Developing a domain specific
style sheet language
for building haptic soundscape maps

Keith Albin
December 7, 2007 .

Presented to the Department of
Computer and Information Science
at the University of Oregon
in partial fulfillment of the requirements
for the Departmental Honors Program.

Abstract

The purpose of the project described in this thesis is to design and implement
extensions and improvements to the usability of the style sheet component of the
Haptic Soundscape map system, part of the ongoing University of Oregon Haptic
Soundscape Map project. The immediate goal of the overall project is to develop
an electronic map for use by students with visual impairments. A longer-range
goal is to develop a map building tool that can be used to study the user interface
issues involved in the production of electronic maps for visually-impaired users.
The style sheet component allows a non-programmer to configure a variety of map
attributes, accelerating map development and rapid construction of variations for

experimental evolution.

I would like to thank my advisor, Professor Michal Young, for his guidance
and assistance throughout this project and the production of this thesis. I would
further like to express my appreciation to Professors Lobben and Young for the op-

portunity to be a part of the University of Oregon Haptic Soundscape map project.

Contents

Introduction

Background
2.1 Maps for Those with Visual Impairments

2.2 The Style Sheet as a Domain Specific Language

Approach
3.1 Haptic Soundscape Map-building architecture
311 TargetPlatform
312 MapSourceData
313 MapDataConversion
314 StyleSheetData...........................
315 ActionScriptBuilder o o L
32 TheStyleSheet

3.3 Plans for Style Sheet Improvements
and Extensions o oL

331 Integration................
3.3.2 Style Sheet Language Extensions

Result
4.1 Introduction—Software ToolsUsed

42 String Concatenation

10

14
14
14
15
15
16
17
17

19
19
20

4.3 Variable SubstitutionMacros e
44 Style Sheet and Map Integrationo
45 Style Attribute Name Additions and Improvements
451 KeyNamest
452 ColorNames
453 ColorDefinitions o
46 Multi-lineComments oo
47 StyleSheetFileImporto
48 FrrorHandling i
48.1 InterpreterErrors o
482 CommentBlockErrors. oo
483 Special File Import Error Handling
Conclusion
51 Style ShectImprovements
52 StyleSheet Usability v
5.3 Benefits of using a domain specific language

Future Directions

Appendix A - Style Sheet Language Reference

Al Introduction v v v e e e
A2 BNEGIAMIMAL « + « v v v o v v v e e e o e e e e n e et e e e e
A3 Lexical Structure . . . v v v v o e e e e e e e e
A.3.1 Whitespace and Indentation.
A32 Comments v v it e e e e
A33 BlankLines e
A34 OtherTokens oo ittt ittt
A35 ImportStatements

A36 Identifiers e
A37 Objectldentifiers
A38 Numbers. i v i e
A39 StringLiterals L oo
A310ColorConstants i e
A311 Operators v v i
A3.12 Delimiters o e
A4 StatementSyntaxo
A4.1 ImportStatement,
A42 AssignmentStatemento oo
A43 StyleAttributeso
Ad4 Concatenation e e
A45 StyleSelectoro
A46 StyleBlock oo
A .47 Substitution Macro Definition.
A5 Data Model and Access Methods

Appendix B - Style Sheet Interpretation in the Haptic Soundscape Map
B.1 Introduction
B.2 Precedence of Style Attribute Assignment
B3 ClassNames o ot vt et e e
B4 Modifiers e
B5 Keys. e

Bt Values o e e e e e e e e e e e e
B.7 ColorDefinitions o v v o i i e e e e e e e e e e e

Appendix C — Style Sheet Constants Used in the Haptic Soundscape Map

68
68
69
70
70
71
71
72
72
73
74
74
75
76
77
78

Table of Contents 4

C1 Introduction 0 it i e e 84
C.2 BuildingNamesandIDs 84
C.3 Color Constant Names and Definitions. 88
CA ColorSelectionChart i 90

Bibliography 93

Introduction

The purpose of the project described in this thesis is to design and implement
extensions and improvements to the usability of the style sheet component of the
Haptic Soundscape map system, part of the ongoing University of Oregon Haptic
Soundscape Map project. The immediate goal of the overall project is to develop
an electronic map for use by students with visual impairments. A longer-range
goal is to develop a map building tool that can be used to study the user interface
issues involved in the production of electronic maps for visually-impaired users.
The style sheet component allows a non-programmer to configure a variety of map
attributes, accelerating map development and rapid construction of variations for

experimental evolution.

The initial development of the haptic soundscape map was done by an inter-
disciplinary team composed of undergraduate and graduate computer science stu-
dents and graduate geography students during Spring term of 2007 at the Uni-
versity of Oregon. The studio class was led by Professor Michal Young of the
Computer and Information Science Department and Professor Amy Lobben of the
Geography department. Professor Lobben and her students were all specialists in

the field of cartography. This inter-disciplinary group developed a successful map

5

Introduction 6

prototype that was later reviewed by students and adults at the Oregon School for

the Blind.

The concept of a haptic soundscape map is that the user of the map receives
haptic feedback (vibrations) indicating different surfaces or objects from the mouse
he is using to navigate the on-screen map. Additionally, the visual features of the
map are enhanced by sounds, both iconic and descriptive. For example, there is
a specific haptic and sound effect for entering a building. The user is also able to

click the mouse button while over the building to hear its name pronounced.

The following objectives were achieved by the initial prototype:

» The map was capable of being generated directly from campus GIS (Geo-
graphic Information System) data. No graphical editing of map information

in an illustration or photo editing program was necessary.

e The map utilized Adobe Flash as the medium for displaying the map from a

web server and enabling the special effects through a web browser.

o The map utilized both speech and non-speech sounds. The non-speech sounds
were fixed (a sound indicating that the mouse pointer is over a specific ob-
ject type) and parametric (sounds that indicate general directional position

on the map).

¢ The map provided textural feedback through a haptic-enabled mouse, indi-

cating surfaces on the map.

Introduction 7

» The map effects could be customized though the use of a style sheet. The
style sheet allowed experimenters to bind settings for the visual, haptic, and

sound features used in the map to objects on the map.

This last item, the haptic soundscape map style sheet, is the focus of the project
described in this thesis. The purpose of this project is to link the style sheet inter-
pretation more closely to the map generation and to increase the usability of the
style sheet, making the map-building software easier for experimenters without a

computer science background to configure.

Background

My experience with the University of Oregon Haptic Soundscape Map project
began in the Spring term of 2007. Along with a number of other undergradu-
ate and graduate computer science students, I had enrolled in Professor Michal
Young’s Advanced Software Methodology class, conceived as an experience in
cross-disciplinary studio learning. We collaborated with Professor Amy Lobben
and a group of her graduate geography students to design and create an initial

version of a haptic soundscape map of the University of Oregon campus.

The experience of working closely with other students with different educa-
tional backgrounds was both challenging and rewarding. We met regularly as a
large group to refine design goals and worked in groups of 3-5 persons to build sec-
tions of the project. Some of the computer science students had studied user inter-
face design for those with disabilities, but none had previous experience with car-
tography. The large meetings became intense learning experiences as we learned
about map design for sighted persons as well as those with visual impairments.
I like to think that the geography students also learned a bit about the software

development process.

Background 9

By the end of the term, we had created an electronic map of the University cam-
pus that utilized a haptic mouse for tactile feedback representing various surfaces
and sound generation for navigational cues, object identification, building names,
and user assistance. The development of this project required us to learn how to
utilize data from the University GIS database and convert it into a format usable
for the map; how to install, configure, and utilize an interface to the haptic mouse
device; how to record and synthesize sounds for use in the map; how to use Adobe
Flash software and compose instructions using the ActionScript language to build
the map; how to design a style sheet language interpreter capable of defining the
interaction of elements in the map; and how to integrate these components into

the finished product.

2.1 Maps for Those with Visual Impairments

Maps for the sighted user operate at two levels —as a product of pleasing visual de-
sign and as a way for the user to incorporate the map information into his internal
sense of spatial orientation. While research has been done to quantify the usabil-
ity of maps for the visual user [Golledge and Stimson, 1997], little work has been

done to study how maps can satisfy the needs of those with vision impairments.

The need for map information by blind and vision-impaired people is proba-
bly even greater than for sighted people, since they are unable to use signs and
visual landmarks to navigate an area. To fulfill this need, two different mapping

strategies are currently being investigated by cartographers.

Background 10

The first of these is a tactile map, where the visual representation of objects
on the map are replaced by tactile surfaces. The visually impaired user can then
explore the map using his fingertips, much as is done with braille text. However,
the amount of information that can be conveyed in this manner is constrained by

the limited sensitivity of the nerves endings in human fingertips.

The second approach is to employ computer technology to create sound and
haptic soundscape maps. This is the approach undertaken by this project. Re-
search into haptic soundscape mapping is currently being conducted at a few other
locations in addition to the current project at the University of Oregon. However,
this is still new territory for researchers and there is a great deal of work yet to be
done to evaluate the effectiveness of various haptic and sound strategies with the
end users. This process is additionally hampered by the difficulty of developing
and editing these software projects during the testing phases of the research. The
goal of the ongoing project at the University of Oregon is to automate the map
building process in order to enable experimenters to easily modify special effects

without resorting to elaborate computer programming skills.

2.2 The Style Sheet as a Domain Specific Language

Viewing the Haptic Soundscape map as a tool for researchers, the style sheet be-
comes an important component to the finished project. The style sheet functions as
the principal user interface to the map-building software and allows researchers to
easily edit the sound and haptic effects used in the map. This enables a rapid, iter-

ative design process for working interactively with users with vision disabilities.

Background 11

The history of style sheets dates back to the early years of computer science.
Some of the most well-known examples are FOSIs (Formatting Output Specifica-
tion Instances), developed by the Department of Defense for standardizing docu-
ments; DSSSL (Document Style Semantics and Specification Language), a scheme-
like presentation language; CSS (Cascading Style Sheets), designed for HTML pre-
sentation; and XSL (Extensible Style Language), a standard for display and transla-

tion of XML (Extensible Markup Language) documents [Walsh and Muellner, 1999].

More properly, though, style sheets are members of the classification referred to
as domain specific languages (DSL). A DSL is defined as “a small, usually declar-
ative, language that offers expressive power focused on a particular problem do-
main.” [van Deursen et al., 2000]. Duersen, Klint, and Visser characterize the dif-
ference between a DSL and a general purpose programming language as being the
difference between approaches that are generic and those that are specific. The spe-
cific approach used in DSLs offers a better solution for a smaller set of problems

than the generic approach as used in a general purpose programming language.

One way to compare different domain specific languages is in terms of their
executability. [Mernik et al., 2005]. Some DSLs, such as a configuration file for an
application, may be only declarative — a set of keys and values to record application
settings. Others, such as the macro language of a spreadsheet, approach the broad

domain of a general purpose programming language.

The Haptic Soundscape map style sheet lies somewhere between these extremes.
Its main function is to generate map configuration attributes, but certain program-

ming language features, such as variable definition, string concatenation, and macro

Background 12

execution have been added to increase its functionality.

These extensions were possible to implement with relative ease because the
tools chosen to implement the interpreter are based on the widely-used general
purpose compiler construction tools, lex and yacc [Provins, 1998]. Actually, these
types of compiler construction tools are themselves examples of the use of domain
specific languages. The lexical properties of the style sheet are defined as regu-
lar expressions, a DSL, and the syntactic properties are defined in a form of BNF
grammar, another DSL. The compiler construction tools use these definitions to
generate the desired interpreter, which is then able to read and interpret the style

sheet language.

An additional consideration in the design of a DSL is the effort that will be
required from the user to learn the language [Mernik et al,, 2005]. To make this
problem more manageable, it is advisable to base the new language on an existing
language that users may already know. For that reason, much of the syntax of our
style sheet language is based on CSS, the style sheet language used to style HTML
pages on the World Wide Web.

