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ABSTRACT. Determining the evolutionary history of genes and organisms is a crit-
ical aspect of fields as diverse as developmental biology, astrobiology, history, an-
thropology, and medicine. The understanding gained through these phylogenetic
analyses provides valuable information about the past and present unavailable
through other avenues. The most widely used modern phylogenetic technigues
require some knowledge about how evolution works to ensure accurate results. Se-
lecting the best evolutionary model available for a given set of data is thus a critical
step of phylogenetic analyses. One aspect of evolution that is not commonly ac-
counted for is when different sites on a sequence have varying rates of change that
differ in location on the sequences being compared. This phenomena, known as
hieterotachy, has been shown to be modeled best by a Mixed Branch Length (MBL)
model. The question then is how many heterotachous partitions are needed to ad-
equately model the underlying evolutionary history. This question is answered
through the empirical evaluation of modern model selection techniques on simu-
lated data. The findings suggest that the Akaike Information Criterion (AIC) is
the best technique for determining the number of heterotachous rate partitions to

use in the MBL Model of evolution.
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1. BIOLOGICAL BACKGROUND

1.1. Evolution and Speciation. Evolution occurs recursively through the process
of speciation followed by independent cha.nges occurring in the separate populations.
Speciation starts with reproductive isolation, the cessation of interbreeding between
populations. Reproductive isolation arises through populations being separated geo-
graphically, through sexual behavior, or through physical incompatibility. Although
the definition of a species is debatable, it is generally accepted that once two pop-
ulations cease to interbreed, and will not do so even if they have the opportunity,
they are separate species. Once populations cease to interbreed, they can undergo
changes independently of each other. Over time, this process led to the diversity

seen in the world today, and much more that remains to be discovered.

1.2. The Central Dogma of Biology. DNA is the blueprint for every living thing
currently known. Changes in DNA can lead to changes in the organism. Kvery cell
within an organism contains its own copy of that organism’s DNA. DNA is essen-
tially a string of 4 types of molecules called nucleotides (Higgs and Attwood, 2005).
These four nucleotides are called Adenine, Guanine, Cytosine and Thymine (Higgs
and Attwood, 2005). They are typically abbreviated A, G, C and T respectively. An
organism’s DNA can range in length from several thousand, like some single celled
bacteria and most viruses, to several billion like many multicellular organisms (Higgs
and Attwood, 2005). DNA does its work through a complex series of regions called
genes that encode one, or multiple RNA sequences that are translated into proteins.
Genes may also encode RNA sequences that never end up being encoded into pro-

teins, but are used instead for other purposes in the cell such as the regulation of
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which proteins are allowed to be produced in the cell. RNA is very similar to DNA
except rather than having a Thymine, it has a Uracil in its place (abbreviated U)
(Higgs and Attwood, 2005). These end products of Protein or RNA strands are
sometimes responsible for cellular function, or the regulation of other genes. The
functional interaction between proteins, RNA segments, and DNA, together form
complex regulatory networks. These genes are controlled by a plethora of regula-
tory sites that are responsible for determining when those genes are turned on, the
level to which they are turned on, or which proteins should be produced by those
genes. Changes in the sequence that sufficiently disrupt a necessary gene, or gene
activator lead to cell death; however many changes do not produce that effect due to
redundancies in cellular and chemical networks in an organism (Higgs and Attwood,

2005).

1.3. How New Traits Arise. Changes in DNA are caused by mutation. Mutation
can come in many forms including single sites switching from one nucleotide to
another, insertions of new nucleotides, deletions of one or more nucleotides, regions
of DNA being copied and pasted, or regions of DNA being cut out and pasted in a new
location without being copied. Changes in DNA can lead to changes in the organism,
which is the method by which the vast differences between species that have been
apart for long periods of time are achieved. Changes that are sufficiently detrimental
are often selected out of existence before they become significant, contributors to a
population’s gene pool; however if a population size is small, or the change doesn’t
have much of an effect on the organism, it is free to become fixed in a population

