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1 Introduction

Evolution advances the fitness of an organism through a series of small, incremental changes
over long periods of time. The efficacy of these changes are constantly being tested against
the constraints of natural selection - positive changes become fixed within the species,
negative changes are lost through lack of reproduction. In contrast to this slow, stochastic
process, the theory of whole genome duplication proposes & means for rapid evolutionary
change and diversification. While normally a newly-conceived organism receives half of its
chromosomes from one parent and half from the other, with a whole genome duplication
the organism is given a full set of chromosomes from each parent - doubling the number of
genes and shielding them from the effects of natural selection. The theory of whole genome
duplication was first proposed in the early 1970’s and was considered controversial until
recently. Now, however, with the availability of a number of fully sequenced genomes, these
duplications are known to have occurred a number of times in evolutionary history in a
variety of different organisms, from the single-celled paramecium, to the salmon. Indeed,
the ancient ancestors of humans are thought to have experienced two full duplications in
their history and the teleost fish are thought to have experienced a third. The teleosts, which
include the salmon, contain more species than any other vertebrates in existence today; one
explanation for this explosion of diversity is the occurrence of three, incredibly rare, whole
genome duplication events,

The earliest proposition for the theory of whole genome duplication used no genetic data
at all; it simply was not available for comparison. Instead, it relied on 8 measurement of the
physical size of an organism’s chromosomes. The first evidence in favor of the theory began
to accumulate in the second half of the 1990’s as key genes were sequenced and mapped
in the genome one at a time. The opportunity to collect enough sequence data to provide
comprehensive evidence for the theory came with the arrival of the human genome project
- beginning in the early 1990's, hitting its stride at the turn of the century, and completing
a final draft of the sequence in 2003 |9]. The pace has only increased since then: one of the
newest pieces of equipment, a 454 Sequencer, can produce a rough draft of an entire genome
in a matter of days [56].

It is within this environment, now saturated with genomic sequence data, that compu-
tational resources are poised to advance the theory of whole genome duplication. Once the
signal for these ancient events has been uncovered in modern organisms, there are many
questions we would like to answer regarding the theory. For example, doubling the number
of genes would create a chaotic environment within the cell, does selection quickly reduce
the population of genes, or does it split the functions of a gene between the old and new
copy? After a duplication, at what rates do normal mutations accumulate, and how do those
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Figure 1: Several areas of focus within the field of Bioinformatics. Three of the key
areas, enclosed in the gray box, are critical to research in the area of whole genome
duptication and are the focus of this paper.

rates compare to the normal process of advancement? Does duplication cause speciation,
and if s0, do new species obtain novel features by following parallel evolutionary tracks, or
does each species create the same novelty, through different mechanisms?

Several areas of focus within the field of Bioinformatics apply to the study of whole
genome duplication and the questions posed above. These areas and the dependencies be-
tween them are illustrated in figure 1. DNA sequence data must first be obtained from the
organism of interest. In the case of genome-wide sequencing, DNA is “read” in small, over-
lapping segments that must be assembled into the proper order by matching the overlapping
ends together. Next, software is used to detect the location of genes within the DNA se-
quence as well as features within those genes. After these analyses have been completed, the
full complement of an organism’s genes is available for study. Alignment algorithms ailow
us to find genes that are biologically related to one another - both within an organism and
between organisms. Once gene relationships have been annotated, phylogenetic trees can be
built from them to infer the evolutionary relationships between genes, and, by identifying
synonymous and nonsynonymous mutational differences between related genes we can infer
the the effects of natural selection on those genes.

This paper will focus on three areas of research in the field of Bioinformatics including
the methods, algorithms, and techniques that are critical to the study of whole genome
duplication. These areas are highlighted by the gray box in figure 1:

o Alignment is a process of comparing the nucleotide or amino acid sequences between
different organisms, or within a single organism, in order to identify conserved regions.
It is the basis of every major informatics analysis and for that reason this paper will
examine the relevant developments of Computer Science, Statistics, and Biology that
have been integrated to address the computational complexity of the alignment prob-
lem. Specifically we will look at optimal sequence alignment, the statistical significance
of alignments, substitution matrices and multiple sequence alignment.

¢ Phylogenetics is a set of methods used to determine evolutionary relationships between
different organisms based on a tree representation. The tree, from its root out to the
leaves, describes a precise ordering of speciation, from the ancient ancestral organism,
to its modern-day descendants. Building phylogenetic trees from groups of related
genes allows us to infer the ancestral changes in those genes — when novel features



appenred, how often they appeared, and perhaps when they were lost — by examining
the present state of a gene in multiple organisms and using evolutionary models along
with powerful statistics to work backwards and infer the ancestral states of a particular
gene or gene family. This paper will focus on the four major tree-building methods:
parsimony, distance, maximum likelihood, and Bayesian.

o The study of nonsynonymous and synonymous mutation rates allows us to infer the
rates at which a set of related genes are changing. We rely on the neutral theory
of evolution, also known as genetic drift, which describes the effects of random mu-
tation and the fixation or loss of those mutations in a population, to determine if a
particular gene is under the influence of positive or negative selection. Understanding
these forces allows us to identify the phenomenon that occur after a genome has been
duplicated. This paper will examine the neutral theory along with measurements for
nonsynonymous and synonymous mutations.

o Finally, this paper will examine genome duplications, covering the theory behind them
in detail as well as a review of past and current empirical evidence supporting them.
To best understand the evidence in support or against whole genome duplication it
is essential to understand the methods and algorithms used to generate the raw data
and to understand the biological inferences drawn from that data; for that reason, the
topic of whole genome duplication is presented last.

Section 1.1 examines some basic concepts in biology for computer scientists unfamiliar
with or needing review of the fundamental processes involved in DNA transcription and
translation. It will also introduce some basic vocabulary that will be needed later in the
paper. Sections 2-5 address the fundamental results in the four areas described above:
sequence alignment, phylogenetics, nonsynonymous/synonymous mutation rates, and whole
genome duplication. Finally, section 6 concludes with a high-level look at the state of the
art in whole genome duplication and discusses several open research questions in this area.

1.1 Biological Foundations for Computer Scientists

In 1965, Emile Zuckerkandl and Linus Pauling postulated which molecules were relevant to
an organism’s evolutionary history [83]. They wanted to classify what types of molecules
could be used as a basis to compare organisms to one another and, through those compar-
isons, build a universal phylogenetic tree that described their evolution. Such a tree would
reconstruct the lines of descent that resulted in the organisms that exist today (phylogenetic
trees are described in detail in section 3).

According to Zuckerkand] and Pauling, molecules that occur in living matter can be
classified into three categories relative to the amount of information about the organism
that the molecule contains. Semantophoretic molecules (semantides) are molecules that
directly carry genetic information or a transcript of that information. DNA molecules are
the primary example of this class of molecules which also includes messenger RNA (mRNA)
molecules and the polypeptides that are the products of DNA and mRNA molecules. The
second class of information carriers are episemantic molecules and include any meolecules
synthesized under the control of the polypeptides created by the semantides. All molecules
built by enzymes, which are proteins synthesized by genes, belong to this class. Finally,
asernantic molecules represent a class of molecules that are not produced by the organism.
These molecules may be used and modified by the organism and may be used as a source
for episemantic molecules. Vitamins are an example of this class of molecules.



Asemantic molecules are not useful in terms of building relationships between different
organisms because the presence of such compounds in an organism can only imply that the
organism possesses the proper episemantic molecules to utilize the molecule. Episemantic
molecules, in turn, can only tell us that the organisms have similar active sites in their
semantides, or possibly entirely separate pathways to produce the same product.

For these reasons, Zuckerkandl and Pauling assert that "the most rational, universal,
and informative molecular phylogeny will be built on semantophoretic molecules alone.”
Further, by compering the polypeptide products of related organisms, we should be able
to determine the approximate time a polypeptide chain came into existence, the probable
amino acid sequence of the last common ancestor, and the lines of descent from which
various changes occurred. They also state that additional information can be gathered by
examining the three-dimensional structure of & protein and by examining its direct genetic
code (DNA nucleotides). Almost every bioinformatic analysis starts with the comparison of
homeologous semantophoretic molecules.

1.2 Important Biological Concepts

Although an extensive treatment of DNA and all of the processes involved in its transcription
and translation is beyond the scope of this work (see [51], [61], and [57] for an introduction},
we will briefly describe some biological concepts as they relate to the topics in this position
paper.

Every living organism contains a linearly arranged set of information that describes a
series of genes [83]. These genes describe how to build and execute all the systems that
make up the organism, from describing the organism’s body plan to the regulation of the
number of white blood cells for the immune system. This deoxyribonucleic acid (DNA),
which is a semantide, is present in every cell of every organism from single-celled bacteria
to complex organisms with multiple, cooperating tissue types and internal organs such as
mamtnals,

DNA is composed of four types of nucleotides, which are known by their bases adenine
(A), cytosine {(C), guanine (G), and thymine (T). These bases can be classified into two
categories based on their chemistry, the purines and the pyrimidines, that naturally pair
with one another - the purine adenine with the pyrmidine thymine as well as the purine
guanine with the pyrimidine cytosine. DNA is composed of two strands of these nucleotides,
complementary to one another and arranged as a double-helix. Due to this complementary
nature, if given one strand of the DNA, the other strand may be re-constructed from it.

The DNA strands encode a series of genes or functional units a portion of which are
protein-coding genes. The beginning and ending of each gene is marked by a particular set
of nucleotides and, internally, each gene contains one or more exons and introns. Exons and
introns are differentiated by the fact that the code specified within an exon will become part
of the final protein, whereas the code contained within an intron will be spliced out of the
sequence before the final protein is completed. Introns are thought to serve a regulatory role
in the production of the protein. Areas immediately preceding a gene, known as promoter
regions, regulate the circumstances under which that gene is read (see figure 2). Interest-
ingly, only a very small fraction of an organism’s genome contains code for functional genes,
for humans, it is only 3%. The remaining 97%, known as nongenic DNA, was popularly
described as “junk” DNA for a time and is not well understood. Some regions of nongenic
DNA are known to be genes that have been rendered non-functional by mutations (com-
monly referred to as pseudogenes), while other portions are thought to serve a regulatory
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Figure 2: Two illustrations of a gene. (A) This physical representation shows how the
gene is arranged, along with its introns and exans, within the DNA double helix and
where it is stored on the chromosome. [llustration from [49]. (B) This representation
shows the basic layout of a gene on a strand of DNA along with its functional units.
Pictured, from left to right is a promoter region, followed by three exons (E1, E3, and
E3), separated by two introns (angled lines).

purpose [51].

In order to create a protein, the internal machinery of the cell first splits the DNA strands
and reads the nucleotides belonging to a particular gene. This process is known as transcrip-
tion and it produces a complementary strand of RNA called the primary transcript. After
this initial reading, the primary transcript contains a faithful copy of the DNA including
exons as well as introns. However, the primary transcript is generally further processed by
splicing out the introns to make messenger RNA (mRNA} and possibly some of the exons
to make splice variants.

Within a coding section, each group of three nucleotides, known as a codon, specifies
a particular amino acid. A gene encodes for a series of amino acids that are combined to
create the protein product of the gene. Since there are four different nuclectide bases, it is
possible to encode 4% = 64 amino acids. However, only twenty different types of amino acids
are used in the formation of proteins and, therefore, multiple codons can specify a single
amino acid. For this reason, the genetic code is referred to as degenerate [83, 51].

Once processing of the mRNA is complete, it moves from the cell nucleus into the
cytoplasm where cellular ribosomes attach to it and begin the process of translation. During
this process, the codons that make up the mRNA are read, and the corresponding amino
acids are fetched and attached to one another creating a chain of polypeptides. As this
chain is assembled, the polypeptides fold into a final, three-dimensional protein that, when
complete, is then utilized by the organism in some functional way. For example, the protein
may act as a signaling protein triggering additional proteins to be synthesized or it may
be involved in catalyzing another chemical reaction within the organism. This process is
illustrated in figure 3.

Organisms that have a relatively recent common ancestor share significant portions of
their DNA including many protein-coding genes. Many times, a whole gene, portions of a
gene, or even whole segments of a chromosome are conserved between organisms. However,
because of mutations and other evolutionary changes, the code is rarely identical in different
species, or even in different individuals of the same species. Enumerating these differences
allows us to make many inferences about the organisms. Due to the degeneracy of the genetic
code, comparison of segments of the genetic code transiated into amino acids is often more



Figure 3: An illustration of the transcription and translation process [50].

forgiving than those performed with nucleotides since many nucleotide mutations do not
alter the resulting aminc acid. For this reason, amino acid translations are often used when
compearing distantly related sequences.

Figure 4 describes several common relationships among genes; identification of these
relationships is often used as a basis for inference. For example, zebrafish and pufferfish
diverged as two distinct species mueh more recently then the ancestral line that diverged
to become the ancestors of fish and humans. Finding a gene that is present in both the
zebrafish and the pufferfish, but absent in humans implies one of two evolutionary histories:
either the gene appeared in the fish lineage after humans diverged from fish, or, the gene was
present in the last common ancestor of fish and humans and was lost in the human lineage.
Genes that are related by a common ancestor in the past are referred to as homologs. A
gene that is present in both humans and zebrafish and was a single gene in their last common
ancestor is known as an ortholog (figure 4(B)). Sometimes, genes, chromosomal regions,
or whole chromosomes duplicate in an organism resulting in the doubling of all genes in
the duplicated region. In rare cases, whole genomes have duplicated in a single event (see
section 5 for more details). These genes are known as paralogs of one another (figure 4(A)).
Thus, orthologs are two genes that arise from a speciation event, and paralogs are two genes
that arose from a gene duplication event within a lineage. When a set of paralogs in one
organism, and the ortholog of those paralogs in another organism are still related to a
single gene in the last common ancestor they are known as co-orthologs (figure 4(C)).
Co-ortholog gene relationships are most commonly found when comparing genes from an
organism that has experienced a full genome duplication with a genome that has not, for
example, comparing humans and zebrafish. Co-orthologs, paralogs, and orthologs are all
more specific cases of homologs.
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Figure 4: Genetic Relationships. The above tree represents the line of descent of hu-
mans and zebrafish for a hypothetical chromosome, showing their 1ast common ancestor,
a speciation event, and a genome duplication event {(causing the single zebrafish chromo-
some to become two chromosomes, doubling all the genes on the original chromosome)
in the zebrafish lineage. (A) Paralogs: genes within the same genome descended from
a single gene that was duplicated. (B) Orthologs: genes in different genomes descended
from a single gene in the last common ancestor of those genomes. {C) Co-Orthologs:
a set of paralog genes, along with a single, non-duplicated ortholog of those genes in
another genome all descended from a single gene in the last common ancestor. (A-C)
Each set of genes are homologs of one another.

2 Sequence Alignment and its Significance

As asserted by Zuckerkandl, and reiterated by Russell Doolittle in [14], it is simpler to
duplicate and modify an existing genetic program defining the composition of a protein
than to assemble a set of proper amino acids randomly. That is, novel function develops in
an organism over long periods of time through small modifications to their genetic material.
The proliferation and divergence of that genetic material through & series of organisms leaves
a signal that can be revealed by comparative analysis of sequence data.

In the case of a whole genome duplication, the amount of genetic material is doubled
in single, swift event, while the evolutionary implications resulting from that event span
millions of years. As an example, figure 5 shows the signal of a duplication event in the
pufferfish - revealed through the identification of paralogous and orthologous genes through
sequence alignment. The left plot of the figure shows the results of taking each of the 1,100
protein-coding genes on the pufferfish’s third chromosome and searching among all 28,000
genes in the pufferfish genome for paralogous genes. These genes are represented in the plot
by a line of light gray dots while matching paralogs are shown as red points. What should
be evident is that there is a clear pattern of duplicated genes present on the pufferfish’s
second chromosome. To verify that these genes are indeed duplicates of one another, they
were compated against an organism thet has not experienced a whole genome duplication
since the species diverged evolutionarily. In this case, each set of pufferfish paralogs was
compared against the 32,000 protein-coding genes in the human genome in search of co-
orthologs. Again, a clear signal is present with the co-orthologous human genes appearing
along a single, broken human chromosome which is composed of half of human chromosome
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Figure 5: Data, generated by the author, demonstrating a whole genome duplication
in the pufferfish — a member of the teleosts. The left plot shows that genes on pufferfish
chromosome 3 are duplicated on chromosome 2, while the right plot demonstrates that
the corresponding human co-orthologs were not duplicated, but instead remain half on
chromosome 2 and half on chromosome 17. The points in the plots were enhanced due
to the low resolution of the images,

two and half of human chromosome seventeen. From these two plots we can infer that the
last common ancestor of humans and pufferfish possessed a single chromosome that has
since been duplicated in the pufferfish, and broken into two pieces in humans.

While these two plots appear to be simple, they are based on thousands of comparisons
of genes, where each of those comparisons relies on sequence alignment - fuzzy matching of
nucleotides or amino acids that can account for mutations and changes that have accumu-
lated over millions of years. Those alignments, in turn, rely on a solid foundation of statistics
to identify alignments that are significant, and those statistics rely on evolutionary models
and empirical data to demonstrate which statistically important alignments are biologically
relevant. Whatever underlies our methods of analysis, if we want to make inferences on a
genome-wide scale our algorithms must be fast!

As this example demonstrates, sequence alignment can be used to establish relationships
among genes, and those relationships can be used to infer historical evolutionary events.
Moreover, almost every major Bioinformatics analysis depends on alignments as a starting
point — bath phylogenetic tree building and the estimation of synonymous and nonsyn-
onymous mutation rates require alignments before their evolutionary models and powerful
statistical techniques can be brought to bear. In the remainder of this section we will ex-
amine these issues by looking at each of the major areas of sequence alignment including
fundamental algerithms to align sequences, the statistics underlying those algorithms, a case
study looking at the most widely-used alignment program, multiple alignment algorithms,
and a brief look at areas of on-going work in the field.

2.1 Mathematically Optimal Sequence Alignment

In 1970, Saul Needleman and Christian Wunsch published the first general method to com-
pare two sequences using a computer-based algorithm. They defined the maximal match
between two protein sequences as the largest number of amino acids of one protein that can
be matched with those of a second protein, while preserving order and allowing for possible
insertions or deletions (indels) [58].

In 1974, Peter Sellers introduced another method for aligning sequences. Sellers’ method
was presented in a mathematically rigorous way and, instead of trying to maximize the



number of similar amino acids, Sellers’s algorithm sought to minimize the evolutionary
distance between a pair of sequences [66]. The evolutionary distance, or edit distance, is
the number of changes that must be made to one sequence (e.g. insertions, deletions, and
substitutions) to change it into the second sequence. The greater the number of changes, the
greater the amount of evolutionary time that has passed since the organisms diverged. Using
evolutionary distance as a metric allows us to reason about sequences using the principle of
parsimony. Although parsimony is discussed in depth in section 3, briefly, it asserts the idea
that the smallest number of changes to the sequences is likely to be the best explanation of
their evolution.

Several years later Temple Smith and Michael Waterman proved the original Needleman-
Wunsch algorithm and showed that the set of alignments achieving maximum sequence
identity for the Needleman-Wunsch algorithm was equal to the set of alignments achieving
minimum evolutionary distance for Sellers’s algorithm [68].

Although Needleman and Wunsch did not describe it as such, their algorithm is a version
of dynamic programming [48, 57, 15]. Their original formulation was not as efficient as
current methods and it operated somewhat differently; for example, it aligned the sequences
from the terminal residues to the beginning. Instead, we will describe a more mainstream
and recent version [17, 15, 57].

A naive method to determine the best alignment between two sequences would be to
simply try all possible combinations of the letters in the two sequences and then determine
which one had the best score. Even with sequences of medest length it is easy to see that
the number of possible alignments would be very large. Additionally, with each individual
alignment,, we will be repeating work many times as we align common subsequences. Dy-
namic programming provides a solution to this problem by relying on the idea that we can
construct an alignment between two sequences by building it up from alignments of smaller
subsequences. To avoid duplicated work the dynamic programming technique records the
aligned subsequences so they can be reused without having to recalculate them later in the
alignment process. Finally, dynamic programming provides an optimal alignment solution
to the problem. This does not imply that the alignment is biclogically optimal, rather,
given a particular scoring system, dynamic programming will find the alignment with the
best score.

To determine the optimal slignment of two sequences we place one sequence along each
axis of a two-dimensional matrix and paths through the matrix define possible alignments
between the sequences. The value contained in cell (4, 7) represents the cost of aligning the
first i characters of one sequence along with the first j characters of another sequence. We
calculate the cost for each cell in the matrix and to determine the optimal slignment we
simply find the path through the matrix that minimizes this cost.

One such matrix, which was generated with actual sequence data for this paper, is
illustrated in figure 6 (A). In this example, we are aligning a portion of the human engrailed
gene (EN1) against the zebrafish ortholog (engla) [6]. The human gene runs along the X
axis and has a length of m. The zebrafish gene runs along the Y axis and has a length n. To
determine the value of each cell in the matrix we define a recursive relation that describes
the value of the cell (4,7), where 0 < i < n and 0 < j < m, in terms of its three neighboring
cells:

8(i = 1,7 — 1) +oy3,
B(isj)=max -9(1'—1,.7')"")’,
a(i,j—1)++.