The domain specific language is, in its way, an example of the computer science
principle of abstraction. When programmers construct software, they use a general
programming language, created to support many types of projects. This generality
is good, but to avoid getting lost in the coding details, the programmer must create
abstractions of lower level logic in order to express the higher level “business”
logic of the finished software. In this manner of thinking, the DSL is the “ultimate

abstraction” [Hudak, 1996).

Background 13

Guy Steele, a computer scientist well known for his work in language design

has been quoted as saying:

A good programmer in these times does not just write programs. [...] a
good programmer does language design, though not from scratch, but

building on the frame of a base language [Steele, 1998].

When we, as programmers, create a new software project, we are creating a
new language and by using a domain specific language, we are able to extract
these new interfaces and conventions and make them more easily available to the

user [Freeman and Pryce, 2006].

Approach

3.1 Haptic Soundscape Map-building architecture

The goal of the original haptic soundscape map development project was to au-
tomate the map-building process as much as possible. This would free experi-
menters from the necessity of manually creating map components and special ef-
fects when necessary for conducting research into the usefulness of different tech-

niques.

3.1.1 Target Platform

The map is served from a standard web server as an Adobe Flash object compo-
nent in a Hypertext Markup Language (HTML) web page. There is one Flash swf
file representing the map controls and a set of additional Flash files, one for each
layer of the map. Each layer corresponds to one of the object class names listed in
Appendix B. The data for each layer file is generated automatically by the map-
building software and saved in Flash ActionScript format. Each ActionScript layer

file is then opened in the Flash program and manually saved in Flash swf format.

14

Approach 15

<> ESRI
, . XSL Transforms
GIS /' (interactive)
Database ¢ /' ¢
Map data — XML data files
ESRI XML files in local format

Figure 3.1: Conversion of ESRI GIS XML data files to Haptic Soundscape XML
format.

Also present on the web server are the sound and haptic effect files, which are

accessed by their URL (Uniform Resource Locator) addresses.

3.1.2 Map Source Data

The object data for the map originates from the University of Oregon GIS database.
Using the ESRI! interface software, the data for constructing maps can be exported
in an ESRI XML format. This is a manual operation, but is only necessary when

existing map outline information has become outdated.

3.1.3 Map Data Conversion

As a first step in the map-building process, the raw ESRI XML object outline files
are processed into a simplified XML format by an XSL transformation. Figure 3.1

illustrates this process. The purpose of the transformation is to identify the layers

1ESRI GIS and Mapping Software. Available from: { hitp://www.esri.com)

Approach 16

Style sheet Style sheet

text file \ /' XML file

Style sheet
parser

Figure 3.2: In the initial project design, the style sheet is converted to XML format
by the style sheet parser and saved to an XML file. For revised design, see figure
4.4 on page 35.

by class name and, if appropriate, the individual objects by object id. Each object
in the XML file is described by a series of points and line or arc commands. In
the transformation, the point values used are rounded and translated to smaller

values relative to the extent of the map area used in the project.

3.1.4 Style Sheet Data

The other data source used to produce the Haptic Soundscape map is the style
sheet. Figure 3.2 illustrates how the style sheet text file is processed. The style
sheet contains class name and object identifiers and links user actions with specific
resources or settings. The style sheet also provides drawing information like color
for specific objects or layers. In the original version of the map-building software,

the style sheet was parsed and saved as an XML file.

Approach 17

XML data files
in local format T

ActionScript —» Map layer files
Builder {ActionScript)

Style sheet
XML file

Figure 3.3: Style sheet and map data are combined to generate ActionScript files.

3.1.5 ActionScript Builder

This component of the map-building software contains several classes written in
Java language which combine to build the destination ActionScript files from XML
object outline files and style sheet XML. Figure 3.3 illustrates the data path for
this operation. The main file is GisXmlReader, which first reads the XML object
data files and saves the outline information in a list of GeoShape objects. Next, it
calls the StyleSheetReader class to read the style sheet XML and apply the style at-
tributes to the appropriate GeoShape objects. Finally, it passes the list of GeoShape
objects to the ActionScriptBuilder class to generate the complete ActionScript files,

one for each map object layer.

3.2 The Style Sheet

From the initial planning stages of the project, the style sheet was considered an

important component of the map-building software project. The style sheet con-

Approach 18

tains many of the variables that rescarchers would wish to change and is designed
to be easily accessible and editable by non-programmers. The style sheet is essen-

tially the user interface for the haptic soundscape map researchers.

The motivation for the creation and use of a style sheet in general is to separate
text and data from the information related to its disp-olay or publication. Currently,
probably the most widely used style sheet language is the Cascading Style Sheet
(CSS) used to control the display of web pages. Rather than embedding attributes
such as type size and color in the HTML document, that information is located in
the C5S file. This provides for better style consistency throughout documents and

easier changes to these style attributes.
Initial Version

The style sheet parser and lexer are implemented in the Java programming, lan-
guage using the JFlex? and Java CUP? tools. To make learning easier, the style sheet
follows many of the conventions used by Cascading Style Sheets [Meyer, 2004] for
HTML. Using Java tools would make the style sheet parser easier to integrate with

the other Java classes in the map-building project.
The style sheet supported:
» class selectors with class name, optional object id, and optional modifier,
* style attributes blocks with key and value pairs.

« variable definitions saved in a hash map table and usable later in the

style sheet.

*JFlex - The Fast Scanner Generator for Java. Available from: (hitp:/ /www.,jflex.de)
3CUP LALR Parser for Java. Available from: { http:/ /www2.cs.tum.edu/ projects/cup }

Approach 19

¢ very basic error messages.
e single line comments using “/ /" to precede the comment.

¢ extra returns and white space in definitions were ignored.

Upon interpretation of the style sheet, variables were replaced with their defini-
tions. Then style attributes were stored in a hash map of class names to StyleClass
objects. Each StyleClass object contains a hash map of object IDs to another hash

map of style attribute keys and values.

When interpretation of the style sheet was complete, the data structure was
“dumped” to print its contents in XML format, which was saved to a file to be

used in the ActionScript generation.

3.3 Plans for Style Sheet Improvements
and Extensions

3.3.1 Integration

An immediate improvement in usability would be to integrate the style sheet in-
terpretation directly with the process of generating the ActionScript layer files. At
the initial phase of the project, this was a two step process — first parsing the style
sheet and saving it to an XML format and then parsing the resulting XML file to
generate the ActionScript layer files. This process is illustrated in figures 3.2 on

page 16 and 3.3 on page 17. While the XML object outline layer files from GIS are

Approach 20

unlikely to change often, the style sheet is subject to frequent change and a more

direct path for integration into the building process would be desirable.

There were also issues of efficiency to be overcome in the StyleSheetReader
class. Upon parsing the style sheet XML output, the class saved it into a DOM
tree and then traversed the tree searching for matching attributes for each object
encountered in the list of GeoShape objects. It would be much more efficient if the
StyleSheetReader were to access the style attribute data from the tables where the

parser stores that information during the processing of the original style sheet.

3.3.2 Style Sheet Language Extensions
String Concatenation

While the style sheet did support variable definitions, these were not used well.

The style sheet contained many lines like the following;:

/ /Deady
building#005{
on_click_sound:"http://www.cs.uoregon.edu/map/mp3s/005.mp3";}

//Willanette
building#046{
on_click_sound:"http://www.cs.uoregon.edu/map/mp3s/046.mp3";)

This is in stark violation of what Hunt and Thomas [Hunt and Thomas, 1999]
call the DRY principle of programming — “Don’t Repeat Yourself.” A resource
name like the directory where sound files are stored is repeated many times in the

style sheet which can lead to errors that are difficult to find. When the resource

Approach 21
location is changed — a likely occurrence — all the style attribute values need to be
changed.

By implementing string concatenation, we should be able to define such re-

sources once in a configuration variable and use that to construct the resource URLs.

Color Names

When variable definitions were used in the original style sheet, they did not con-

tribute to the readability of the style sheet. For example:

building_color = "#00FF00";

building{
celor: building_color;

}

It would be more intuitive if the color name of “Lime” was used in the color
definition instead of “building_color.” A set of named colors would make color
definition easier for those who might not understand the hexadecimal red-green-

blue color model.

Variable Substitution Macros

In the case where there are many style attribute definitions that vary only by the

name of the particular object, the style sheet could be compacted and made easier

Approach 22

to manage by a system of defining substitution macros. For example, when con-
catenation is in place, building name sound resources become nearly repetitious
definitions:

/ /Deady

building#005{

on_click_sound: buildingSoundPath + "005.mp3";
}

//Willamette
building#046{

on_click_sound: buildingSoundPath + "046,.mp3";
}

Using a system of variable substitution, all such definitions could be condensed
into one and expressed as:

building (%n]{
on_click_sound: buildingSoundPath + "[%n] .mp3";)

Additional Style Sheet Imports

It would be useful to allow one style sheet to import another. This import should be
processed as if it were an “@import” statement in CSS or an “#include” statement
in the C/C++ programming language. The effect should be that the statements
and definitions in the imported style sheet are interpreted in the place where the

import occurs.

Import file statements should be able to use a file path relative to the style sheet

from which it is imported or an absolute path if that is desired.

Approach 23

Default Class Definitions

There should be a “default” class definition that would apply attributes to all
classes. Also, class name and object id should each be optional parameters in
defining a style block. A user should be able to define a class name with no id,
meaning an attribute that applies to every member of a class; or an id with no class
name, meaning an attribute that is applied to every matching id, regardless of the

class name.

Attribute Key Format

In keeping with the format used in HTML Cascading Style sheet, the key of a
style attribute should be defined as “on-enter-sound”, not “on_enter_sound,” using
underscore characters instead of the hyphens. For compatibility, the style sheet

language could accept either underscores or hyphens.

Multi-line Comments

- Multi-line comments should be allowed using the CSS convention of “/*” to open

the comment block and “*/” to close the comment block.

Color Definitions

In the initial style sheet implementation, only object color could be defined and

it was applied to both fill and outline. It would be desirable to have separate

Approach ‘ 24

definitions for fill-color, line-color, and line-width. The “color” definition would

become the default if others are not defined.

Error Messages

There are three types of errors that might be generated on interpretation of a style
sheet — lexical errors, syntactical errors, and undefined variable errors. In the first
version, these errors were causing the parser fo terminate and issue stack dump
messageé, but very little useful information about the cause of the error. Error
messages should contain the at minimum, the line where the error occurred. Un-
defined variable definition errors should print the name of the undefined variable.
When multiple style sheets are allowed, the file name where the error originated
should be printed. All errors should be caught and should allow the programs to

terminate gracefully without printing stack dumps.

Allowing file import will also create a possible error for style sheet files that

cannot be found or read.

Result

4,1 Introduction — Software Tools Used

Since most of the haptic soundscape map project was developed using the Java
language, Java compiler tools were selected to construct the style sheet interpreter.
The tools selected are called JFlex and Java CUP. These are compiler construction
tools based on the traditional Unix LEX and YACC tools [Brown et al., 1995]. To
use these tools, a developer defines the lexical, syntactical, and symantic rules of
the language and then the software uses this description to write the programs
that become the compiler or interpreter. To interpret the language used in the style
sheets, two distinct tasks must take place. First, style sheet input is broken into
predefined units, called tokens. Then a relationship is established between these

tokens to determine their meaning,.

The first step of this process is called the lexical analysis and is done by the
Java class file generated by JFlex. The lexical units of the language, which may be
anything from individual punctuation characters to longer patterns are described

using a special language called regular expressions. A regular expression is a pow-

25

Result 26

erful and flexible way to describe a block of text. JFlex supports a large set of
regular expression operators [Friedl, 1997]. JFlex will search for a match between
input characters and the regular expressions defined for the lexical structure of the
language. The lexer will locate the longest match and then execute the code as-
sociated with that expression. In most cases, that block of text and other relevant
information will become part of a token object that is passed on to the parser unit.
In other cases, as in the case of a character that can not be used for any match, the

associated action may be to issue an error message or to take other actions.

