as well as browser plugins like Java applets. Browser vendors noticed these
efforts and began catering to the developers by providing new programming objects

directly suited to the purpose of asynchronous server requests.

15
In February 2005, Jesse-James Garret published an article called “Ajax: A New
Approach to Web Applications”. The article gave a name to the collection of
technologies that had been employed in varying degrees of elegance since client-side
scripting was first introduce-d. Gairet chose “Ajax” from the acronym AJAX, which
stands for Asynchronous Javascript And XML. The term is usually written “Ajax” rather
than “AJAX" to encourage people to think of the concept as a methodology rather than as

the specific collection of technologies that the acronym represents (Mahemoff, 2006).

3.2 State of the Industry

To date more than 160 frameworks and toolkits have been developed that address
the chalienges of Ajax programming in some way (Mahemoff, 2006). These efforts share
a goal of simplifying Ajax development by providing reusable components that solve
cominon challenges. Even after significant standardization work by the W3C and IETF'
standards bodies, many incompatibilities between browsers plague forward development.
Toolkits address this by abstracting the difficult cross-browser work behind common
simple-to-use interfaces, letting developers proceed with the real business of developing
their applications. Many of these toolkits also provide convenient abstractions for
asynchronous server requests.”

One major Ajax toolkit effort is GWT (Google Windowing Toolkit). The approach

exemplifies the Server-Side Code Generation pattern described by Mahemoft, which

1 ‘World Wide Web Consortium and Intemnet Engincering Task Force respeciively. These proups strive to produce
open standards recommendalions for Web and Intemnet techuologies. Tim Bemers-Lee holds the director position at
the W3C.

2 Mosltoolkils define something along the lines of an *“AjaxRequest’ object, which provides an intuitive inlerface for
executing an asynchronous server request and parsing the response. Thie ohject is always buill with browser
capability in mind, so the techrology employed depends on the browser it nens in. For very old browsers, some
even fall back to the hidden frame technique of asynchronous request poputar in 2000,

16
prescribes using a framework on the server to generate code for the client-side. Since the
API exists entirely on the server-side, the developer is essentially free to ignore client-
side concerns altogether and develop as one would a standalone desktop application.

Other major efforts include the Dojo and YUI (Yahoo User Interface) toolkits.
These tooikits are written in JavaScript, which means that, unlike GWT, they provide
support at the client side. Dojo and YUI demonstrate the growing appreciation for

JavaScript as a powerful language for driving rich, complicated client-side applications,

3.3 Example Ajax Application. CurrencyConverter

For the purpose of demonstration, consider an application to convert an arbitrary
amount from one major currency to another. Figure 3.2 demonstrates one possible

mterface.

Starling amounl:
1.00 iusD i

Conversion currency: ; Selech lhe new currency ©'07

Resull:
i)

Figure 3.2: The CurrencyConverter interface lets a
user enter a starting amount and currency as well as a
couversion currency to retrieve a result.

The functional requirements of our application follow:

1. Amount
a) User can enter an arbitrary value into an amount field
b) If'the user enters an invalid value for amount without correcting,

amount should revert to 1

17

¢) The amount field should default to ! at startup
2. Starting Currency
a) User can select a starting currency from a drop-down
b) The starting cwrrency should default to USD
3. Conversion Currency
a) User can select a conversion currency from a drop-down
b) The default conversion currency at startup should be a null entry that
reads “Select the new currency”
4. Results
a) Results should be displayed in a reserved result area
b) The result area should always reflect the current problem space:
i. Ifthe two currencies and a valid amount have been entered, the
result area should express the result.
ii. If the result is actively being computed, the result area should
communicate that state.
iii. If no result is computable given the state of the conirols (¢.g.
Conversion currency has null selection), the results area should be blank
3. Adccuracy
a) Conversions should be computed at the server so that the most up-to-

date currency rates can be used when computing conversions.
These requirements describe a very simple application, yei there are countless
possible implementations using Web technologies. Let us see how Ajax improves the

application.

3.3.1 The 'Just Make It Work' Approach

To illustrate the Ajax distinction, we will begin with an approach that does not use
Ajax. Of the many possible implementations of CurrencyConverter, most will probably

agree that the fastest route to requirements fulfillment lies in a straightforward Web

i8
application approach sans Ajax. Let's program like it's 1999.

The basic Web application approach produces a simple web page with a form as
specified above, The form features rudimentary event detection to determine when the
user has supplied enough information to perform a conversion. When such occurs, we
cause the form to post to the server, which gathers the submiited values and returns the
same page—this time with a result inserted into the result area.

This approach has at least iwe nice qualities; it is simple, and it relies on old
technologies. Because Web browsers have remained largely backwards-compatible, the
safest route to cross-browser stability has always been to code with yesterday's
technology. This approach fulfills that, but not a lot else.

The 'Just Make It Work' version of CurrencyConverter exhibiis many of the pitfalls
of classic Web applications before Ajax. It places unbalanced focus on the server-side by
treating the client-side as a mere presentation layer—ignoring the potential for dynamic
interaction that the Javascript enables there. Furthermore, it produces an undesirable user
experience by forcing a page refresh for each conversion. These shortcomings were
notoriously common in Web applications before developers began experimenting with
Ajax,

This implementation works, but we can do better..

3.3.2 The Ajax Approach

MahemofT calls Ajax a user-oriented phenomenon because it arose from a desire to
improve the experience of Web application use (Mahemoff, 2006, page 5). Ajax does not

enable tasks that were not—in some clunky way—possible before, but it does improve the

19
experience of performing those tasks by speeding things up and reducing jarring and
unnecessary interface reloading.

The Ajax form of CurrencyConverler uses the base Web application as a starting
point. We then rewrite the code that affects the form submission so that it routes the
computation request through a hidden asynchronous request to the server. While the
application waits for the computation to return, the application communicates iis state via
a “spinner” animation. When the result is obtained, it is dynamically inserted by client-
side code into the result pane.