over time {Higgs and Attwood, 2005).
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1.4. Which Traits Last. Some changes lead to a decrease in an organism’s ability
to successfully reproduce, either through death before the organism has had the
chance to reproduce, or any other decreased ability to pass on genetic material.
These additions to the population’s gene pool generally do not survive, depending
on their severity. This is what is referred to as negative selection. Some changes lead
to an increase in an organism’s ability to pass on genetic material. These changes are
advantageous, and organisms that have these changes are more likely to reproduce.
"This is referred to as positive selection. Neutral or even negative traits can sometimes
become fixed in a population due to phenomena called genetic drift. Genetic drift
allows for non grossly deleterious changes to not only survive but rise to fixation
in a population. In other words the entire population may adopt the deleterious
change through subsequent generations simply due to random circumstances. The
probability of this happening decreases substantially as population size increases.
Environmental changes, or changes in a populations gexual preference may change

which traits, coded by the DNA, are the most successful.

1.5. Summary. Over the course of history, environments have changed, speciation
has ocemrred, and populations have evolved to adapt to these changes through a com-
bination of positive selection for beneficial changes, negative selection for deleterious
changes, and the power of randomness fixing neutral and even slightly deleterious
changes. Sites within DNA that were vastly important at some time in history may
no longer be important, and thus will be lost or recruited to a new function. At the
same time new sites that werent important in the past may become very important

to a species survival.
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2. Brorogical & COMPUTATIONAL PROBLEM

2.1. Introduction. Understanding how organisms evolve is a critical component of
biology, and bioinformatics (Higgs and Attwood, 2005). For example understand-
ing the evolution of disease-model organisms, and how they differ on the molecutar
level from humans, improves their usefulness for biomedical research (Gibbs et al.,
2007). Phylogenetics is the study of evolutionary relationships, and is concerned with
discovering the historical pattern of relatedness among species or genes. Properly
modeling evolution, and designing automated methods of determining phylogenetic
relationships, is a very important application of computer science to the field of bi-
ology. The most widely used computational techniques to determine phylogenetic

relationships include maximum parsimony, and maximum likelihood.

2.2. Sequence Alignments. For the following sections, phylogenetic alignments
are considered on sequences, and for the purpose of this paper DNA sequences will

be considered. Following is an example of what a sequence alignment might look

like:

Sequence 1: C-CT
Sequence 2: CAGT

Sequence 3: CAG-

The computational problem of how to arrive at an alignment is beyond the scope
of this paper, however a very rough idea is that sites in a sequence with shared
ancestry should also share a column, dashes are inserted at certain points to account
for mutations that inserted extra characters in one or more of the sequences. Arriving

at the most probable alignment is an active area of research. In this paper, the focus




SELECTING AN ACCURATE MODEL OF EVOLUTIONARY RATE HETEROGENEITY 7
is on the process at discovering the ancestry of organisms, and asumes that an oracle
has provided the correct sequence alignment to accomplish this task.

In this paper a state refers to a single character. For example the first nucleotide of
“Sequence 1" above is a state. A homologous state refers to states that arve the same
in multiple organisms within the same column of an alignment. Consider the first
column in the above alignment, in this column the states are homologous between all
sequences. Phylogenetic trees, such as those in figure 1, are derived from sequence

alignments like those above using one of several methods.

2.2.1. Mazimum Parsimony. Maximum Parsimony(MP) is the introductory tech-
nique many students get to phylogenetic analysis using genetic sequence data. Ac-
cording to Darwinian evolutionary theory, the only way that one can hope to quanti-
tatively determine evolutionary relatedness is to study synapomorphies. Synapomor-
phies are homologous states with a common origin shared between two organisms or
genes. A given state’s homology doesn’t necessarily infer synapomorphy. The trait
could have independently arose in separate populations, which is called homoplasy.
To get an idea of the problem of homoplasy in phylogenetics, consider two distantly
related organisms where at one column in the alignment, one organism has an “A”
and the other has a “C”. Then imagine that the organism with the “C” undergoes a
mutation that changes that site to an “A”. If the ancestral state of both organisms
were not known, and two “A”s were observed in the alignment, it would be impos-
sible to know for sure whether the state is shared from a common a.ncesbr, or if the
state was arrived at independently in both organisms. The most parsimonious expla-
nation for a phylogenetic relationship is the one that assumes the maximal number