The second step of the process of interpreting the style sheet language uses
a Java class generated by the Java CUP (Constructor of Useful Parsers) software.
Java CUP is a system for generating a LALR parser based on the grammar of the
target language, in this case the map-building style sheet [Aho et al., 1986]. The
language description used by Java CUP resembles the BNF (Backus-Naur form)
grammar used to define the style sheet language in Appendix A of this paper
[Pagan, 1981, Louden, 2003]. However, each grammar definition also includes Java
language code indicating actions to be performed upon assembling a complete

syntatic phrase from the incoming tokens.

In the initial version of the Haptic Soundscape map, the parser interpreted the
style sheet, wrote that information to a file in XML (Extensible Markup Language)
format, and then exited. This XML style file was then read by software designed

to generate the map layer files.

Result 27

4.2 String Concatenation

After the initial development of the Haptic Soundscape map, the style sheet did
incorporate variable definition, but this capability was not yet being applied to
improving the usability of the style sheet. Values could be assigned to identifiers

as in the following example:

building_cclor = "#00FF00";
bicycle_color = "#990000";
callbox_color = "#FF0000";

The style sheet uses the notation of the equal sign (=) for variable assignment
and the colon (:) for style attribute assignment to differentiate the two. Once a
variable has been defined, the parser then saves the identifier and its value to a
hash table for look-up later in the processing of the style sheet. However, one
of the major problems in the first version of the style sheet was duplication of

information. Thus, the style sheet contained hundreds of lines like the following;

/ /Deady
building#005/{

on_click_sound: "http://www.cs.uoregon.edu/map/mp3s/005.mp3";
)

//Willamette
building#046{

on_click_sound: "http://www.cs.uoregon.edu/map/mp3s/046.mp3";
}

The style sheet had the ability to define the path and assign that to an identifier,
but didn’t yet have the ability to combine that with other variables or string con-

stants to build longer strings. To solve this problem, the style sheet parser needed

to be extended to gain the ability to concatenate string values.

Result 28

Since CSS does not support string concatenation, we had to look elsewhere to
find a convention for the notation. The decision was made to use the plus (+) sign
to join strings as is done in the Java language. Concatenation should be valid in any
right-hand side value of either type of assignment statement. Secondly, it should
be possible to concatenate any number and combination of variable identifiers and
string literals. To accomplish this, it was necessary to modify both the lexer and
parser instructions. To the JFlex instructions, the following was added to recognize

the plus sign as a valid token:

"+" { return symbol (tokens.CONCAT, yytext());)

This instruction tells Jflex to identify an instance of the plus sign and insert it
into a symbol object with the label of “CONCAT.” Then the instructions to the Java
CUP parser generator needed to be modified to perform the correct action when

encountering this symbol. First, a new nonterminal declaration was added:

non terminal strcat;

Next, it was necessary to create a recursive definition for the string concatena-
tion process to ensure that any number of string objects could be put together. The
language definition already had a “value” nonterminal to define the right-hand

side of either assignment type, so this was where the modification occurred.

value ::= str:i {: RESULT = 1i; :}
| NUMBER:n {: RESULT = n; :}
| value:;v strcat:s {: RESULT = v + s5; :}
| IDENT:i
{:

/+ Variable look-up and error handling goes here =/

Result 29

S

strcat ::= CONCAT str:s {: RESULT = s; :}
| CONCAT TIDENT:i
{:
/+ Variable look—up and error handling goes here x/
-

Variable look-up code has been omitted for clarity. In the first definition, a
value is defined to be either a quoted siring constant (handled by the “str” non-
terminal), a “NUMBER” terminal, an “IDENT” (variable identifier) terminal that
is then located in the variable definition table, or another “value” followed by a
“strcat” concatenation nonterminal. It is this recursive definition that allows con-
catenations of any length. The “strcat” nonterminal then defines the value to be
concatenated as either a “str” {string literal) or “IDENT,” a variable identifier to
be retrieved from the table. With these additions, the parser could now interpret a

style sheet organized as follows:

// default path definitions
soundPath = "http://www.cs.uoregon.edu/map/mp3s/";

/ /Deady
building#005/{
on_click_sound: soundPath + "005.mp3";}

//Willamette
building#046{
on_click_sound: soundPath + "046.mp3";}

This enables the definition of constants in one convenient place, like the begin-
ning of the style sheet, and makes the style sheet attributes shorter and easier to

read. If the path changes for a different server location, it needs be changed in one

Result 30

place only. This makes the style sheet more convenient to use and eliminates the

possibility of errots in the duplication of the path information.

4.3 Variable Substitution Macros

Adding concatenation improved the style sheet format, but there was still a prob-
lem with readability. There were hundreds of (shorter) style attribute definitions
for assigning building name pronunciations — each differing only in object ID and
sound file name. In fact, all the sound files had been named based on the building
ID. The next logical improvement in the style sheet should be to express this rela-
tionship in some sort of variable replacement language that could be expanded as
needed. Then, in the interpretation of the style attributes, these substitutions could

be used unless overridden by a more specific specification.

First, the decision was made to use square brackets with the percent sign (%)
and a letter variable to designate the expression marker. Here is an example of that
notation:
building #i%n] {

on-click-sound: buildingSoundPath + "[%n].mp3";

}

This is interpreted to mean that the object ID marker of “#[%n]” stands for any
object name in the class of “buildings.” The value of that ID (after the pound sign)
is to be applied as a text substitution wherever it is used in the following lines.

For example, if the building ID is “#005,” the file name becomes “005.mp3” and

Result 31

this string is concatenated to the “buildingSoundPath” to create the style attribute

value string.

To allow this expression, it was necessary to modify the definition of an object
ID in the JFlex lexer instructions to include the square bracket and percent char-
acters. At this point, the regular expressions for identifiers were also refined to

clarify their function.

/+ class and definition identifiers must start with letter * [/
[a~zA-Z_][-a—-zA-%_0-91* { return symbol {tokens.IDENT, yvtext())};)

/* object identifiers may be any combination of letters and numbers,
beginning with a hash sign +/
"#"(-a-zA-Z_0-9\[\1%]+ { return symbol (tokens.ID, yytext{}}:)

/+* number, possibly negative, int or float #/
[(=12([0-9)+ {[0-91+"."[0-9))| ([0-9]x"."[0-9]+))
{ return symbol (tokens ,NUMBER, yytext()}; }

Previously, there had been one definition for an identifier, used for classes, vari-
able identifiers, and object IDs. This had been defined as consisting of any com-
bination of letters, numbers, and underscore characters. This was redefined into
three types: an IDENT token, for class, style, and variable names; an ID token
for object IDs; and a NUMBER token for numerical data. Using the regular ex-
pressions shown above, an IDENT is defined as a string starting with a character
followed by any number of letters or digits. AnID is the pound sign (#) followed
by any string of letters and digits, including the ones used in the new macro def-
inition. A NUMBER is defined as having an optional negative sign followed by

digits with an optional decimal point.

Result 32

Now a new object ID non-terminal was created for the Java CUP portion of the

style sheet interpreter.

obj_id ::= ID:i {: RESULT = i.substring{l, i.length()}; I

The above expression removes the pound sign from the object ID and returns

the remaining string value.

Since the style sheet was still being saved as an XML file at this point in the
evolution of the project, the interpretation of the macro was temporarily added to
the StyleSheetReader class that processed the resutting XML file. Later, after the
style sheet parser was integrated into the main map project classes, a method was
added to the parser to interpret the macro language. The macro definition is basic,
defined to handle its projected usage in the Haptic Soundscape map project, but it

could be easily extended if a more sophisticated need were to become apparent.

4.4 Style Sheet and Map Integration

One of the main problem areas with the initial version of the Haptic Soundscape
Map project was the extra manual step necessary for making changes to style at-
tributes. The style sheet needed to first be parsed and the results saved to an XML
file. Then the main GisXMLReader class had to be executed to open the XML file,
read the attributes into a data structure, and extract matching style attributes for
each GeoShape object, the class that represents objects on the map. Besides be-
ing inconvenient io researchers, there were obvious efficiency concerns with this

process. As the style sheet was being parsed, the data was saved to a hash table

Result 33

structure, which was later traversed to print the XML. file. Then the XML structure
was read into a DOM tree which was traversed each time an object was created for

drawing the map.

To eliminate this duplication of effort, it would be desirable for the StyleSheet-
Reader class, called by GisXMILReader, to directly call the style sheet interpreter
and utilize the efficient look-up characteristics of the hash table data to add style
attributes to the GeoShape objects. The first step to realizing this goal was to
streamline the data storage tables in the Java CUP parser. A new class, called
StyleAttribute, was created to store the three components of a style attribute ~ a
key, a value, and a possible modifier.! Two hash table were created - one for reg-
ular style attributes and one for macro definitions — each with keys representing
object classes and values composed of the StyleClass objects used previously. Each
StyleClass object contains a hash table with object IDs as the keys and a list of

StyleAttribute classes as the value associated with each.

Next, public data access methods — getAttr() and getMacro() — were created
for external classes to read directly from the parser data structure. In the case of
the table for macros, the macro interpretation logic was encapsulated in its access
method. Each method returns a list of StyleAttribute objects to the caller. Using
this strategy, it became possible to eliminate most of the code in the StyleSheet-
Reader class. Now the class needed only to initialize the parser and call the ap-
propriate data access methods for each map object. The order in which each of
these style attributes is read determines the priority for applying style attributes

to objects. A new class name of “default” was created, resulting in five levels of

See Appendix A for definitions of these components.

Result 34

attribute priority from least to most specific style specifications.?

This simplification of the StyleSheetReader class also prompted a reorganiza-
tion of the functionality in the main map creating classes. In the initial version of
the map, the StyleSheetReader class had been assigning styles to constants defined
in the GeoShape class using a series of if-else statements. For example, a style sheet
attribute key of “on_click sound” was being matched to the GeoShape constant
value of “ON_CLICK_SOUND.” This is a function that should be encapsulated in
the GeoShape class. To streamline this process, the GeoShape class was modified.
The constants contained in the initial GeoShape class were instead implemented
as keys in a Java enumeration object. Each of these enumeration constants refer-
ences a matching style sheet key string. On construction of a GeoShape object, the
style sheet key strings are used as keys to create a hash table for storing the at-
tribute values. This results in a constant time look-up of style attribute values by
either their constant value, used by the ActionScriptBuilder class; or by their style
sheet key, used by StyleSheetReader. Then methods were created in the GeoShape
class to set and read the attributes, An abbreviated portion of this enumeration is

shown below:

public enum Func {

ON_CLICEK_SOUND ("on-click-sound"),
ON_CLICK_ZOOMED_IN_SOUND ("on-click-sound:zoomin"),
ON_CLICK_ZOOMED_OUT_SOUND ("on—-click-sound: zoomout ") ;

private String style;

5See “Precedence of Style Attribute Assignment” in Appendix B

Result 35

XML data files > ActionScript
in local format Builder

. Style sheet Map layer files
Style sheet file —% parser (ActionScript)

Figure 4.4: Style sheet parser integrated with map-building process for generating
ActionScript files. For comparison to original design, see figures 3.2 on page 16
and 3.3 on page 17.

Func(String style) {
this.style = style;
H

After this reorganization, it was possible to read and interpret the style sheets
from within the map-building process, eliminating one of the most problematic
manual steps in the map creation process. This new organization of the map-

building classes is shown in fugure 4.4.

4.5 Style Attribute Name Additions and Improvements

While adding new functionality to the style sheet language, several attribute nam-
ing issues became apparent. Therefore, the style sheet attribute naming conven-

tions and their interpretation by the Haptic Soundscape map-building software

Result 36

were adjusted in an attempt to solve these problems.

4.5.1 Key Names

In the initial version of the Haptic Soundscape map, style attribute key names used

the underscore character as a word separator. For example:

on_enter_sound: classSoundPath + "911ldtmf.mp3";

The C5S standard that we are following when possible uses the hyphen as a

word separator:

on-enter—-sound: classSoundPath + "911dtmf .mp3";

Since this form is closer to the established standard and probably easier for
those not accustomed to using the underscore character, the style sheet was changed
to use hyphens in style attribute keys. The method in the GeoShape class that pro-

vides for setting attributes was edited to accept either separator character.