This approach has a few advantages over the basic Web application approach. Most
prominently, we remove the jarring form post and page reload that previously occurred
for every conversion request. Secondly, the “spinner” animation used during computation
communicates the “processing” state more naturally than the page reload could.' See

figure 3.3 for a screen capture of the application in a processing state.

1 To be fair. with a little work, the same spinner animalion could be used tmmediately prior to the page reload in the
“Tust Make It Worlk” vession. The effect weuld be diminished, however, because the spinner would only appear
until the point the page was visibly destroyed and retoaded. Furthermore, the CPU cost of a form post is often 5o
greal that the spinner inay nok render at all.

20

- 1. Enter Starting Amount & Currency:

2. Select Currency for Conversion:

- JUrTEL K00 Found (GEFY -

Figure 3.3: The Ajax implementation of CurrencyConverter
enters a "processing” state when compufing a new result.

You can interact directly with my Ajax implementation of Currency Converter at
the following Web address:

http://thesis.nonword.com/currency_ converter

21

4 Pattern Use In Ajax

Having acquainied the reader with the fundamentals of patterns and Ajax, let us iry
applying pattern concepts to Ajax technologies. Can pattern concepts—traditionally
applicable to Architecture and later to software engineering—be applied to the relatively
new ficld of Ajax Web application development? I will discuss the opportunities
available in the technologies in general, as well as support for that effort in available
toolkits. T will explore use of patterns in the CurrencyConverter Ajax application
described carlicr. Finally, I will assess the state of the industry in terms of its design and

architectural maturity and sumarize my feelings on where pattern application in Ajax

may Srow.

4.1 General Opportunities For Pattern Application

Recall that pattern application in software design was preceded by pattern
application in building construction. Given the apparent flexibility of the patterns concept
to traverse disciplines—and given the respect being gained by Javascript as an
application programming language—it seems possible that patiern application is possible
in Ajax programming as well. Indeed, as we will see, opportunities are present for pattern
application at many levels of Ajax development, This pattern application can improve the

overall shape of the implementation by employing proven strategies to new technology.

4.1.1 Design Pattern Application

As summarized earlier, the Observer pattern becomes useful in applications any

22
time one ohject wishes to passively monitor another object. This manifests in a few
aspects common to Ajax applications, notably in the relationships between display and
data objects, control and display objects', and the relationship of AjaxRequest (or
whatever object the application relies on to perform asynchronous requests) to the

components that rely on it. These relationships are represented in figure 4.1 on the

following page.
nctify updale o nolify updale
) ' [i
B Dala 4 Display < »| Display i r AsaxRequest 4
‘ i : ! :
inspacl Y ms]::tecl . inspedt .
) dorequest notify ready inspect
—_ update nolify updale i netify updale ¥
ki Display ¢ | Display = = Control < - Component
L] H I B B :
! [L]
A) Mulliple display objecsl obsaiving one data objec, B) One conlrol objecl observes C) Component observing AjaxRequest
one having abilly lo aller the dala objecl. multiple display objecls from request lo response

Figure 4.1: The Observer pattern is found in multiple aspects of Ajax programming,

Ajax applications frequently feature rich compound controls whose state must be
monitored by the Controller for changes. This View-Controller relationship is sometimes
best mediated by application of the Observer pattern.

As an example of this View-Controller Observer relationship, consider a compound
application confrol that enables a user to select a major US city and state from two drop-
downs. {(Figure 4.2) There being only 50 states and 12 US territories, populating the state
drop-down is a simple matter. Populating the cities drop-down is not so easy since there

are upwards of 680 major US cities and towns (Rarevu, 2007). Pre-filling the cities drop-

1 Trefer generally to “display”, “dara”™, and ‘‘control’” objecis because these concepls are nawral characlerizations of
components that arise in multiple patters. In MVC, Lhese calegories refer, respectively, lo View, Model, and
Controller,

23
down with that mumber of options will render the drop-down cumbersome to use since
the user will have to scroll past many cities before discovering the desired aption.
Furthermore, we wish to enforce data integrity at the interface level by ensuring that the
selected city is consistent with the selected state. We choose therefore to delay populating
the cities drop-down until after the user has selected a state. Since states contain, at most,
only a few dozen major cities, selecting a city after selecting a state will be fairly casy for

the user and will require a minimal amount of new data.

| [Seled State I Sl :Oregon T [Select City ‘:T.'FJE

A} Inilial, unselecled slata B) Stata selected

Figure 4.2: Compound State, City selection widget

We build the state drop-down as an observable object. Accordingly, any component
interested in changes to the state drop-down need only register itself as an observer of
that object. In this example, a Controller object performs that registration and waits for
the user to cause the drop-down's state to change. When this occurs, the Controller is
notified of a state change in the object it observes. The Controller decides to issue an
asynchronous request (o determine the valid cities for the selected state, which it uses to
populate the cities drop-down. Since the Controller continues to be a registered observer
of the state drop-down, further changes to the state drop-down selection by the wser will
trigger the same procedure; the second drop-~down will be re-populated with the cities
valid for the new state selection.

By applying the Observer pattern to this compound widget, we enforce a

relationship between the View object and the Coniroller that frees the View object of the

24
responsibility of data request and management. This sort of gain is characteristic of
design pattern application. By separating logically disiinct components and restricting
methods of communication, we obtain a component relationship that favors extension and
maintenance. We will see the same is true when we raise the scope of the pattern to the

application level.