of synapomorphies, and thus makes the fewest “ad-hoc hypotheses” of states being
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shared via independent mutations (Farris, 1982). It is important to note that MP
doesn’t rely on the assumption that homoplasies aren’t prevalent (Farris, 1982). Un-
der evolutionary conditions in which the homoplasy is shared fairly evenly among
organisms, the correct phylogeny is still the one with a maximal number of shared
states, regardless of whether those states are synapomorphic or homplasic (Farris,
1982). However the parsimonious explanation doesn’t necessarily perform well under
certain structures of homoplasy.

Although parsimony works well in many cases, cases exist in which maximum par-
simony will select the incorrect evolutionary tree with increasing certainty (Felsen-
stein, 1978). In fact, under those evolutionary conditions, maximum parsimony will
select the incorrect tree with increasing support as more data is analyzed (Felsen-
stein, 1978). This phenomona is called long-branch attraction, and it occurs under
evolutionary conditions called the Felsenstein Zone. Under these conditions, the
number of homologous states between more distantly related sequences due to ho-
moplasies may outnumber those due to true synapomorphies between more closely
related sequences which leads MP astray. In the tree shown in Figure 1(a) the longer
branches would tend to be grouped together under a parsimony analysis, as shown
in Figure 1(b), with increasing probability as the sequence length of the alignment

increases.

2.2.2. Mazimum Likelihood. Maximum likelihood (ML) has been shown to be a more
accurate phylogenetic technique under some conditions (Felsenstein, 1978). For that
reason it is generally preferred to MP. Likelihood in phylogenetics is the probability of

observing the sequence alignment, given the model of evolution and the phylogenetic
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A
A
¢ B
D
B D C
(8) An example of an unrooted phylo- (b) This is how the &ree in
genetic tree that yields biased results Part (a) is evaluated by Max-
under Maximum Parsimony but not jmum Parsimony. The long
under Maximum Likelihood. This tree branches attract to each other
configuration is called the "Telsenstein and A is falsely grouped with C.
zone”. This phenomenon is also known

as long branch attraction.

FIGURE 1. A case in which parsimony methods yield incorrect results.

tree {Foster, 2001; Bryant et al., 2005). Consider the following hypothetical DNA

sequence alignment:
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Sequence 1: CCT
Sequence 2: CGT

Sequence 3: CAG

Now to calculate the likelihood one must assume a model, and an evolutionary tree.
For the purpose of this example, the model will assume that each column in the
alignment is independent from each other column. Additionally the model will as-
sume the nucleotides, {A, C, G, T}, have the following probabilities of existence

respectively.
(1) T =[0.1,0.4,0.2,0.3]

The symbol = is typically used to denote the frequency of a character, and 7, is used
to specify the frequency of character A. Next an evolutionary tree must be defined. In
phylogenetics, evolutionary trees are typically defined with branch lengths in units of
the number of mutations per site. Thus when considering the sequence at the end of
a branch with a length of 0.3, the probability that each site will have experienced a
mutation event (A-A, A-C, A-G, A-T, and so on...) is 0.3. For this calculation the
following tree will be assumed, where the numbers on the branches represent their
length:
It is important to note that the tree above may or may not be the correct tree,
likelihood can be calculated for any tree on the data.

Since even a simple model of evolution should encapsulate the probability of change
from one character to another, a state change probability matrix is defined. The
probability that one state remains the same, or changes to another state, logically

should be different based on the number of times the sequence has undergone change.
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Sequence i

Sequence3

Sequence 2

The number of times a sequence has undergone change is expressed as a probability
in the branch lengths discussed previously. Using some linear algebra techniques
discussed in further detail in Bryant et al. (2005), one can calculate the state change
probability matrix for any branch length. The following probability matrices (taken

from Foster (2001)) are denoted P(n) where n is the number of expected substitutions
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per site taken from the assumed evolutionary tree.