4.5.2 Color Names

In the initial version of the style sheet some colors were defined, but not in a man-
ner that made the colors easy to visualize. For example, the following were used

in the style sheet:

parking_color = "#0000CD";
entrance_color = "#FFFFOQ";

Result 37

car_parking{
color: parking_color;

}
entrance: zoomin{
color: entrance_color;

Even to those experienced with the use of the hexadecimal RGB color model,
it is not a simple task to recognize the color for parking as medium blue or the
color for entrances as yellow. Therefore colors were defined by their names, as
designated in the X11 color model. This color model was chosen because it is a
widely used standard and its colors are supported by most web browsers. The

replacement definitions appear as follows:

MediumBlue = "#0000CD";
Yellow = "#FFFF0O0O";

car_parking |{
color: MediumBlue;

}
entrance: zoomin {
color: Yellow;

This makes color assignments more intuitive for anyone. The remaining prob-
lem is that any colors used must be listed at the beginning of the style sheet. This
issue was later resolved by enabling the import of multiple style sheets. See section

4.7 “Style Sheet File Import” for more detail.

Result 38

4.5.3 Color Definitions

In the initial version of the Haptic Soundscape map, only the “color” style at-
tribute was allowed and this was applied to both object fill and outline. To add
functionality to the style sheet and flexibility to the visual map image, the color
style attributes were separated into “fill-color” and “line-color.” Additionally a
“line-width” attribute was added. These were implemented in the GeoShape and
ActionScriptBuilder classes. The “color” style attribute was preserved and an hi-
erarchy was established in the GeoShape class to assign color attributes. If either
“fill-color” or “line-color” is not assigned for an object, the style defaults to the
“color” setting. If no color attribute is defined, the object uses a color predefined

as the default in the GeoShape class.

4,6 Multi-line Comments

The initial version of the style sheet language supported single line comments in
the form used by the C++ and Java languages. All characters from double slash
comment marker (/ /) to the end of the current line are considered comments and

discarded. The comment marker can occur anyplace on a line.

CSS supports multi-line comments using the opening marker of a slash and
star (/%) and a closing marker of the opposite (*/). Adding this type of comment
would support the CSS standard for comments and also offer the a more conve-
nient method to comment out whole blocks of code. Allowing comments to be

nested would allow a block of code to be temporarily commented out, even if it

Result 39

contains comments.

Comments are processed by the JFlex lexical analyzer portion of the style sheet
parser. Comment characters are discarded until the comment pattern ends and
then the next token is analyzed as normal. To address nested comments, it is nec-

essary to take advantage of JFlex support for multiple lexical states.

Lexical analysis always begins in the default state of “YYINITIAL” shown be-
low, with the first few token pattern matches as well as the starting marker for
multi-line comments:

<YYINITIAL> {

return symbol {tokens.COLON, yytext()); }
return symbol (tokens.SEMI, yytext()); }

return symbol (tokens.LBRACK, yytext{()); }
return symbol (tokens.RBRACK, yytext{)); }
return symbol (tokens.EQUAL, yytext{)}; }
return symbol (tokens.CONCAT, yytext(}); }

|l{ll

II}"

p— o p— p— g,

|I+II

"/+" { yybegin (COMMENT) ;
commentCount++;
if (commentCount == 1) {
startingCommentLine = yyline;
startingCommentColumn = yycolumn;

Lexical expressions are often regular expressions, but can also be simple strings
as in the examples above. In the action associated with the multi-line comment
beginning, several variables are set and analysis moves to the COMMENT state.
The variable commentCount is used to track nested multi-line comments and the
other variables record the position of the opening comment marker in case of error.

Below is the COMMENT state:

Result 40

<COMMENT> {
"//"{SINGLE_LINE_COMMENT)* { }
"/+" { commentCount++; }
Ve/" | if (——commentCount == 0) yybegin(YYINITIAL); }
(COMMENT_TEXT} { }

{NEWLINE]} {)

The upper-case constants are regular expression defined elsewhere in the lexer
pattern file. SINGLE_LINE_COMMENT is defined as any character except the end-
of-line (NEWLINE) character. The empty braces mean that no action is taken —
the characters are discarded. While in the COMMENT state, any single line com-
ment skips to the end of the line. Another multi-line beginning marker increments
the commentCount and a closing multi-line marker decrements the same variable.
When the commentCount reaches zero, we jump back to the YYINITIAL state. Fi-
nally, any NEWLINES are discarded.

COMMENT _TEXT is defined by a complex regular expression:

COMMENT_TEXT =
(I°+/An3 10 =/An]" /" {7« /An] LI/ AN " [2/An])"« 17/An) ["/ 7+ /\n]) =

This negated regular expression discards all characters encountered, stopping
only at instances of “/*”, “*/”, ”//”, or a newline. When any of these charac-
ter combinations are found, the pattern matching returns to the beginning of the
COMMENT state. Processing multi-line comments one line at a time avoids the

possibility of overflowing the buffer with an extremely large comment block.

Result 41

These code blocks enable multi-line comments, possibly containing other single-
or multi-line comments. This feature also opens up new opportunities for difficult-
to-diagnose style sheet errors. To help pinpoint these problems, special error hand-
ing for comments blocks was implemented. This is described in section 4.8 “Error

Handling.”

4.7 Style Sheet File Import

The final style sheet enhancement specified for this project was the ability of one
style sheet to import another. This would, for example, allow all the 140 color def-
initions in the X11 color model to be made available to the user without cluttering

the main style sheet with the definitions.

Although we refer to this action as file import, it should not be confused with
the import statement in Java and other object-oriented languages. The action re-
sembles the “@import” statement in CSS or the “#include” statement in C/C+4+,

where the included file is, in effect, inserted at the location of the command.

For syntax, we chose to again follow the CSS precedent. Differing from CSS,
the style sheet import statement does not need to appear as the first item in the

style sheet. A style sheet import statement appears as follows:

@import "colors.ss";

The entire file import process is handled from within the lexical analyzer. The
first step in enabling file import is to switch the skeleton file used in compiling

the lexical analyzer from “skeleton-default” to “skeleton-nested.” This skeleton

Result 42

file provides for maintaining a stack of file buffer objects, popping each after it
has been read, and continuing analysis on the next buffer in the stack. The new
skeleton file is specified by changing the JFlex compilation command in the parser

make file.

PROJHOME = ../../../trunk
JFLEX = ${PROJHOME) /tools/jflex/bin/jflex

$ (JFLEX) stylesheet.lex -skel $(PROJHOME)/tools/jflex/src/skeleton

The first two lines define the relative addresses of the project root and the jflex
executable file. During the compilation phase, JFlex reads the lexical instructions
in the “stylesheet.lex” file and writes a Java file to be compiled to form the finished
style sheet lexical analyzer. Next the file import statement was added to the lexical
definitions file as a complete lexical token:

"@import" [\t\r\n]+“\"" {FILENAME} 'Il\ll n [\t\r\n] *u’. n

{
String fname = getFileName (yytext());

FileReader stream = getFileStream{fname};
if {stream != null) |
yypushStream(stream);

)

This regular expression defines the import statement as being the literal string
“@import”, whitespace, the file name surrounded by double quotes, possibly ad-
ditional whitespace, and a closing semi-colon. Since the lexical analyzer always
searches for the longest possible token match, it will accept the entire import line

and not attempt to separate it into either string or semi-colon tokens.

.nested

Result 43

The FILENAME regular expression match is defined elsewhere as any combi-
nation of upper and lowercase letters, numbers, hyphens, underscores, or slashes.
While many operating systems might allow additional characters or spaces in file
names, the file name specification for style sheets has been kept relatively simple.
The file name can be either an absolute or relative address. The new file name
is first passed to the getFileName function, which checks for file existence and
returns a modified path to the file (more on this later). Then a new FileReader
object is created and pushed onto the stack of file streams using a method from
the “skeleton-nested” code skeleton file. JFlex automatically resets the file line and
column counters used for error messages and preserves this information by using

special file stream objects on the stack.

Upon impoting a second file, the lexical analyzer switches its context to reading
the new file. When the end of the new file stream is reached, it is necessary to
handle the end-of-file character in a different manner to return to the previous
style sheet context at the point where the new file had been imported. To facilitate
this, JFlex provides a special end-of-file state. When this state is defined, JFlex will
switch to the EOF state instead of returning an end-of-file token to the parser. Here

is the initial code for the EQF state:

<<EQF>> [if (yymoreStreams()) yypopStreai();
else return EOF;

}

When reaching the end of the imported file, JFlex calls the pre-defined function
yymoreStreams() to determine if there are more file stream objects on the stack. If

S0, it pops the top stream and begins processing the next. If the stack has no other

Result 44

stream objects, the EOF token is returned to the parser and style sheet processing

is done.

The issue encountered at this point is the addressing of the imported style
sheets. The use of relative file addressing is desirable because it allows for easy
relocation of project files. However, at this stage of file import development, all
addresses are relative to the parser itself. This is counter-intuitive; it would be
much clearer for the user if the import file address were relative to the file into
which it is being imported. This required several changes to the lexical analyzer

code.

In its default configuration, the lexical analyzer is constructed with a FileReader
object passed to it as the initial input. Therefore, the lexical analyzer has no way of
knowing the actual address or name of the main style sheet file. To solve this prob-
lem, an alternate constructor was created for the lexical analyzer. This constructor

allows for a file name to be passed to the scanner instead of an opened file stream.

scanner (String fileName) throws FileNotFoundException |{
this (new FileReader {fileName));
fileNames.push{new File(fileName) .getPath{));

Next, a second stack was created to store the file names. This would also prove

to be useful for error messages.

private Stack<String> fileNames = new Stack<String>{();

Whenever a new file stream object is pushed or popped from its stack, an equiv-

alent action is preformed to the file name stack. Having access to the current and

Result 45

any previous file names, it now becomes possible to load an imported style sheet
based on an address relative to the path of the style sheet from which it is imported.
The Java code to handle that file address transformation in a platform independent

way is shown below:

/+ create File object from new file name +*/
File newImport = new File(filename);

if {(newImport.isAbsolute()) |
newImportName = newlImport.getPath();
}
else | /* relative path =/
File curFile = new File(fileNames.peek(});

newlImport = new File(curFile.getParent (), newImport.getPath(});

try |
newImportName = newlmport.getCanonicalPath();
H
catch (IOException e) |
System.err.println{"Unable Lo locate import file: " +
newlmportName +
"\n(No such file or directory)"};
System.exit (1);

If the new file address is absolute, no path resolution need be done. If the
new path is relative, the parent path of the current file is combined with the rela-
tive path. The method getCanonicalPath() combines the parent and relative path,
eliminates unnecessary path directives like “../”, and confirms the existence of the

resulting absolute file path.

Maintaining parallel data structures for the file name and file stream objects is
not optimal from a software architectural perspective, but was used in this case to
keep modifications in the application code area. Modifying the skeleton library file

might cause problems if the JFlex library is updated with a new version.

Result 46

With these modifications, style sheet imports can now be handled in a trans-
parent manner. Additional error handling considerations are discussed in the fol-

lowing section.

4.8 Error Handling

PJ. Brown of the University of Kent describes the implications of developing good

eITor Messages:

One of the most important yet most neglected aspects of the human/machine
interface is the quality of the error messages produced by the machine
when the human makes a mistake. [...] The user learns whether his
system is a friend or a foe when he makes errors. A friendly system
should give an informative message and provide help in correcting the

error [Brown, 1983].

Brown would probably not consider the initial version of the Haptic Sound-
scape map style sheet a friend of the user. The error messages provided little infor-
mation about the type of error or its location. Furthermore, features added in this
version create new circumstances and require additional error messages to help

users locate a problem.

Result 47

4.8.1 Interpreter Errors

The basic style sheet interpreter errors can be classified as being of three types:
lexical, syntactical, and semantic. An example of a lexical error is a character in the
style sheet that doesn’t match to any of the token specifications. A syntactical error
could be something like a malformed statement block or an improperly terminated

line. An example of a semantic error would be the use of an undefined variable.