4.1.2 Architectural Pattern Application

There are a few opportunities to apply architectural paiterns to Ajax development.
One commonly applied architectural paitern has roots in the Multitier Architecture
pattern. This patiern probably guides more Ajax application design than the pattern is
given credit for since the pattern is a fairly intuitive organizational approach—and one
suggested implicitly by the client-server divide. Multitier Architecture prescribes an
application organization having multiﬁle layers of component families organized by
purpose. In a Three-Tier Architecture, the tiers are 1) User System Interface Tier
(“Presentation™), 2) Process Management Tier (“Logic”), and 3) Database Management
Tier (“Pata”). Rules govern communication between tiers. For example, in a Three-Tier
Architecture, components in the Presentation tier can only communicate with members in
the Logic tier (Sadoski, 2000).

We can imagine a modified version of the Three-Tier organization that adds a
fourth tier—a “Data Service Tier” that interfaces with the Data Tier on the server side.
See figurc 4.3 for a depiction of how the request for city data mentioned in the compound
widget example above would occur in such an organization. The added Data Service Tier

is not always necessary', but its use allows the logic concerning request validation to

1 A number of technologies atlempt Lo provide direct—or somewhat direct-—-access Lo a server-side database via

25

remain separate from that of raw data retrieval.

Presentalion Tier
‘ !
| Usar selects slate Populale cilies
| from drop-down drop-down

Client-Side Logic W=
Tier

Build request far
list of cilies for the
selecled slate

Translate result for
Presentation tier

Server-Side

Dala Service :
. Format raw data
Tier Map requesl lo "
aery for delivery lo
client
5 <
\‘\\\ A
“- \\. .-'" /"
. A oy 4

Daia Tier <7 oy

~. ',

— e Jee

1 Execute quary

Figure 4.3: Multitier Architecfure an an Ajax application

Patterns can be applied to Ajax either by focusing on the small-scale interactions of
components using design patterns like Observer or by widening one's focus to the whole
system as in the Multitier application example above. The examples given so far could be
implemented by any capable Ajax programmer. We will now look at some of the support

given to this effort by popular frameworks and toolkits.

client-side components. ASP.ner’s Data Binding technology 1s one such technology (Microsofl, 2007)

26

4.2 Pattern Acknowledgment By Toolkits

Many use Ajax toolkits like Yahoo's YUI, Google's GWT, or the Dojo Toolkit, as
these toolkits provide useful cross-browser abstractions and general-purpose utilitics for

driving rich, dynamic interfaces and communicating with back-end services. But do these

toolkits encourage use of design patterns?

4.2.1 Design Patterns in Toolkits

One common pattern-aware achievement of popular Ajax toolkits is the taming of
the Web browser event model. Insufficient standards and proprietary implementations
plague client-side event handling by forcing script writers to look several places at once
when examining user events. For example, when a user clicks a keyboard key, Internet
Explorer places information about the event in a different object than FireFox. Many
toolkits— notably Dojo and YUI—solve these problems by building abstractions on top of
the native event model. These abstractions typically emulate the Observer pattern. An
object that wishes to be notified when a click event occurs on a button with id “buttoni”

can use YUI's Event utility to register a callback function:

YAHOO.util.Event.addListener {("buttonl", "click", callback);

A global event handler will fire the supplied callback function any time a click
event occurs on the button.

The event subscription mechanism provided by YUI and other toolkits is a strong
vote of support for the Observer pattern. Its formalization is a relief to developers

familiar with what can go wrong when scripts compete to overwrite element event

27

callback handlers. Previous to widespread use of Eveut atilities like those mentioned
above, programmers ofien wrote code that directly assigned the callback as a property of

the observed object. Consider this code, which might seem equivalent to the code given

above:

document .getElementByld(“buttonl”) .onClick = callback;

This code is almost sufficient, but it enforces a one-to-one relationship of Subject
and Observer. What recourse does a second Observer have if it wants to be notified of
click events on the button? If the second object uses code similar to that above, the
original Observer will cease to observe.

The benefits of Observer paitern acknowledgment in Ajax toolkits is not simply
practical. Use of these pattern-modeled methods familiarizes programmers with the

patterns represented, encouraging programmers to apply those paiterns in other situations.

4.2.2 Architectural Patterns in Ajax Toolkits

Few Ajax toolkits claim to be architectural in scope—probably because at writing a
competition is waging among vendors for leading community acceptance. This
competition obliges toolkits to be somewhat lightweight and pluggable. 1f a toolkit were
to take on architectural framework aspirations, the learning curve might be prohibitively
steep. So for the moment, most Ajax foolkits embody basic design patterns rather than
all-encompassing architectural patterns. 7

One notable exception to this is Freja. Freja claims to be an Ajax framework

designed around the Model- View-Controller pattern. Freja employs apily named Model

28
and View classes that allow programmers to load XML and XSL documents
asynchronously. The object/procedure that instaniiates the Model and View objects
serves as the Controller. The overall shape of a Freja application is dictated by the Freja
framework—everything from the methods by which the application display is
manipulated to the way the application data is represented (Savarese, 2007).

Freja exemplifies the power of patterns by applying one of the oldest known
architectural patterns (MVC) to Ajax, one of the newest popular programming
technologies. The fundamental power of MVC is as relevant to Smalltalk-80 in the 1970s
-—--a system providing one of the first graphical user interfaces—as it is to Freja and the

modern, real-world Ajax Web applications that refy on it.

4.3 Testing the Idea of Patterns With CurrencyConverter

We' now narrow our focus further to explore another case of demonstrated Ajax
pattern application. The CurrencyConverter application introduced in 2.3 does more than
demonstrate Ajax capability. It also realizes an MVC approach to Ajax application

design.

4.3.1 MVC Organization in CurrencyConverter

CurrencyConverter consists of 7 principal components: 5 Model classes and 1 each
of View and Controller classes. See figure 4.4 (following page) for a high-level view of
the general relationships of these components with respect to how they communicate with

one another.