This formula describes three options: 1) extend an existing alignment, either because the
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Figure 6: An illustration of the global alignment algorithm using the human engrailed
gene (ENT) and the zebrafish ortholog (engia). (A} Calculating the value of cell (4, 7)
besed on its three neighbors: (i—1, 7), (i,j—1), and (i—1,j—1). We used a gap penalty
of ¥ = =10 and a BLOSUM matrix (defined in section 2.4) as our scoring function. In
this case, the scoring function o,; specifies the cost to align the amino acids K and N
as 0. Therefore, we select the maximum of the three choices: s{(i—=1,j=1)+aij =8+
8(i — 1,7) + v = =2+ =10; a(i,j -~ 1) + ¥ = =2+ —10. (B) The fina! alignment as
represented as a path of red and blue cells through the dynamic programming matrix.
Red cells represent an exact match, light red a mismatch, and blue cells represent a gap.
{C) The final alignment.

residues match or because a substitution has occurred which is more acceptable than in-
serting a gap, 2} add a gap in the first sequence, or, 3) add a gap in the second sequence.
To determine the degree of similarity between two residues we use a scoring function, oy,
which is defined in terms of the probability that residue at position ¢ of the first sequence
is related to the residue at position j of the second sequence. A scoring function can be
as simple as returning a positive integer for two matching residues and a negative integer
for two mismatched residues, Or, more commonly, the scoring function will return a large
integer for a match, and a slightly smaller integer for a mismatched, but biologically simi-
lar residue. In general, the scoring system is based on an evolutionary model or empirical
evidence and several popular scoring systems are detailed in section 2.4. In addition to the
scoring function, we also have a gap penalty 7, and if the two residues are so unrelated that
the value of the gap penalty is larger than the score from &, then the algorithm will choose
to insert & gap into the alignment (in this example we use a gap penalty of —10).

After initializing the top row and column in the matrix we iterate over each cell and
caleulate the value of the cell based on the scoring function and the gap penalty. We select
the option that provides for the maximal value and we record which option we chose (left,
diagonal, or up). Because we are recording these choices, we can construct a path from any
position in the matrix back to the originating cell. Pathways that travel along a diagonal in
the matrix represent portions of the two sequences that can be aligned without gaps (but
possibly with substitutions), while horizontal and vertical pathways represent insertions and
deletions in the sequences.

Once the matrix is fully calculated, we determine the optimum path through the matrix
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by starting at the terminal cell (n,m) and retracing our steps through the matrix until we
arrive back at the origin of the two sequences. This trace is shown in figure 6 (B) and the
final alignment can be seen in figure 6 (C). Since we have to determine a value for each
of the = x m cells, where each cell requires constant work, the algorithm executes in time
proportional to the product of the sequence lengths, O(nm).

2.2 Statistical and Biological Significance of Alignments

In the section above we described how to determine a mathematically optimal alignment of
two sequences. As an example, we aligned portions of the human and zebrafish engrailed
gene. As shown in figure 6 (B), the result of the exercise was a score for the alignment: 33.
It is clear where this score comes from - it is the sum of the scores oy; that are incurred
when aligning the letter at position i of the first sequence with the letter at position j of
the second sequence, in addition to any gap penalties. Beyond knowing that the number
33 is the highest score we could obtain aligning that portion of the engrailed gene, what is
its larger significance? Is it more significant than if we had aligned two randomly generated
sequences? In general, how do we identify genes that share a common history and how do
we differentiate authentic relationships between genes from those occurring by chance?

In the following sections we will examine these questions, We will first look at some
basic considerations of sequence alignment and some simple methods to measure significance.
After discussing the shortcomings of these methods we will describe a general scoring method
that is used widely today. We will focus on choosing an alphabet and scoring system,
including how to generate the major substitution matrices, and how to apply the system to
single sequences and finally sequence alignments.

2.3 Influencing Factors in Sequence Alignment and Naive Statisti-
cal Significance Measures

We start our discussion of statistical significance with an examination of some basic proper-
ties of genetic sequences. If we assume for the moment that amino acids occur throughout
the genome with equal frequency then two unrelated protein sequences that are the same
length can be expected to have an average of five percent identity by chance alone since
there are twenty amino acids. Likewise, under the same conditions, two nucleotide sequences
being compared would be expected to have a twenty-five percent identity by random chance
since there are only four nucleotides. With a large number of sequence comparisons the
distribution of sequence identity should approximate a normal curve with a mean at five
percent and twenty-five percent respectively [14]. Considering only amino acids, 95% of
the comparisons made should fall within two standard deviations of either side of the mean
of the normally distributed data. However, depending on the length of the sequences, the
standard deviation itself is going to vary. With shorter sequences the standard deviation will
be larger and will decrease as the length of the sequences increases (since longer sequences
provide more data causing the sample mean to move closer to the true mean). Doolittle
provides the example of comparing sequences 50 residues long and 200 residues long. In the
former case, 95% of the comparisons will have between zero and eleven percent identity. In
the latter case, the expected percent identity falls to an interval between zero and nine per-
cent as the standard deviation gets smaller. In terms of using percent identity as a measure
of statistical significance, we must account for the lengths of the sequences [14].
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Because the process of change that occurs to genes over time often involves insertions
and deletions of nucleotides, expecting our sequences to always be the same length is not
realistic. If we allow the sequences being compared to be shifted left or right with respect
to one another, perhaps because one of the proteins lost one of its ends, we see the mean
of our distribution of percent identity change. If we allow one sequence to be shifted five
residues the mean of our distribution increases from five to eight percent (since we now take
the maximum of two comparisons between a pair of sequences) and 95% of our sequence
comparisons will have between four and twelve percent identity. Finally, if we now allow
gaps to appear in the sequences, to allow for insertions and deletions in the middle of the
sequences, then two sufficiently long, but completely unrelated sequences can show artifi-
cially high levels of identity. Clearly, to demonstrate statistical and biological significance,
sequence comparisons must account for sequence length and gap placement [14].

Based on these facts, Doolittle proposed one of the earliest methods for determining the
relevance of a number of similar sequences. The process starts by first searching a database
of available sequences with very liberal search criteria in order to generate a list of sequences
possibly related to the query sequence. Next, for each candidate match an optimal alignment
is calculated using & gap penalty in the scoring routine to limit gap placement. A series
of random sequences of similar length and composition to the originals are then generated
and aligned in the same way 85 the actual sequences were. The score from each alignment
of the random pairs of sequences is aggregated and the mean and standard deviation are
calculated providing a distribution that can be used to compare actual sequence alignments
against. Any sequence alignment score that lies at least three standard deviations above the
mesan percent identity of the randomized distribution would safely indicate a biologically
significant relationship between the two sequences [14].

In 1983, Fitch and Smith confirmed and expanded on Doolittle’s conclusions. They com-
pared chicken hemoglobin sequences to explore gap parameters and statistical significance
[27}. Their results indicate that not only should gaps be weighted, but they should be spec-
ified with two parameters: a gap opening penalty as well as a gap expansion penalty. The
authors found that the gap penalty must increase monotonically with the length of the gap,
and, a gap of five residues, for example, must be considered a single gap, as opposed to five
separate gaps. Additionally, Fitch and Smith reiterated the difference between statistical
significance and biological similarity, echoing the need to create a measure of significance
using a randomization and standard deviation method similar to what Doolittle proposed.

Lipman, Smith and colleagues focused further on the question of statistical and biologi-
cal significance versus chance relationships by examining the composition of the randomized
sequences used to compare against actual alignments [54]. Until this point we have con-
sidered the amino acid or nucleotide components of genetic sequences to occur at equal
rates throughout the sequences we have examined. Lipman proposed that since actual ge-
netic sequences are not randomly generated but are subject to functional and evolutionary
constraints, these factors must be accounted for when generating random sequences to de-
termine statistical significance. More specifically, the authors asserted that nearest neighbor
frequencies as well as local fluctuations in base composition can greatly affect the similarity
between randomly generated sequences. Nearest neighbor frequency refers to the idea that
certain amino acids are likely to be found near other particular amino acids, such that if
you create sequences totally randomly, you are likely to decrease the percent identity rel-
ative to non-random sequence data. Fluctuations in local base composition refers to the
distribution of the four nucleotides in sequence data and the fact that different segments
of genomic sequence are going to have different rates of occurrence of the four nucleotides

12



depending on what types of biological structures the sequence is encoding.

To illustrate these factors, Lipman and colleagues took 100 vertebrate nucleotide se-
quences randomly chosen from GenBank and selected ten of them to be query sequences.
They then aligned each of the ten query sequences against all 100 GenBank sequences and
used the scores of the resulting 1,000 comparisons to approximate the true distribution of
the sequence comparison scores. Next, three sets of randomized sequences were generated
from the GenBank sequences and the same analysis was repeated. Each set of randomized
sequences preserved a particular characteristic of the original sequences: overail base com-
position, nearest neighbor frequency, or local base composition, respectively. The authors
found that the three sets of randomized sequences produced significantly different percent
identity distributions. After further analysis, comparing four real pairs of sequences against
the random models, they found that different models could account for some of the pairs, but
none of the models could account for them all. For example, the percent identity of one of the
real alignments may have been considered statistically significant when compared against
the set of random sequences where overall base composition was preserved but not under
the model where nearest-neighbor frequencies were preserved. These results demonstrated
the difference between abstract statistical significance and true biological significance when
trying to determine the relationship between different genetic sequences. Although Lipman
and colleagues suggested producing several variations of randomized sequences to determine
the significance of all sequence comparisons a statisticel basis for general comparison was
published shortly after.

In general, the early work of Doolittle, Fitch, and Lipman established some basic sta-
tistical limits to working with biological sequence data. Namely, they started with the
assumption that nucleotides or amino acids occur randomly in sequence data and that the
scores resulting from alignments of that data are distributed normally. Through experimen-
tation they found that the patterns in which nucleotides and amino acids occur, along with
the length of the sequences affect the statistical significance of alignments. Additionally,
they determined that the insertion of gaps, or the shifting of sequences - allowing us to im-
prove alignments by selecting the maximum scoring of the shifted alignments — also affects
the statistical significance. In the next section we will look at some of the problems with
these ad-hoc approaches, and following that we will examine a formal statistical framework
that describes the distribution of sequence alignment scores, superseding this early work.

2.3.1 Shortcomings of Ad-Hoc Scoring Methods

As described above, a naive approach to determining the statistical significance of a sequence
alignment involves comparing the score of an alignment against the mean of a distribution
of similar sequence alignments where the underlying sequence data has been randomized in
a biologically meaningful way. The statistical significance of the alignment is reported as
the number of standard deviations it falls above the mean of the randomized distribution.
However, as Altschul and colleagues describe in [2], there are several problems with this
approach.

First, this method relies on a distribution of alignment scores with which to compare
alignments against. Randomizing a set of sequences and aligning them is a way to approxi-
mate the true underlying distribution of alignment scores, however, for this approximation
to work the randomized sequences must belong to the same distribution - an assumption we
can not make with the sequences from any particular collection. As Lipman demonstrated,
variation in residue composition among sequences can yield different alignment score distri-
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butions. Further, we also must take the length of sequences into account, as the longer a
pair of sequences, the greater the alignment score expected by chance.

Second, up until this point, we have assumed that optimel alignment scores are normally
distributed. This would be the case if finding an optimal alignment involved summing many
independent subalignment scores. However, when we are determining the best alignment
score we are instead seeking the maximum of many independent subalignment scores and
this results in an extreme value distribution (EVD). One way to visualize the difference is
to think about a dynamic programming matrix used to align two sequences. If, once the
matrix is filled in, ali paths were equally likely, we would simply choose a path and sum the
scores along it. However, all paths are not equally likely, and instead we repeatedly choose
the maximum of the scores to find an optimal path through the matrix. This difference in
the way subalignment scores are selected results in a distribution that is positively skewed
and bas a tail that extends much farther out to the right from the mean thar a normal
distribution does (see figure 7). So, if a normal distribution is assumed, the significance of
an alignment will be greatly exaggerated (the EVD will be discussed further below).

2.3.2 General Scoring Statistics

As an alternative to determining the statistical significance of an alignment by measuring
the number of standard deviations the alignment score falls from the mean, Samuel Karlin
and Stephen Altschul developed a general method for determining the statistical and bio-
logical significance of individual sequences and sequence alignments [42]. We will examine
this general method first by describing how to choose an alphabet and define a scoring sys-
tem, and then by examining how Karlin and Altschul's method applies to single sequences
followed by extending it to pairs of aligned sequences.

Before we begin, we must make a distinction between globa! alignment and local align-
ments. In the former case, the goal is to optimize the overall alignment of two sequences
which may include long regions of low similarity. Local alignment, on the other hand, seeks
only to align those portions of sequences that are relatively conserved. A global alignment
will always produce a single definitive alignment between two sequences while a local align-
ment may produce several significant subalignments from the same pair of sequences. The
techniques described below have only been shown to be valid for local alignments - the
similarity statistics do not necessarily hold when the alignment must include long stretches
of low similarity.

We saw previously that randomizing and aligning & subset of sequences in order to &p-
proximate the distribution of their alignment scores was done because the actual distribution
of the alignment scores was not known. The power in Karlin and Altschul’s general method
is that by defining a scoring system, which is based on a chosen alphabet, the distribution
of alignment scores can be analytically determined, allowing statistical significance of align-
ment scores to be measured without making assumptions about an unknown underlying
distribution. As a prelude to sequence alignments we will first look at finding features in
single sequences. The alphabet and scoring system, which we will describe here, are common
to both tasks.

Karlin and Altschul's method begins first by declaring an alphabet to use, where the
elements of the alphabet represent the components of a sequence to which we wish to assign a
score. For example, if we want to identify the subsequence within a gene responsible for loops
or coils in the secondary structure of a folded protein, then we are going to want to use an
amino acid alphabet. If instead we want to identify repetitive elements of a sequence we may
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use & nucleotide alphabet. In general, an alphabet with r elements is specified as ay, az, ..., ar
and a set of corresponding scores for each of the elements is specified as 3y,92,...,8;. As
we have seen, a number of different alphabets are possible, including nucleotides, in which
case r = 4 and the alphabet is composed of a; = A,a3 = C,a3 = T, and a4 = G; codons,
with r = 61 (64 possible codons minus the three nonsense/stop codons); and the standard
amino acids, with r = 20. Other potentially useful alphabets may focus on characteristics
such as the chemical nature of the nucleotides where r = 2 with purines and pyrimidines as
the components.

The scores themselves can be based on several attributes depending on what types of
features in a sequence or between sequences we want to recognize. For example, scores
may be based on the charge of amino acids or the chemical similarity of different amino
acids. While we will discuss scores more in the context of aligning pairs of sequences,
when evaluating single sequences, most commonly, scores will be based on a set of target
frequencies. The idea here is that a feature can be identified when the letters of the alphabet
that define that feature occur more frequently than they would when compared against
their normal background frequency (the frequency that they occur in sequences without the
feature). We can express this in the following way: the letters of the alphabet that define
the feature of interest occur with probabilities ¢y, gz, ..., gr and the background frequencies
of the letters are pq,pa,...,pr. The score for this feature may then be expressed as a log-
likelihood ratio: o; = log(g:/p:). In effect, the ratio compares the probability of an event
occurring under two alternative hypotheses — the letters of the alphabet appeared because
we have identified the feature, versus the letters having appeared simply because of chance
{background frequency) [1]. So, if we wanted to identify a set of cell transmembrane regions
where the protein glycine appears more often than in normal sequences, we simply tweak
the target frequencies to favor glycine [42].

2.3.3 Maximal Segment Score and the Extreme Value Distribution

Given a scoring system that has been created to recognize certain features in a sequence, we
can apply it to find the maximal segment score (MSS), the portion of a sequence of length
n that has the highest aggregate score. This can be done by scanning the sequence with a
window of fixed size and summing the scores of the residues within the window [42]. Once we
have identified the MSS, we can determine if it is statistically significant by comparing the
MSS against a distribution of maximal segment scores. These values are described by the
extreme value distribution (EVD), which is defined by the cumulative distribution function:

P(S < z) = exp[-e~ =)

[3] and includes two parameters, A and u, which we must calculate. A serves as a scaling
factor, allowing different scoring systems to be compared to one another [1]. It is calculated
first and is the unigue positive solution to the following equation (for more information on

X see section 2.4):
-
> oper =1

i=1
where p; is the probability of observing the ith letter of our alphabet and o; is the score of
that letter. The second parameter, u, is called the characteristic value and can be thought
of as the center of the distribution [3]. It is calculated as follows:

u = (InKn)/A
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Figure 7: The probability density function for the extreme value distribution with
A=land u=0

where n is the sequence length and K is a constant derived from A and the expected values
of & (a full derivation is given in {42)).

Combining the cumulative distribution function for the EVD and the definition of u the
distribution is finally given by:

P(MSS > z) =1 —exp (—Kne %)

and is shown in figure 7. The variable z, then, is a score; the equation gives the probability of
finding a score above a given value of z and should decrease with increasing values of z. For
example, if we set the equation P equal to 0.01, and solve for z, then any maximal segment
score that is greater than the resulting value can be considered statistically significant at
the 1% level [42].

2.3.4 Generalizing to Pairs of Sequences

The process of identifying maximal segment scores can be generalized for sequence compar-
ison. There are two major changes that accompany this generalization; we have to shift
our scoring system from one used to identify features in a single sequence to identifying
shared regions between sequences and, second, we will now be searching for ungapped local
alignments between the two sequences, which can be thought of as finding corresponding
maximal segment scores in each of the sequences. This generalization adds some new con-
siderations in our choice of alphabet. For example, if we want to compare two sequences
at a fine level of detail, perhaps in search of paralogous gene relationships, we may want to
use a nucleotide alphabet. If we want to compare distantly related sequences, perhaps in
search of orthologous gene relationships, we may choose an alphabet of amino acids since
individual nucleotide mutations may not change the resuiting amino acid. If we want to be
able to detect how radically a protein has changed we may choose an alphabet of codons
since it allows us to detect all of the nucleotide changes, as well as which ones actually
changed the resulting amino acid the codon describes.

Whereas previously we defined an alphabet and a set of probabilities for that alphabet,
P1,P2, .- Pr, We now add a second set of probabilities to represent the likelihood of letters
in a second sequence, p'l,p;, ...,p;. and we consider pairs of letters from our alphabet, a;
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and aj, representing letters from the first and second sequence respectively. We will also
need a new scoring scheme, one in which the target frequencies, gy, refer to the likelihood
of letters a; and a; of our alphabet appearing in the same position of the sequences we
are comparing. We again use a log-likelihood ratio to express the probability of the two
letters appearing together because they are related versus them appearing by chance alone:
gi; = log(q,-,—/p.-p}). There are several methods to determine the ¢ and p values in our
scoring scheme and we will detail two of them in section 2.4. Finally, the highest scoring
ungapped alignment is now known as the maximum segment pair (MSP) {42].

Given two sequences of length m and n, that are roughly the same size, we can adapt
our previous definition and again find the unique solution for A, Z};lp,-p;-e"’ii = 1, The
characteristic value, u, is now given by u = (In K'mn)/A. The probability that the optimal
alignment attains a score of at least x is finally given by:

P(MSP > z) = 1 — exp (- Kmne™ %)
(3).

These analytical solutions bave only been proven for ungapped alignments. Altschul and
Karlin have asserted, that according to empirical data the theory for determining statistical
significance should extend to gapped alignments; however, the parameters A and u cannot
be calculated directly. Instead, they must be estimated by generating random sequence data
of the same type and composition, and fitting the parameters to this data using numerical
methods such as method of moments, maximum likelihood, or linear regression [3].

When comparing a single sequence to all the sequences in a database, the lengths of the
two sequences, m and n must be adjusted. While m represents the length of the query, n
must be set to the number of residues in the entire database to obtain an accurate upper
bound on the number of distinct maximal segment pairs that the search is expected to
produce [1}.

2.3.5 Sum Statistics

Up until this point, we have only considered examining & single sequence for interesting
patterns of composition or comparing an optimally aligned pair of sequences. When ex-
amining a single sequence, you may find several regions that all have high scores that you
want to consider or, when examining a pair of sequences of sufficient length, it may be more
useful to optimally align several portions of the sequences separately, in effect producing a
type of gapped alignment (in section 2.5 we will look at BLAST which searches for similar
sequences by performing a number of local alignments). In these cases, it can be useful to
not only consider the maximum segment score, but instead to consider the top n scoring
segments in & statistically meaningful way.

There are two primary methods to consider the top n scoring segments together: the
first takes advantage of the fact that the number of high-scoring segments expected to have
a score greater than z by chance is approximated by a Poisson distribution with parameter
e~*==Y) For example, if we align two long sequences and find three high-scoring segments,
with scores 40, 45, and 50, we can calculate the probability that at least three maximum
scoring pairs, all with scores above 40, would appear by chance [42, 2]. The main drawback
of this approach is that it relies on the lowest of the top n scores considered.

A second method sums the scores of the top n segment pairs. In this case, the distribution
describing the sum of the n highest scores, Ty, has been derived numericelly and it can be
used in the same way as the EVD. The T, distribution describes the probability of observing
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Figure 8: PAM substitution matrices are built by constructing a phylogenetic tree of
related protein sequences and counting the number of point mutations in the inferred
ancestors. (A) Phylogenetic tree composed from four homologous proteins (labeled I
- V) and with the six point mutations that have occurred on the internal nodes of
the tree labeled. Two of these point mutations are colored and marked with arrows to
show exactly which nucleotides were involved in the determination. (B) Since the point
mutations are considered reflexive, 12 entries representing the mutations are recorded in
the table. This figure is based on [11].

the sum of n scores above a given value of z. For a more detailed analysis of this approach
see the work of Altschul and Gish in [3].

2.4 Substitution Matrices

As discussed in section 2.3.2, in order to compare one sequence to another to determine their
biological relatedness, we need a scoring system that allows us to compare the likelihood
that one amino acid is related to another one. Two primary types of substitution matrices
have been created to relate amino acids, Dayhoff’s PAM matrices and Henikoff’s BLOSUM
matrices. The major difference between the two is the use of an explicit evolutionary model
versus an implicit one.

2.4.1 PAM Matrices

Dayhoff’s substitution matrices rely on the principle of accepted point mutations. An ac-
cepted point mutation is the culmination of two processes, the occurrence of a mutation
in a gene, and the fixation of that newly-modified gene within a species. The PAM (point
accepted mutation) matrix is a measure of the number of accepted point mutations over &
period of time; the 1-PAM matrix represents one percent of the amino acids in a sequence
mutating and, under conditions when a molecular clock hypothesis holds (see section 4),
that amount of change is considered a unit of time [11, 15].