0.886
0.012
(2) P(0.1) =
0.016

0.012

0.787

0.022
(3) P(0.2) =
0.029

0.022

0.7
0.031
0.04

(4) P(0.3) =

0.031

0.047
0.918
0.047
0.062

0.089
0.847
0.089
0.115

0.126
0.786
0.126
0.159

0.031 0.036
0.024 0.046
0.902 0.036
0.024 0.902

0.057 0.067
0.045 0.086
0.815 0.067

0.045 0.819 |

0.08 0.094
0.063 0.119
0.74 0.094
0.063 0.747

‘The matrices P(n) are arranged so that rows and columns are ordered (A, ¢, G,

T) from left to right and top to bottom. The position in the matrix P(0.1)4..¢ can

be read as the probability of a change from A to G given 0.1 expected substitutions

per site.

Calculating the likelihood of the data given the previously discussed tree, and

model would be calculated as the product of the likelihoods for each column in

the alignment. Given the column in the alignment n, the alphabet ¥={A, C, G,

T}, the set of branches mapping to lengths ® = {Sequencel — 0.2, Sequence2 +—

0.1, Sequence3d + 0.3}, the probabilities of existence in equation 1, and the character
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at column % in branch m € @ denoted e the likelihood can be calculated as follows

(Foster, 2001):

substituting in the previously mentioned data, the following likelihood is calculated

(Foster, 2001):
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Although calculating likelihood is fairly straightforward, the bulk of the compu-
tational complexity stems from the fact that likelihood must be calculated so many

times in an ML evaluation. To calculate ML, one must independently vary all of the
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free parameters, and compare likelihoods generated from each variation, selecting the
set of parameters that lead to the maezimum likelihood. The free parameters may
include tree topology, branch lengths, the probability of observing each character
(or subsets of characters), and maybe others depending on the model of evolution
used. Since there are many potential tree topologies, an infinite number of poten-
tial branch lengths, infinite values for many of the other parameters, and there is
no known algorithmic way to directly arrive at the maximum likelihood parameters
(Bryant et al., 2005; Felsenstein, 2003}, various heuristics are used to approximate
values for the parameters (Bryant et al., 2005; Felsenstein, 2003).

Given the correct model of evolution, Maximum Likelihood is guaranteed to be
statistically consistent. Statistical consistency means that the correct result will
always have the highest likelihood value (Felsenstein, 2003). This is good because
it means that the tree that generates the highest likelihood given the data, and the
correct model of evoution, is the optimal tree. The hmportant note here is that
these properties of ML are guaranteed only when the correct model of evolution is
assumed (Felsenstein, 2003). Even if it can be shown that in some cases a given model
of evolution performs well on some data, unless that model accurately represents the
true model that generated the data, MLs consistency cannot be assumed, and the
tree with the highest likelihood may not be the best tree. Selecting the correct model

of evolution is a critical step in phylogenetic inference.

2.3. The Problem of Heterotachy. ML is guaranteed to provide consistent re-
sults if the model of evolution provided is correct. In most cases currently popular
models of evolution produce highly accurate results when used with ML. However

one case in which even ML is highly biased in favor of the wrong phylogeny is when
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there are certain types of unrepresented evolutionary rate heterogeneity (hetero-
tachy) {Kolaczkowski, 2004). Figure 2(a) shows an example of how heterotachous
evolution might look on a simple dataset. The idea behind heterotachy is that there
are varying rates among sites in a sequence that vary between sequences. This differs
from among site rate variation{ASRV) because among site rate variation locks in the
overall relative rates of evolution between sequences. Utilizing ASRV, a site in a
sequence that evolves faster overall than another sequence, is forced to evolve faster
relatively to the same site in a slower evolving sequence. This is not a biologically
accurate assumption. One evolutionary condition that heterotachy properly models
and ASRYV fails to capture is through the differential selective constraints on a protein
that vary between organisms or proteins. Some changes that benefit, kill or have no
effect on one gene or organism may have an entirely different effect on another gene
or organism. It is not hard to imagine that varying levels of constraints on the DNA
sequence itself would also have a similar effect of creating heterotachous evolutionary
conditions. Some sites in quickly evolving organisms may in fact change at a slower
rate than the corresponding sites in a more slowly evolving organism, and common
phylogenetic techniques including ASRV do not allow for this intellectually obvious
evolutionary scenario.