29
The solitary component comprising the View subsystem—the “View” class—is
concerned solely with the representation of the Model on the screen. The View class
produces the containers, form inputs, and resulfs area that express the current problem

space.

Relay user interaction evenls

* Issue commands -
-~} Gontroller S View]

lo updala View i
L] I
Exarnines! updates
composition
Issue commands of Model *
10 updale Model
. SN . Nofificalion of change
. I in Model
Model - b Model)
Owns Requesl server-side ¥ Alax.Request

- Model dala I
Referencesa ¢+~ L

collection of...
ProblemSpace Cal:: on

References Converter
iwo of...

¥

Currency 14

Figure 4.4: CurrencyConverter demonstrates an MYC componcnt
organization with one component fulfilling each of the Controller and
View subsystems and a cluster of components fulfilling the Model
subsystem.

Similar to the View subsystem, one solitary “‘Controller” class comprises the
Controller subsystem. The Controller is the main thread of execution and is responsible
for initiating creation of Model and View objects. In this implementation, the Controller
also serves as a dispatcher for user input events, For example, when the value of a form

input changes, the View object representing that form input immediately and

30

vnconditionally relays that event to the Controller for consideration.!

The Model subsystem comprises five components on server- and client-side. 1
decided early that the Model element of the application should include a “ProbiemSpace™
component, which contained the current state of computation. This reflects a choice to
define the “subject” of the application as comprising more than mere domain data
concerns; The “subject” of CurrencyConverter also includes the user's workspace. The
ProblemSpace thus contains the starting and conversion currencies as well as the entered
amount. A fourth property of the ProblemSpace stores the result. The ProblemSpace is
designed to be self-adjusting such that updates to the input parameters immediately effect
change on a result property—also contained within the ProblemSpace,

For full implementation details, see Appendix A2: “CurrencyConverter MVC

Breakdown.”

4.3.2 Practical Implications of Pattern Use in CurrencyConverter

The choice to use MVC when I designed CurrencyConverter encouraged the
program fo take a unique shape. MVC encourages grouping components by their
tendency to vary. One of the measures of an architecture's robustness is the ease with
wﬁich it can adapt to accommodate new functionality. Say, for example, that we add an

additional View that subscribes to the Model to display the country flags of the selected

1 Note that the choice to have the View blindly relay user inferaction “wpward” fo the Conlrolier is an effori to
approximate a purist implementation of MVC in spite of the limitations inherent in pre-built formn elements. The
purist view of MVC dictates that all user interaction is detected and processed by the Coniroller. Modem user
interface toolkits like Java Swing frequently provide pre-built form controls that encapsulate View, Controller, and
Model functionality in a single, immutable entity. The pre-buill controls defined by the HTML specification
engender the same challenge. These elements contain within them conirol over their display as well as the privilege
of first notificalion regarding user interaction. The method described here is one way (o remain oplimally irue to the
MVC ideal in spite of the constraints imposed by these loolkits.

31
currencies. Since 1) user interaction is bubbled directly to the Controller, 2) meaningful
changes are subsequently applied to the ProblemSpace object in the Model, and 3)
changes to the Model are broadcast to all subscribed views, it follows that implementing
this "flag view" would be fairly simple. Such a new View would simply subscribe as an
Observer of the Model and then display the country flag appropriate for the selected
currencies, as reflected by the ProblemSpace. By a similar means, one could add two
clickable maps by which major currencies could be selected by region. The new View
need only bubble the appropriate user interaction events to the parent Controller object to
effect the change on the ProblemSpace. Clicking on England in the second map would
fire an "updated currency2” event, passing "GBP." Thanks to the many-to-one Observer
relationship shared by the two views with the Model, selecting currencies via one View
would effect immediate changes on the other control—a desired effect since it enforces
the relationship of the two methods presented to the user for currency selection.

Another benefit of MVC application in CurrencyConverter is the governance
placed on communication by members of one subsystem with those of another. The
flavor of MV C chosen does not, for example, permit the View to directly alter the Model.
User interaction intended to update the Model must first pass through the Controller,
which performs validation by ensuring that the new value is meaningful (i.e., an integer
greater than 0). The responsibility of validation could have been assigned to the
ProblemSpace object—or to the Model itself—however, two considerations make this
choice less ideal. Firstly, allowing the Controller to perform user input validation is

closer to the original spirit of the Controller subsystem. Secondly, the user input

32
broadcast system provides a unified interface for user input in general; User input can be
intended for other purposes besides Model updates after all. Suppose one of the views
contains a button to close the application. Such an event is best mediated by a single
central entity—such as the Controller embodies.

Finally, there's the benefit of-a common language. Web applications of even
moderate size frequently require many collaborating developers. Telling a developer that
CurrencyConverter is an MVC-modeled application communicates a lot about the
structure of the application, which reduces the challenge of working in foreign code.

There are notable negative consequences to applying MVC to CurrencyConverier.
One is the simple maiter of code size and development time. Cule:l"IC)FCOI]VGI’tCl“ is an
infentionally simple application with trivially simple functionality. It would not be
difficult to develop a functionally identical application in less time, with less code. One
could, for example, omit the ProblemSpace object, which abstracts the data represented
by the form away from the form elements themselves. Values to be used in the currency
conversion could be coliected directly from the form inputs and posted to the server for a
result. The same component could subsequently parse the returned response and directly
update the display. Indeed, for such a simple application, this approach may be perfectly
practical. The loss of architectural and component communication robusiness—benefits
noted above-—would be compensated by a gain of simplicity.