Lexical errors are caught by the lexical analyzer. If no match can be made to any
of the token definitions, a default error handler catches the first illegal character

and calls the fatal error method.

["] { reportFatalError("Illegal character \"" + yytext{) + "\"");)

This match calls the fatal error method and passes it a message that includes
the type of error and the text that triggered the error. The error method combines
this with the line and column position where the error was located and prints this
information for the user:
private void reportFatalError{String msg) |

reportFatalFrrorPos{msg, yyline, yycolumn);

H
private void reportFatalErrorPos(String msg, int line, int column) {

System.err.println("Fatal error: " + msg };

System.err.println("in line " + (line + 1) + ", column " +
{column + 1) + ".");

System.exit {1} ;

Result 48

These overloaded methods provide for calling the error message with the cur-
rent line and column positions or for specifying other saved locations. The later

form is used for certain comment block errors (described in next section).

The current line and column positions are saved into the token object passed
to the parser component, so syntactic error handling in the parser is very similar
to the example above. The major difference is that syntactic errors are caught by
the Java CUP runtime code, so the default error handler is overridden to halt the

program and print the error message with line and column location information.

Semantic errors, like the use of an undefined variable must be caught by the

parser code:

if (var_table.containsKey(i}) |
RESULT = var_table.get (i);

}

else |
parser.report_fatal_error ("Undefined variable in stylesheet: " + i,
{java_cup.runtime.Symbol) CUP$parser$stack.elementAt (CUP$parser$top)};

This example illustrates the action necessary to issue a undefined variable error.
If the variable name is not found in the look-up table, the token symbol object must
be retrieved from the runtime code to call the error handling method with proper
line and column location information. That object on the top of the parser stack is

the second parameter passed to the report_fatal_error method.

Result | - 49
4,8.2 Comment Block Error};.

Extending the comment syntax to irjclude multi-line, nested comments increases
the usability of the style sheet, but it als"ox._increases the number and complexity of
possible errors. For example, it is necessary to define the meaning of the following

comment block:

/

*

x+ Comment block may span mulﬁiple lihes
* and contain other embedded commentis.
* // single line comment */l

* [» another embedded comment - i
*

*/ : '

In line 5 of the,example, the closing comment mé\‘-;yker (*/) is correctly ignored

because it is part of a single line comment. The smglé'::fl_ine comment marker (//)

fiterprets everything from that point to the end of the lilig as comment text, even
i

if it includes a multi-line comment marker. However, this 1nakes structural errors

easy to commit and, unless special checking is enabled, diffic ult to diagnose. For

example, suppose a user marks his comment block with slashes:

[.

R ——— S

// Comment block may span multiple lines

// dand contain other embedded comments.
/x

embedded comment

Result 50

This is an error because the lexical analyzer will not recognize the final clos-
ing multi-line marker — part of the single line comment that begins that line 9
(//). Without enhanced error checking, the lexical analyzer will discard all the
text from this point forward as part of a comment block without generating any
errors. Therefore, a check was added to the EOF block of the lexer. If the count
of comment markers is not 0 at the end of processing a file, an error should be re-
ported to indicate the problem. However, this error will be of little use in locating
the point of the problem, because the line and column numbers will point to the

last characters in the file.

When processing nested comments, it is impossible to unambiguously match
the starting markers with ending markers as intended by the user, but it is possible
to save the position of the first opening marker. This is more likely to point out the
approximate point of the error. First, the position of the first opening comment

marker in each block is saved when encountered:

"/x" [yybegin (COMMENT) ;
commentCount++;
if {commentCount == 1) |{
startingCommentLine = yyline;
startingCommentColumn = yycolumn;

Then, inside of the EQF block, the comment marker count is checked when

exiting a style sheet file:

<<EOF>> | if (commentCount > 0) |
reportFatalErrorPos (
"Unmatched comment markers (/= =/}. " +
"Opening marker ", startingCommentLine,

Result 51

startingCommentColumn) ;
}
if (!fileNames.empty()) fileNames.pop();
if (yymoreStreams({)) yypopStream();
else return EQF;

With properly formed comment blocks, the commentCount should always be
0 at end-of-file. Anything else can safely be assumed to be an error. The fatal error
method is called with the position of the opening marker in the most recent blodk

of multi-line comments.

Additionally, a pattern match was added to catch an unmatched ending com-

ment marker;

LY AU report¥atalError {"Unmatched closing comment marker {(=/)™y; }

This condition would have generated an illegal character error without the ad-

ditional check, but this error message describes the problem more accurately.

4.8.3 Special File Import Error Handling

All errors now print the type of the error, the actual token causing the error, and
relatively accurate line and column positioning for each error. However, with mul-
tiple input style sheets, we still need to know in which file the error occurred.
Therefore, all error messages need to include the name of current style sheet when
an error is reported. In the lexical analyzer, this information is easily available by
“peeking” at the top of the style sheet name stack. Here is an example of the fatal

error message with the new information added:

Result

private void reportFatalExrrorPos(String msg, int line,

System.err.println{"Fatal error: " + msg);

System.err.println{"in line " + {line + 1) + ",

{column + 1) + ", ");

String fname = "style sheet file";
if (!fileNames.empty{)) {
fname = fileNames.peek();

}

System.err.println{"Exror in file ™ + fname);

System.exit (1) ;

column

n +

52

int column)

Transferring this new information to the parser, however, poses a different

problem. The default Java CUP Symbol object used for encapsulating the token

data does not include a field for file name. Therefore, it was necessary to extend

the class as shown below:

public class StyleSymbol extends java_cup.runtime.Symbol {

public String fileName = "";

StyleSymbol (int type, int yyline,
int yycolumn, String file) {
super (type, yyline, yycolumn);
fileName = file;

StyleSymbol (int type, int yyline, int yycolumn,

Object wvalue, String file) {
super (type, yyline, yycolumn, wvalue);
fileName = file;

The two class constructors shown correspond to the default constructors of the

Java Cup Symbol class, but add the additional string file name field to the class.

{

Result 53

Since the new class extends java_cup.runtime.Symbol, the lexical analyzer can re-
place the default class with the StyleSymbol class when passing token information
to the parser. The parser error handling method checks that the proper type of
object has been passed to it and extracts the file name for use in the error reporting

message. That portion of the parser error handler is shown below:

if (info instanceof StyleSymbol) {
System.err.println ("Exrror in file " +
{(StyleSymbol) info) .fileName) ;

The error messages generated by these techniques provide more accurate infor-

mation to the user about the cause and location of possible errors.

Conclusion

I have appreciated this opportunity to make my contributions to the University of
Oregon Haptic Soundscape map project. Research into making computer technol-
ogy more accessible and useful to those with disabilities is an area where there is

much work yet to be done.

At the conclusion of my work extending the map-building style sheet, a num-
ber of usability and efficiency milestones have been met. At the same time, new
goals have come into view. I'll discuss some of those new ideas in “Future Direc-

tions” on page 58.

5.1 Style Sheet Improvements

The integration of the style sheet interpreter into the main map-building software
has resulted in greatly increased efficiency of operations for both the user and the

computer hardware.

Previously, it was necessary to interpret the style sheet and store the attribute

settings into one data structure. This data structure was traversed to print an XML

54

Conclusion 55

style sheet output file. Next, in a separate manual operation, the map-building
software was initiated in order to read the style sheet XML file and built a DOM
tree from its contents. This data structure was traversed to search for matching
attributes for each object encountered in the map-building process. Finally, each
matching attribute was applied to the map object by traversing all possible at-

tributes of the object to find the correct match.

With the project enhancements in place, the style sheet interpreter is initiated
by the map-building software. The style sheet is interpreted and and its attribufes
are stored in constant time into a single data structure. The map-building software
accesses matching attributes for each object directly from that data structure, again
in constant time. These attributes are assigned to the map object, using a constant

time table in the map object.

The extensions to the style sheet language have greatly increased the readability
of the style sheet itself. After adding new atiributes, the ability to call the parser
directly, more efficient handling of attributes, and five levels of priorities for ap-
plying attributes, the size of the map-building classes have increased by less than
three percent, due to code optimizations. Extended functionality, command set,

and error checking has increased the size of the parser code by about fifty percent.

The most dramatic change brought about by this phase of the project has been
the readability and usability of the style sheet itself. The original style sheet con-
tained 714 lines. The new style sheet, including additional instructional comments,
has a length of only 162 lines. The elimination of repetitious attribute assignment

has resulted in short, succinct style blocks. The file size of the new style sheet is

Conclusion 56

about 25% of the original.

5.2 Style Sheet Usability

Modifying the style sheet should prove much easier and less intimidating for re-
scarchers. The style sheet user now has access to a large set of named colors. New
visual style attributes are available. The ability to add and remove attributes by
use of comment blocks should simplify experimentation. Finally, attributes can be
applied ditectly to map-building files with no need to resort to manual interpreta-

tion steps.

New error checking and messages should provide better user support by point-
ing out the cause and location of style sheet errors. Errors caught by the interpreter
stop all processes and inform the user of the problem and its location. Unrecog-

nized style attributes cause warnings to be issued during map-building.

5.3 Benefits of using a domain specific language

The style sheet as a domain specific language for the Haptic Soundscape map is
an essential component of the project. The map could be more easily built by
computer scientists without the inclusion of a DSL, but the finished product would
be a static application. Any modifications determined necessary by researchers
would require more computer programming to implement. By using the style

sheet DSL,, anyone with moderate computer skills can reconfigure the map and

Conclusion 57

generate the new model in a matter of minutes.

Domain Specific Languages, also called “little languages,” serve other purposes
as well. They evolve naturally from observations gained while working in the
problem area of the main project. As abstractions of underlying processes, they
enable users and designers to focus on what is to be done, not how it is done. Func-
tioning at this higher level, they are less prone to error than the general purpose
programming language used to develop the main application. The concept of de-
veloping a domain specific language is one that programmers should embrace for

most larger projects. Jon Bentley has this to say about little languages:

Languages surround programmers, yet many programmers don’t ex-
ploit linguistic insights. Examining programs under a linguistic light
can give you a better understanding of the tools you now use, and can
teach you design principles for building elegant interfaces to your fu-

ture programs [Bentley, 1986].

Compiler construction tools have been known to computer scientists for years,
and are available now for use in most language and system environments. These
tools, mostly based on the standards of the original LEX and YACC tools, provide
a relatively easy and powerful method to develop domain specific applications.
The map-building project has benefited greatly from the choice of JFlex and Java
CUP tools for implementing the style sheet from the beginning of the project. With
this foundation in place, modifying and “growing” the style sheet language has
been an uncomplicated process. Future modifications to the style sheet language

should also pose no major problems for developers.

Future Directions

As the current stage of the style sheet enhancements and improvements to the
general map-building process has been completed, new ideas for the future devel-

opment of the Haptic Soundscape map have become apparent. Some of these are:

¢ Finding functional and affordable haptic-enabled input hardware has been
problematic from the beginning of the map project. The device chosen for
the initial development was a haptic mouse originally intended for use in
computer games. Its older style proved to be bulky and not as responsive as
would be desired. The software support also limited experimenters to using
only Internet Explorer web browser on the Microsoft Windows operating sys-
tem. By the end of the initial phase of the project, even this mouse model had
been discontinued by its manufacturer. In addition, more recent trials have
shed doubt on the use of a computer mouse as an accessible pointing device
for visually-impaired users. A more ideal interface would probably be some
sort of haptic-enabled tablet, if such hardware were available. That would

provide the user with a better spatial representation of the onscreen area.

58

Future Directions 59

¢ The original map was developed using version 2 of the ActionScript lan-
guage for creating onscreen objects and actions for the Adobe Flash platform.
One issue that remains in the functionality of the map as a research tool is that
the automatically generated ActionScript files must be manually opened in
the Flash application to generate the final file format. By converting the lan-
guage used to ActionScript version 3, the map-building process could take
advantage of a newly available command-line compiler and the entire pro-

cess could be automated.

e It should be possible to construct the Haptic Soundscape map for display
systems other than the web server/Adobe Flash/web browser interface ex-
plored during initial development. The ActionScriptBuilder class was de-
signed to be an interchangeable interface and could be replaced with a class
designed for a different target platform. One project currently underway
is attempting to do this using a Java desktop application as the new target.
This promises better control over system features not available through a

web browser.