PAM matrices are constructed by examining closely-related sequences, those that have
at least 85 percent identity. From those, phylogenetic trees are built using a parsimony
method and point changes are recorded from the inferred ancestors of the sequences instead
of directly from the sequences themselves (the parsimony method is discussed in depth in
section 3). We will refer to these as observed changes, although they are observations of
inferred changes, not empirically observed as in the BLOSUM algorithm. This process of
tabulating observed changes is illustrated in figure 8.
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Dayhoff and colleagues examined sequence data from 34 protein superfamilies grouped
into 71 evolutionary trees. They considered a mutation from amino acid X to amino acid
Y to have the same probability of Y replacing X. OF the 190 possible amino acid exchanges
(20 possible amino acids permuted into groups of 2, divided by 2 since our exchanges are
reflexive: 20! / 18! / 2 = 190), 35 never occurred and only 20% of the exchanges involved
amino acids whose codons differed by more than one nucleotide.

Once the point mutations were tabulated, Dayhoff calculated the ’relative mutability’
to describe the probability that an amino acid will change in a given interval. For a single
tree, relative mutability is simply a ratio describing the number of changes for a particular
amino acid versus the the total number of times that amino acid has appeared in the tree,
or as Dayhoff puts it, been exposed to mutation. If a particular amino acid experiences
no changes in a tree, then its relative mutability in that tree is 0. An overall relative
mutability ratio is then calculated. The numerator of this ratio is the total number of
changes for a single amino acid over all branches of all trees. The denominator is the sum of
occurrences over all branches multiplied by the total number of mutations per 100 links for
that branch (which normalizes the ratios for various sequence lengths). Next, the frequency
of exposure to mutation is calculated for the various amino acids. These values, f;, describe
the background frequency with which each amino acid appears among all the sequences
examined and the frequencies of all twenty amino acids sum to 1.

Finally, we have all the necessary information to calculate the 1-PAM matrix, also written
as PAM1. The matrix is calculated for each each non-diagonal element, M;;, where Ay
represents the probability of amino acid i changing to amino acid j over a unit time:

/\miA;'j .
Ay

m; is the relative mutability, A;; is the number of accepted point mutations, and A is a
scaling factor. In calculating M;; we multiply the background frequency of amino acid i
whby the number of observed mutations of amino acid i to amino acid j, and divide by
the sum of all observed mutations of amino acid i. Diagonal elements are calculated by
My = 1 — Am; as they represent the probability that no change occurred to the amino
acid. In order to calibrate the matrix so that there is one substitution per unit of time we
must ensure that the probabilities in each column sum to 1. This is done by choosing an
appropriate value for A to scale the column scores [11].

We can create mutation probability matrices for other distances simply by extrapolating
from M by muitiplying the matrix by itsell. The PAM250 matrix is the PAM1 matrix
multiplied by itself 250 times (if A had been chosen to be larger than a single mutation,
then we would have to adjust the distances we would get by multiplying the PAM1 matrix
by itself).

Just as we represented scores for single sequences above as log-likelihood ratios, so can we
do the same here. As defined in section 2.3.2, a log-likelihood ratio compares the probability
of an event under two hypotheses, in this case, as above, we are comparing the likelihood of
amino acid ¢ mutating to amino acid j versus amino acid j occurring in a related sequence
by chance (the background mutational frequency, f;}. The ratio is expressed as

fi’
More than a decade after Dayhoff’s publication of the PAM matrices Gaston Gonnet
recalculated the PAM matrices using the same method as Dayhoff, except with a vastly

My =

Ry =
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Figure 9: Two stages in the process of creating protein blocks in a family of related
proteins. {A) A hypothetical block motif common to five related protein sequences. The
motif is defined by a pattern of three amino acids sepatated by two distances, in this
case the pattern is 'A...Q....I". Based on a figure in [67). (B, C} An illustration of block
assembly. Paths of non-overlapping motif blocks are identified by constructing a graph
based on the ordering of blocks amang the sequences. Different paths contain different
subsets of sequences. (C) Two possible paths through the same set of blocks. The best
path (see text) of blocks is found by conducting a depth-first search of the constructed

graph.

larger amount of protein sequence data [31). One of Gonnet’s major findings was that
Dayhoff's matrices are insufficient for sequences that are not closely related (since the PAM
matrices are built from sequences of high similarity). Along with the PAM and BLOSUM
matrices, the Gonnet matrices are also commonly used in sequence alignment.

2.4.2 BLOSUM Matrices

While Dayhoff’s PAM matrices estimated mutation rates by building phylogenetic trees
and counting mutations inferred from the trees, Steven Henikoff and Jorja Henikoff took
a different approach with the BLOSUM matrices [33]. While Dayhoff's method did not
consider direct changes in actual sequence data, the BLOSUM matrices were constructed by
obtaining mutational frequencies directly from relationships represented in protein blocks
and does not use an evolutionary model. As we will describe in detail, the BLOSUM
approach is to distill a large number of related protein sequences into a series of blocks
representing the most commonly occurring subsequences in the set. This involves identifying
blocks within individual sequences, combining common blocks between sequences, and then
finding a comprehensive set of blocks that provides optimal coverage among all the sequence
data. The point mutations and background frequencies used to build the substitution matrix
are then determined from this comprehensive set of blocks.

2.4.3 Creating Protein Blocks

When two or more proteins are known to be related the common information between them
can be concentrated and utilized to detect more distantly-related members of the protein
family. The common information between these proteins can be represented as a series
of blocks, short regions of ungapped alignments, separated by unaligned regions (32]. The
construction of BLOSUM matrices begins by building a set of protein blocks in the following
way.
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We start with a group of two or more known, related proteins, such as those available
from the PROSITE database and we identify common motifs within the sequences. A motif
is a pattern that occurs frequently within a group of related proteins; to discover motifs,
the algorithm attempts to identify a particular pattern of amino acids - a set of three
amino acids with two intervening distances between them. Such a pattern is illustrated in
figure 9 (A). To find these patterns, the algorithm simply scans each sequence once and
records all the possible three amino acid patterns. The size and number of motifs that will
be detected depends on several parameters, primarily the size of the intervening distances
allowed between the pattern’s amino acids. Blocks that occur frequently are assigned a block
score. This score is calculated first by splitting the block into columns; then, every pair of
amino acids in a particular column is scored according to the PAM-250 matrix. Scores for
an entire column are averaged together and then the column scores are summed to create
a motif block score. Next, block motifs that have been identified are extended in either
direction as long as the extensions increase the block score. Overlapping motifs are merged
[67).

At this point we have a family of related protein sequences and we have identified all
of the motif blocks that occur within those sequences. This result is illustrated in figure 9
(B). To define the final set of blocks that we will use to build our scoring matrix, we need
to find the optimum path through our set of blacks that best covers the family of sequences
{figure 9 (C)). We do this by constructing an acyclic, directed graph out of the blocks. If
block #1 precedes block #2, and does not overlap, then we draw an arc from node #1 to
node #2 in our graph. Different paths through the blocks may contain different subsets of
sequences; these paths are identified via a depth-first search and a score is calculated for
each one. This score is determined by summing, for each block in the path, the number of
merged motifs multiplied by the block score, with the total multiplied by the proportion of
sequences in the path. The highest scoring path is selected resulting in a final set of protein
blocks [32].

2.4.4 Deriving the Frequency Table and Substitution Matrix

For the BLOSUM matrices, Henikoff and Henikoff examined several hundred protein groups
creating a database of more than 2000 blocks using the procedure described in the previous
section [33]. Once they had obtained the blocks, they then constructed a frequency table.
This table is created by counting up all the possible pairs of amino acids for each column
in a block.

For example, if the first column of the first block contains 9 A’ residues and 1 'S’ residue,
then there are 9 'AA’ matches and 1 ’AS’ mismatch. Next, counts of all possible pairs in each
column are summed. If a block has a width of w amino acids and a depth of s sequences,
then it contributes ws(s— 1)/2 amino acid pairs to the total count. The result is a frequency
table listing the number of times each of the 210 different amino acid pairs occurs among
the blocks. The frequency of a pair of amino acids i and j is then denoted as f;;.

Just as was done for single sequence scoring schemes and for the Dayhoff matrices, the
table of pair frequencies is converted into a log-likelihood ratio. Recall a log-likelihood ratio
compares the probability of a pair of amino acids appearing due to an accepted mutation
versus the pair appearing due to their normal background frequency. First, we calculate the
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observed probability of occurrence for each amino acid pair, {, j, in the following way:

20
i = fial Y 3 fis-

i=] j=1

Next, we calculate the expected probability of occurrence for each ¢, j pair. We do this first
by calculating the expected probability of the occurrence of amino acid i in an 4, j pair:

pi=gi+ ) _(6i5/2)
=

and then we combine the expected probability of each component of the pair to get the final
probability: e;; = pip;, for i = j, and e;; = 2pyp; for i # j. Finally, the score is expressed
as a log-likelihood ratio in the following way:

aij = In(gi;/e5)-

Once all the ratios are calculated, we have the basic form of the BLOSUM substitution
matrix.

To reduce multiple contributions to amino acid pair frequencies from the most closely
related members of a family, Henikoff and Henikoff clustered the sequences within blocks
that share a certain percentage of their amino acids. For example, if sequence segment A is
identical to sequence segment B at greater than 80% of their aligned positions, then A and
B are clustered and their contributions are averaged when calculating pair frequencies. 1f
sequence segment C is identical to either A or B at greater than 80% of its aligned positions,
then A, B, and C are clustered even if G is not 80% similar to both A and B separately. So,
for the BLOSUMSB0 matrix all blocks that are aligned at at least 80% of their positions are
clustered, and similarly, the blocks in the BLOSUMG62 matrix are clustered when they have at
least 62% identity. The clustering process creates a series of matrices for sequences that have
diverged by differing amounts. The BLOSUMS0 matrix is more useful for sequences that
have diverged recently, since clustering sequences preserves conserved regions and discards
variation in the composite sequences. Conversely, the BLOSUM62 matrix is more useful
for distantly related sequences, since it clusters fewer sequences, preserving the variation in
those sequences.

2.5 Sequence Alignment Case Study: BLAST

The Basic Local Alignment Search Tool, or BLAST, is the most widely used sequence
search and alignment program in use today. BLAST's central role in bioinformatic analyses
is akin to the TCP/IP protocol and its various implementations in the field of network
research. Written by Stephen Altschul and colleagues, BLAST was first released in 1990
and later revised in 1997; it continues to enjoy wide use today. BLAST combines a fast,
heuristic algorithm to identify potentially homologous subsequences along with each the
major concepts we have discussed in this section: alignment through dynamic programiming,
a scoring system based on substitution matrices, and the determination of relevancy from
general scoring statistics. The efficiency of its heuristic approach allows BLAST to compare
a query sequence against a database of thousands (and even millions) of sequences identifying
segments of sequences in the database that show homology to the query [4]. As opposed
to an optimal, global alignment that utilizes a particular scoring system to optimally align
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one whole sequence to another, local alignment algorithms align portions of two sequences,
or subsequences, that show high-levels of similarity - regions of low conservation do not
contribute to the overall measure of similarity.

We defined a general scoring system in section 2.3.2 that allows us to determine, for &
particular set of sequences, or a database of sequences, how high an alignment must score
for it to be statistically significant. We will call that score S. BLAST's strategy is to
minimize the time spent on sequence regions whose score has a low likelihood of exceeding
S. Tt does this by using a word pair, which Altschul defines as a short segment pair of fixed
length w, that is, a gapless sequence segment present in both the query and the database
sequence. BLAST compares each sequence in the database against the query to determine if
the sequences contain a word pair with a score of at least T. When it finds such a word pair
BLAST then tries to extend the initial segment pair into a larger alignment whose score is
at least S. The sensitivity and speed of the algorithm can be largely controlled by changing
the parameters T and S.

In more detail, the BLAST algorithm has three phases, compiling a list of high-scoring
words, searching the database for occurrences of these words, and extending the word pairs
into larger alignments. For protein searches, with a word length of four, there are 204 possible
words; however, due to the number of possible words there is some discretion in the creation
of the word list. A word is only placed on the list if a comparison of it against a word in
the query sequence generates a score that surpasses the T' threshold. According to Altschul,
useful values for the word length w and the score threshold T result in approximately 50
words on the list for every residue in the query sequence. For example, with a query sequence
of 250 amino acids, 12,500 words would be generated.

Searching the database for words is a common Computer Science problem of searching
a long string for the occurrences of short sstrings. One method to do this would be to
create an array with 20* elements (assuming w = 4). Each word would index into the array
and provide a list of all occurrences of that word in the query sequence. As we scanned the
database each database word would directly lead to a list of &ll hits of that word in the query
sequence. Once a list of word pairs has been obtained, extending & hit is done in a straight
forward way. The algorithm lengthens a hit in either direction until the segment pair score
falls significantly below the score of another, already found MSP that has a shorter length.
This causes a small reduction in accuracy, but it is a negligible trade-off for the improvement
in speed.

For nucleotide sequences, the default word length is w = 12. So, given a query sequence
of length #, the first word consists of nucleotides in positions 0-11 of the query sequence,
the second word consists of positions 1-12, yielding n — w+ 1 words. There is one additional
issue that must be dealt with when using nucleotide sequences with BLAST. DNA sequences
are highly-nonrandom, containing biased base compositions and repetitive elements. 1f a
query sequence contains one of these highly repetitive segments then a search will return
many insignificant results. To filter these segments from possible search results, BLAST
pre-processes its database before any searching is actually done. During creation of the
BLAST database the database creation program tabulates the frequencies of all words of
length 8. Those that occur much more frequently than by chance are placed on the filter
list. Then, when preparing the list of words for a nucleotide query prior to a search the
filter list is consulted. If a word from the query sequence appears on the list, it is dropped
from the query.

In 1997, Altschul and colleagues released s new version of BLAST, bringing two major
refinements to the algorithm [5] to account for the growing gap between sequence database
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size and available processing power to search it. Altschul found that lengthening local
alignments accounted for more than 90% of BLAST’s execution time. To increase speed,
the criteria for extending word pairs was changed. While the original BLAST identified
short word pairs with an alignment score of at least T, and then atternpted to extend those
pairs until the alignment score dropped below an already existing shorter score, the new
version defines a window of length A. A hit is only extended if a second, non-overlapping
word is found within the distance of the window reducing the number of word pairs that
will be extended by BLAST. To offset the loss of sensitivity the T parameter was lowered
increasing the possible number of words. However, since only a small number of these words
are extended, computational time is conserved overall.

The ability to use gapped aligniments via dynamic programming in the alignment ex-
tension phase was the second major improvement to BLAST. We can imagine a dynamic
programming matrix with a diagonal of length w filled in from a word pair that BLAST
has identified in the query and database seqeunce. Previous versions of BLAST masked off
all but the two, neighboring diagonals of the matrix and limited extending the alignment to
this small region. While this conserved computational time, the result of this behavior was
that the algorithm could only align small, highly similar regions of the two seqeunces, and
the algorithm would often identify several similar regions in a single pair of sequences. It
then relied on the use of sum statitics (described in section 2.3.2), to determine the signifi-
cance of this full set of short alignments. The main problem with using sum statistics was
missing any one of the short alignments in the set could cause the combined result not to
be identified. By allowing the full use of the dynamic programming matrix, providing for
true, gapped alignments, identifying any one of the significant subalignments would ailow
the recovery of the entire sequence alignment.

In the field of bioinformatics, BLAST is virtually ubiquitous. Utilizing & fast, heuristic
search to identify potentially realted sequences, a dynamic programming algorithm to align
seqeunces based on scores from a substitution matrix, as well as a robust method to de-
termine statistical significance, BLAST is an effective tool to establish homology between
sequences. In the case of genome duplication, we use BLAST extensively to identify par-
alogous and orthologous gene relationships. As the remainder of this paper will bear out,
every other analysis starts by identifying a set of related sequences, and these relationships
are determined with BLAST.

2.6 Multiple Sequence Alignment

In the previous section we discussed how to align a pair of sequences and we presented a pro-
gram that, given a query sequence, could search a database of sequences to find homologous
matches. If aligning a pair of seqeunces is useful, it follows that aligning larger numbers
of sequences would also be useful. For example, returning to our theme of genome dupli-
cation, if 1 start with a pufferfish sequence, and through two successive BLAST searches
identify a paralogous pufferfish seqeunce and an orthologous human sequence, I can not
simply put the three sequences together and expect them to line up properly. Obviously,
the human gene diverged much further in the past and is likely to have encountered many
more substitutions than the parologous pufferfish seqeunce, and natural selection will be
placing different constraints on a human gene than on the copy of a pufferfish gene. Once
we have identified related genes with a program like BLAST, it is common to then re-align
them all together to find a more optimat configuration of the sequences. If we care to do any
further analysis, such as building a phylogenetic tree, a multiple alignment is a prerequisite
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Figure 10: An illustration of a muitiple sequence alignment for three sequences, from

(7l

- without & proper mulitple alignment it is impossible to infer how the forces of evolution
have affected a set of genes.

In section 2.1 above, we described the dynamic programming method to find an optimal
alignment between two sequences, given an alphabet and scoring system. To briefly summa-
rize, the algorithm took a pair of sequences of lengths m, and n, and used a two-dimensional
matrix to represent all possible alignments of those two sequences. The value of each cell
(3,7) of the matrix was calculated using only the data from its neerest neighbors, (i — 1,j),
(3,7 = 1), and (i —1,j — 1), representing adding & gap to the first sequence, adding a gap to
the second sequence, or extending an existing alignment, respectively. The final alignment
was determined by following backpointers from the terminal cell of the matrix, (m, n), back
to the first cell reflecting the choices we made when filling in the cells.

The dynamic programming method is conceptually easy to extend to handle additional
sequences, and we do so by generalizing our two-dimensional matrix to a k-dimensional one
to handle k sequences. The value of each cell is still determined solely by the values of the
nearest neighbor cells; however, the number of neighbors increases with the dimension of
the matrix. The path indicating the optimal alignment still traverses the full matrix, from
the terminal cell back to the initial cell, but can move through the additional dimensions
and we may be extending the alignment in several sequences while adding gaps in others.
An example of a three dimensional matrix and its associated alignment path is illustrated
in figure 10 for three short amino acid sequences.

The major obstacle to using a k-dimensional dynamic programming algorithm is that the
computational time required to execute the algorithm rapidly becomes intractable. While
optimally aligning two sequences using a dynamic programming method is bounded by
O(nm) or, O(n?) when n ~ m, slignment of k sequences is bounded by O(n*). For that
reason, multiple sequence alignment algorithms use heuristics to prune the search space and
we will examine several of those algorithms below.

2.6.1 Optimizing Multiple Sequence Alignment through Heuristics

In [7], Humberto Carrillo and David Lipman described the multiple alignment problem
and proposed a method to optimize the dynamic programming algorithm. Their optimiza-
tion hinges on the idea that the multiple alignment of k sequences implies (%) pairwise
alignments of those sequences. Any scoring scheme to align them all together must be
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monotonically increasing and can not be less than any single pairwise comparison. There-
fore, Carrillo and Lipman assert that a multiple alignment will not move beyond the space
in the k-dimensional matrix that is defined by the individual pairwise alignments. So, the
computational requirements of a multiple sequence alignment would be a function of the size
of the subregion of the k-dimensional matrix that defines the space used for the individual
pairwise comparisons plus the number of computations necessary to generate it. This idea
was implemented by Lipman and colleagues in [53] and they found that the computational
demands of dynamic programming were greatly reduced, allowing them to align as many as
eight sequences simultaneously {compared against a limit of three sequences for a standard
dynamic programming algorithm when the paper was published in 1989).

2.6.2 Progressive Sequence Alignment

In [25), Da-Fei Feng and Russell Doolittle propose the first workable heuristic method to
create multiple alignments, known as progressive sequence alignment. Their work was com-
pleted as a means to create more accurate phylogenetic trees. Previous schemes to construct
trees relied on creating a topology by classifying a set of sequences according to their differ-
ences using the principle of parsimony. The best trees were thought to be those that could
account for the differences in sequences by the smallest number of genetic events. Tree
creation was done by aligning all the sequences pairwise and then clustering the sequences
according to their similarities, often by hand. Grouping the pairwise-aligned sequences was
problematic; when sequence A was compared with sequence B gaps would appear, but when
A or B was aligned with C, the arrangement of gaps would be entirely different. People
dealt with this problem by ’eyeballing’ the sequences and shifting them to make them fit by
hand.

Feng's method, on the other hand, follows the rule “once a gap, always a gap” and
aligns sequences beginning with the most closely related pair (according to a pairwise align-
ment score} and proceeding one at a time from there. The progressive method works in
the following way. First, make all n(n — 1)/2 pairwise alignments using a standard dy-
namie programming method, scoring the alignments with the PAM substitution matrix and
recording the results. Since this work was published before Karlin and Altschul’s general
scoring statistics were widely used (see section 2.3.2), Feng instead compared each of the
pairwise alignment scotes against a set of randomized sequences to determine their statis-
tical significance. The 'difference scores’ were then used to provide an order for proceeding
with the progressive alignment. The algorithm then adds one sequence at a time to the
multiple alignment, allowing new gaps to be incorporated with each additional sequence
but preserving pre-existing gaps. Given two components of the multiple alignment, A and
B, C is added to the alignment in a way that maximizes the total score, trying (AB)C
first, and then C(AB), keeping the alignment that results in the best score. This process is
repeated for each added sequence or sequences. The final alignment is scored by taking the
completed multiple alignment and randomizing it while preserving the gap locations. The
final alignment is then compared against the randomized multiple alignment.

2.6.3 Case study: CLUSTALW

Just as BLAST is the de facto tool for finding homologous sequences, CLUSTALW fills that
space for multiple alignments. Released in 1994, Julie Thompson and colleagues describe the
program in [72]. Thompson outlines a series of improvements to the progressive sequence
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elignment algorithm originally published by Feng and Doolittle in [25] after highlighting two
major problems with progressive sequence alignment.