Real world examples have been found where unincorporated heterotachy leads to
phylogenetic error. Heterotachy is likely responsible for the incorrect grouping of Mi-
crosporidia with Archaebacteria through all commonly used phylogenetic methods
available in 2004 when examining Elongation Factor 1-alpha (EFl-alpha) (Inagaki
et al., 2004). There are probably many other situations in which this form of het-

erotachy is currently causing incorrect phylogenies (Inagaki et al., 2004).
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A)...AATCGARGATACGGTTTC TITEGGCY, . . A)...AATCGAAGATACGGTTTCCATAATTTGGGC. . .
B)...FTAGCTCRCCGATRGACG. TACCARCAL . . B)...CTAGCTCACCGATAGACGAGACTACCAACA. ..
C)...PACCGAALATACGLTGAC AGTTICGATY. . C)...GACCGAACATACGCTGACTATTAGTTCGAT. ..

D)...CTARTCCATCAGTRAGACG T Cal. .. D). .. .CPAATCCATCAGTAGACGATGCTACAAACA. . .

(a) An example of heterotachous evolution. (b) This figure shows how the evolutionary rates
Some sites evolve under the set of evolutionary are proportionally summed over all the sites un-
rates on the left while others evolve under the der the heterogenous rate model developed by
evolutionary rates shown on the right. Kolaczkowski & Thornton. This medels the evo-
lutionary conditions shown in Part (a).

FIGURE 2. Heterotachy and how it is modeled.

Modeling heterotachy when it exists in the patierns previously discussed is nec-
essary to get better phylogenetic results out of maximum likelihood. Without first
modeling this heterotachy and applying model selection techniques, it is impossible
to know for sure whether or not it plays an important role in sequence evolution.
Figure 3 (from Kolaczkowski and Thornton (2008)) shows the effectiveness of vari-
ous phylogenetic techniques at evaluating the data generated by a particularly hard
to compute heterotachous model of evolution. Kolaczkowski and Thornton (2008)
found that when the internal branch length of the tree that generated the data is
short, all models tested that did not properly incorporate heterotachy failed to deter-
mine the true phylogeny. Ideally one would create a model of evolution that perfectly
partitions the columns of aligned genomic data into their various rate partitions as
is displayed in Figure 2(a). However this information is often not known in advance.

Luckily a well-known statistical process called mixture modeling can be used. With
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a mixture model, one calculates the weighted average of multiple evolutionary mod-
els over the enkire sequence, as is shown in Figure 2(b). This average is weighted
by the proportion of sites that are calculated to most likely fall under each branch
length set, as calculated and optimized through maximum likelihood (Kolaczkowski

and Thornton, 2008).

|

oNRmO
|

proportion correct
OO0 =

T T ‘ T ¥ | T

I T
00 0.1 02 0.3 04
internal branch length

homotachous models  heterotachous models + true partitioned model
e maximum likelihood X mixed branch length model
o Bayeslan MCMC % covarion model O maximum parsimony

Ficure 3. Figure from Kolaczkowski and Thornton (2008) showing
the comparative performance of various phylogenetic models at deter-
mining the correct phylogeny. The two category heterotachous model
of evolution used to generate the data is shown at the upper left. Se-
quences of 5000 nucleotides were generated under this set of branch
lengths. The long terminal branch lengths were 0.75 while the short
ones were 0.05. The graph shows the plot of the proportion of correct
phylogenetic inferences verses increasing internal branch length. More
accurate methods do not require as long an internal branch to reliably
reconstruct the true phylogeny.

The mixed branch length mode! works by first grouping all of the branch lengths
of a given topology into a set, independently optimizing each branch length within

each set, and performing this operation on the sets independently of each-other. The
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likelihood given each set is calculated independently, and then summed proportion-
ally with the likelirood given the other sets, where the proportion of sites falling
under each set is also optimized by ML (Kolaczkowski and Thornton, 2008; Spencer

et al., 2005). The equation is:

m n
(5) LX) = [T D° mP(wit, bs)
k=1 i=1
where X = (21,%,,...,2y), ¥y is column k in the alignment, ¢ is the tree, m is

the number of data points (columns in the alignment), n is the number of rate
partitions, p; is the proportion of sites that, fall under rate partition i, and P(aylt, b;)
is the probability of observing the alignment at column z given tree ¢, and branch
lengths &;(Kolaczkowski and Thornton, 2008).