A logical extension of the concept of the style sheet as the project user interface
would be to expose more application functionality through the style sheet. There
are a number of mapping features such as overall map size, zoom levels, grids,
and navigational sounds that are still hard-coded into the main project files. Hav-
ing access to more mapping functionality would provide researchers with a more

flexible tool.

Appendix A

Style Sheet Language Reference

A.1 Introduction

This document is a reference for the style sheet language created for the Hap-
tic Soundscape Map project, developed as a collaboration between the Computer
Information Science and Geography departments at the University of Oregon in
2007. The map itself is generated from a GIS (Geographic Information System) in-
formation database at the University. The purpose of the style sheet component of
the project is to make the finished map easily configurable by researchers without

needing to enlist the help of others with experience in computer programming,

Our design for the map-building style sheet is modeled on the Cascading Style
Sheet specification used with Hypertext Markup Language (HTML). The project
style sheet is a plain text document that can be easily edited to set haptic, sound,

and visual properties of the various elements displayed on the map.

60

Appendix A — Style Sheet Language Reference 61

A.2 BNEF Grammar

This document uses an extended version of Backus-Naur form (BNF) notation for
specifying lexical and syntactic conventions used in the style sheet language. Here

is an example of the notation that will be used.

(identifier) =
(letter)
(uppercase) :=[a]...[Z]
(lowercase) :=[a]...[z]
(digit) =={0]...[9]

lettery ((letter) | (digif} | = | =1)*

uppercase} | (lowercase)

— —

The first line of the preceding example means that an identifier begins with a
letter character and then is composed of any number of letters, digits, underscores,
or hyphens. Parentheses are used for grouping expressions. The vertical bar (|)
indicates a choice between two or more alternatives. Literal characters, like the
hyphen and underscore above, are enclosed by boxes. Immediately after an item,

a star (*) means zero or more repetitions of the item are allowed by the definition.

The second line indicates that a letter can be either uppercase or lowercase,
which are each defined in following lines. The use of an ellipsis (three dots) be-
tween literal characters indicates a series. Thus, a digit may be any of the charac-

ters from 0 to 9, inctusive.

Examples of identifiers, as defined by the above rule, include “a”, “a99", “A 9_c-
", and “a-pretty-good-name”, but not “99” or “9abc” (because they don’t begin

with a letter).

Appendix A — Style Sheet Language Reference 62

(number) = [[=)]((integer) | {float))
{integer) = {digit)+

(flont) = ({digity* = {digity+) | ({digit)+ = (digit)*)

(digity ==[0]...[9]

An optional item is surrounded by square brackets [| as shown in the optional
minus sign in the first line of the preceding example. Plus (+) means one or more
repetitions, as illustrated in the definition of an integer a being composed of one or
more digits. The definition of a float (floating point number) can be interpreted as
defining that symbol as zero or more digits followed by a decimal point followed
by one or more digits; or one or more digits followed by a decimal followed by
zero or more digits. In other words, a float must have at least digit either before or

after the required decimal point.

Examples of integers include “99”, “009”, and “-34”. Examples of floats include

“99.7”, “0.0”, and ”.09”.

(string literal) ::=["] (stringchary* "]
(stringchar) ::= (any character except double quote)

The preceding example demonstrates how a character class may be described
by rules. Text within angle brackets () is a rule to define a particular category of
characters allowed. A string literal is defined as two quotation marks surrounding

any number of characters that may consist of anything except quotation marks.

Appendix A — Style Sheet Language Reference 63

A.3 Lexical Structure

This section defines the individual building blocks, called lexical elements or to-
kens, that are used by the the style sheet language. A style sheet is first broken
down into these basic blocks and irrelevant characters, such as spaces and com-
ment lines, are discarded. Then the tokens are assembled into logical statements

and their meaning is interpreted.

For example, in the University of Oregon haptic soundscape map, the style

sheet block below associates a special sound file with Deady Hall on the campus:

//Deady Hall
building#005 {

cn_click _sound: buildingSoundPath + "005a.mp3";
)

If we break this statement into tokens, we have:

building
#005
{

on_click_sound

buildingSoundPath
+
"005a.mp3"

r

These are the elements that are interpreted to assign attributes to parts of a map.

Note that the comment line has been discarded.

Appendix A - Style Sheet Language Reference 64

A.3.1 Whitespace and Indentation

The term whitespace refers to the empty space that is used around items to visually
separate them. The set of whitespace computer characters consists of the SPACE,
TAB, CR(carriage return), and LE(line feed) ASCII characters. When two tokens
appear on the same line, it is often necessary to separate them by the use of one or
more whitespace characters. Multiple whitespace characters are allowed and the

unnecessary characters are discarded.

In general, end-of-line characters are regarded as whitespace and allowed to

occur any place where one might place whitespace (space or tab) characters.

car_parking{color: blue;}

As an example, the above statement contains no internal spaces or line breaks
and the following example contains a number of spaces, tabs, and line breaks. Both
are interpreted exactly the same.

car_parking

{

color : blue;

}

Whitespace and indentation options are left entirely to the style sheet author.
Tab or space characters appearing before token strings have no effect on the inter-
pretation of the style sheet. The user is encouraged to adopt a consistant layout
style for statements in the style sheet, using spaces and line breaks as appropriate

to enhance readability.

Appendix A - Style Sheet Language Reference ' 65

A.3.2 Comments

This style sheet specification supports both the multi-line type of comments used
in CSS documents and the single-line comments supported by the C++ and Java

programming languages. All comments are ignored by the style sheet interpreter.

For single line comments, the comment block begins with two forward slash
characters (//) and continues to the end of the current line. Eveything on the rest
of the line is ignored by the style sheet interpreter. The beginning of the comment
block is allowed to océur anywhere in the line. A line may also consist of a style

sheet token followed by a comment.

Multi-line comments begin with a forward slash followed by a star (/*) and end
with a star followed by the forward slash (*/). Multi-line comments may also begin
and end anywhere in a line. Multi-line comments may be nested — one comment
block may contain another inside. However, the beginning and terminating tokens

must be properly matched and nested to be interpreted correctly.

Examples:
fxx
o
%# This is a legal multi-line comment
*
* [+ Another comment may be nested
* inside the first =/
*
* [/ This is also correct because everything on these
* [/ lines after the double slashes is ignored. */
*
SO
*/

// This is a single line comment.

Appendix A - Style Sheet Language Reference

@import "colors.ss"; // Comments may appear beside tokens
// Comments may appear as part of required whitespace.
building{ // default building colors

fill-color: green; /f/ fill color
line—-color: black; // outline color

66

While it is possible to create complex, nested comments as illustrated above,

this practice is not recommended. If the starting and ending tokens are not prop-

erly nested, the interpreter could consider the rest of the style sheet a comment or

register an error. This feature, however, is useful when temporarily commenting

out a block of code containing other comments.

The one exception to this rule is that the parts of the file import statement can-

not be interrupted by comments. This statement is considered as one compound

token.

A.3.3 Blank Lines

Blank lines, possibly containing whitespace or end-of-line characters are ignored

by the interpreter and may be placed wherever desired to increase the readability

of the style sheet.

Appendix A — Style Sheet Language Reference 67

A.3.4 Other Tokens

Aside from the tokens already discussed, the style sheet can contain the follow-
ing classes of tokens: @import statements, class and definition identifiers, object

identifiers, numbers, string literals, color constants, operators, and delimiters.

The longest possible stream of characters will always be combined to form to-
kens in the style sheet language. Thus, classSoundPath will be interpreted as one

identifier, not as “class” followed by “Sound” followed by “Path.”

All identifiers and keywords are case-sensitive, This means that “classSound-

Path” is not the same identifier as “classSoundpath.”

A.3.5 Import Statements

An import statement is used to import a second style sheet into a style sheet cur-
rently being processed by the interpreter. The imported style sheet file is read
at that point before continuing to read the rest of the original file. It is as if the
“@import” statment were replaced by the contents of the imported file. Style sheet

imports may be nested to any depth.

(import-statement) ::= {filename) []
{filename) n=((letter) | (digit) | 3 |1 =11 = |)+

File paths must use the forward slash (/) character as a directory separator. An
example of an import statement is shown in the following example along with a

preceding comment line:

Appendix A - Style Sheet Language Reference 68

// import color definitions
@import "colors.ss";

This use of an imported style sheet can make a large number of definations
available for use in the main style sheet without cluttering that file. The above

éxample is used to import color definitions into the style sheet environment.

A.3.6 Identifiers

Identifiers are used for class identification on the map (such as buildings or walk-

ways) and for definitions used within the style sheet.

(identifier) ::= (letter) ((letter) | (digit) | = | [Z])*

Identifiers must always begin with an upper- or lower-case letter character, fol-
lowed by any combination of upper- or lower-case letters, digits, underscore char-

acters, or hyphens.

The example below contains 3 identifiers: car_parking, color, and blue.

car_parking{
color: blue;

)

A.3.7 Object Identifiers

Object identifiers are used to specify a particular object within a class of objects.

Appendix A — Style Sheet Language Reference 69

(object_id) === #] ((Jetter) | (digit) | = |1 3 | [1] | | [5])+

Below are two examples of object identifiers. Within the University of Ore-
gon Haptic Soundscape map, “#044” is used to identify the object Deschutes Hall
within the class of “building.” “#NC895¢13” is id of the UO Bookstore.

building#044
building#NC895e13

A macro definition is a special type of object identifier. This allows an action to
be performed on every object within a class by substituting the object identifier in

the action.

An example of a macro substitution object id is “#[%n]".

A.3.8 Numbers

Numbers may be positive or negative integers or floating point numbers using a

decimal point.

(number) ::= [[7]] ({integer) | {float))
(integer) = {digit)+
{float) == (({digit)* 3 {digit)+) | ({digit)+) {digit)*)

(digity :=[o0]...[9]

The following example illustrates usage of an integral number:

Appendix A — Style Sheet Language Reference 70

building {
line-width: 1;
}

A.3.9 String Literals

(string Titeral) ::= "] (stringchary*["]

(stringchary = (any character except double quote)

Strings are used to define resources and colors for the map production. The

quoted characters below are examples of string literals.

LightPink = "#FFB6C1l";
on—-hover—-sound: "stairways.mp3";

A.3.10 Color Constants

Color constants are a special type of string literal used to define colors for the map.

{color_constant) ::=| 4 | (RRGGBB})

(R} = {digit) | {hexletter)
{G) = {digit) | (hex_letter)
(B) = {digit) | (hexletter)

(hex Jettery ==[a] {[B] | {c] | [D] | [E] | (=] | {o] | (] | [d] | [£]
(digit) :::@...@

A color constant takes the form: #FE3300. It consists of a hash(#) followed

by exactly 6 hexadecimal digits [Meyer, 2004, p. 68]. Uppercase hex letters are

Appendix A — Style Sheet Language Reference 71

recommended, but either uppercase or lowercase will function properly. Below

are examples of color constants used in defining color names.

Plum = "#DDACDD";
Violet = "H#EE82EE";
Magenta = "#FFOQFEF";

Note that you can import the color list in Appendix C and then refer to colors

by name only.

A3.11 Operators

The style sheet language uses the following three operators:
= +

The colon is used to define object style attributes. The equal sign defines vari-
ables for use in the interpretation of the style sheet. The plus sign indicates string

concatenation.

A.3.12 Delimiters

The style sheet language uses the following delimiters:

{r o

Braces are used to group style attribute definitions. Square brackets are used to
denote macro substitution components. Double quotes are used to delimit strings.

The semi-colon functions as an end of logical line character.