One of the major problems that can happen when using a progressive alignment alge-
rithm, or as it would be known in Computer Science, a greedy algorithm, is that mistakes
made early in the process can constrain the possible outcomes of the final alignment. This
may result in the algorithm finding & local minimum instead of finding the true, optimal
alignment. These mistakes usually arise from adding sequences to the alignment in the
wrong order. If you add a more distantly related sequence before a more closely related
seqeunce, than you will end up with gaps in the wrong positions, and since gap placement
is fixed in the algorithm, the earlier you make the error, the larger the magnitude of the
error. A second source of local minima may arise from choices in substitution matrices
and gap penalties, In & multiple alignment it is common to have homologous sequences
from a variety of organisms, with varying amounts of evolutionary time separating those
organisms. We have seen that substitution matrices are tuned to work on sequences &t a
particular evolutionary distance. Se, if you choose a single substitution matrix, it will likely
only work well for a subset of the sequences in the multiple alignment. Again, the more
distant your sequences, the more crucial it is to choose a proper substitution matrix. Addi-
tionally, since gaps do not occur randomly within sequence alignments (they are much more
common in between major secondary structures like a-helices and f-strands, for example)
the gap-opening penalty and the gap-extension penalty should be adjusted in a position and
residue specific manner.

The CLUSTALW algorithm, which accounts for these problems, works in the following
way. First, like in Feng's work, sequences are initially aligned in a pairwise manner using
either a fast, approximate method or using a full mathematically optimal alignment. Next,
an initial guide tree is created using the neighbor-joining algorithm to build an unrooted
tree. Although the neighbor-joining algorithm is described in detail in section 3, briefly,
the it creates a tree by repeatedly grouping the most closely related sequences based on
a measure of distance. In this case, CLUSTALW uses the percent identity (the number
of identities in the best alignment divided by the number of residues compared, excluding
gaps) from each pairwise alignment as a measure of distance. Once the unrooted guide tree
is complete, CLUSTALW then roots the tree by placing a mid-point where the means of
the branch lengths are equal on either side of the root. The sequences are then weighted
by taking the distance from the root of the tree; since we are using percent identity as our
distance, weights for individual sequences vary inversely with their percent identity. In cases
where branches are shared, the sequences on the branch equally share the weight.

In more detail, sequence weights are calculated from the guide tree and are normalized
s0 that the largest weight equals 1. Groups of closely related sequences receive low weights
because they duplicate information, while more diverged sequences have higher weights. The
weights are a measure of the informativeness of a particular site in the multiple alignment.
For example, if two very closely related sequences have an amino acid position in common,
that event is much less informative than if two very divergent sequences have an amino acid
position in common.

Now that we have generated the guide tree and determined the sequence weights, a
progressive alignment is performed by aligning sequences in the order of the guide tree. Gaps
from earlier alignments remain fixed. In order to calculate the score between a position in
the multiple sequence alignment with the corresponding position of the sequence (or a group
of sequences) we are adding to the alignment, the average of all the pairwise matrix scores
from the amino acids in the two sets of sequences is used. So, if we are adding a group of
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Figure 11: The major steps of the CLUSTALW alignment program, based on an image
from [72] with original data; aligning the human engrailed gene (hsapiens), along with
the orthelogous mouse {mmusculus), chicken (ggailus), zebrafish (dreric), and stickleback
(gaculeatus) genes. (A} The scores of the initial optimal pairwise alignments which are
the percent identity from the alignment converted into a distance. (B} The generated,
rooted neighbor-joining guide tree, with sequence weights displayed at the tips of the
branches. (C) Two segments of the progressively aligned sequences with total sequence
identity is shown in red.

two sequences to a multiple alignment that already contains four sequences, then we will
average the eight pairwise values from the substitution matrix. The weights we calculated
in the previous step are used directly in this calculation such that each of the eight values
that are averaged together would first be multiplied by the sequence weights corresponding
to the two sequences being compared in the substitution matrix.

Initial gap penalties for the final progressive alignment are calculated depending on the
substitution matrix, the similarity of the sequences and the length of the sequences. Gap
opening penalties (GOP) are then adjusted in a position-specific way. If the alignment is
working in an area with a pre-existing gap, the GOP is lowered to encourage gaps in places
where there is already a gap. If the current gap is within eight residues of the previous
gap, the GOP is increased since gaps do not usually occur too close together. Finally, if
the current sequence contains a hydrophilic segment, the GOP is again lowered. Likewise,
CLUSTALW switches between 4 different substitution matrices (four variants from either the
PAM or BLOSUM series of matrices) depending on the distance of the sequences according
to the guide tree.

2.6.4 Other Multiple Alignment Strategies

Multiple sequence alignment is currently & very active area of research, particularly in
the area of progressive sequence alignment. As we have seen with Feng and Doolittle’s
progressive alignment strategy and with the strategy implemented by CLUSTALW, there
are three basic components to the progressive sequence alignment algorithm: the generation
of optimal pairwise alignments, which are used to construct a guide tree, which is then used
to create the multiple alignment. In this section we will discuss some of the more recent
strategies for progressive alignment and describe how they differ from the classic approach.

New progressive alignment algorithms seek to improve on the approach by CLUSTALW
in different ways. Some algorithms focus on increasing the speed of parts of the algorithm,
others focus on improving gap placement, while still others focus on refining the final progres-
sive alignment through iterstion. The program MUSCLE, by Robert Edgar, makes many
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Figure 12: The pair-hidden Markov Model with three states. State M emits two letters
and represents an extension of an alignment. States X and ¥ each emit a single letter
and & gap representing adding a gap in one of the two sequences. The gap opening and
extension penalties are derived from the transition probabilities, & and e.

changes to the standard algorithm in hopes of gaining improvements [19]. For example, to
speed up the initial pairwise alignments MUSCLE uses k-mer counting with compressed
alphabets [18]. Creating a compressed alphabet involves partitioning the standard twenty-
letter amino acid alphabet into N disjoint subsets with the goal that substitutions in an
alignment are more likely to fall into one subset rather than into two subsets, increasing
identity. A k-mer is a letter sequence of length & and is also called a word; related sequences
generally have more k-mers in common than expected by chance. Recall from section 2.5
that BLAST counted the number of k-mers common to two sequences as a method to find
possible high-scoring sequence pairs. As a measure of evolutionary distance, MUSCLE com-
putes the fractional common k-mer count F, by summing the number of times each k-mer
oceurs in the pairs of sequences divided by the minimum of the sequence lengths. These
distance measures are then used to build an initial tree to guide the progressive alignment.
Edgar claims that this measure is more accurate than CLUSTALW?s use of percent identity
in its initial pairwise alignment stage and that by counting k-mers in a compressed alpha-
bet, instead of performing any actual pairwise alignments, the MUSCLE algorithm gains
efficiency in the initial stage of the progressive alignment strategy.

An alternative to increasing the speed of the initial pairwise alignment phase is to try to
improve its accuracy. Both Loytynoja and Do, in [55] and [13] respectively, have refashioned
their pairwise alignment algorithms into hidden Markov models (HMM). While we will
discuss Markov models in more depth in section 3, briefly, a hidden Markov model allows
an algorithm to be described as a set of states, with arrows connecting the states together
as shown in figure 12. States have transition probabilities that describe the likelihood of
moving from one state to another as well as emission probabilities. When we move from
one state into another, we emit a residue from that state’s emission probability distribution
{16 (an in-depth discussion of HMMs can be found in {15]). Both Léytynoja and Do use
a three state HMM to perform alignment, where state M represents an extension to an
alignment and emits two letters, one from each sequence. States X and Y represent adding
gaps to an alignment and each one emits a letter from one sequence along with a gap.
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The transition probabilities represent the likelihood of opening a gap, if moving from state
M to state X or Y, extending the alignment if moving from M to M, or extending a
gap if moving from X to X or Y to Y. Each possible alignment can be thought of as a
path moving through a series of states. We want to choose the state path that gives the
highest total probability {obtained by combining all the individual transition and emission
probabilities occurring along the path). An HMM is a full probabilistic model and it can be
manipulated by Bayesian probability theory, allowing parameters to be trained or optimized
and providing for measures of score significance (many of these concepts will be explored in
more detail in the context of tree building in section 3). While Do simply used the values
from the BLOSUMS62 substitution matrix to govern emission probabilities, Loytynoja used
a full phylogenetic substitution model {such as Jukes and Cantor or Hasegawa) to increase
accuracy and power of the pairwise alignments.

A final modification that has been investigated is to add a refinement step after the
progressive alignment stage. In both Edgar’s MUSCLE and Do’s ProbCons after the final
progressive alignment is finished, the tree representing the multiple alignment is partitioned
and the two subtrees are separaiely re-aligned. In the case of MUSCLE, the tree is parti-
tioned along each edge; if a particular re-alignment produces a better score, the subtree is
kept, otherwise the alignment is discarded. The process stops when no improvements are
detected after re-alignment.

2.7 Conclusions

The ares of sequence alignment is still very active, having made two towering achievments,
and with work continuing in two other major areas. The mathematically optimal seqeunce
alignment algorithm, along with its solid statistical foundation, as represented in the pro-
gram BLAST, has changed the way research is done in the field of biology. Representing a
nexus of Computer Science and biological research, BLAST has remained an essential tool
since its inception in the early 1990’s. Although work continues in new alignment methods,
such as Edgar’s work on compressed alphabets, BLAST remains dominant in the field. In
contrast, multiple alignment algorithms continue to proliferate. Although CLUSTALW is
the most widely used multiple alignment algorithm, its reliance on a multitude of differ-
ent heuristics leaves open many areas for improvement. Unfortunately, many new multiple
alignment algorithms, such as MUSCLE, themselves rely on an array of unproven heuristic
methods. Similary, while substitution matrices are used continuously, they are still a major
weak point in the alignment field. A detailed look at how these matrices are assembled re-
veals yet another set of heuristics, with both the PAM and BLOSUM matrices built on a set
of implied, mixed models of evolution. As a measure of changing the field, the work of those
like Léytynoja, who are working to anchor sequence alignment in formal, mathematical
models, will be of extreme importance in moving the field in the future.

3 Phylogenetics

While the previous section of this paper focused on identifying genes that shared an evo-
lutionary relationship, this section will examine the area of phylogenetics. Phylogenetics is
a set of methods that allows us to infer the ancestral changes in a group of genes known
to be related ~ when novel features appeared, how often they appeared, and perhaps when
they were lost — by examining the present state of a gene in multiple organisms and using
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evolutionary models along with powerful statistics to work backwards and infer the ancestrat
states of a particular gene or gene family. For example, the Paz6 gene encodes a transcrip-
tion factor that plays an important role in the development of eyes in both humans and in
fruit flies [47]. We may want to answer the question: when did the Pex6 gene appeer in
evolutionary history? And, how has it changed in different organisms? To do so, we could
collect Paz6 transcripts from a variety of species, some with complex forms of the eye and
some with simple forms, and we would construct & phylogenetic tree from those genes. In
doing so, we would then be able infer how the gene changed over time and in what lineages
those changes occurred. In terms of genome duplication, we would primarily be interested
in confirming relationships between genes that we identified through alignments. To do so,
we would take the sets of genes we identified as paralogs and orthologs and we would build
trees from them looking for a particular topology in the tree that indicates that there was
indeed a duplication (we will examine the genome duplication topology in section 5).

At its core, phylogenetic analysis is about building trees; the leaves of the tree rep-
resenting contemporaneous organisms, or characters of those organisms such as genes or
proteins, and a series of branches moving backwards in time to the root of the tree; internal
nodes in the tree represent ancestral organisms. Examining the tree from its root out to the
leaves describes a precise ordering of speciation, from the ancient ancestral organism, to its
modern-day descendants. Organisms, and their corresponding characters such as proteins,
evolved by a certain path; the existence of modern organisms are proof that such a path
exists. Phylogenetic methods are a means to discover that path, however, when we build a
tree the result is & hypothesis for what really happened. Although phylogenetic analysis has
been in use for almost 100 years ([51]), the development of rigorous methods has progressed
along with the availability of molecular sequence data, and for that reason, we will focus on
molecular phylogenetics in this study.

There are four major families of methods for inferring phylogenies that we will examine
in detail: parsimony, distance methods, maximum likelihood, and Bayesian inference. These
methods differ in several major ways; parsimony is based on an implicit model of evolution,
while maximum likelihood (ML) and Bayesian inference methods use explicit models; dis-
tance methods greedily construet a tree based on a mathematical distance measure of the
data, while parsimony, ML, and Bayesian methods look for an optimal tree among all possi-
ble trees; parsimony and distance methods are fast and can process large numbers amounts
of data to create large trees, while ML and Bayesian methods are computationally intense
and the amount of data they can analyze is limited by the computing resources available.
Finally, while maximum likelihood uses a point-estimation of its model parameters, Bayesian
methods integrate over all parameter values. We will explore these differences in more detail
in this section.

Although the concept of phylogenetic reconstruction has been around for a long time,
in the last fifteen years researchers have begun to find consensus around the idea that
phylogenetic reconstruction is a problem of statistical inference [35]. For this reason, it is
important to examine phylogenetic methods for their statistical properties and assumptions.
Good methods should include the following properties. They should be accurate, that is,
they should indicate how well a method estimates the correct tree. They should provide
some means of falsifying the assumptions made during the analysis (including things such as
the use of a bifurcating tree, and the model that describes the evolutionary process). They
should provide a means to choose between different evolutionary models. For example, in
choosing between simple and complex models for character change, how can one justify
the complex model? Finally, they should be able to estimate a level of confidence in the
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Figure 13: Two possible trees to explain the same nucleotide site in a common gene of
three organisms. The first tree (A) requires one substitutions to explain the data while
the second tree (B) requires two substitutions. The principle of parsimony would select
tree {A) as the best tree, since it requires fewer changes to describe the dsta.

phylogeny. In the remainder of this section we will describe the major phylogenetic methods
and try to assess them in terms of the properties listed above.

3.1 Parsimony Methods

If we look at & particular site in a gene shared by three organisms, and in the first and
second organism the site contains the nucleotide A, but in the third organism the same site
conteins the nucleotide G, we may wish to ask the question of which nucleotide represents
the ancestral state? One possible answer is that the last common ancestor of the three
organisms had an A at that site, and in the time since speciation & G replaced the A in the
third organism. Another possibility is that the ancestral organism actually had a G at that
site and both the first and second organisms experienced a substitution. In fact, there are
an infinite number of possible substitutions that could lead to the present orientation of the
nucleotides at that site.

More broadly, we can comparatively use our sequences to construct a tree relating the
organisms. Each leaf on the tree would contain the nucleotide (or amino acid or character)
at that site for one organism. The internal nodes of the tree would represent the ancestral
state of that site. The scenario described above could then be represented as two different
trees, with each tree containing a different nucleotide at its internal ancestral node. The
question then becomes, which tree provides the best explanation of the data? This scenario
is illustrated in figure 13.

The principle idea of parsimony states that the tree requiring the minimum number of
changes would be selected as the most parsimonious tree. In our example, the first tree
(figure 13 (A)) would have a single A — G change while the second tree (figure 13 (B))
would contain two ¢ — A changes - parsimony dictates that we choose the first tree. As
Joseph Felsenstein puts it, the number of extra state changes on a tree counts the number
of ancillary hypotheses that must be erected to explain evolution in the group [24].

As a brief aside, to reconstruct the tree, we are interested in informative sites in the
nucleotide sequences [51]. In general, informative sites give different support for different
trees, while uninformative sites give equal support for all trees. The comparison of informa-
tive sites will allow us to differentiate between the many trees that may explain our data.
In the case of parsimony, for example, if at the first site of a set of sequences all taxa share
the same nucleotide, then that site provides us with no information as to the evolutionary
relationships between our organisms. We may choose to use only these informative sites to
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build the tree in order to save computational resources.

Given a set of related nucleotide sequences and a tree topology presumed to describe
their ancestral relationships, Walter Fitch’s method, published in 1971 in [26], can determine
the exact number of nucleotide replacements that are the minimum necessary to account
for the descent of the sequences from their last common ancestor. In other words, given a
particular tree topology, Fitch's method provides a score of optimality for that particular
tree. However, to find the most optimal tree, we must search the space of all possible trees
and that space can be very large. Due to tree space size we must rely on heuristics; after
describing Fitch’s algorithm in detail, we will look at two algorithms for searching the tree
space.

Fitch's parsimony algorithm begins with a set of related nucleotide sequences, as well as
a known topology of the tree relating the organisms. The preliminary phase is concerned
with reconstructing the internal nodes of the tree and it assigns values to the internal nodes
by working from the leaves of the tree down to the root {a postorder traversal). The tree is
initialized to have a length of 0. The contents of an internal node are decided on the following
criteria: for any particular internal node in the tree if there are common nucleotides among
its descendants, then the value of that internal node is the intersection of those nucleotides.
If there are no common nucleotides, then we assign the union of the descendant nucleotides
to the internal node and we increase the length of the tree by one. This process is illustrated
in figure 14 (A). It should be noted that for every union in the preliminary tree, a mutation
must have been fixed at this nucleotide position in one of the descendants. Counting the
number of unions will give the minimum number of substitutions required to account for all
changes from the last common ancestor in the tree.

While the preliminary phase moved from the leaves of the tree to the root, the final phase
moves from the root to the leaves (a preorder traversal) and is concerned with correcting
for several situations in which not enough information was available in the previous phase.
The final phase of the algorithm is governed by three rules:

e Rule of diminished ambiguity. Remove nucleotides from an internal node i its
immediate ancestor does not require them. An intersection operation higher in the
tree may have made certain nucleotides at the current internal node obsolete. An
example of this process is illustrated in figure 14 (B).

¢ Rule of expanded ambiguity. If the internal node was formed by a union operation
add nucleotides that are present in the immediate ancestor but missing in the current
node. A union operation higher in the tree may have added more ambiguity as to when
a particular character originated in the tree. An example of this process is illustrated
in figure 14 {C).

¢ Rule of encompassing ambiguity. If an internal node was formed by an intersection
add nucleotides to the node if that node's ancestor has them and at least one of its
descendants has them. A union operation higher in the tree may have made the
intersection operation at the current node too strict. An example of this process is
illustrated in figure 14 (D).

Once the final phase is completed, we are left with all the possible nucleotides that may
occupy each internal node of a single tree topology. Since there may be more than one
nucleotide at each internal node in our final reconstruction, we are left with one or more
equally parsimonious trees; any additional nucleotides would require the postulation of
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Figure 14: Fitch's parsimony algorithm, (A) The preliminary stage processing from
the Jeaves of the tree to the root. If two nodes have common characters, take the in-
tersection, otherwise take the union. (B - D) The final phase of the algorithm. (B)
Prune out characters from internal nodes if the ancestral node does not contain them
(red strike-through). (C) If an internal node was formed by a union, add any characters
present in the ancestral node {green). (D) If an internal node was formed by an inter-
section, add any characters present in the ancestor if it is also present in at least one
descendant (green). Based on Fitch’s algorithm as described in [26].

ACG

more substitution events violating our parsimony principle. However, one last step involves
enumerating the possible linkages within this set of equel trees. When enumerating the
particular nucleotides in our tree, a nucleotide in an ancestral node must link to the same
nucleotide in a descendant node if it is available, otherwise, the ancestral node may be linked
to any of the nucleotides in the descendant node.

3.1.1 Tree Enumeration

Fitch’s algorithm is still widely used as a method to find an optimality score for a particular
tree topology, however, there are many possible tree topologies that must be investigated.
The simplest algorithm for enumerating trees is to simply perform an exhaustive search,
but, the number of trees to search quickly makes this approach intractable. For example,
we start with an unrooted, minimal three-organism tree. To add a forth organism to the tree
there are three possible branches that it could be added to for a total of three trees. Adding
a fifth organism generates fifieen possible trees and in general adding the ith organism to
the set of trees for { — 1 organisms yields 2i — 5 branches on which the new organism could
be placed. The first two sets of trees are illustrated in figure 15. Ten organisms gives over
two million trees and twenty organisms gives over 2z10°° possible trees [69]! We will briefly
look at two alternative algorithms to generate trees, the heuristic bisection-reconnection
searching method as well as a branch-and-bound method.
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Figure 15; Enumerating trees and the branch-and-bound algorithm. (A} The min-
imum, three organism, non-rooted tree mlong with all possible ways to add a fourth
organism to tree A. {B) An illustration of the branch-and-bound algorithm. Trees are
searched in a depth first manner. If at any time a tree's score exceeds the bound L, then
the algorithm stops descending and moves on to the next node. In this case, tree B2
exceeded the bound, 5o trees C6 to €10 will not be checked; instead the algorithm will
move back up to node A and then onto node B3. Based on an image in [69).

Bisection-reconnection searching, as discussed by Ronquist in [63], takes an initial tree
and clips it into two or more components. The subtrees are then reconnected at all possible
positions and the length of each rearrangement is compered to that of the original tree
using Fitch’s optimality algorithm. If a tree of the same length as the original is found, the
new tree is added to the tree set in memory, however, if a shorter tree is found, then the
trees in memory are deleted and a new round of swapping is initiated on the shorter tree.
The search halts when all rearrangements have been tried on all trees in memory and no
additional trees of the same length or shorter can be found.

In more detail, the algorithm proceeds in the following way. First, an initial tree, which
is a reasonable approximation of the true tree, is determined. This can be done through any
method, such as one of the distance methods described below. The initial tree is then scored
via Fitch’s algorithm, assigning internal branch nodes and calculating branch lengths. Each
node in the tree has a state set, or, the set of nucleotides that could occupy that node in the
tree. The initial state set corresponds to the nucleotides present after phase one of Fitch's
algorithm, while the final state set corresponds to the nucleotides present after the second
phase of Fitch's algorithm.

Next, the tree is clipped, or split into a source tree and a target tree (the target tree
contains the former root node) and a potential root node is chosen in the source tree. The
two subtrees are once again scored and then, the target tree is reattached to the source tree
at every possible branch. Each possible root node in the source tree is attempted, and with
each root node, every branch in the target tree is reconnected. Finally, when all potential
root nodes have been tried in the source, and all perturbations with the target tree have
been tried, the algorithm returns to the original tree and starts again with a new clipping.
At any point, if a shorter tree is found, the tree is recorded and the process starts again.
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Figure 16: An example for which parsimony methods fail to remain consistent, com-
monly known as long-branch attraction, P and €} represent different rates of evolution,
A — D represent a character or nucleotide site in four species. Based on an image in [21].