For a practical application of how one might compute likelihood given a heterota-

chous model consider the following sequence alignment:

Sequence 1: CCT
Sequence 2: CGT

Sequence 3: CAG

Sequence 1

p=06

Sequence 3

Sequence 2 +

Sequence 1

Sequence 3
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Since it is not known a-priori which sites in the above alignment fall under which set of
branch lengths, the formula for calculating likelihood proposed by Kolaczkowski and
Thornton (2008) must be used. In the above branch length set are two heterotachous
yate partitions, and the values of p denote the assumed proportion of sites that fall
under one set of branch lengths or the other.

Additionally for this example consider the following equation which is an expansion

of equation 5:

n

(6) L) =Y opd e 11 P@e-sneq

m

k=1 i=1 fe¥ g€F;

where X = (21,22, .-, %m), Tk is column k in the alignment, £ is the tree, m is the
number of data points (columns in the alignment), n is the number of rate partitions,
pi is the proportion of sites that fall under rake partition i, ¥={A, C, G, T}, the
set of all branches mapping to lengths ® = {Sequencel - [0.2,0.3], Sequence2 —
[0.1,0.2], Sequence3 (0.3,0.1]} (®; represents the branch length at position ¢ in
each mapped set), the probabilities of existence in equation 1, the probability of
observing each character 7 [rom equation 1, and the character at column ¢ in branch
m € ® denoted Yiem-

Substituting in values we get the following likelihood:
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9 4. Model Selection. Choosing the number of rate categories to use in MBL is
not a trivial problem. By simply examining the data, it is not clear how one would
determine the number of rate categories that best explains the data. The current
approach is to run the MBL on the data multiple times assuming different numbers
of rate categories each time, and examine the results using a standard statistical
model selection technique; the goal is to select the model that best explains the data
without over-fitting.

Unfortunately likelihood scores alone are not sufficient to choose the best model.
Taken at face value, likelihood scores will become better each time the analysis
is performed with a more complicated model of evolution. Since not every site is
pexfectly explained by the true phylogeny and model of evolution, an overly complex
model will be able to fit those sites that may support the wrong phylogeny, and in
fitting those sites would have a greater likelihood. Over-fitting the data artificially
reduces support for the ML phylogeny. Additionally when an overly complex model
of evolution is used with this algorithm, there is a significant computational sacrifice.
Each additional rate category squares the complexity of the model with one fewer
rate categories.

Luckily there are statistical methods available to tackle the problem of model se-
lection. The methods currently used in biology include the Likelihood Ratio Test
(LRT) (Wilks, 1938), the Akike Information Criterion (AIC) {Akaike, 1974), a cor-
rected version of AIC called AIC Corrected (Al C.) (Shono, 2000), the Bayesian
Information Criterion (BIC) (Schwarz, 1978), and Cross Validation {CV) {Zhou
et al., 2007). AIC, AIC,, and BIC all work by applying a penalty for inereasing

complexity directly to the log likelihood score of the data, given each model. This
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penalty is simply a function of the number of parameters in the model, and in the
case of BIC and AIC,, the amount of data as well. LRT takes advantage of the
fact that when the simpler model is true, then 2 x In( ﬁi) is x% distributed if the
models are nested, where & is the difference in degrees of freedom between InL gimpre
and InLompler (Felsenstein, 2003). The LRT tests whether an increase in likelihoods
given the number of parameters that are being added, is likely due to chance, or
due to a model that is actually fitting the data better. Cross Validation works by
evaluating a subset of the data given the model, and then applying the best-fit pa-
rameters to the remainder of the data. The idea with Cross Validation is that an
overly complex model is likely to over fit the test data, and will be worse than the
correct modtel at predicting the “left out” portion of the data.