Appendix A - Style Sheet Language Reference 72

A4 Statement Syntax

This section describes the syntax of the style sheet. In this language, each import,
assignment, or attribute statement is contained in a logical line terminated by a

semi-colon (;) character. This logical line may span any number of physical lines.

A41 Import Statement

This is a special statement that is used to import additional style sheets into the

one presently being processed by the lexical analyzer.

(import-statement) ::= {filename) [7]
{filename) n=((letter) | {digity | = | 5 1 =))+

An example of this syntax is:

RQimport "../colors.ss";

This would import a file named colors.ss from the parent directory with respect
to the location of the current style sheet being read. The file name may include
an absolute or relative path statement. A relative path statement begins with the
name of a sub-directory or ”..” which refers to the parent directory. All directory
separators should use the forward slash (/) convention, regardless of the operating

system being used.

An example of where a file import would be useful is to list all color definitions

in a separate file and import this into the top of the main style sheet. In this man-

Appendix A - Style Sheet Language Reference 73

ner, statements in the main style sheet may refer to defined color names such as

“LightBlue” instead of “#ADDSE6”.

If the import file cannot be found or cannot be read, the interpreter will report

an error and exit.

Since this statement is actually processed in the lexical analyzer instead of the
parser, comments are not allowed within the import statement. Any whitespace
character, including line breaks, are acceptable where whitespace can be used to

separate tokens within the statement.

A.4.2 Assignment Statement

Assignment statements are used to assign string or numeric argument values to

an identifier.

(assignment) = {identifier) [=]({string literal) | {identifier) }[7]

Examples of an assighment statements are:

classSoundPath = "./classSounds/";
Plum = "#DDAQODD";

The first creates a variable identified by classSoundPath which has a value of
“_/classSounds/”. The second example assigns a hexadecimal RGB color value to
the name Plum. The variables can then be used in the right side of any assignment

or class attribute statement.

Appendix A — Style Sheet Language Reference 74

A.4.3 Style Attributes

Style attributes are assigned by using the colon (:) character.

(style_attributes) = (identifier) [*] (value) [7]
{value) = (string literal) | (variable_identifier)
{variable_identifier) ::= (identifier)

Examples of style attribute assignment are:

fill-color : "#8B0O0OQO™;
fill-ceolor : DarkRed;

The first assigns the value of “#8B0000” to the “fill-color” attribute key. The
second assigns the predefined color name of DarkRed. The two statements are

actually equivalent, since DarkRed is defined as “#8B0000” in the X11 color model .

A.4.4 Concatenation

The plus (+) sign is used in the style sheet for string concatenation — combining

two or more strings to form one.

(concatenation) ::= (item) ([+] (item))+
(ifem) = (identifier) | (string_ literal)

8See “Color Constant Names” in Appendix C.

Appendix A - Style Sheet Language Reference 75

An example of usage for concatenation is:

classSoundPath = "./classSounds/";
on-enter—sound: classSoundPath + "bikebell.inp3";

This would result in the style attribute “on-enter-sound” being assigned the
concatenation of the value of classSoundPath and the literal string “bikebell. mp3”,

resulting in the complete file path “./classSounds /bikebell. mp3”.

Any combination of variables and string literals may be concatenated on the
right side of any assignment or style attribute statement. The plus sign signifies

string concatenation only. Thus, the statement:

produces:

33

A.4.5 Style Selector

The style selector specifies what object or class of objects a style attribute or set of

attributes should be applied to.

(style_selector) ::= ({class_name) | (object id)] [(modifier)])
| ([(class_name)] {object_id) [(modifier)])

(class_name) = {identifier)
(object_id) ~ ==[4#](id)
(modifier) s:i=[1] (identifier)

Appendix A — Style Sheet Language Reference 76

Acceptable characters for an object identifier or id are defined in lexical analysis
section. A style selector may contain a class name, object id and a modifier, which
specifies a particular object from a particular class under the condition specified

by the modifier. Here is an example:

building4#005 :zoomin

A style selector may also contain only the class name, which applies the style
to every object in that class, or only the id, which applies to style to a particular
id in any class where it is found. The modifier restricts the setting to a particular
mode of operation. In this case the selector refers to the object when the map is in

“zoomed in” mode.

A4.6 Style Block

A style block contains a style selector and one or more style attribute assignments.

(style_block) = (style_selector) | { | {style_attribute_set)
(style_attribute_set) .= (style_atiribute)+

The set of style attributes contained in the curly braces are applied to the object
and condition specified in style selector. An example is:
bicycle_parking: zoomin({

color: dark-red;
on-enter-sound: classSoundPath + "bikebell.mp3";

Appendix A - Style Sheet Language Reference 77

This block defines the color for every object in the class bicycle_parking when
the map is in “zoomed-in” mode. It also specifies the sound to be played when the

mouse pointer enters the object.

A.4.7 Substitution Macro Definition

This is a special type of style block used as shorthand for attributes that are re-

peated a number of times using a particular pattern.

(style_selector) = (class_name) (substitution_id) [{modifier)]
{class_name) = {identifier)

(substitution_id) ::= (letter) 1|

{modifier) =[] {identifier)

The object id is then substituted for the marker wherever it is encountered in

the style attributes. An example is:

building #[%n] {
on—click-sound: "[%n].mp3";

}

In this example, if the building id is #105, the string “105” is substituted in the

attribute line. In this case the attribute becomes

on-click-sound: "105.mp3";

Appendix A - Style Sheet Language Reference 78

A.5 Data Model and Access Methods

As the parser interprets a style sheet, it saves the attribute settings in a data struc-
ture for retrieval by the client program. This data structure consists of two Java
hash map objects. One called “classes” for regular attributes and the other called

“macros” for the substitution macro attributes.

Each of these data structures maps a class name to a StyleClass object. The
StyleClass object contains a hash map of ids for that class mapped to a list of
StyleAttribute objects. A StyleAttribute object contains the style key, value, and

modifier.

Either a class name or object id may be represented by the empty string (” *). If
the object id is blank, the attributes apply to every object within a class. If the class

attribute is blank, the attributes apply to every object with that id in any class.
Access to the set of attributes for a particular combination of class name and
object id is accomplished via the public methods:

parser.getAttr{class, id) { ... }

parser.getMacro{class, id) { ... }

Each returns the appropriate list of StyleAttributes. The macro substitutions are
expanded within the getMacro function, based on the id passed into the function

by the caller and returned as part of a list of style attributes.

Appendix B

Style Sheet Interpretation in the
Haptic Soundscape Map

B.1 Introduction

While the style sheet itself has been created for general usage, the interpretation of
its generated values by the University of Oregon Haptic Soundscape map imposes
limits on the available options. The purpose of this document is to describe those

limits and other options taken in the interpretation of the style sheet.

B.2 Precedence of Style Attribute Assignment

The map applies style attributes on a priority basis from the most general to the
most specific. This means that a more specific style attribute setting will always

override a more general setting,.

79

Appendix B — Style Sheet Interpretation 80

1. The most specific style attribute is considered to be a particular class name

with a specific object id. This receives the highest priority.

2. The next style attribute to be considered is one for which an id has been
assigned, but no class name. This will be applied to any matching object

within any class.

3. The next style attribute to be considered is one with a class name, but no ob-

ject id specified. This will be applied to all objects within the specified class.

4. The next style attribute to be considered is one resulting from a macro sub-
stitution pattern. This style attribute will be applied appropriately to each

object within the specified class.

5. The lowest priority style attribute uses the class name of “default”. This is
applied to all objects in all classes that have no instances of higher priority

settings.

B.3 Class Names

The class names are derived from GIS layers used to generate the University of

Oregon map. The acceptable names for this mapping application are listed below.

athletic_surfaces emergency_callboxes stairways
bicycle_parking hydrology streets
buildings parking walks

bus_stops public_entrances walk_underpasses

Appendix B - Style Sheet Interpretation 81

There is one additional class name recognized — the default class. If an attribute

is listed under the class name of “default”, it is applied to all classes.

B.4 Modifiers

This map application uses two modifiers: “zoomin” and “zoomout.” Style at-
tributes having the “zoomin” modifier are applied only when the map is in “zoomed
in” mode. Likewise style attributes modified by “zoomout” are applied only when
the map is in “zoomed out” or normal mode. Style attributes with no modifier are

applied to both modes of the map.

B.5 Keys

B.5.1 Drawing Attributes

In the haptic soundscape map, attributes settings for object outlines and fill apply
to all map zoom modes for that object and any modifiers (zoomin or zoomout) are

ignored.

Line width is set using the key “line-width” and a numeric value. In the
Flash/ Actionscript version of the map, a line width of “1” is considered the de-
fault value for drawing objects. A value setting of “0” will result in the object
being rendered smaller than expected. Other rendering systems may consider “0”

to be the default.

Appendix B — Style Sheet Interpretation 82

Color is set either by defining a value for the “color” key, or for the “fill-color”
and “line-color” keys. The “fill-color” and “line-color” settings will take prece-
dence in determining object color. If either “fill-color” or “line-color” has not been
defined, the rendering operation will default to the “color” setiing. If none of the
color keys has been specified, a default color of Oregon Green (#006633) will be

used.

B.5.2 Actions

Attribute action keys define the interaction between the map and the motions
and clicks of the user’s mouse. All actions may be modified by “zoomin” and
“zoomout”, resulting in three possible settings for each. Keys are defined for sound

and texture effects.

Sound

on-enter-sound
on-exit-sound
on-hover-sound
on-click-sound

Texture
on-enter-texture

on-exit-texture
on-hover-texture
on-click-texture
These settings correspond to the mouse pointer entering or exiting the area

occupied by an object on the monitor, the mouse pointer pausing over an object’s

area (hover), or the primary mouse button being clicked over an object.

Appendix B - Style Sheet Intetpretation 83

B.6 Values

Values applied to sytle attributes are string values representing either paths to hap-
tic or sound resources, numeric values, or color values. Color values are specified
in the format of “#RRGGBB” where RR, GG, and BB are hexidecimal values from
00 to FE, representing the red, green, and blue components of the color in the RGB

color model [Meyer, 2004, p. 68].

B.7 Color Definitions

An auxiliary style sheet containing the entire set of color definitions for the X11
color set is provided for import into the main application style sheet. Using this
set of color definitions, the style sheet author need only specify colors by name and
allow the look-up mechanism make the hexadecimal substitutions. See Appendix

C for a list of colors defined.

Appendix C

Style Sheet Constants Used in the
Haptic Soundscape Map

C.1 Introduction

This document contains a listing of constants used in the 2007 University of Oregon

Haptic Soundscape Map project.

C.2 Building Names and IDs

This is a listing of building names and matching ID values used in the Haptic

Soundscape map project for the University of Oregon campus.