A second method of tree enumeration is the branch-and-bound algorithm as described
by Swofford in {69). The branch-and-bound algorithm works in exactly the same was as an
exhaustive search with one major exception: by bounding the search major subsets of trees
that exceed the bound can be skipped saving execution time. The algorithum starts with the
minimum three organism tree as well as an upper bound score L which can be generated
initially from a random tree. It then proceeds adding organisms to the tree in a depth first
manner. So, the initial three-organism tree A will generate three four-organism trees, Bl,
B2, and B3. Adding a fifth organism to tree Bl will generate five more trees C1 through
5 and so on. This process is illustrated in figure 15 (B). If at any time the score of a
tree exceeds L, the algorithm stops descending along that path and backtracks up a node
and starts down the next path. This is because if a tree’s score is larger than L adding
additional organisms to the tree cannot decrease the score. If at anytime the algorithm
adds all organisms to the tree and finds a new bound smaller than L, then it replaces L as
the bound and the algorithm continues searching. It is easy to see that in the worst case
scenario the algorithm will be the same as an exhaustive search but it can generally handle
twenty or more organisms.

3.1.2 Parsimony Inconsistencies

A statisticel estimation method is consistent if it approaches the true value of the quantity
as larger and larger amounts of data are accumulated. For example, the mean of normally
distributed set of data gets closer and closer to the true population mean as the amount of
data increases [24].

Parsimony methods do not posses the property of consistency in all cases. One well
known counter-example, a problem commonly labeled long-branch attraction, involves a
four-species tree with unequal rates of evolution among two groups of lineages. The tree is
composed of four species, A, B, C, and D and the topology of the tree looks like the following:
({A,B){C,D)). In this tree, species A and D have long branch lengths, while the others are
short. As we collect more sites, the method will choose the erroneous tree (A,D)(B,C) with
probability approaching 100% [22, 24]. This tree is pictured in figure 16.

To prove the point emphatically, Felsenstein published a paper in 1978 detailing how
this inconsistency happens [21]. In the paper, he constructs a particular three-species case
in which lack of consistency can be proven.

The example is formulated in the following way. The tree is composed of three species, A,
B, and C. In the tree characters can have two states, 1 or 0 (as opposed to the conventional
four states in a nucleotide example) and a character site can change from 0 to 1, but it
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cannot be reversed. The probability that a character that was in state 0’ and changes to
"1’ is represented by three rates, P, @, and R. The two short branches in the tree share
rate ’@’, while the two long branches share 'P’. The root branch has rate '/’. These rates
are meant to model common differences in the rate of evolution among species.

The final state of the leaves in the tree is then represented as a 3-digit binary number.
’000° represents no changes in the tree, while '011° represents species A as having experienced
no change, and with B and C both having changed to a 1. Given the rates of change
on the branches, we can then calculate the probability of each set of possible character
states, written as Pogo, Poo1, Por0y---Pi11. So, if you examine N different characters in the
three species you can count how many of them produce each of the eight possible trees.
np1p then represents the number of characters that give a 010’ tree configuration. So, the
parsimony method will estimate the correct phylogeny as (AB)C, for example, as long as
M0 >= Niot, o1 According to the law of large numbers, as the number of characters
examined, N, approaches infinity, then n;/N = P, or, the number of character states
predicting a particular tree will approach the probability of that tree.

The method will be consistent as long as Py10 > Pio1, Fo11 and, in general, whichever of
these probabilities is greatest will determine which of the final trees will be selected as the
proper phylogeny. Likewise, il the probabilities do not hold, and Pio1 > Piio, Foui, then
as we look at more characters the method will give the wrong phylogeny with increasing
certainty. By using the known formulas for the probabilities of particular trees, Felsenstein
demonstrates, that when the rates P and @ are sufficiently different, or when the difference
in length of the long and short branches is too great, the equality does not hold and the
method fails to produce the correct tree.

3.2 Distance Methods

A second class of methods used to construct phylogenetic trees is known as the distance
methods. Distance methods use a clustering algorithm to group pairs of species together
based on some measure of distance. Generally, a matrix is constructed from pairwise dis-
tances between species, for example, when using nucleotide data, the distance may be the
fraction of sites different between the sequences of two species. A phylogenetic tree is then
built stepwise by successively grouping the most closely related species in the matrix. This
tree predicts the distance between each set of species as the sum of branch lengths between
the species in the tree [24, 51]. One important distinction that separates the distance meth-
ods from parsimony, maximum likelihood, or Bayesian inference is that the distance methods
present an algorithm to build a tree, while the other three methods provide a method to
determine the optimality of an aiready known tree.

A statistical measure of goodness of fit, often a least squares measure, is applied to
compare the observed distances with the expected distances in the tree. The phylogeny
that minimizes this difference is the preferred tree. A simple example of this method is
the unweighted pair-group method with arithmetic mean (UPGMA). This algorithm works
almost exactly as described above, constructing a matrix of pairwise distances between all
of the species from which to build & tree. If for example, we have four species, A, B, C,
and D, and A and C have the smallest measure of distance between them, then they are
combined into & composite species and a new matrix is created, {AC), B,and D. A and C
are placed at the leaves of a bifurcating branch in the tree and the branch length becomes
the average distance between them: dag = (d, + dp)/2 [51]. This algorithm is instructive,
but not very accurate {64], and is no longer in sericus use.
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Figure 17: An example of the neighbor-jcining method. On the left is the initial,
unrooted star tree. On the right is the tree after the algorithm completes its first round
of clustering. Organisms 1 and 2 were chosen as neighbors since they had the smallest
least-squares estimate of branch lengths among all pairs in the tree. Based on a figure
from [64].

A second example that is still used today, although generally as a method to find a
reasonable preliminary tree topology, is Saitou and Nei’s neighbor-joining method. In a
general data-mining context this algorithm is often referred to as hierarchical clustering.
Saitou and Nei applied this algorithm in a biological context as & response to the inefficient
parsimony methods that preceded it. As we saw in section 3.1, parsimony methods examine
large numbers of tree topologies to uncover the tree or trees with the minimum evelutionary
change. The neighbor-joining algorithm is not guaranteed to find the tree of minimum
evolution, but it will identify the topology and the branch lengths of & unique tree efficiently.

The neighbor-joining method begins with an unrooted tree in a star topology. The
minimum distance between species in the tree is determined by computing a least-squares
estimate of branch lengths for each pair of species in the tree. Similar to fitting a curve to
a set of empirical data, the least-squares estimate minimizes the sum of deviations between
branch lengths. The pair of species that minimizes this value are chosen as neighbors and this
pair of species is then regarded as a composite unit in the tree. The algorithm continues
in a greedy fashion, continuing to group pairs of species until the number of composite
species becomes three, and there is only one unrooted tree. The initial star tree and the
first clustering step in this process are illustrated in figure 17 {64].

3.2.1 Distance Method Inconsistencies

As mentioned earlier, a method of estimation is consistent if, as more data accumulates, the
estimated value converges to its true value. Distance methods are generally consistent when
using sequence data, however, there is a problem that stems from the fact that evolutionary
distance is represented as the sum of branch lengths between nodes in the tree. For example,
if we expect changes in 10% of the nucleotides between nodes A and B in a tree, and also
10% of the nucleotides between nodes B and C, then we expect that 1% of the sites have
changed twice between A and C. Under a model where all nucleotides have an equally likely
chance of a substitution, one-third of the changes will be a reversion back to the original
nucleotide. So, the net difference between A and C is not 20%, but rather 19.67%. As
two DNA sequences become very far apart in the tree, the sum of branch lengths between
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Figure 18: An exampie of the likelihood surface as generated by a coin-tossing exper-
iment. The likelihood is maximized when the probability is equal to the proportion of
heeds that appeared during the experiment. The figure is based on [35].

then should rise to infinity, but it cannot rise above 100%. Taking back-substitutions into
account, the lengths will approach 75% [24]. Thus, when parallel or back-substitutions are
prevalent, problems of inconsistency can cause branches to be too short in the estimated
trees.

3.3 Maximum Likelihood Methods

Maximum likelihood is a general method of deriving statistical estimates of parameters. As
with parsimony, maximum iikelihood can be used to determine the optimality of a given
phylogenetic tree. The method calls for an evolutionary model and a set of data that can be
sequences of nucleotides, codons, or amino acids. The model, given a number of parameters,
specifies how substitutions occur along the lineages in the tree and the data is the empirically
collected sequence data for a set of organisms. The likelihood of a tree is the probability of
the data given the tree and the model and can be expressed as P(D|T, M). The probability
of observing the data under the assumed model will change depending on the particular
parameter values for the model. Maximum likelihood chooses the combination of parameter
values over all parameters that maximizes the probability of observing the data [22, 24, 35].

As a simple example of how the maximum likelihood method works, consider a coin
tossing experiment. Assume the probability of observing heads while tossing a coin is
unknown and we would like to estimate it (perhaps to check its fairness). The method
requires the observed data and a model deseribing the probability of observing the data. A
good model that describes the probability of observing h heads out of n coin tosses is the
binomial distribution, which deseribes the number of successes in a series of independent
success or failure experiments. The binomial distribution is defined as

Priblpya] = (} )1 - p"",

where p is the probability of observing heads. The likelihood in this case, then, is p, the
probability of observing heads given the data (the number of coin tosses and the number of
heads occurring):

L m) = (F)ohta - o,

To maximize the likelihood, we vary the parameter (in this case the probability of a
coin toss resulting in heads) and search for the value of the parameter that maximizes our
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Figure 19: An illustration of the process involved in calculating the likelihood of a
tree. (A) The sequences of four taxa, with sites 1 to N. Column j is the site we are
using in this example. (B) The given rooted tree, (5) and (6} are the internal nodes of
the tree to which we will assign nucleotides. {C) We calculate the likelihood for this site
by summing the probability of each possible set of substitutions. (D) To calculate the
likelihoad over all sites we multiply the likelihood of esch individual cite, Based on an
illustration from [89)].

likelihood. This procedure is nicely illustrated by plotting the likelihood L as a function of
the probability of heads, p (fixing n and h according to the data). As shown in figure 18,
we can see that the likelihood is maximized when the probability p is the proportion of
heads that appeared during the experiment of n coin tosses (in this case 6 heads out of 10
coin tosses). We could also solve the problem analytically by taking the derivative of the
likelihood function with respect to p and determining where the slope is 0 [35].

We will now explain how to extend the method to calculate the likelihood of a phylo-
genetic tree. As with the coin example, we need & set of data and a model. We will first
describe the procedure for caleulating the likelihood, and then we will discuss the inner-
wotkings of the model. For now, consider the model & black box, where you give the model
a tree along with a set of assignments of nucleotides to the internal nodes and it will return
a probability of that particular tree occurring. Figure 19 (A) shows a common alignment of
four homologous sequences with the sites in the sequences labeled 1 through N. Figure 19
(B) describes our tree with the nucleotides at site j of each sequence at the leaves of the
tree. Internal nodes (5) and (6) have not been assigned nucleotides yet. To calculate the
likelihood of this tree, we simply add up the probabilities of all possible assignments to the
two internal nodes of the tree, as shown in figure 19 (C). In this case, with two internal
nodes, there are four choices at each node and 2 nodes, so 16 possible nucleotide assignments
to consider. Remember at this point, we have not discussed how the model is actually work-
ing, just that it is returning a probability for each nucleotide assignment we give it. After
completing the summation of the probabilities of our 16 possible assignments, we now know
the nucleotide assignment that gives the highest likelihood at site j. We then repeat this
calculation for all sites in the sequences multiplying the resulting likelihoods together to get
the final, aggregate likelihood for the entire tree. So, if our sequences are 256 nucleotides
long, the likelihood of the tree over the entire sequence is L = LyLaLs... Lose.

We will now consider the model itself and we will describe the model in its most general
form {in the following section, we will discuss several specific models in more depth). Phy-
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logenetic models specify the probability of observing certain site patterns and are generally
expressed as a rate matrix

- pame pbmg  pemy
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Each element of the rate matrix specifies the probability of & substitution from nucleotide
X to Y (the rate matrix would have 20x20 elements if it were describing amino acids and
61x61 elements if it were describing codons). Each component of the matrix has three parts:
the background frequency, the transition probabilities, and the mean substitution rate. The
background or equilibrium frequencies, denoted as , describe the expected frequency of each
nucleotide in a random sequence; the transition probabilities (a - !} represent the likelihood
of element Y being substituted for element X and can be written as Px—y. The final
component of the rate matrix is the mean substitution rate of the model, which is related to
the branch lengths in the tree. A branch length is defined by a rate of substitution u and a
time t. A branch may be long due to a high rate of mutation (g) or because of a long passage
of time (t) and it is not usually possible to tell what proportion each factor is responstble
for. Models are usually specified with z being combined into the rate matrix and ¢ being
expressed in the branch length, v, which we will discuss momentarily. The rate p interacts
with the specific transition probability for each nucleotide transition (a - {). Considering the
Jukes and Cantor model, which assumes all nucleotides have equal background frequencies
(such that 74 = ¢ = TG = my = 0.25) and assumes all transition rates are the same (i.e.

g=b=..=1=1) we get a very simple model
R LI T
e=| ¥ o ¥ 1
.‘f'u ?U C b
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There are many possible models that have been proposed to describe the evolutionary pro-
cess and we will detail several of them in the following section [69].

So, as we left it above, our evolutionary model was a black box. In order to cbtain the
probability of a particular set of substitutions for a tree we perform the following ealcula-
tions. We must have a tree, T, a set of branch lengths for that tree, vxy, connecting nodes
X and Y and our rate matrix Q. If we have a simple tree, with two leaves and a root there
is only a single internal node. We assign & nucleotide to our internal node, in this case, say
we assign it a 'c’, and that our leaves, A and B are known to have nucleotides 't’ and 'g’,
respectively. The likelihood of this configuration of the tree, if we calculate from the root
out to the leaves, is then: L. = mcP..svraPe—qVURa, where . represents the probability of
nucleotide C being there by chance, and P represents our rate matrix value [29, 35].

To calculate the tree we specified in figure 19 (B) for the site j with an "A’ assigned to
the root and a 'C’ assigned to the internal node, we would perform the following caleulations
(the nodes of the tree are labeled 1-6 in this case):

L;i = maPacveamaPa_ aveamc Pa—~cvesmc Po—cvseme Po—cusi-
In our discussion of models, almost all our parameters were explicitly specified. In

general, it is possible to use likelihood to optimize any of the parameters that belong to the
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model. One case in point occurs with determining the proper branch lengths in a particular
tree. One common approach is to perform a likelihood calculation on the smallest subtree
that contains the branch. This calculation would be very similar to our example above
where we optimized the parameter p, which specified the probability of heads in a coin
tossing experiment, except in this case we would optimize the branch length v using our
rate matrix @ as our model instead of the binomial distribution. A second approach to
branch lengths is to build them directly into the rate matrix. So, instead of having a single
matrix, you have several matrices each representing a common branch length [29].

So far we have assumed that a tree topology is given prior to calculating the likelihood.
However, as we discussed in section 3.1.1, the number of possible trees rises extremely rapidly
as we add more taxa to our analysis. One approach to identifying the topology would be to
use a preliminary method, such as the neighbor-joining method to produce an initial tree
topology. Another second method is to start with & minimum three species tree and then
add species to it one at a time. For each new species, you calculate the tree configuration
that gives the highest likelihood and then continue adding the next species [21]. A final
approach is to search for the best topology by examining a certain fraction of the possible
tree space. Any of the algorithms or heuristic methods described in section 3.1.1 can be
applied here as well.

3.3.1 Alternative Evolutionary Models

One of the primary differences between phylogenetic methods described previously, such as
parsimony or distance methods, and maximum likelihood, is that the former methods use
implicit models of evolution. Parsimony favors the idea of minimum evolutionary change a
priori [22), but does not specify the forces at work that yield minimum evolutionary changes
to a tree. Distance methods generally use a measure of the difference of the number of
substitutions in a set of sequences, which it then minimizes to cluster species, but again, the
evolutionary forces that change the sequence data are not specified - sequence alignments
are based on substitution matrices (see section 2.4), which are a reflection of several different
models being applied to different and non-homologous branches in the tree [77]. Maximum
likelihood, on the other hand, provides an explicit model for the data. In this section we
will discuss these models in more depth starting with a simple example and then exploring
a model of nucleotide change and a more complex model based on codon changes.

As mentioned in the previous section, to calculate the probability of observing a given site
pattern several factors, including at least the transition probabilities (among nucleotides,
codons, or amino acids) and background frequencies must be specified. Most likelihood
models assume a time-homogeneous Poisson process to describe these transitions, which,
among other things, implies that substitutions are independent and happen randomly. As a
simple example of calculating transition probabilities, consider a two-state case, where the
only character states are 0 and 1. The rate of change from 0 to 1, or 1 to 0, in a infinitesimal
amount of time, 8t is specified by a two dimensional rate matrix ¢ [35]:

_ R —r\Tl’l /\11'1
Q= {Q:J} - ( Mg —Mg )
where ) is the rate of change from 0 to 1 or 1 to 0, and mp and m are the equilibrium

frequencies of each state.
To calculate the probability of observing a change over the interval of time ¢, we modify
the rate matrix in the following way: pi;(t,8) = e9*, where @ is a vector of parameters for the
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model. This allows us to take our rate matrix of transition probabilities and express those
probabilities as a function of time, which allows us to adjust for the fact that as a tree branch
becomes longer, the probability of a transition having occurred rises. This calculation allows
us to take a single set of transition probabilities and make them appropriate for a number of
different branch lengths. Often these calculations can be performed analytically, such as for
our hypothetical two-state example. However, if the model is complicated, the calculation
can be done numerically [35].

In 1994, Ziheng Yang introduced the General Reversible Process Model (REV) as a
means to describe nucleotide evolution [77]. REV is a Markov process that utilizes & four
by four rate matrix Q to describe the probability that nucleotide i wiil be substituted with
nucleotide 7 in an infinitesimal time interval §t. Similar to the generic model described
above, w4, T, Tg, and wr describe the background frequency of the different nucleotides.
In contrast to our general model, where we had 12 separate transition probabilities - one
for every type of allowed substitution in the model, here there are only six transition rates,
a, b, ¢, d, e, and f which are specified to make the model symmetric and provide for its
reversibility. The rate matrix is specified as

- am bmy emy

o=| %" - dm, emg
- bﬂ'g dﬂ'c — f Tg
cm emg fma -

The rate matrix ¢ is scaled so that time is represented as the number of substitutions per
site and it may be converted, as described above, so that it can be applied to many different
branch lengths.

One of the more interesting characteristics of Yang’s model is that his general model
encapsulates many of the more restrictive models that preceded it. If we assume that all
four nucleotides have the same background frequencies and transition probabilities (7 = %
and a = b=..= f = 1), we get the model of Jukes and Cantor, first proposed in 1969. If
we split our transition probabilities into two categories, including transition substitutions
and transversion substitutions each with their own rates, we get Kimura’s 1980 model. If we
allow the four nucleotides to have different background frequencies we get Felsenstein’s 1981
model. Finally, If we combine the special restrictions of different transition and transversion
rates, along with different nucleotide frequencies, we get Hasegawa’s 1985 model [77].

In the same year that Yang published his General Reversible Model, Goldman and
Yang devised a model of nucleotide substitution based on modeling at the codon level
[30]. The model uses both the nucleotide-level information in DNA sequences and amino
acid-level information. For example, it incorporates into it the transition and transversion
bias of nucleotides and the variability of a gene through information of synonymous and
nonsynonymous substitutions (synonymous/nonsynonymous substitutions are discussed in
depth in section 4.

As with the REV model, Goldman and Yang's model utilizes a Markov process to model
substitutions among the codons within a protein-coding sequence. However, while the REV
model used a discrete Markov process, the complexity of the codon-based model requires
the use of a continuous-time Markov process. As a reminder, a codon represents three
nucleotides which code for a particular amino acid in the DNA sequence.

The states of the Markov process are the 61 sense codons, the three stop codons are not
included as they are assumed to largely change the gene, making their appearance very rare.
This requires a 61x61 rate matrix, @, to represent the probability of one codon changing
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(STOP)

Figure 20: Each codon in the Goldman and Yang model may be converted into any
of nine other codons if it experiences & nucleotide substitution. This figure shows an
example for the "TCG’ codan. The size of the circles represents the frequency of that
codon, transitions are marked as thick arraws, while transversions are thin atrrows [30].

into another over a small amount of time. The model assumes that mutations occur at
the three codon positions independently and only single substitutions are allowed. Each
codon hes at most nine neighboring states that it may change into (three nucleotides in
each codon times three nucleotides that each could change into), an example of which js
illustrated in figure 20. Rates of substitution involving a transition (A —« Gor C — T) are
multiplied by a factor , to allow for the ratio of transition and transversion substitutions to
be incorporated into the model. In addition, to represent selective pressure, if a substitution
in & codon modifies the amino acid, an additional multiplicative factor is incorporated, based
on the physiochemical distances between the 20 amino acids and the general variability of
the gene: A = g~ daaiaa; IV (the distance dag,q0; is not taken from a substitution matrix,
but rather is a simple integer that increases in size as the physiochemical distance between
two amino acids grow, such as Grantham’s index) [30]. This formulation expresses the
fact that codons that code for chemically very different amino acids will rarely substitute
for one another, while codons that code for chemically similar amino acids will substitute
much more frequently. This matrix, although much larger, is still very similar in nature
to the general model for nucleotides presented in the previous section. The parameters
and A are calculated along with the existing model parameters including the background
frequency, the transition probability, and the average mutation rate for each element in the
rate matrix. Of course, these parameters now apply to the rates and frequencies of codons
instead of nucleotides.

3.3.2 Among-site Rate Variation

One constant to the variety of models we have described so far is that the forces of evolution
the models describe are assumed to affect all sites in a sequence equally. There may be & bias
in the types of transition and transversion substitutions, but our models assume that bias
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occurs equally at all sites. Evolutionary studies, however, have shown that substitution
rate variation exists among sites in almost all genes. Different selective constraints at
different sites are responsible for this conservation, usually because the particular functional
or structural component being coded for is more or less important to the well-being of the
organism [79, 78]. For example, estimated substitution rates at the first, second, and third
codon positions can be ordered, r2 < r| < ra. The reason for this is the degeneracy of the
genetic code. Changes to the third position in & codon very often do not change the amino
acid it codes for, while changes to the second position always do. For this reason, genes
accumulate more substitutions in the third position than in the second, but the models
we have described so far do not account for it. Both Yang's nucleotide model as well
as Goldman and Yang's codon-based model experienced problems due to among-site rate
variation [77, 30].