LRT is perhaps the most commonly used statistical model selection technique
in biology. This method is based on the mathematical observation that, if model
m, is a subset of the model my, then 2(In[L(D]m,)] — In[L(D{ms)]) is roughly x2
distributed with £ degrees of freedom, where k is the difference in the number of free
parameters between the two models (Felsenstein, 2003; Higgs and Attwood, 2005).
'T'o determine if the shift in log likelihood values obtained from Maximum Likelihood
analysis using model m; is statistically significant, simply see where the likelihood
ratio falls on the x? distribution (Higgs and Attwood, 2005). The problem with
LRT is that it requires models to be nested, and varying numbers of heterotachous
rate categories in the mixed model are not nested. For example a mixed model with
two rate categories is the strict boarder case of a mixed model with three categoties,

where one of the three categories effects 0% of the sites.
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Unlike LRT, which requires nested models, AIC, AIC, and BIC only require
knowledge of the number of free parameters in each model that is being compared.
This provides a logical reason to prefer other techniques to LRT, however it is
important to test LRT to see if it happens to work well. AIC, BIC and AIC, are
perhaps the easiest of the model selection techniques to implement. Each of the
techniques generate scores by applying a function to the log likelihood result of an
ML evaluation.

AIC (Akaike, 1974) is determined by:
(7) AIC = —2(In(L)) + 2k

In the above equation, k is the nunber of free parameters in the model used to

cateulate L. In the case of the MBL model, & is calculated as follows:
(8) k={(bxm)+{m—1)

In the above equation, b is the number of branches in the phylogenetic tree, and
m is the number of independent branch length categories that are assumed in the
MBL model. The logic behind the selection of & is that there are b free parameters
per tree, m trees because each rate category assumes fully independent rates, and
an added m — 1 parameters to solve for the proportions of sites that fall under each
tree.

AIC, was developed due to the observation that on some kinds of data, when the
number of data points is small, or the number of parameters approaches the number

of data points, AIC tends to select an overly complex model (Shono, 2000). This
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corrected version of AIC is defined as [ollows:

(9) AIC, = AIC + (M)

n—k—1
In the above equation, n is the number of data points (number of columns in a
sequence alignment for example). AIC, corrects the bias in AIC' by adding a penalty
that decreases to zero as the sample size gets larger in relation to the number of
parameters. ‘This takes care of the case in which the number of parameters is near
the count of data points, and also the error that occurs when there are a small
nuinber of data points,

BIC is like AIC, but it applies an increasing penalty to the number of parameters,

as the number of data points increase. BIC’s equation follows:
(10) BIC = —2In(L) + kIn(n)

BIC tends to penalize more heavily than AIC, whenever n > 8. Because real world
sequence data are almost always longer than 8 sites one can predict that BIC will
penalize more heavily than AIC, and favor simpler models in nearly all cases.

CV works differently from the other statistical techniques in that it requires no
knowledge about the underlying models assumed on the data. This benefit comes at
a cost to computational complexity. The other techniques require only the resulting
log likelihood scores from several runs with different models of evolution, while CV
requires iteratively sampling the data and calculating multiple likelihoods per model.
'The idea behind CV is that even though an overly complex model will fit data better
than the true model, if the overly complex model is trained on a subset of the data,

it is less likely that it will be a good fit to the remainder of the data. The classic
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FIGURE 4. An eaxmple of how data may be overfit. The model that

generated the points on the graph is the line in blue. The generating

model had some error so some of the points were not exactly on the

line. The red line shows the points fit by an overly complex model.
visual example of why C'V works is in the prablem of regression. In Figure 4, the red
line represents a model with high dimensionality that is over fitting points that were
hypothetically created under a linear model depicted in blue. Imagine that several
points on the line were left out of the training data set for CV. The regression
line that CV would draw then would perfectly match the points that it had, but
would be far off from the remaining points that were on the line. If a linear model
were used in the beginning to train the data, the few noisy data points would not
be recognized as significant, and the line would be closer to the remaining points
that were left out of the training data set. To analyze biological data, first one
simply optimizes parameters using maximum likelihood or Bayesian methods on a
randomly sampled portion of the aligned sequences. Then takes those parameters
and uses them to calculate the likelihood score of the remainder of the data (the test
data) (Zhou et al., 2007). The model chosen by CV' is the model that resulis in the

lowest likelihood from the analysis of the test data. This process should be repeated
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several times for each alignment, and the likelihood from each of these runs should
be averaged to provide the final CV score for the given model of evolution(Zhou

et al., 2007).