One can imagine, however, the issues one will have if new functionality is added to
the application. Suppose one wants to add the flag view described earlier so that two

View objects interface one Model object. Without a ProblemSpace object, user

33
interaction via the View widgets would have to direcily trigger the currency conversion.
A procedural® approach could employ a central “compute” function that accepied three
arguments: currencyl, cutrency2, and and amount. The function would validate the three
parameters, compute a result, and update the displayed result (altering the View directly).
Note that without special handling, the two Views would fall out of sync the first time
one of them was used to select a currency, because the two Views no longer share the
common ProblemSpace abstraction. One can imagine how similar problems would

quickly hinder manageability and make the addition of more Views increasingly difficult.

| Procedural programming is a paradigm that favors using global procedures—or “functions”—without object-
orientation.

34

5 Conclusion

Although young, pattein theory in Architecture has profoundly changed the way we
think about documenting technique. Patterns implore us to overlook the finer points of
execution to focus on the essential chavacteristics of successful practice, This simple idea
finds an audience among computer scientists who are familiar with the pursuit of an
intangible elegance not easily quantified or gnided.

At the same time, Web application development is exploding. The initial fervor
around server-side programming produced a wealth of pattern application and
frameworks. When methods for asynchronous client-server communication surfaced
around the turn of the century, a similar fervor erupted in client-side programming. Many
of the cross-browser compatibility issues initially apparent have been resolved through
standardization work and the development of JavaScript toolkits. Ajax arose as a
collection of technologies employed to bridge the client-server gap. This new
communication channel enables rich, frequent communication between client and server,
making rich, dynamic Web applications possible.

Given the suitability of pattern theory to other software fields, it seems natural to
apply pattern concepts to Ajax. We find that this effort is not only possible; it has already
begun. Many toolkits and frameworks already employ pattern concepts including direct
implementations of architectural patterns (e.g. Freja). Application of patterns ideas
generally improves Ajax development by promoting component grouping and reducing
confusion through restrictive component communication channels. This application can

come at a cost of added development time. Furthermore, it is not yet clear how beneficial

35
larger architectural patterns will be to Ajax applications. We see efforts to employ them
(e.g. Freja and CurrencyConverter), but use of architectural patterns in very large,
complicated applications is yet unseen.

We have seen that use of design and architectural patterns in Ajax development is
both possible and prevalent. We now look at the future of pattern application in Ajax,
Firstly, we ask whether or not pattern application efforts can coexist with the codification
efforts embodied by frameworks and toolkits. Secondly, we look at the one area of

growth uniquely available to Ajax—server-inclusive architecture patierns.

5.1 Patterns Versus Toolkits & Frameworks

Given the success of Ajax frameworks and toolkits, one might ask if it is better to
focus efforts on toolkit development or patterh application, In a recent count, over 160
toolkits and frameworks were found that address the challenges of developing rich Ajax
applications (MayemofT, page 567). Although, as we've seen, these frameworks and
toolkits can promote pattern use through pattern-oriented APIs, the goal of frameworks
and toolkits is sometimes thought to run opposed to that of patterns. After all,
frameworks and toolkits provide ready-to-use, pluggable solutions to common
challenges, whereas paiterns merely provide advice. Given this apparent conflict, one
might wonder whether it is beiter to focus on patterns or on codifying pattern ideas in
directly applicable frameworks and toolkits.

Frameworks and patterns really represent two paths to the same goal. That goal is
the promotion of code that is strong, maintainable, and extensible through the reuse of

proven technique. The technique encouraged by frameworks and toolkits is directly

36
applicable whereas the technique provided by patierns is more cogaitive in nature,

One might choose a framework solution over a pattern approach for an obvious
reason: Using pre-written code saves development time and increases the probability of
correctness, However integrating a pre-written solution via a framework or toolkit is not
always practical. Doing so may increase the overall size of a program to an unacceptable
level, for instance. Often, one only hopes to acquire one aspect of a library, but use of the
part necessitates use of the whole. Another reason one might choose to implement a
pattern manually rather than rely on framework/toolkit support is that they wish to
maximize the efficiency of the implementation by coding the pattern into the piece in a
tightly integrated manner not possible with pre-built code.

Finally, it is worth keeping in mind that the Ajax development industry is young.
The term Ajax still referred solely to an industrial detergent as recently as 2005, and the
collection of technologies that it served to represent preceded that date by perhaps five
years. We are very much still figuring out what elegance is in Ajax. The frameworks and
toolkits writers still disagree about what shape an Ajax application should take. Although
Ajax developers can join this discussion by using available frameworks and toolkits, they
can contribuie arguably more by leoking outsiae the Ajax arena to the abstract solutions
demonsirated in the language of software patterns.

But pattern application is not purely backwards-looking. New patterns can arise to

address new industry challenges.

5.2 Server-Inclusive Architectural Patterns

One possible area of growth for futore pattern application in Ajax is the

37
development of server-inclusive architectural patterns. Architectures that span the client-
server divide do not frequently appear in discussions of Ajax design. This fact may owe
much to the common perception that Ajax is a user-interface-cchtered technology.
Indeed, Ajax arose out of efforts to bring dynamic behaviors to flat user interfaces, so it
follows that Ajax might be considered a mere extension of those carly efforts, The Ajax
application, in this view, is the collection of components executing in the user's browser
on the client-side. Server-side components are frequently excluded from the model as
external services that the client-side application periodically calls upon.

Yet it is also possible to think of the Ajax application as comprising both client-
and server-side concerns. Originally, the focus of Web applications was the server-side.
With the standardization of JavaScript and associated XMLHTTPRequest technologies in
recent years, the same fervor has been raised for client-side activity. Now that rich,
communicating components are possible on both sides of the client-server divide, one
might ask whether or not a holistic client- and server-inclusive approach is possible. Will
we see such architectural patterns in the future?

Traditionally, most pattern application has been confined to the organization of
componenis within a single program on a single platform. Industry support for a client-
server inclusive architecture therefore seems unlikely. When an Ajax architecture is
considered, focus is typically given to the cloud of components on one or the other side
of the divide.