If all sites in & sequence change at the same rate, the number of substitutions per site
for a group of sequences should follow a Poisson distribution. However, Fitch and Margolish
found, by examining the number of nucleotide changes in cytochrome ¢, that the data do
not fit a Poisson distribution and that the data would only fit if 2 number of invariant sites
(sites under strong selection) were excluded [79]. The hypothesis is that each site in the
sequence has an unknown rate that is determined by its position in the resulting protein
molecule; many portions of a protein-coding sequence may be completely invariant as they
may code for an essential structural component. In the same way, other portions of the
protein may be open to rapid substitutions due to a lack of constraints. As organisms
diverge, a fast-changing site is assumed to experience substitutions at an elevated rate in
all lineages, regardless of the particular organism-specific nucleotide at that site.

According to Yang, the standard approach to characterizing among-site rate variation is
to use a statistical distribution, either discrete or continuous, to approximate rates at sites.
For each site in the phylogenetic tree, one can sample from the distribution to determine
its particular rate. The most commonly used continuous distribution for modeling the
rate variation is the gamma distribution. The distribution is very flexible due to its shape
parameter, &, and can either take on a bell-shaped curve or an L-shaped curve depending
on whether or not o is greater or less than one, respectively. Several examples of the garnma
distribution are illustrated on the left side of figure 21.

While sampling from a continuous distribution is thought to be the most accurate method
to estimate rate variations at different sites, it is computationally intensive. A practical
approach is to instead use a discrete-gamma model, in which several classes of rates are
used to approximate the continuous gamma distribution. The classes are chosen so that
each class has an equal probability of occurring. An illustration of a discretized gamma
distribution with eight classes is shown on the right side of figure 21. The value of a can be
added as an additional parameter to our likelihood model and its value can be estimated
from the data [78, 79].

3.3.3 Model Comparison

One characteristic of phylogenetic likelihood analysis that makes it attractive is the ability
to compare one model to another by using a Likelihood ratio test. Calculating the likelihood
ratio allows a comparison between the relative tenability of two hypothesis. If Lq specifies
the likelihood of the null hypothesis and L, specifies the likelihood of the same data under
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Figure 21: On the left, several examples of the gamma distribution with different
values for the shape parameter, a. When « is less than one, an L-shaped distribution
appears, when a is greater than one, a bell-shaped distribution occurs. On the right side
is an example of a discretized gamma distribution with k = 8 ciasses.

& different hypothesis then the ratio can be calculated by

_ maz(Lo(Null Model | Data))
" maz(Ly(Alt model | Data)} ’

When A is less than one the null hypothesis is discredited, when it is greater than one the
alternative hypothesis is discredited. One method to generate the null hypothesis is through
parametric bootstrapping, which we will discuss in depth in section 3.3.4 [35].

3.3.4 Bootstrapping

We have now spent considerable time discussing how to determine the likelihood of a given
tree as well as how to search the space of tree topologies to maximize our likelihcod, We
would like to be able to specify a level of confidence in these results, to measure the accuracy
of the values we optimized for the parameters in our model. The bootstrap is a method that
involves randomly resampling from our own data set to determine empirically the variability
in our estimation [23, 20].

Suppose you had n data points x,,%2, ...,#n which were drawn independently from the
same distribution along with a parameter ¢ whose velue is being optimized from the data
via a statistical estimate function 7", If the exact distribution of z; were known we could
derive formulas for the standard error and caleulate confidence intervals for t. The bootstrap
procedure is useful when you do not know the distribution from which z; is drawn. The
central idea of bootstrapping is that if the original sample size n is large, each possible value
2; will be represented in the sampled data at the same proportion as in the true underlying
distribution; and randomly resampling our sample data will be the same as sampling from
the underlying distribution [23).

In order to apply bootstrapping here, we resample from our data set xy,...,Tn to con-
struct a series of randomized data sets. Some of the data points will be represented more
than once, others not at all. For each fictional set of data, we then optimize our parameter
t:

t* =T(x}, 23, Ty)
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After repeating this procedure r times, we have a collection of r estimates of our statistic
T. The actual estimate ¢ and the variance and confidence limits for ¢ can now be inferred
by computing them for £*.

Applying the bootstrapping technique to phylogenetic data starts with a multiple se-
quence alignment, X, consisting of the sequences that will be used to form the phylogenetic
tree. After building the tree, the bootstrapping method proceeds by taking the matrix
X and selecting columns from it randomly to form a new matrix X*. This is done with
replacement, so column 14 in X may become column 37 in X*. Next, the tree is again
constructed, this time based on the data from X*.

This process is repeated some number of times and the proportion of bootstrap trees
that agree with the original tree in their topology are calculated. A confidence score is for
each branch in the tree is then formed: if a clade appears in the same location in 193 out
or 200 bootstraps than the branch has a confidence value of 0.965 [20].

3.3.5 Maximum Likelihood Consistency and Limitations

Conflict between proponents of parsimony and maximum likelihood estimation are well
known. Many of the arguments are based on philosophical disputes regarding the superiority
of explicit versus implicit models, with many of the arguments centering around unprovable
assertions about the proper way to perform inductive inference in science. For example,
which is better, Ockham's razor or Fisher's likelihood principle? Nonetheless, one of the
major contributions that maximum likelihood estimation brought was the idea that if we are
to compare and contrast phylogenetic methods we must do so through a common framework
of statistics; it carries a set of standard results and tools that allow systematic investigation
of its properties [65, 22].

As with parsimony and distance methods, there are certain cases in which maximum
likelihood estimation is inconsistent. Recall that an estimator is consistent if it converges
to the true parameter as data accumulates. Recently, maximum likelihood was proven to
be consistent for the general model we described above, but has not been proven for some
popular models, such as models accounting for site variation using a gamma distribution.
Being consistent often relies on whether tree topologies are identifiable. A tree topology is
not identifiable if different trees can generate the same sampling distribution of the datasets.
In this case, no method can correctly estimate the right tree, regardless of sample size. This
property often emerges when models sre very complex, especially when rate variation across
sites is allowed [65].

An additional source of inconsistency in maximum likelihood estimation occurs when
the rates at which sequence sites evolve change asynchronously over time {46]. While we
have discussed above how to incorporate different rates of substitution among different
sites in a phylogenetic tree, often, functional constraints on a specific site change over
time. This means, not only do rates vary among sites, but rates change at specific sites
over time. This phenomenon is known as heterotachy. When an identically distributed
evolutionary framework, such as a meximum likelihood model, is imposed on sequences
that evolve heterogeneously, parameter estimates are compromises over sites and lineages
and are therefore incorrect for many sites and can lead to inconsistency. While it is possible
that heterotachy can be handled with additional parameters in the model, similar to the
way a discrete gamma distribution is used to handle site variations, there is not yet a model
that accounts for this issue [46].

One of the main arguments employed in favoring maximum likelihood methods is their
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ability to incorporate knowledge of molecular evolution through the use of models. There-
fore, one of the following should be true:

1. If the model is important, there will be a relationship between the validity of the model
and the accuracy of tree construction.

2. If model validity is not that important, then that implies that the signal of evolution
can be detected under a variety of models and different methods.

However, there exists a large number of models for maximum likelihood methods, with vary-
ing numbers of parameters and no clear consensus surrounding them. Consider the number
of possible models to choose from, which increases with the number of parameters. For K
parameters, the number of models is given by the number of possible subsets of K distinct
elements. Considering the general model we described above, there are 17 parameters in the
rate matrix alone (4 frequencies, 12 transitions, and the mean mutation rate). In addition,
we could add a parameters for site rate variation (based on the number of discrete gamma
categories we want), as well as possible branch length parameters. In Goldman and Yang's
codon model, we easily approach 70 parameters (4 frequencies, 61 transitions, the mean
mutation rate, amino acid similarity measures, transition/transversion bias, etc.)!

One final issue that is of great importance regarding maximum likelihood estimation
is computational complexity. Maximum likelihood methods consist of an outer loop that
searches among trees, and an inner loop that calculates the likelihood of a particular tree.
Searching for the optimal tree is known to be NP-hard with the time required to find the tree
increasing exponentially as a function of the number of species in the tree [65]. Depending
on the number of parameters that are fixed in our model (frequencies and transitions),
versus those that have to be optimized (possibly branch length and site rate variation
among others) we can quickly create a estimation problem that is intractable. In fact, our
ability to estimate phylogenetic trees, with more accurate, parametric models, along with
additional species data will remain bounded by a lack of computational resources for some
time to come [65)].

3.4 Bayesian Methods

The fourth and final major type of phylogenetic analysis we will examine is Bayesian In-
ference. Bayesian estimation is one of the oldest methods of statistical inference, dating
back to the 18th century. Like the maximum likelihood method, Bayesian estimation of
phylogeny utilizes an evolutionary model, which determines the likelihood of observing a set
of data conditional on a particular tree and a set of parameters, and the same models can be
used in both techniques. In contrast to maximum likelihood, Bayesian analysis treats model
parameters in two significantly different ways. First, likelihood methods assume that each
parameter has one true value and it attempts to find that value by searching the entire space
of the parameter. Bayesian analysis assumes that parameters have no single true value, but
each parameter has a distribution. Secondly, Bayesian analysis asserts that, before the data
are observed, parameters have a prior distribution. This prior distribution incorporates
previous information known about the parameters and it is combined with the evolutionary
model to produce the posterior distribution. Al inferences about the model or the data are
then made with the posterior distribution. While we will explain it in more depth below,
figure 22 (A) may provide some intuition as to how Bayesian inference works (36, 37, 80].
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The Bayesian method is attractive because it formalizes the natural scientific method
where a scientist starts out with some beliefs about a hypothesis, signified by the incorpo-
ration of prior probabilities, collects data, and then modifies his or her beliefs respective
to the observations. Let us return to the problem of determining the fairness of a coin.
Consider that you are asked to bet money on the relative probability of turning up heads
after tossing a particular coin. You are only aliowed to toss the coin twice and heads comes
up both times. Based on these observed data, a maximum likelihood analysis would give
an estimated probability of heads as 100%. Although it is possible that the coin is highly
biased, it is more likely given what we already know ebout coin tossing that if the coin were
fair, the probability would be around one-half. Bayesian analysis allows you to combine this
'background’ information in the estimation via the prior distribution [36].

In detail, Bayesian inference works in the following way. To calculate the posterior
probability of a tree, we need four components: the set of possible trees for g species, B(a);
a model, which we will refer to by its set of parameters, ; a set of branch lengths for each
tree, v; and a set of data observations — an alignment of homologous DNA sequences, which
is referred to as D. The ith tree in B(s) is referred to as 7;. The posterior probability
of trees is the probability of the ith tree conditional on the observations and is calculated
using Bayes theorem. Bayes theorem multiplies the prior probability of the tree with the
likelihood of the observations given our tree and divides by a normalizing constant that
involves summation over all trees:

B | :
T F(X |7y} ()
To calculate the probability of a particular tree in the previous formula we must integrate

over all possible combinations of branch lengths and substitution model parameters multi-
plied by the prior distribution of the branch lengths and model parameters:

f(n|D) = f., j; [ (D|7i,v,8) f (v, 0)dvdd.

This last step, integrating over all possible parameter velues is one major advantage of
likelihood methods. Likelihood methods may only select a single value for each parameter
and these choices may be incorrect. Bayesian inference allows us to look at the distribution
of all parameters.

Let us consider a simplified example as presented by Yang in [B0]. Say we have two
nueleotide sequences where z of the n sites in the sequences are different and we are using
the Jukes-Cantor model of evoiution {equal background frequencies of the nucleotides as
well as equal transition rates between nucleotides). We want to estimate a single parameter,
@, from our data which represents the distance between the two sequences as the expected
number of nucleotide substitutions per site. The probability that a site is diflerent between
two sequences is then

3 _
p= Z(I — el=4/3)8)

. The likelihood of observing = differences out of n sites is then given by the binomial

probability
L(B)z) = f(zl6) = Cp™(1 - p)*~*

where C is a constant. Finally, we will use an exponential distribution as our prior

6lu) = e/,
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Using an exponential distribution as our prior weights # towards smaller values (since the
vast majority of the area under the curve is close to 0. It says that our prior beliefs tell us
that we expect small values for 8. We can now determine the posterior distribution using

Bayes theorem
f(0lu) f (=16)
I F8lp)f(zi8)

The results of this calculation is plotted in figure 22 (A). It demonstrates how the prior
distribution affects the posterior - the posterior distribution is pulled off the peak suggested
by the likelihood distribution.

Returning to the more complicated subject of fully parametrized models and trees, we
can infer phylogenetic conclusions from the posterior probability distribution. One way
to do this is to use the most probable tree as a point estimate of phylogeny, known as
& maximum a posteriori probebility (MAP) estimate of phylogeny. A second use of the
posterior probability distribution would be to construct a 95% credibility interval for a set
of trees (a credibility interval is similar to, but not the same ss, a confidence interval). This
is done by starting with the MAP tree and continuing to add the most probable trees until
the cumulative probability reaches 0.95.

As mentioned above, another possibility, and perhaps the most powerful, is to summarize
the results of the Bayesian analysis on a majority-rule consensus tree. This method is similar
to a bootstrap analysis (bootstrap analysis is discussed in section 3.3.4), where we can use
the sampled set of trees to determine how many of them agree on the same branches. The
main difference is that the numbers on the tree branches represent the posterior probability
that the clade is true.

3.4.1 Approximating the Posterior Probabilities of Trees

Calculating the posterior probability involves summing all possible trees and, for each tree,
integrating over all parameters for that tree. This calculation is not analytically possible
and must therefore be approximated. Markov chein Monte Carlo (MCMC), is used as the
approximation method in Bayesian inference and can be thought of as a sampling procedure.
While we can't analytically determine the full parameter and tree space, if we take enough
samples from it, we should be able to approximate the underlying distribution. This property
of Bayesian inference makes it much more efficient than maximum likelihood, where the
entire parameter space is calculated.

This process can be thought of using an analogy of a wanderer climbing a hill. The
wanderer considers taking a random step from his current location in a random direction.
If the step is uphill, the wanderer chooses to take the step unconditionally. However, if
the step is downhill, it is not rejected outright, but is taken based on & certain probability.
After a long period of time, the wanderer will have explored the hill thoroughly and will
have spent time in each location proportional to the height of that location (more time in
the higher elevations) (80].

We return once again to our simple Jukes-Cantor substitution model, where we are trying
to estimate the value of a single parameter 8, which represents the distance between two
aligned sequences. Figure 22 (B) shows three chains, each started from a different location.
After a certain amount of time, each chain converges on a certain range of the parameter
8. If you compare the region where the chains occupy their time in figure 22 (B) with the
likelihood curve in figure 22 (A) it is clear that the chains converge on a value of § that
maximizes the likelihood. As an aside, it takes & certain amount of time for each chain to
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Figure 22: (A) The prior, posterior, and likelihood distributions showing the optimal
value of § given the data. (B} An example of Markov chain Monte Carlo. Based on an
example from [80].

converge — approximately 100 iterations of the chain. This period is known as the "burn-in’
period for the Markov chain.

MCMC, as applied to phylogenetic trees works in the following way. First, you start
with an initial tree — the tree can be randomly chosen, or it can be one that is a known,
reasonable approximation of the true tree. A new tree is then proposed. The mechanism
that proposes the tree must be stochastic, and every possible tree must be accessible by
the mechanism. Also, proposed trees must be aperiodic. A number of different proposal
mechanisms might be used, each of which changes a different parameter, such as branch
lengths or the tree topology, or the parameters of the likelihood model. The idea of the
proposal mechanism is to be able to create a representative sample of the entire tree space.

The new tree is accepted or rejected based on & probability. That probability is based
on the multiplication of three ratios, the likelihood ratio, the prior ratio, and the proposal
ratio, each of which compares the new model value against the old for that particular ratio.
So, for example, the likelihood ratio compares the new proposed tree, given the data, to the
old tree given the data. This value is known as R.

Finally, a random number is generated on the interval of (0,1). If that number is greater
than R, than the new tree is accepted, otherwise it is discarded. This process is repeated
thousands or millions of times: the fraction of the time that the chain visits any particutar
tree is a valid approximation of the posterior probability of that tree [37, 38).

3.4.2 Chain Convergence

There is a *burn-in’ period that occurs before the MCMC algorithm can converge from a
random start to a set of parameters that begins to approximate the posterior distribution.
To determine if the MCMC algorithm is indeed converging, one can execute more than a
single chain. If after some time, both chains converge on the same parameter values, despite
being randomly started in different parameter spaces, then you can be sure the method is
converging.

One method that improves convergence is the Metropolis-coupling technique. Using
this method, one has n Markov chains. One of those chains samples from the posterior
distribution of interest and is known as the cold chain. The other chains are sampling from
a ’heated distribution’, which is obtained by taking the cold distribution and muitiplying it
by a large value (greatly perturbing the chain). At regular intervals, two chains are picked
at random and their states are exchanged as in a regular MCMC step.
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The effect of using heated chains is to decrease the distance between local maxima in the
posterior distribution. This allows the heated chains to move more freely between isolated
hilltops. The only function of the heated chains is to supply intelligent proposals for new
states allowing the cold chain to jump from one hill to another in a single step. In normal
conditions, traveling between hilltops could take millions of iterations. This optimization
is known as Metropolis-coupled MCMC, or MCMCMC (M C?) [37]. This optimization has
allowed one to integrate over a tree space that is several hundred orders of magnitude larger
than cohventional MCMC spaces.

3.5 Conclusions

If sequence alignment could be considered a method that relies on the bredth of genetic
data, than phylogenetic inferrence is a method that focuses on the depth of genetic data.
Of the four major types of phylogenetic methods we examined in this section, two of them
are being very heavily researched. While parsimony and the distance methods are still used
in some algorithms, they are generally used to generate rough or initial versions of trees
that will be further refined through another method. One example we have seen is with the
program CLUSTALW, which uses the neighbor-joining distance method to produce its initial
guide tree. Many of the algorithms to enumerate trees, while developed intially for use with
parsimony algorithms, are now being widely used to enumerate trees in maximum likelihood
algorithms. Major research continues in the development of new and better models - for
use in both maximum likelihood and Bayesian algorithms. Finally, there is a lot of active
work in the Bayesian realm, much of it focusing on the characteristics of the sampling space
of trees and model parameters.

If we look beyond the algorithms themselves and examine the application of phyloge-
netics, one exciting area involves the ressurection of ancestral genes [73]. In these analysis,
researchers are using phylogenetics to infer the ancestral state of certain genes, such as genes
that encode steroid hormone receptors, and they are then ressurecting these ancient genes
in the laboratory to study their ancient functions! In terms of whole genome duplication,
phylogenetics is playing a small, but increasing role in verifying the occurances of duplica-
tion topologies. There are two major problems that have prevented researchers from using
phylogenetics more widely in these types of analyses. First, identifying the signal of whole
genome duplications is very resource-intensive and phylogenetic algorithms can consume
extremely large amounts of computational power. Second, the evolutionary models used
by phylogenetic algorithms are heavily parameterized and finding the right combination of
parameters, that can be applied across many groups of genes in many species is a difficult
task. Applying phylogenetics to the study of whole genome duplication can only be expected
to grow, however, particularly as models improve and Moore's law continues on its course.

4 Genetic Drift and Synonymous/Nonsynonymous Mu-
tation Rates

In this section we will focus on the theory of genetic drift and one of its major implications:
a measurement of how powerfully natural selection is acting on a set of related genes. The
neutral theory of evolution, also known as genetic drift, describes the effects of random
mutation and the fixation or loss of those mutations in a population that is not under the
infAuence of natural selection. By understanding how mutations function in a neutral envi-
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ronment, one in which natural selection is not active, we can infer the presence of positive
or negative selection based on how the mutations we observe deviate from the behavior
predicted by the neutral theory. This deviation can be quantified by measuring the synony-
mous/nonsynonymous mutation rate. These measurements have been used to hypothesise
about the existence of molecular clocks; an idea that supposes that the rates of change
of nucleotides are relatively fixed allowing us to calculate the ages of inferred changes in
genes. In terms of genome duplication, measuring the synonymous/nonsynonymous muta-
tion rates in duplicated genes may provide us with information as to the fate of duplicated
genes. Are duplicated genes undergoing increased rates of change after a duplication event?
We will proceed in this section by first describing the neutral theory, as well as a revision
known as the nearly-neutral theory, followed by two methods to measure synonymous and
nonsynonymous mutations.

4.1 The Neutral Theory of Evolution

In the middle of the twentieth century the prevailing view of evolution was that change at
the morpological (the shape and structure of an organism) and functional levels resulted
from the process of natural selection operating via adaptive changes to DNA sequences.
Further, it was widely believed that selection for fitness was primarily a top-down, hier-
archical procedure. According to this hypothesis, there was cellular control of molecular
activities, organismal control of ceHular activities, and populational control of organismal
activities; the core idea was that DNA was & passive carrier of the evolutionary message and
that positive selection drove mutations and the mutation rate to increase fitness [45, 44].
Evolutionary biologists who believed in this view were known as selectionists.

In 1969, Jack King and Thomas Jukes proposed a hypothesis that inverted the selection-
ist viewpoint (Motoo Kimura proposed a similar hypothesis in another paper at roughly the
same time). King and Jukes asserted the view that most evolutionary change to DNA was
not due to Darwinian natural selection and, further, that the forces of evolution provided for
no hierarchical control of organisms or their populations. That is to say that a population
of organisms had no control of the evolutionary changes to its individual members in the
same way that individual organisms had no control of the direction of mutation geing on
within their own cells. Put another way, change observed at the phenotypic level does not
necessarily apply at the genotypic and molecular levels (the geneotype of an organism is its
genetic specification, i.e. a series of genes encoded in DNA, while a phenotype is the physical
organism that results from that genetic specification). The central idea of the neutral theory
is that evolutionary change is not imposed upon DNA from without, but instead it arises
from within. At the molecular level, random genetic mutations, which have no effect upon
the fitness of an organism, occur and can become passively fixed in & population through
the action of random genetic drift.