AAA Greenhouse —#099
AAA Woodshop — #0098
Agate — #147

Agate House —#148

Allen - #017

Archaeology Research - #116

84

Appendix C - Style Sheet Constants

Bean - #0069

Bowerman Family — #063

Canoe House —#127

Carson — #076

Cascade — #047

Cascade Annex East — #028B
Cascade Annex West — #028A
Central Power Station — #032
Central Power Station Intertie — #032x
Chapman — #006

Chiles — #002

Church Warehouse — #157

Clinical Services — #029

Collier House — #081

Columbia — #036

Computing — #039

Condon -~ #004

Covered Tennis Courts — #059
Deady — #005

Deschutes — #044

DPS Information Booth — #213

DPS Parking Meter Garage — #593x
Earl — #073

East Campus Graduate Village (East) — #146
East Campus Graduate Village (West) — #145
ECS (1761) — #603

ECS (1791) — #582

Education - #007

Education Addition —#041
Education Annex — #048

Erb Memorial Union (EMU) - #033
Esslinger — #023

FAS Ceramics — #125B

FAS Foundry — #125F

FAS Kiln - #125D

FAS Metalsmith & Jewelry — #125C
FAS Raku Shed — #125E

FAS Sculpture — #125A

FAS Wood Fire Kiln — #125G
Fenton - #019

85

Appendix C - Style Sheet Constants

Friendly — #009

Frohnmayer Music - #025

FS Adminstration Office - #136

FS Electrical Storage Quonset - #133
FS Exterior Storage Quonset 1 — #128
FS Exterior Storage Quonset 2 — #135
FS Exterior Team — #593

FS Lockshop - #121

FS Miscellaneous Quonset — #131

FS Mower Storage —#517

FS Paint Storage Quonset — #132

FS Recycling Modular - #500

ES Recycling Quonset - #134

FS Spray Booth Quonset - #129

ES Warehouse — #130

Gerlinger - #011

Gerlinger Annex — #062

Gilbert - #003

Greenhouse Preparation — #109
Hamilton — #085

Hayward East Grandstand ~ #012
Hayward Ticket Booth #1 - #113
Hayward Ticket Booth #2 — #114
Hayward Track Storage — #056
Hayward Weight Room - #061

Hayward West Concession Stand - #106

Hayward West Grandstand - #013
Hayward West Ticket Booth —#093L
Hendricks — #071

HEP Classroom — #536

HEP Modular Classroom — #215
HEP Office — #521

Howe Home Dugout — #053A
Howe Office/Shop ~ #141

Howe Press Box/Concession — #053
Howe Storage — #142

Howe Visitor Dugout - #053B
Huestis — #040

Johnson - #016

Klamath — #038

86

Appendix C - Style Sheet Constants

Knight Law — #050

Knight Library — #018

Landscape Ecology Lab - #117

Lawrence — #001

LERC & Military Science — #0878

Lillis — #003B

Living Learning Center North — #065

Living Learning Center South — #064

Many Nations Longhouse — #167

McArthur Court - #020

McKenzie — #030

Millrace Studio 1 — #095

Millrace Studio 2 — #096

Millrace Studio 3 — #097

MNH Archaeological Research Lab — #107
MNH Prep Lab - #115

MNH Storage — #108

Moss Street Children’s Center — #168

Museum of Natural and Cultural History — #049
Old Greenhouse - #110

Olum — #165

Olum Annex —#164

Onyx Bridge — #037

Oregon — #0042

Outdoor Program Barn —#052

Outdoor Tennis Courts Facility — #138

Pacific — #035

Paleoecology Research — #112

Peterson —#003A

Prince Lucien Campbell (PLC) - #008

Research Greenhouse — #111

Reske Center (Oregon Track Club Storage) — #060
Riverfront Innovation Center — #043

Riverfront Research Park (1600 Millrace) — #750L
Riverfront Research Park (1800 Millrace) — #094L
Schnitzer Museum of Art —#024

Straub - #072

Streisinger — #045

Student Recreation Center — #051

Student Tennis Courts — #139

87

Appendix C - Style Sheet Constants

Susan Campbell — #075

Trailer A —#055

Trailer B - #054

Trailer C — #057

Trailer D — #058

University Health and Counseling — #014
UO Annex — #082

UQO Bookstore — #INC895e13

Villard — #031

Volcanology — #015

Walton — #078

Wilkinson House — #026

Willamette — #046

YWCA -#533

Zebrafish International Resource — #101

C.3 Color Constant Names and Definitions

88

Definitions for color variables are listed below, based on the X11 color set with

HTML/CSS color definitions where there are conflicts (gray, green, maroon, and

purple). New colors can be defined using a hash sign (#) followed by hex rgb color

value (as used in HTML/CSS5).

LightPink — #FFB6C1 Pink — #FFCOCB

Crimson —#DC143C LavenderBlush — #FEFOE5
PaleVioletRed - #DB7093 HotPink — #FF69B4
DeepPink — #FF1493 MediumVioletRed — #C71585
Orchid — #DA70D6 Thistle — #D8BEDS

Plum - #DDAODD Violet — #EE82EE

Magenta — #FFOOFF Fuchsia — #FF00FF

DarkMagenta — #8B008B Purple — #800080
MediumOrchid — #BA55D3 DarkViolet — #9400D3

Appendix C - Style Sheet Constants 89

DarkOrchid — #9932CC
BlueViolet — #8A2BE2

MediumSlateBlue — #7B68EE

DarkSlateBlue — #483D8B
GhostWhite - #F8F8FF
MediumBlue — #0000CD
DarkBlue - #00008B
RoyalBlue - #4169E1
LightSteelBlue — #B0CADE
SlateGray —~ #708090
AliceBlue — #FOF8FF
LightSkyBlue - #87CEFA
DeepSkyBlue — #00BFEE
PowderBlue — #BOECE6
Azure — #FOFFFF
PaleTurquoise — #AFEEEE
Aqua — #00FFFF
DarkSlateGray — #2FAF4F
Teal — #008080
LightSeaGreen - #20B2AA
Aquamarine - #7FFFD4

MediumSpringGreen — #00FA9A

SpringGreen — #00FF7F
SeaGreen — #2E8B57
LightGreen —#90EE90
DarkSeaGreen - #8FBC8F
Lime — #00FF00

Green — #008000
Chartreuse — #7FFF00
GreenYellow — #ADFE2F
YellowGreen — #9ACD32
Beige — #F5E5DC

Ivory — #FFFFF0Q

Yellow — #FFFEQD
DarkKhaki - #8DB76B
PaleGoldenrod — #EEESAA

Indigo - #4B0082
MediumPurple — #9370DB
SlateBlue — #6A5ACD
Lavender — #E6E6GFA

Blue — #0000FF
MidnightBlue —#191970
Navy —#000080
CornflowerBlue — #6495ED
LightSlateGray — #778899
DodgerBlue — #1E9QFF
SteelBlue — #4682B4

SkyBlue ~ #87CEEB
LightBlue — #ADDBSE6
CadetBlue — #5F9EAQ
LightCyan — #E0FFFF

Cyan — #00FFFF
DarkTurquoise — #00CED1
DarkCyan - #008B8B
MediumTurquoise — #48D1CC
Turquoise — #40E0DO
MediumAquamarine - #6CDAA
MintCream — #F5FFFA
MediumSeaGreen — #3CB371
Honeydew — #FOFFFQ
PaleGreen — #98FB98
LimeGreen — #32CD32
ForestGreen — #228B22
DarkGreen — #006400
LawnGreen — #7CFCO00
DarkOliveGreen — #556B2F
QliveDrab — #6B8E23
LightGoldenrod Yellow — #FAFAD?2
LightYellow — #FFFFEQ
Olive — #808000
LemonChiffon — #FFFACD
Khaki - #FOE68C

Appendix C - Style Sheet Constants 90

Gold - #FFD700
Goldenrod —#DAA520
FloralWhite — #FFFAFQ
Wheat — #F5DEB3
QOrange — #FFA500
Blanched Almond — #FFEBCD
AntiqueWhite — #FAEBD7
BurlyWood - #DEB887
DarkOrange — #FF8C00
Peru - #CDB853F
SandyBrown — #F4A460
SaddleBrown — #8B4513
Sienna — #A0522D
Coral — #FF7F50
DarkSalmon — #E9967A
MistyRose — #FFE4E]
Snow — #FFFAFA
RosyBrown - #BC8F8F
Red - #FF0000
FireBrick — #B22222
Maroon — #800000
WhiteSmoke — #F5F5FS
LightGrey - #D3D3D3
DarkGray — #A9A9A9
DimGray — #696969

Cornsilk — #FFFSDC
DarkGoldenrod - #B8860B
OldLace — #FDF5E6
Moccasin — #FFE4B5
PapayaWhip - #FFEFD5
NavajoWhite - #fFDEAD
Tan — #D2B48C

Bisque — #FFE4C4

Linen — #FAFOE6
PeachPuff — #FFDAB9
Chocolate — #D2691E
Seashell — #FFF5EE
LightSalmon — #FFA07A
OrangeRed — #FF4500
Tomato - #FF6347
Salmon — #EA8072
LightCoral — #IF08080
IndianRed — #CD5C5C
Brown - #A52A2A
DarkRed - #8B0000
White - #FFFEFE
Gainsboro - #DCDCDC
Silver — #C0CO0CO0

Gray — #808080

Black — #000000

C.4 Color Selection Chart

On the following page is a color chart ‘showing the colors available in the X11

pallet”

7 Adapted form Wikipedia X11 color names. { http://en.wikipedia.org/ wiki/Web_colors }

Appendix C - Style Sheet Constants

Retl colors

Green colors

DarkRed

Pink colors

vl i v ;
OliveDrab
DarkQliveGreen

Yellow colors

- Gold

Yeliow FCyan”

LighlVetiow LightCyan

LemonChiffon PaleTurquoise

LighiGoldeniod ellcw

PapayaWhip

Moccasin

PoachPull

PalaGoldenvod el : g
Khaki
o | Ughisisaua |
Purple colors PowdeBiue

Lavendar

MedumOrchid
MediumPurple

DarkMagenta

MidnightBlue

" Silvar

-

Brown colors
Comsilk
BlanchedAlmond
Risque
NavajoWhile

DarkGoldemod

Chocolale
Sadd'eBrown
Sienna

Brown

Maroon

White colors
Whita

Snow
Honeydew
MinlCream
Azure

AlicaBlue
Ghos\While
WhileSmoke

QidLacg
FloraWhile
Ivory
AntiquetYhile
Lnen
LavenderBlush
MistyRose
Grey colors
Galnsbore
LightGrey

91

Bibliography

[Aho et al., 1986] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Priciples,
Techniques, and Tools. Addison-Wesley, Reading, MA.

[Bentley, 1986] Bentley, J. (1986). Programming pearls: little languages. Commun.
ACM, 29(8):711-721.

[Brown et al., 1995] Brown, D., Mason, T., and Levine, J. R. (1995). lex & yacc.
O’Reilly and Associates, Inc., Sebastopol, CA.

[Brown, 1983] Brown, P. J. (1983). Error messages: the neglected area of the
man/machine interface. Commun. ACM, 26(4):246-249.

[Freeman and Pryce, 2006] Freeman, S. and Pryce, N. (2006). Evolving an embed-
ded domain-specific language in java. In OOPSLA "06: Companion to the 21st
ACM SIGPLAN conference on Object-oriented programming systems, languages, and
applications, pages 855-865, New York, NY, USA. ACM.

[Friedl, 1997] Fried], J. E. (1997). Mastering Regular Expressions. O'Reilly and Asso-
ciates, Inc., Sebastopol, CA.,

[Golledge and Stimson, 1997] Golledge, R. G. and Stimson, R. J. (1997). Spatial be-
havior : a geographic perspective. Guilford Press, New York, NY.

[Hudak, 1996] Hudak, P. (1996). Building domain-specific embedded languages.
ACM Comput. Surv., 28(4es):196.

[Hunt and Thomas, 1999] Hunt, A. and Thomas, D. (1999). The Pragmatic Program-
mer. Addison-Wesley, Reading, MA.

[Louden, 2003] Louden, K. C. (2003). Programming Langunges — Principles and Prac-
tices. Thomson, Boston, MA.

92

Bibliography 93

[Mernik et al., 2005] Mernik, M., Heering, J., and Sloane, A. M. (2005). When and
how to develop domain-specific languages. ACM Comiput. Surv., 37(4):316-344.

[Meyer, 2004] Meyer, E. A. (2004). Cascading style sheets : the definitive guide, 2nd
Edition. O'Reilly and Associates, Inc., Sebastopol, CA.

[Pagan, 1981] Pagan, F. G. (1981). Formal Specification of Programming Languages: A
Panovamic Primer. Prentice-Hall, Inc., Englewood Cliffs, NJ.

[Provins, 1998] Provins, D. A. (1998). Take command - lex and yacc: Tools worth
knowing. Linux J., 1998(51es):18.

[Steele, 1998] Steele, G. L. (1998). Growing a language. 1998 Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages, and Applications.

[van Deursen et al., 2000] van Deursen, A., Klint, P, and Visser, J. (2000). Domain-
specific languages: an annotated bibliography. SIGPLAN Not., 35(6):26-36.

[Walsh and Muellner, 1999] Walsh, N. and Muellner, L. (1999). DocBook: The
Definitive Guide. O'Reilly Media, Inc., Sebastopol, CA.