Why distinguish between client- and server-side components in an Ajax

application? There are clear differences dividing the two. Obviously client- and server-

38
side components can execute at a great geographical disparity—potentially joined by
thousands of miles of buried fiber optic cable. Additionally, there may be thousands of
computers executing client-side components, yet server-side instantiations frequently
ocecupy a single centralized server. But these differences are not barriers to inclusive
architectures; they are unique characteristics of the Ajax application, which can be
thought of as executing in a single composite clicnt-server environment,

Client-server inclusive architectural patterns seem inevitable for Ajax for the
following reasons: 1) Ajax developers frequently engineer cofnponents on both sides of
the client-server divide; 2) New methods of client-server communication enable richer
and more frequent client-server communication; and 3) Ajax applications are only likely
to increase in complexity, and complex applications are best tamed through high-level
thinking such as embodied in pattern application.

One client-server inclusive Ajax pattern is provided in Appendix Al: "Client-
Server Redundant Objects Pattern.” This new pattern enjoys admittedly little industry
support, yet it should approach a proof of concept for client-server inclusive architectural

patterns.

5.3 Closing Remarks

1t is an exciting time for Web application development. Modern browsers provide
largely standardized mechanisms for executing asynchronous calls to the server.
JavaSeript toolkits provide reliable abstractions on top of browser incompatibilities, The
course is now cleared of the largest obstacles, allowing programimers to develop both

sides of the client-server divide without constraint and to bridge those environments with

39
a new frequency and richness thanks to XMLHTTPRequest support. The time may be
ideal to take a step back and survey Ajax development practice using the collective
wisdotn of the computer science community. Nowhere is that wisdom more accessible

nor more generally applicable than in the vocabulary of design and architectural patterns.

40

6 References

Alexander, C,, Ishikawa, S., & Silverstein, M. (1977). 4 paftern language: Towns,
buildings, construction. New York: Oxford University Press.

Baker, H.G. Signs of weakness in object-oriented languages. Retrieved January
29, 2007 fromhttp://home.pipeline.com/~hbakerl /Iterator.htm]

Berners-Lee, T. (1991). Posting to alt.hypertext 6 August, 1991. Retrieved May 6
2007 from hitp://www.w3.org/People/Berners-Lee/1991/08/art-6484.txt

Bush, V. (1945). As we may think. Retrieved on March 5 2007 from
hitp:/fwww theatlantic.com/doce/194507/bush

Dominus, M. (2007). Design patterns of 1972. Retrieved on January 29, 2007 from
http://blog.plover.com/prog/design-patterns.html

Fielding, R. (2000). Architectural styles and the design of network-based sofiware
architectures. Retrieved March 24, 2007 from
hitp:/fwww ics.uci.edw/~fielding/pubs/dissertation/iop.5itm

(Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design patterns.: Elements
of reusable object-oriented software, Reading, MA: Addison-Wesley.

Mahemoif, M. (2006). Ajax design patterns. Sebastopol, CA: O'Reilly Media, Inc.
See hitp://ajaxiiy.com

Mehafly, M. (2004). Towards a new science of architecture, and a new
architecture of science, KATARXIS No 3. Retrieved April 28, 2007 from
http:/www katarxis3.com/Review Natuve Order.htm

Meizger, H. Netscape history. Retrieved May 6 2007 from
http://www.holgermetzger.de/Nelscape History html

Microsoft Corporation. Asp.NET data binding overview. Retrieved May 1 2007
from http://support.microsoft.com/kb/307860/

RareVu, Rarevu Personalized Travel Sife.Retrieved April 25 2007 from Internal
database of major airports. See hitp:/rarevo.com

4]

Sadoski & Comella-Dorda , Three tier software archifeciures. Retrieved January 11,
2007 from htip://www sei.cmu.edw/str/descriptions/threetier_body it

Savaresa, C., Freja. Retrieved May 1 2007 from http://svww.csseripting.com

42
Appendices

Al. Client-Server Redundant Objects Paitern

Al.l Intent

Create a relationship between data access objects on the client- and server-side that
maintains compositional synchronism by automating the gencratton of client-side class

declarations.

A1.2 Motivation

We like building lightweight objects to interface raw data objécts. These objects
provide a simple, intuitive interface to a confusing, flat data pool as well as a way to
think about domain data in a truly object oriented manner. Since the objects are
intentionally lightweight, the added memory use is minimal. Qur appreciation for
lightweight data objects extends to both sides of the client server divide since the
languages at both ends natively support the object-oriented paradigm. We find that we
often code the same lightweight interface objects twice—once on the server side, and
once on the client side—because componenis at both ends need to store and manipulate
instances of the classes at both ends. Since these lightweight objects represent the same
data, the class declarations employed on the client and server are semantically similar.

The Client-Server Redundant Objects pattern describes one approach we can take
to save work and fOI’]:nﬂ]iZC the relationship of like classes across the client-server divide.

Not all objects on the server side will have a natural client-side translation—a

43
property we will call "JavasScript castable." Indeed, we are likely only interested in the
lightweight objects used to interface raw domain daia. Furthermore, we are probably only
interested in the objects of interest to the user interface. We define a mechanism to
identify JavaScript castable objects by interface, package, folder, or any other well-
defined rule. We then use reflection’ to generate a class declaration in JavaScript,
copying all properties, constructors, and methods as best as the reflection tools allow.
This JavaScript ontput is inserted into a server-generated JavaScript library that can be

included in the Web application together with the rest of the JavaScript Model code.