As we saw in section 1.2, the genetic code for amino acids is degenerate. That is to
say that amino acids are specified by codons, which themselves are made up of nucleotide
triplets. Because there are four choices for each of the three nucleotide positions, there
are 4% possible codons. However, since there are only twenty amino acids used to specify
proteins multiple codons can specify the same amino acid. Given any particular codon, it
can mutate in any of nine ways by a single nucleotide substitution (this process is illustrated
in figure 20). When a nucleotide mutates within a codon but does not change the resulting
amino acid it is called a synonymous substitution. Likewise, nucleotide mutations that do
change the resulting amino acid are called ronsynonymous substitutions.
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Figure 23: The transfer RNA molecule can accomodate a small number of changes to
the amino acids in the helical regions without affecting its functional properties. Such
changes are known as nonsynonymous mutations and may become fixed through genetic
drift.

Of the 549 possible single-nucleotide substitutions, 134 (25%}) of them are substitutions
to synonymous codons [45]. So, it is therefore possible for & mutation to occur in one of the
three nucleotides for a particular codon and for the amino acid it codes for to remain the
same - making the mutation completely invisible to the forces of natural selection.

While synonymous substitutions are truly invisible to the organism and natural selec-
tion, other substitutions do result in altered proteins, but are still neutral with respect to
organismal function and natural selection. Protein molecules are continually challenged by
mutations in the DNA that codes for particular amino acids. These changes are screened
by natural selection. Those mutant substitutions that disrupt less the existing structure
and function of a molecule occur more frequently in evolution than more disruptive ones.
For this reason, substitutions are more likely to be synonymous, and if not synonymous,
they are likely to code for an amino acid that is chemically similar to the one being re-
placed. Moreover, mutation rates differ not only between different protein molecules, but
also between different parts of one molecule,

In general, as long as the nucleotide substitutions do not radically impair the function of
a protein, by changing certain invariant sites, than those changes may become fixed. Sites
may be invariant because they are necessary to fulfill an enzymatic function of the protein,
or, changes at invariant sites may affect the secondary or tertiary structure of the protein,
by interfering with the proper folding of the protein. For example, the helical regions of the
transfer RNA (tRNA) molecule seem to be able to accommodate a few changes in the base
pairings without disruption of function, but it was empirically determined that the regions
are restricted to no more than one or two such changes. The empirical evidence suggests
that additional mutations in the helical region become highly deleterious and are rejected
by selection [44].

The existence of neutral mutations makes it possible to resolve a dilemma in the evolution
of primates and guines pigs. Both of these organisms are unable to properly produce ascorbic
acid and are subject to scurvy when on a diet that lacks vitamin C. All other animals are
free of this restriction and are not subject to scurvy providing the question of how did such a
nonadaptive change occur under a pure natural selection theory? King and Jukes proposed
that since a diet lacking vitamin C was rare among primates, that the loss of the ability to
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produce ascorbic acid was a neutral mutation that became fixed in the population [45].

4.1.1 The Nearly-Neutral Theory of Evolution

According to the neutral-mutation, random drift theory advocated by Kimura, King, and
Jukes most evolutionary changes at the molecular level are caused by random genetic drift
of selectively neutral mutations, rather than by natural selection. Almost two decades later,
Tomoko Ohta, who was Kimura’s student, proposed a revision of the theory to clarify the
interaction of natural selection and random drift. His theory stated that natural selection
is not an all-or-nothing force, and that there are many types of mutations whose behavior
is influenced by both selection and random drift [60].

With the neutral theory, mutations occurred and were either synonymous, in which
case they were invisible to natural selection, or they altered the protein molecule in a non-
deleterious way. Natural selection only participated if 2 mutation occurred in a conserved,
or invariant region, in which case purifying selection would remove the mutation from the
population or, in extremely rare cases, if a mutation substantially increased fitness (usually
due to environmental changes). Ohta's primary contribution was to add a third class of
mutations - those that are nearly neutral. Mutations in the nearly neutral class would be
affected by both selection and drift. The two theories are illustrated in figure 24 (A).

According to Ohta, it is important to differentiate between mutations and evolutionary
substitutions. Numerous mutations appear every generation, but the majority of them will
be lost within a few generations. Evolutionary substitutions, however, become fixed in the
population. A mutation may be fixed by the selective advantage it confers to its host, or,
it may be fixed simply by genetic drift. A large number of mutations, however, will be in
between the two classes and these comprise the nearly neutral mutations. These mutations
might be slightly deleterious, but not damaging enough to trigger full purifying selection,
or, they might be slightly advantageous, but not enough to trigger strong positive selection.
This relationship is plotted in figure 24 (B). The plot represents the fixation probability, u, of
a mutation as a function of the product of the population size and selection coefficient, Ns.
p represents the initial fraction of the population that has the mutation and the line u = p
represents the fixation probability of a neutral mutation. The probability of a mutation
being fixed or purified by selection is controlled by the size of the population (V) and the
strength of selection 5. Near-neutrality occurs when the selection coefficient, s, approaches
ZEero.

Finally, large adaptive changes at the molecular level in higher organisms would then
be seen not through directed, positive selection but through chromosomal changes such as
duplication and illegitimate crossing-over of chromosomal segments. These forces culminate
in the creation of multigene families, which then evolve in concert with one another [60].

4.1.2 Molecular Clocks

The subject of molecular clocks is large and varied and is outside the scope of this document.
However, suffice it to say that the basic idea of a molecular clock is to use the rate of neutral
mutations to measure how long ago various evolutionary events occurred.

Kimura and Ohta argued that the rate of evolution, with regard to neatral nucleotide
substitutions is approximately constant per year per site for various organisms. Based on
studies of @ and A chains of hemoglobins, Kimura suggested that the rate of substitutions is
approximately 10~? per site per year. Although there are local fluctuations, when averaged
over a long time period, Kimura found the rate of evolution to be remarkably uniform
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Figure 24: (A) A comparison of the simple neutral theary with the nearly-neutral
theory, from [60). {B) The fixation probability u of a mutant as a function of the
product of the population size and selection cocfficient, Na.

among different lineages. The idea of a molecular clock becomes more complicated when
other factors are considered. For example, Kimura's clock is based on substitutions per year
and utilizes amino acid substitutions. Ohta, on the other hand, found that the substitution
rate was not constant per year when using nucleotide data, but was instead affected by
the generation length of the particular organism being studied. Further, we have seen in
section 3.3.5 that the mutation rate at different sites in different molecules can change over
time in a phenomenon known as heterotachy.

4.2 Estimating Synonymous and Nonsynonymous Substitution Rates

With the neutral theory as a foundation or null model, we will present here a method to
estimate the number of synonymous (§) and nonsynonymous (V) sites in a pair of protein
coding genes. This information will enable us to determine the rate of nonsynonymous (dy)
and synonymous (ds) substitutions in those genes and further, comparing these rates as a
ratio w = dy/ds will allow us to make inferences about the strength and direction of natural
selection. For example, if the rate of nonsynonymous substitutions is equal to the rate of
synonymous substitutions, with w = 1, then selection is not acting on the genetic seqeunces
we are examining. We know this since the rate of substitution is equivalent to the background
rate or, the rate the neutral theory predicts as genetic drift. If however, w < I, than that
would imply that purifying selection is working to remove deleterious effects from a gene.
Likewise, if w > 1, it implies that positive selection is in effect, proliferating genetic changes
that confer some advantage in fitness. We will examine two algorithms to compute these
rates, first examining the method proposed by Motoo Kimura and modified by Wen-Hsiung
Li, and then Ziheng Yang's method involving maximum likelihood. Both methods have
three basic steps: tabulate the number of synonymous and nonsynonymous substitutions
in two genetic sequences, count the differences in synonymous and nonsynenymous sites
between the sequences and, finally, correct for multiple substitutions at the same sites [81].

Li's method begins with the classification of nucleotide sites within a codon. As shown
in figure 25 (A), a site can be classified as either fourfold degenerate, twofold degenerate,
or nondegenerate. If there is a substitution at a fourfold degenerate site within a codon,
it does not matter which nucleotide is substituted, since in every case the amino acid that
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Figure 25: (A) Classification of nucleotide sites within a codon. The degeneracy of
& site refers to the number of substitutions that will cause a change in the codon; in a
fourfould degenerate site no substitution will change the codon, in a twofold degenerate
site two substitutions will change the codon, and in a nondegenerate site any substitution
will change the codon. {B) Types of evolutionary substitutions and their rates according
to Kimura’s model in [43].

the codon specifies will not be changed - all three substitutions are synonymous. In the
case of twofold degenerate sites, one of the three possible nucleotide substitutions will not
change the codon, but the other two will, and in the case of a nondegenerate site, any change
to the nucleotide will change the codon and its resulting amino acid - a nonsynonymous
substitution. By far, the third position in a codon is the most susceptable to synonymous
changes, with 32 of the 61 sense codons falling into this category. On the other extreme, the
second position of all sense codons is nondegenerate and any substitutions in these locations
will change the codon and the amino acid it specifies [62). What these numbers imply is
that the third codon position is most likely to accumulate substitutions over time since
synonymous substitutions are invisible to selection while the second position is least likely
since changes to amino acids are most often deleterious making the mutation the subject of
purifying selection (with the first codon position falling in the middle of the other two).
Once all the sites have been classified, the numbers of occurances of each type is summed:
Lo, Lo, and L; representing the average number of nondegenerate, twofold and fourfold
degenerate sites respectively per sequence. We then average the number of degenerate sites
between sequences to account for the fact that corresponding codons from the two sequences
may have different numbers of degenerate sites. For example, if the first sequence contains
the codon CCG, which specifies proline, it has nondegenerate nucleotides in its first two
positions and a fourfold degenerate nucleotide in the third position. If the corresponding
codon in the second sequence was CGG, which specifies arginine, it has a twofold generate
nucleatide in its first position, a nondegenerate nucleotide in its second pasition, and a
fourfold degenerate nucleotide in its third position (this particular example is illustrated as
the last set of codons in figure 26 (A)). Differentiating our sites by the type of degeneracy
is necessary in order to properly compute the synonymous and nonsynonymous rates. The
reason is that nondegenerate sites are nonsynonymous, fourfould sites are synonymous, but
twofold sites are sometimes synonymous and sometimes not. When the substitution at a
twofold degenerate site is a transition, or a change from a purine to a purine or a pyrimidine
to a pyrimidine, it is synonymous, but when the substitution is a transversion, or a change
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Figure 26: An illustration of the first three steps in Li's ([52]) method to estimate
synonymous and nonsynonymous substitution rates using sequence data from the human
engrailed gene (EN1) and the zebrafish ortholog {engla}. (A) Classifying the nucleotide
sites in each seqeunce and determining the types of observed substitutions. (B} Tal-
lying up the nucleotide site types as nondegenerate {Lo}, twofold degenerate (L2) and
fourfold degenerate {L4). (C) Caleulating the number of observed transitional (F;) and
transversional (Q¢) differences in the sequences.

from purine to pyrimidine or pyrimidine to purine, it is nonsynonymous [10].

Next, the two sequences are compared codon by codon in order to tabulate the number
of observed changes with p; representing the number of transitions and g; representing the
number of transversions for each type of site (i = 0,2,4). We then specify a ratio of the
number of observed changes to the number of expected changes for transitional (P} and
transversional (Q) changes:

= PL
Fi I,
. (3
Qi P

These processes are illustrated with an example from the human engrailed gene (EN1) and
the zebrafish ortholog {engfa) in figure 26.

The final stage in the algorithm is to apply Kimura’s two-parameter method to actually
esitmate the rates of synonymous and nonsynonymous substitution {43]. The model that
underlie’s Kimura’s method is illustrated in figure 25 (B). For each of the four nucleotides
it describes the types of substitutions that might occur as being either a transitional or
transversional changes and assigns a rate for each of the two types of changes: a repre-
senting the rate of transitions and 3 representing the rate of transversions. As figure 25
(B) describes, there are four possible transitional changes and eight possible transversional
changes and therefore the total number of changes over a small period of time would be
k = a+28. Given the probabilities of P and @, which we calculated above, as well as a time
T, Kimura then derives a pair of differential equations to describe the number of mutataions
that will occur at time 7' + 7. These equations can be solved analytically to calculate the
a and J rates of substitution (for a full derivation of these equations see [43]). Li applies
these equations to first calculate the number of transitional {A;) and transversional (B;)
nondegenerate, twofold and fourfold degenerate sites:

A= /20 (7pp—gr ) - i (=5,

B;=(1/2)In (1 —12Qi)
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and then the total number of substitutions per nondegenerate, twofold, and fourfold degen-
erate sites is given by:

K;+ A; + B;.
Finally, he calculates the overall rates of synonymous substitutions per synonymous site
(Ks) and nonsynonymous substitutions per nonsynonymous site (K 4):

Ke= 3(LaAa + L4K4)
s Lo+ 3L,

Ki= 3{L2Bz + LoKy)
4 2Lz +3Ly

There is one major component of a full solution to synonymous rates that has not been
discussed yet. When there is more than a single change in a pair of codons we run into a
problem of establishing the proper order of the changes to the codons. For example, if we
were to have continued on with the example in figure 26 (A), the next pair of codons in the
human and zebrafish engrailed gene would be GAA (specifying Glu) and GGT (specifying
Gly), respectively. There are two nucleotide differences in those codons which presents us
with a problem of ordering. Assuming that the nucleotide changes were independent of one
another, which of the following paths is correct:

GAA(Glu) = GGA(Asp) = GGT(Gly)

or
GAA(Glu) = GAT(Gly) = GGT(Gly).

The first path of substitutions contains two nonsynonymous changes while the second path
contains one synonymous and one nonsynonymous change. The path we choose will affect
our tabulation of sites and could cause our estimation to be inaccurate.

There is no simple method to handle this problem, however, most methods involve de-
termining the frequency of each codon change. Then, when multiple substitutions have
occurred, a cumulative frequency is calculated by multiplying the frequency of each individ-
ual change along the path of substitutions. These cumulative frequencies are then used as
weights when counting a transition (P;) or transversion (Q;). Some have argued that this
technique is ad hoc and treats the data arbitrarily [81]. Indeed, Li's method uses parsimony
tree building (described in section 3) to determine the initial frequencies of all the codons
and then combines it with a physiochemical measure of amino acid similarity to group the
frequencies from 400 (20 amino acids changing into 20 other amino acids) to four categories,
This method would encounter many of the same problemns associated with determining the
proper distribution of the data (discussed in section 2.3.2) and should only be considered
approximate.

4.3 Applying Maximum Likelihood Methods

An alternative method to estimate the rates of synonymous and nonsynonymous substitu-
tion is to use an explicit model of codon evolution and to fit the parameters of the model
to a set of data using maximum likelihood estimation. There are many advantages to
this approach one of which is that knowledge of the substitution process, such as transver-
sion/transition rate bias or codon frequency bias can be incorporated directly into the model.
Importantly, the nonsynonymous/synonymous rate ratio (w) can be allowed to vary over
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different parts of the genes being studied and more multiple sequences can be compared
at one time (where as Li’s approximate method can only be applied to pairs of genes). In
fact, all of the models discussed in section 3.3.1 could be used to infer synonymous and
nonsynonymous substitution rates. Also, the evolutionary model explicitly describes all the
possible paths of substitution for various codons and the maximum likelihood estimation
naturally incorporates weighting those paths. The only major disadvantage to the method
is the computational burden involved in maximum likelihood estimation - the approximate
methods are very fast in comparison [82, 81, 10].

Ziheng Yang applied the following algorithm in [82]. He starts with an evolutionary
model similar to Goldman and Yang's codon substituion model described in section 3.3.1.
In that model the instantaneous substitution rate from codon i to j is given by

0, if ¢ and j differ at more than one position,
BTy, for synonymous transition,
Qij = { pkm;, for synonymous transversion,

pwry,  for nonsynonymous transition,
pwkn;, for nonsynonymous transversion.

Parameter & represents the transition/transversion rate bias, w represents the nonsyn-
onymous,/synonymous rate ratio (Ka/Ks), and 7 represents the codon background fre-
quency. p is a scaling factor that is set such that in an instantaneous amount of time the
average number of codon substitutions will be one. At this point we use maximum likelihood
to estimate the parameters listed above.

Once we have our estimated parameters the proportion of synonymous substitutions is

given by
ps =) mQij

igj
and the proportion of nonsynonymous substitutions is simply pj = 1—p%. This summation
is then calculated for every pair of codons. The number of synonymous and nonsynonymous
substitutions per codon is then given by tp} and tp},, respectively where ¢ represents the
branch length. These two numbers give us the observed number of substitutions according
to our model. We also need to know the expected number of substitutions, or, the number of
substitutions that occurred before natural selection had a chance to purify any of them from
the organism. These two numbers, g} and p}, are calculated in the same way as p5 and pj,,
except with w set to one in the model (representing nuetrality with respect to selection}.
Finally, since there are three nucleotides per codon, the number of nonsynonymous and
synonymous substitutions per site are given by

3tp
Kg=—=and
3%
_ Yoy
Ky = 30,

4.4 Case Study: Measuring the Evolutionary Rates of Duplicate
Genes

In [10], John Conery and Michael Lynch sought to discover the fates of genes that were du-
plicated in large duplication events, such as chromosome rearrangements and whole-genome
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Figure 27: A log-log plot of the nonsynanymous/synonymous substitution rate ratio
for nematodes from [10}. The diagonal line, Kx = K3 represents neutral evolution.
Gene pairs that fall above the line are experiencing positive selection while pairs below
the line are under purifying selection.

duplications {explained in more detail in the section 5). They examined gene duplicates
(excluding large gene families) in nine different species including brewer's yeast, nematode,
thale cress, humans, and mouse among others. Gene duplicates within organisms were
identified using BLAST and gene pairs of interest were filtered using Li’s approximate syn-
onymous/nonsynonymous algorithm. Finally, gene pairs of interest were examined using
Goldman and Yang's maximum likelihood model. While the full results (and a discussion
of what the results imply about gene duplication) are beyond the scope of this document,
their analysis produced excellent results that illustrate the concepts of synonymous and
nonsynonymous rates of evolution well. Figure 27 shows a log-log Kn/Ks ratio plot of one
such result for nematodes. The diagonal line, Ky = Kz represents neutral evolution. Gene
pairs that [all above the line are experiencing positive selection while pairs that fall below
the line are under purifying selection.

4.5 Conclusions

Algorithms developed to measure nonsynonymous,/synonymous rates have been stable since
the late 1990's with the publication of Yang's method of using maximum likelihood with a
codon-based model. Additionally, the approximate methods, such as the algorithm devel-
oped by Li are also still widely used, especially as a preliminary algorithm to identify genes
that should be further examined with the more computationally intense methods. There
has also been some preliminary work to apply Bayesian inference algorithms to the study of
nonsynonymous,/synonymous mutation rates such as that by Huelsenbeck in [34]. In terms
of the appilcation of the algorithms, they are being widely used to search for positive selec-
tion in a variety of genomes, such as in the work of Yang on the human immunodeficiency
virus [76].
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5 Genome Duplication

While the majority of this position paper has focused on the mechanics of algorithms that
define bicinformatics analysis, in this final section we will review the biological evidence
for genome duplication. As we stated in the introduction, much of our ability to make
inferences about evolutionary events relies on our ability to detect the signal of gene and
genome duplication. However, the means and frequency of gene and genome duplications
are not an accepted fact. Individual genes are known to be periodically duplicated and,
in fact, developmental processes are often regulated by groups or families of genes. For
example, the HOX genes are known to control the layout of the body plan in an organism'’s
early development. These genes are well conserved across all animals, although the exact
number of genes in the families varies — non-vertebrates have a single cluster of HOX genes
while mammals have four clusters. The primary question we wish to answer is how do
these genes duplicate? Are all duplicated genes produced randomly, one at a time with
their individual fates decided by natural selection (tandem duplications)? Or, do whole
chromosomes, indeed whole genomes duplicate in a single event? In the remainder of this
section we will examine the evidence that exists for whole genome duplication events. This
evidence has accumulated alongside our ability to measure and analyze increasingly larger
amounts of genetic data and we will discuss the evidence historically as it appeared.

Over thirty-five years ago Susumu Ohno postulated that some type of gene duplication
was necessary for the emergence of complex organisms [59]. Based on the evidence of the
time, which included rough genome size and & count of the number of chromosomes in
different organisms, Ohno compared what he thought our earliest ancestors would have
been like to similar organisms today. Vertebrates emerged from a simple form 500 million
years ago in the Cambrian period. Ohno postulated that these early creatures were similar
to tunicates that are alive today, such as Ciona intestinelis - a sea squirt. Ciona has a
genome 6% the size of mammals, while Amphiozus, a chordate living today that is most
similar to the vertebrates, have genomes approximately 17% the size of mammals. Based
on these numbers, Ohno hypothesized that the evolution from tunicate-like creatures to
amphioxus-like was accompanied by a two or three-fold increase in genome size. Further,
while tandem gene duplications are understood and generally accepted, Ohno argued that
they are not enough to create vertebrate complexity. As evidence, he cited that while
ancient, primitive fish, which were believed to have undergone only tandem duplication,
were able to create large genomes, modern, highly specialized fish, which are descended
from these primitive fish, have small, compact genomes - the implication being that large
numbers of tandem duplications would create unorganized results, while the process of
a whole genome duplication could regulate the eventual number and placement of genes.
According to Ohno, the lungfish illustrates this phenomenon very well. With a genome
thirty-five times larger than that of mammals, it represents an extreme case where tandem
duplication went out of control. The scope of the duplications were so large that the lungfish
had to increase the physical size of its cells to accommodate all the genetic material, and
this size increase further accelerated the rate of tandem gene duplications in order to make
enough gene products to service the larger cells [59].

While this early theory was quite powerful, many of its predictions have turned out not
to be correct. The number of chromosomes and the physical size of the genome turns out
not to be correlated with gene duplications. All vertebrates, including humans, are believed
to have undergone two whole genome duplications and their DNA includes long stretches
of non-coding DNA. The pufferfish, on the other hand, may have undergone three genome
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Figure 28: An illustration of the major genome duplication events as proposed in the
literature. At the base of the tree lies & single chromosome from an ancient ancestral
organism. Branching to the right are the Cephalochordates (a modern example of which
is amphioxus) which are believed not to have undergone any genome duplications. To
the left the line that leads to modern vertebrates extends, showing the chromosome du-
plicated after each of the R1 and R2 genome duplications. We see the lineage diverge,
representing the ray-finned and lobe-finned speciation event, with the teleost fish ex-
tending to the right, and the lineage leading to humans on the left. There is believed to
have been a third genome duplication (R3) in the teleost fish, after splitting from the
line leading to humans.

duplications but its genome is very compact. The mechanisms that cause an organism'’s
genome to be more or less compact are not well understood.

5.1 Vertebrate Genome Duplication

In general, proponents of whole genome duplication believe that there has been two full
duplications in the history of the lineage leading to humans and a third duplication occurring
in the teleost fish after ray-finned and lobe-finned fishes diverged (the former branch led to
the teleost fish and the later branch led to humans). These duplications are commonly
referred to as “R1", “R2", and “R3” respectively and are believed to have fueled great
speciation events that are seen in the fossil record ~ R1 and R2 at the base of the vertebrate
radiation during the Cambrian explosion and R3 at the base of the teleost radiation (teleost
fish comprise one of the most diverse collections of species on the planet and include the
zebrafish and puiferfish among many others). While there is evidence for other duplications
(a 4R event in Xenopus tropicalis - a frog, as well as three unrelated genome duplications
in the single-celled paramecium), in this paper we will focus on duplications in the lineages
leading to humans and the teleost fish.

Figure 28 illustrates the process of duplication and shows the progression of duplicated
chromosomes following the R1, R2, and R3 events. What this illustration bears out is
that after a duplication, there are two copies of every gene. Over time, positive and nege-
tive selection will act on these genes preserving some, creating new function in others (or
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Figure 29: From [6], an image depicting the phylogenetic relationship between ze-
brafish (Dre), human (Hsa), and mouse (Mmu) HOX clusters. This particular tree
shows two examples of the duplication topology {a two-to-one ratio of teleost fish genes
to mammalian genes. At the top of the image we can see the human HOXB6 gene most
closely related to the mouse Hozb6 gene, with the next most closely-related branch in
the lineage showing two copies of the orthologous zebrafish hozb6a and hozb6b genes. A
similar topology is shown at the bottom of the image with the human HOXCE gene.

partitioning function between them), and allowing a large number to become pseudogenes
through deleterious mutations. However, for those genes that are conserved we should be
able to detect them in a two-to-one ratic relative to the most recent duplication. So, if we
compare human genes (two duplications) against Ciona (no duplications) we should find
a ratio of four-to-one for each duplicated gene; this is often referred to as the four-fo-one
rule. Similarly, some authors have presented the eight-to-four-to-one rule to describe the
presence of zebrafish (and other teleost fish) genes.

5.2 Examination of the HOX Gene Families

While Ohno’s analysis was not based on any actual genetic data, in the later half of the 1990’s
enough protein sequence data became available to begin testing the 3R theory in teleost fish,
Amores and colleagues, in [6], examined the HOX gene clusters in Danio rerio, the zebrafish.
As we mentioned above, the HOX clusters are responsible for the development of the body
plan and are present in organisms from invertebrates to tetrapods (vertebrates having four
limbs). While invertebrate chordates only have a single cluster, and little body shape
diversity, tetrapods have four clusters, HOXA through HOXD, and substantial diversity.
Amores and colleagues sequenced the HOX gene coding regions, examined the chromosomes
containing them and analyzed phylogenetic trees of the HOX genes with respect to humans,
They found that for three of the four mammalian HOX clusters, there were two orthologous
zebrafish clusters and in the fourth case, a single cluster was found in the zebrafish. Analysis
of the genes demonstrated that the zebrafish had two copies of the mammalian FOXB6 gene,
hozbGa and hozb6b, as well as two copies of the mammalian HOXCS gene, known as hozxc6a
and hozxe6b; duplicates of the HOXA cluster were also found.

The locations of the duplicate zebrafish genes indicate that all four HOX clusters were
duplicated in the teleost fish, however, one copy of the HOXD cluster appeared to have been
lost, but is was recently determined that the cluster was reduced to a single gene [75]. The
phylogenetic tree showing genes from the HOXB and HOXC clusters is shown in figure 29
and illustrates the 'duplication topology.” For example, we see that the zebrafish horb6a
and horb6b genes are more closely related to each other than any other organism, and that
human HOXBE and the zebrafish genes are more closely related to each other than to the
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human HOXAG gene. The mouse Hozrb6 gene confirms the relationship of a single copy of
HOXB6 gene in mammals and two copies in fish. A similar relationship is shown with the
zebrafish hozcfa and hozxefb duplicates.

In [71], Taylor performed a computational analysis of existing zebrafish sequences to
evaluate the hypothesis that extra HOX clusters in zebrafish were produced via a whole-
genome duplication event. Taylor downloaded protein sequence data for zebrafish, mouse,
chicken, and clawed frog and used BLAST to identify potential orthologs among the various
species aligning related orthologs. He then constructed large phylogenetic trees from the
related orthologs and searched the tree for sets of genes showing the duplication topology.
Taylor then took sets displaying the desired topology and constructed new phylogenetic
trees, using human paralogs as outgroups.

From the analysis Taylor found twenty-seven gene-pairs that exhibited the proper phy-
logenetic relationship, however, only eighteen of the trees had the duplication topology.
Further, maximum likelihood enalysis turned up only three trees with the proper topology.
With regard to the HOX genes identified by Amores (in [6]), Taylor only found the topology
predicted for HOXB5 and HOXB6 genes. By combining their predictions with mapping
data, the authors determined that duplicated gene placement is not random, with genes
falling on linkage groups 1 and 13, 1 and 9, 2 and 7, 17 and 20, and 3 and 12. Conserved
chromosomal regions are consistent with a whole genome duplication, but not necessarily
with multiple tandem duplications.

Taylor returned with a more comprehensive study two years later in {70] including other
fish species such as the pufferfish. Additional sequence data from mouse, chicken, human,
and clawed frog were also used as & basis for phylogenetic reconstruction of orthologous
genes. Using BLAST, the authors identified 49 sets of genes with one copy in mouse,
human, or chicken, ane or two copies in frog, and two copies in zebrafish. For twenty-two
of these sets, two orthologs were also identified in the pufferfish. In another twenty of these
sets, a single orthologous gene was found in pufferfish. The authors aligned sequences using
CLUSTALW and then did two rounds of tree construction, after hand-editing the sequences
to remove large gaps and other similar anomalies. Phylogenetic trees were constructed using
the neighbor-joining method as well as the quartet-puzzling method.

In 24 cases, both phylogenetic methods revealed the proper genome duplication topology.
In fourteen cases, one or the two methods revealed the proper topology. Surprisingly, after
removing saturated positions in the sequences, the trees built from these sequences found
the proper duplication topology in 37 cases, including five cases in which the prior methods
were unable to find the sought after topology. In eighteen cases of duplicated genes found
in either the zebrafish, the pufferfish, or both, orthologs from other fish species, including
salmon and eel, were also identified. Of all the zebrafish orthologs identified, forty-four of
them have been mapped, and among these, ten chromesome pairs contain two or more sets
of gene duplicates. This number of duplicates is significantly higher than one would expect
by chance.

These early studies made fascinating predictions about a third duplication in the teleost
fish. Although Taylor’s study suffered from limited data availability and computation-
ally underpowered ansalysis algorithms, Amores’ work provided good evidence that entire
chromosomes had indeed been duplicated in the zebrafish. Data at the time was not com-
prehensive enough to avoid criticism, however, as we will see in the next section.



5.2.1 Genome Duplication Criticism

The early studies were very controversial and several people argued that other, simpler
mechanisms were more likely to be the cause of the documented duplicated genes. One of the
largest critics of genome-wide duplication, in [39] Hughes and Friedman assembled evidence
against the 2R hypothesis. Their criticisms challenged some of the essential concepts of
duplication, including genome size and gene counts.

Although Ohno argued genome size implied duplication, Hughes argues that the vast
number of different genome sizes debunks this hypothesis (bony fish vary from 11%-4088%
the size of the human genome). Additionally, while many have cited gene number as evidence
of duplication, Hughes claims the four-to-one rule only applies in a small number of genes
(4.9%) when comparing human to Drosophila (fruit fly) and that among those genes the
proper phylogenetic topologies are missing.

Finally, supporters of the 2R theory point to conserved genomic regions on human chro-
mosomes 1, 6, 9, and 19 along with 2, 7, 12, and 17. For these to be correct, according to
Hughes, the genes must be phylogenetically dated, and the dates must be the same. Hughes
claimed that these duplicated gene families have widely varying duplication dates, but, as
we saw in section 3.3.2, it is now well accepted that genes can evolve at different rates, so
his criticism must be examined in this light.

In [62], Robinson-Rechavi examined homologous gene sequences from fish gene families
that were known to exist in at least three species. For each gene family they then built
phylogenetic trees. Their analysis showed that only seven gene families out of the 37 they
analysed exhibited characteristics of a genome duplication. Eleven of the gene families
showed that duplications had occurred, but that they took place after the teleost radiation.
Finally, in the 19 remaining cases, no duplications were observed.

5.3 Whole-Genome Examination

Early studies in favor of duplication, along with early criticisms both suffered from a lack of
data rendering the hypothesis for a third duplication in teleost fish controversial. However,
that situation began to change as sequence libraries became more comprehensive and entire
genomes became available for analysis, bring more evidence to bear in favor of the hypothesis
(40].

Vandepoele examined the entire Takifugt rubripes (Fugu or pufferfish) genome in search
of duplication events [74]. Fugu was initially chosen to be sequenced several years ago due
to its extremely compact genome size, which is approximately one-eighth the size of the
human genome, however, after HOX clusters from other fish implied the possibility of a
third genome duplication, the Fugu genome also became a target to search for duplication
events.

The authors obtained approximately 8,500 scaffolds (partially assembled chromosomes),
containing over 34,000 genes to search for duplications. They then used BLAST to identify
orthologous Fugu genes in the human genome and identified gene families from the results.
The largest gene families were removed from the set of genes to be analyzed due to the
difficulty of constructing phylogenetic trees out of them (due to problems of long-branch
attraction). Next, they used proteins from these gene families as BLAST queries for other
species including all other ray-finned fish, humans, mice, Ciona, and Drosophila to identify
an outgroup, aligned the results and built phylogenetic trees. To associate dates to the
various duplications, Vandepoele performed an analysis using & molecular clock.
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Figure 30: From [74), (A and B) the age distribution of duplicated genes identified in
Fugu {pufferfish) and human respectively. The 3R event only appears in the pufferfish
lineage, while human duplications appear to have accelerated in recent time. Addition-
ally, the white bars in (A) refer to pufferfish genes that were duplicated on chromosomal
blocks, the location of these genes provides evidence for large scale duplication events,
such as a whole genome duplication.

The resulting phylogenetic trees, with branch lengths calibrated using & molecular clock,
produced 166 genes {30%) originating in the 3R duplication and 399 genes originating in the
1R or 2R duplications. A similar analysis was conducted using the human genome in order
to compare the results to Fugu. Figure 30 shows the distribution of gene ages identified in
the analysis of Fugu and human genes. The major feature the plot illustrates is that the
3R duplication in Fugu does not correspond to an increase in gene duplication in humans,
which we would expect if only one of the organisms experienced the duplication. Further,
if the plot was only showing Auctuations in tandem duplications we would not expect to
see such a stark contrast between the two genomes. To further investigate the origin of the
3R Fugu genes Vandepoele investigated whether the duplicated genes appeared together in
conserved, duplicated blocks (also known as conserved synteny} since successive tandem du-
plications would not preserve gene ordering on chromosome segments. Vandepoele mapped
the paralogous genes to their respective scaffolds and searched for conserved gene ordering
(conserved synteny) and gene age. The authors were able to identify 159 statistically signif-
jcant duplicated blocks among the scaffolds, containing 544 gene pairs. 59 3R-dated blocks
were identified and these blocks all demonstrate the same duplication date, approximately
320 million years ago.

At the same time, Christoffels also performed a genome-wide analysis uging early drafts
of the Fugu genome in [8]. In a very similar analysis, Christoffels identified gene families,
constructed phylogenetic trees using a molecular clock and searched for conserved regions
among the scaffolds. Their results agreed quite well with Vandepoele producing 468 Fugu
peralogons covering 6.8% of the genome as well as 425 duplicate gene pairs. Their clock
analysis found that the R3 duplication occurred approximately 350 million years ago.

Jaillon and colleagues describe the Teiraodon nigroviridis (pufferfish) genome sequence
in [41). This fish, which is related to Fugu, but lives in freshwater, has a similarly compact
genome and the two organisms diverged only 18 to 30 million years ago. The release of
this full genome consisted of 340Mb of genetic material composing 27,918 genes on 21 chro-
mosomes. While Jaillon and co-workers provided & wealth of data regarding the pufferfish
genome we will concentrate on their evidence for whole genome duplication here.

Jaillon sought evidence for two distinctive signs of a whole-genome duplication within the
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Figure 31: From [41], (A) an image depicting paralogous Tetraodon migroviridis genes
and the chromosomes they fall on. Some of the duplicated chromosomes have remained
mostly intact since the duplication {e.g. 9 and 11) while others have been rearranged
onto other chromosomes {(e.g. 13 being split between 19 and 5). {(B) Conserved syntenic
regions between human chromosome X and paralogous regions located on pufferfish chro-
mosomes 1 and 7. The interleaving pattern of genes Is indicative of a genome duplication
followed by massive gene loss.

pufferfish: paralogous gene pairs within the pufferfish that are arranged on separate chro-
mosomes, and, the characteristic two-to-one ratio of orthologous genes when the pufferfish
was compared against a genome that had not experienced the duplication. To search for ev-
idence of paralogous gene pairs Jaillon and colleagues performed a Tetraodon to Tetracdon
BLAST search, looking for reciprocal best hits. This analysis yielded 1,078 pairs of dupli-
cated genes within the pufferfish and is shown in figure 31 {A). As the plot illustrates, some
chromosomes have experienced almost no rearrangements since the duplication event, such
as pufferfish chromosomes 9 and 11, while others have split apart or been fused together
onto other chromosomes (genes paralogous to chromosome 13 are found on chromosome 19
and 5, for example).

To search for evidence of a two-to-one ratio, Jaillon compared 6,684 Tetraodon genes on
known chromosomes to their mouse and human orthologs. In the case of a genome duplica-
tion one would expect to find chromosomal segments in human or mouse that correspond to
two paralogous chromosomal segments in pufferfish (these segments being identified by the
orthologous genes that are contained within them). Jaillon created a syntenic map from the
sets of orthologous genes containing 900 syntenic groups where each group was composed of
at least two consecutive, ordered genes. The average length of these regions was 6.1 genes,
with a maximum of 55 genes. Of the 6,684 genes, 76% ended up in a syntenic group. Similar
results were found in a comparison with mouse. One example of the syntenic mapping can
be see in figure 31 (B) which shows a large segment of human chromosome X corresponding
to paralogous regions in pufferfish chromosomes 1 and 7. The genes in these regions are
interleaved between the two pufferfish chromosomes indicating a whole genome duplication
followed by massive gene loss. Jaillon asserts that these two analyses provide definitive
evidence in favor of a whole genome duplication in the pufferfish after it split from the land
vertebrates,

Finally, Dehal and Boore performed an analysis of three vertebrate species along with
Ciona intestinalis in search of evidence of the 2R duplication [12]. Their analysis started
by searching for orthologous genes between human, mouse, Fugu, and Ciona. In the same
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Figure 32: From (12}, evidence for the 2R duplication in veriebrates. This plot shows
himan genes paralogous Lo genes on human chromosome 2. The boxes highlight several
regions where the 2R signal is evident (three conserved regions along with the region
on chromosome 2 which is not pictured). Along the bottom of the plot are the re-
sults of a sliding window analysis showing how many conserved segments exist and the
chromosomes they occur on.

way that Vandepoele, Christoffels, and Jaillon all sought evidence of a two-to-one ratio in
telecst fish to human genes, Dehal and Boore were looking for a four-to-one ratio between
the vertebrates (human, mouse, Fugu) and the invertebrate Ciona (which is not believed to
have undergone & genome duplication). To search for these relationships, after identifying
orthologs between all the organisms, the authors determined which of the vertebrates that
had the highest raw BLAST score for a particular Ciona gene. They then used a clustering
algorithm to find all vertebrate genes (clustering on raw BLAST score) that had a higher
similarity to that vertebrate gene than to any other Ciona gene. From the clusters they built
phylogenetic trees using a maximum likelihood algorithm. They examined the resulting trees
for a duplication topology as well as to identify paralog genes within different species. They
plotted the paralog genes and finally used & sliding window analysis to find paralogons that
show the right topology {the 2R signal would be found as conserved regions on four different
chromosomes within an organism). An example of this analysis is shown in figure 32.
Pictured are human genes identified as paralogs to genes found on human chromosome
two. Along the bottom of the graph is the results of the sliding window analysis showing
the conserved segments of chromosomes. Dehal and Boore's approach of building related
gene clusters and then analyzing the topology of the resulting phylogenetic trees provides
startling evidence for the 2R duplication in the form of the paralog graphs; although the
duplication occurred 450 million years ago, the signal of the event is easily discernable.

It has been almost ten years since Amores published his work proposing a third genome
duplication in zebrafish. Since that time, with the work of Jaillon, and Dehal and Boore,
among others, evidence for genome duplication events has become widespread. The signal
for these events is now well understood and several robust methods exist to identify it. In
the next and final section, we will summarize the major efforts of this paper and look at
what open questions remain to be investigated.
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6 Conclusions

This paper has focused on the theory and methods necessary to investigate the hypothesis
of whole genome duplication: a process in which a single, rare event doubles an organism’s
chromosomes providing the raw, genetic material necessary to spawn a multitude of species.
In section 2, we examined the algorithms and statistics involved in sequence alignment, a
process that allows us to determine relationships between genes and to identify conserved
regions of DNA within organisms as well as between organisms. In section 3, we discussed
the process of building phylogenetic trees, along with the statistical models on which they
depend, allowing us to quantify the evolutionary history of features in a set of related
genes. In section 4, we looked at the neutral theory of evolution and showed how it could
be used to infer the strength of natural selection through the measurement of nonsynony-
mous/synonymous mutation rates. Finally, in section 5 we looked at the empirical evidence
for the existence of genome duplication events.

As section 5 demonstrated, strong evidence now exists in favor of whole genome duplica-
tions. The signal of genome duplications has been found in many different species, from the
teleost fish to the single-celled paramecium. Several challenges remain, however, to more
fully understand the processes that occur after the duplication is complete. Specifically, we
went to know what are the fates of duplicated genes? The theory of neofunctionalization
states that after a duplication one of the genes retains the old function while the other is
free to acquire new functions. This theory predicts a chaotic environment in an organism'’s
cells following a duplication: the proportion of transcripts produced in the cell would all
increase as the doubled genes begin producing double the number of proteins! New genes
would be large targets for mutations, causing a lot of genes to experience death shortly after
their creation as terminal mutations cause natural selection to purge the gene.

In contrast, the theory of subfunctionalization predicts 8 more stable environment fol-
lowing duplication. In this scenario, gene functions become partitioned between the original
copy of the gene and the new copy of the gene making both copies indispensable. This
strategy would retain the proper proportions of gene transcripts and provide the copied
genes time to acquire new, useful functions as natural selection would continue to preserve
both copies in the population [28].

Continuing work in the area of whole genome duplication needs to focus on the fates of
duplicated genes, which can be done in three ways. First, more work needs to be done to
quantify the number and location of duplicated genes among different organisms. We must
continue to identify all the duplicates in & range of organisms from teleost fish, to mammals,
insects, and non-vertebrates. Moreover, we must quantify orthologous regions between these
species to determine which genes were conserved in which species. This work would enable
the creation of a duplication map. A researcher would query the map with a particular gene
and the map would return the duplicated region the gene is located in (if one exists) as
well as providing all orthologous duplicated regions from other species. By comparing and
contrasting genes that have been preserved and lost in different species, we may be able to
infer the general behavior of gene loss following a duplication. Additionally, these maps will
allow us to infer the location of specific, lost genes. For example, if we identify a duplicated
gene in one species, but cannot find it in another, we may be able to infer its absence by
looking at the surrounding genes in the duplicated region. Using a large scale analysis of
multiple organisms, how many lost genes can we find?

A second question we can address with our duplication map is the behavior of natural
selection following the duplication. Is natural selection active in genes that have been dupli-
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cated? Is it only active in one copy of the gene, or is it active in subregions of both copies?
Further, is natural selection active in different subregions of the same genes in different
species? Answering this question does pose some challenges, primarily that some duplica-
tions happened too far in the past to apply our measures of nonsynonymous/synonymous
mutation rates (due to saturation at some sites in the codons we would like to measure).
An effective analysis of the strength of natural selection will require testing more recently
duplicated genes.

Finally, we can examine the hypothesis of subfunctionalization itself. As mentioned in
section 1.1, genes contain regulatory regions upstream from their coding regions. These
regulatory regions control when a gene is transcribed and the rate at which it is transcribed.
If a gene has multiple functions, there are generally multiple regulatory regions upstream
of the gene to control those functions. After a genome duplication event, if gene functions
are indeed segregated between the two copies, we would expect to see the loss of different
regulatory regions in each of the two duplicate genes. We can investigate this hypothesis by
examining the regions of nongenic DNA upstream of our pairs of duplicated genes by looking
for conserved sequence data in those areas. If we find significant but differing conservation in
each gene copy, then it would indicate that the regulatory regions were indeed partitioned.

The tools we have described in this paper will allow us to complete these analyses.
Through the coordinated application of these tools, using substantial computational re-
sources to execute, analyze, and store the resulting data we can answer questions about the
fate of duplicated genes furthering the state of the art in the bioinformatics of whole genome
duplication.
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