A1.3 Applicability
Use the Client-Server Redundant Objects Pattern when:
+ a set of domain data can be simplified by lightweight interfacing classes
+ the domain data needs to be accessed/manipulated on both server and client
- changes to the domain data require occasional/frequent changes to the
lightweight interfacing classes (This assumes an implementation such as

described in the RESTful Service discussion that follows.)
Al.4 Participating Patterns
Sexver-Side Code Generation

Overview: This pattern describes efforts to minimize developer overhead by

generating all HTML, CSS, and Javascript at the server-side via one of the

1 Reflection is a conveniion of advanced OO languages like Java and PHP that enables one to programatieally
inspeet the composition of instances and Class objects. Through reflection one can, for example, inspeel Class to
identify all of the publicly available methods.

44

growing number of frameworks available (Mahemoft, 2006, page 2753).

Relationship: Although the patiern describes the generation of JavasScript by
server-side components, the similarities end there. The pattern bears a sharp
difference of philosophy with that of Client-Server Redundant Objects. The
purpose of the former is to remove Javascript design from the equation altogether,
freeing the developer to focus on the application from a server-side perspective, In
doing so, naturally the developer loses direct control over the client-side code.
With JavaScript undergoing a renaissance among developers, and new methods
for improving user interface at the client-side arising every day, Server-Side code
generation likely benefits the developer more than it does the user, Client-Server
Redundant Objects, on the other hand, merely reflects a portion of the server-side
down io the client. The developer is free to script those components at the client-

side in any sophisticated way hefshe chooses.

RESTful Service

The REST concept was developed by Roy Thomas Fielding at UC Irvine in 2000.
REST—or Representational State Transfer—includes a number of guidelines for
deploying Web services. Primary among them is that URLs be treated as unique
indicators representing objects or collections of objects exposed by the server. The
specification calls for a common langnage by which HTTP request methods are
assumed to relate to objects. Issuing an HTTP Get request at a URL is presumed

to return a view of that object. For example, issuing a GET at

45
http:/monword.com/projects/1 should logically return information regarding my
project number 1. Since POST calls are specified by REST o indicate a desire (o
change the composition of the object posted to, issning a POST at the same URL
will attempt to update the object. (Security concerns naturally enter the picture

pretty quickly.)

REST need not necessarily be involved in Clieni-Server Redundant Objects, but 1
bring it up to suggest that REST concepts could be empioyed to extend the
pattern's idea. Clieni-Server Redundant Objects is primarily a Development
pattern in that it mostly benefits the development of the application without
bearing directly on the runtime features. Suppose, however, we were to create a
set of REST compliant URLS to retrieve JavaScript snippets containing scrver-
generated object declarations. In the CurrencyConverter application, by this
mechanism, the method one could use to dynamically load a currency object
would be to issue a GET call to
http://thesis.nonword.com/currency_converter/dac/currencies/GBP. Imagine the

elegance if this call returned the following JavaScript code snippet:
new Currency(’'Great Britain', 'Pound', 'GBP');

Note that this particular approach strongly relates to Mahemoif’s "On-Demand

JavaScript" paitern (MahemofTt, 2006, page 122).

46

A1.5 Consequences

Applying the Client-Server Redundant Objects pattern can yield an architecture that
spans the client-server divide. Components on either side are bound logicaily by a
common set of lightweight data access objects. Although these objects are not technically
shared at run-time, their static relationship should nevertheless improve the top-down
architecture of the system by automating a redundancy that previously had to be
111anpally maintained.

.This approach has notable shortcomings. For one, reflection capabilitics are often
incomplete in server-side programing languages. In PHPS, for instance, methods exist to
deri{ie a class object from a class instance, and to iterate over the various methods and
properties defined by that class, but fine-grained analysis of method bodies is not possible
at writing. This means that when methods are translated from PHPS to JavaScript class
methods, the method body must be intuited from its name. Sef methods can, for example,
be identified by a combination of 1) the method name beginning with "set" and 2) the
method taking just one predictably named parameter. The composition of the "equals”
method can also be intuited by assuming that the same parameters passed into the
constructor can also be used to determine equality. These assumptions are not
unrcasonable if the programmer remains mindful of the constraints and exploits the

opportunity to override improperly generated code.

47

A2. CurrencyConverter MVC Breakdown

The seven principal components that compose the application belong to one of the
three subsystems defined by the pattern—Model, View, and Controller. Figure A2.1
provides a class-level breakdown of the system.

Communication between components in one subsystem with those of another is
kept to a minimum—and constrained io the channels of communication identified by the
pattern. Each subsystem, as implemented by the CurrencyConverter application, is

summarized below.

A2.1 CurrencyConverter Controller Subsystem

This subsystem represents the main "thread" of execution in the application. The
Controller is the first application-specific component to be created in the application
environment. The Controller is responsible for creating an instance of a Model
subsystem. The Controller also creates and manages one or many View subsysiems,
providing each with a reference to the Model so that the former can subscribe to the latter
via the Observer pattern.

The Controller class of components contains only one instantiated component in
the CurrencyConverter application. Accordingly, the single component is named
"Controller” and comprises a reference to a model, a collection of View subsystems, and
a method by which the user interaction that is intercepted by View subsystems can be

bubbled up to the Controller.

48

CurrencyConverter: MVYC Ajax

Ajax.Requasl Conventer

+converl(in cumrency 1, In cuitency2. th amounl)
-gelCurrencyRale(in currency_abbrev)

i
it 1 Conlrolter
l -modet
Fviews
i +inil()
+handieUserEveni{in eveniName, in dala)
ProbtemSpace 1 Model N [
slale -obsenvers 1
-amounl -currencies
-ourrancy -problemSpace
-currency2 1 +inil{)
- presull +gelCumencyByAhhrevialion{}
+setAmounl() FadaObsenvern|) .
+selCurrency{) -notifyObservers()
+selCumency2()
FselSale(in stala) ‘ View
| processiewvalues() 1 -mode}
FhandleComputationComplelefin reswil) +inil{)
+natifyCbservedChange(in model : Observed)
. | +repalni(}
Currency i
Lcounlry
Fname siplerfacos einlerfacas
rebioraviation Observed Dhserver .
+equals{in curency : Currency) +addObserver{in cbserver : Qbserver) +nolifyObservedChange(in observed * Obseived}

Figure A2.1: CurrencyConverter Static Class Diagram

A2.2 CurrencyConverter Model Subsystem
The Model represents the subsystein of components that exclusively provide access
to the data and problem domain. Typically, Model components include Data Access
Objects (Appendix A3.1 "Data Access Object Pattern™) as well as the data store itself.
The CwrrencyConverter application Model subsystem contains five major
components:

Converter: This is the server-side component interfacing the server-side data store.

49
The component accepts requests to convert a given amount from one currency to another,
and returns the result.

Ajax.Request: This is the bridge between the sole server-side component—the
Database—and other Model components. The Ajax.Request object is a transient object
created once to perform a single HTTP request on the Database whose response is
returned via callback to the initiating object.

ProblemSpace: The ProblemSpace component encapsulaies the current state of
computation within the application, Information such as the user's desired conversion
amount and selected currencies are stored here. Access to ProblemSpace properties is
constrained to Set methods, which ensures that the ProblemSpace component can update
its own state internally in response to updated properties. For example, when the amount
and starting currency are recorded in the ProblemSpace, application of a new conversion
currency will trigger the ProblemSpace to internally update its fourth property—the
result. Since this method relies on an external component to compute said result—and
because that component executes asynchronously to the ProblemSpace—the
ProblemSpace maintains a 'state’ property to indicate whether or nof its properties are
consistent (i.¢., internal state is consistent when the stored resuli is correctly computed
given the stored amount and currencies). When sufficient user input is gained via the
View, the ProblemSpace enters a "processing” state while the new result is computed and
returned from the Converter component.

Currency: Currency objects represent single instances of international currencies.

In CurrencyConverter, these objects contain only relatively permanent data-—country,

50
name, and abbreviation—Ileaving more volatile data like currency value at the server-side
where changes at the data source can be more-quickly acknowledged. (Notably, withoui
this distinction, I would have no need for Ajax.) The specification of Data Access Objects
such as the Currency class occurs frequently in Ajax programming where large and/or
highly dynamic objects on the server side are represented by lightweight "display”
objects that are not sufficient on their own for business processes.

Model: The so-called Model component that belongs to its namesake MVC
subsystem provides the sole point of contact for all components under the Model
umbrella, The Model manages the relationships specified by the Observer pattern by
providing a means for Observers to subscribe to changes in the Model. When such a
change occurs (e.g. a new result is computed in the ProblemSpace), all listening
Observers are notified of the change. (In this i]hplcmentation, only one View object

exploits this interface.)

A2.3 CurrencyConverter View Subsystem

Classically, the View class of components in the MVC pattern isolates those
objects solely concerned with representing aspects of the Model to the user. Modern
implementations of MV C must adapt this idea to allow some degree of Control
responsibilities to occur in View elements. This occurs because many of the toolkits
relied upon by View components provide widgets that pack Model, View, and Controlter
into a single immutable object. Modern MVC implementations work around this—and,
arguably, maintain the spirit of MVC—by al!owiﬁg Control behaviors to occur in View

components, but only via a restrictive broadcast mechanism. One such implementation is

51
taken up by the CurrencyConverter.

One View component occupies the View subsystem. Although this View
implementation contains the most code, it is fronted by one of the simplest interfaces
owing to the Observer pattern-modeled relationship it shares with the Model. The View
learns about changes to the Model when notified via View's notifyObservedChange
method (required by the Observer interface). When such occurs, the View reinspects the
Model and selectively updates its displayed effects accordingly.

The View contains a number of form elements obtained via the Web browser's
native factory methods. As noted above, use of controllable display widgets obtained
from modern toolkits poses a problem in that user interaction with said widgets
(classically a responsibility of the Controtler) must be handled by the View. This
apparent issue is overcome—or arguably minimized—by "blindly" bubbling selected
user interaction events to the Controller. User interaction events are represented by two
parameters: a name and a value. When the user selects British Pounds as the conversion
currency, an "updated currency2" event is fired with the data "GBP." Four form elements
comprise the CurrencyConverter interface. A handler attaches to each form element when
it is created to facilitate gathering and broadcasting the field data unparsed to the
Controller for consideration. Only upon arriving at the Controller is the data parsed for
validity and selectively used to update the ProblemSpace in the Model.

Note also that this broadcast behavior lays groundwork for additional Views. Say
for example that we add an additional view that subscribes to the Model to display the

comntry flags of the selected currencies. Since 1) user interaction is bubbled directly to

52
the Controller, 2) meaningful changes are subsequently applied to the ProblemSpace
object in the Model, and 3) changes to the Model are broadcast to all subscribed views, it
follows that implementing this "flag view" would be fairly simple. Such a view must
simply subscribe as an Observer and then display the country flag appropriate for the

selected currencies, as reflected by the ProblemSpace.

53

A3. Related Patterns

A3.1 Data Access Objects Pattern

Data Access Objecis Patiern specifies the creation of objects whose sole purpose is
to interface raw data sources. A single object typically represents a single logical domain
entity. The object provides a unified interface to the entities that use the represented data.
When changes to the object occur, the object may personaily handle the commitment of

those changes to the data store.

A3.2 Tterator Pattern

The Tterator pattern describes a way to access the elements of a list sequentially
without knowing anything about the elements contained therein.

When one wants to traverse a list, one creates an Iterator that references that list.
The Tterator subsequently becomes the sole interface one uses when traversing the list.
Four core methods are provided to this end: 1) First, 2) Next, 3) IsDone, and 4)

Currentltem. (Gamma et al., 1995, page 257)