3. METHODS

3.1. Test Data. To test the accuracy of various model selection techniques, sim-
ulated evolution scenarios were generated in sillico so the true model of evolution
was known a-priori. This way the true model of evolution is known, and the selec-
tion techniques can be properly assessed for accuracy. Bryan Kolaczkowski wrote
an in-house script called EVOL_E which was utilized to generate simulated sequence
alignments under heterotachous conditions. EVOL_E works in much the same way
as Seq-Gen{Rambaut and Grass, 1997) except that it allows for model heterogeneity
among lineages as well as among sites. The transition/transversion ratio was mod-
eled using JC69. Transitions are the rate of change between “A” & “G”, and “C”
& “T”, while transversions are the rate of change between “A” or “G” to “C" or
“T”. The gamma rate distribution was not utilized, and instead all among site rate
variation was allowed to be modeled using the heterotachous model.

Two categories of experiments were performed. In the first, heterotachy was mod-
eled using a two-rate category evolutionary tree where 50% of the sites were under
one rate category or the other. Additionally the trees all were modeled with the same
kind of heterotachy found to yield poor results if the MBL model is not used for phy-
logenetic re‘construction(Kolaczkowski and Thornton, 2008; Felsenstein, 1978), how-
ever the branch lengths were less extremely divergent, and the internal branch was

significantly longer than the analysis done by Kolaczkowski and Thornton (2008).
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The longer intel:nal branch of 0.2 was in the zone where the mixed branch length
model performs well, but other models still fail as shown in figure 3. Figure 5 shows
the two branch length sets that were generated with the heterotachous simulated
data utilizing EVOL_E given 4, 8, 1’6, and 32 taxa. Each set of branch lengths is
applied to 50% of the sites in the alignment.

To determine which model selection technique performed best in the most con-
ditions, the sequence length was varied in the alignments, and the number of taxa
was also varied (as shown in Figure 5). 50 alignments were generated under each
condition to be sure that the analysis was not biased by random error.

In the second main experimental procedure performed, the level of computational
difficulty of the heterotachy was varied, and the internal branch length was very short
(0.01 vs 0.2). The short internal branch makes evaluating heterotachy particularly
difficult (Kolaczkowski and Thornton, 2008). Heterotachy was varied by varying the
length of the long and short branches, and the proportion of sites that fell under one
versus the other rate category. The short branch had a length between 0.0 and 0.5
with increments of 0.1, while the long branch had a length of 1 minus the length of
the short branch. Similarly the proportions varied from 0.0 to 0.5 with increments
of 0.1, and both proportions totaled to 1.0. The experimental procedure is depicted

in figure 6.

3.2. Data Analysis. For the purposes of the first portion of this experiment, 1,2,3,
and 4 evolutionary rate categories were assumed for each of the 50 alignments, and
tested under each condition of sequence length and number of taxa. The various
model selection techniques were utilized to choose the best set of assumptions. The

results were compared with the true model, and examined for potential biases. AIC,
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FIGURE 5. The models used to generate test data.
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FIGURE 6. The experimental setup for the second experiment. p rep-
resents the proportion of sites falling under the above branch length
set. y; represents the length of the long branches, and ¥, the length of
the short branches. & = (1 —y2) for readability purposes in the experi-
ment shown in figure 10, since now when x = 0 the level of heterotachy
is very light, while when z = 0.5 the level of heterotachy is much more
extreme.

AIC,, BIC, and LRT were all performed on the log likelihood scores using Microsoft
Excel. A custom program was written in python to perform the CV analysis as
described in the background section on CV. To run the CV analysis as if a 2-fold CV
with 10 repetitions (Zhou et al., 2007) was performed, data was generated that was
% the original sequence length the following was performed. The program randomily
chose 10 pairs of sequences, 50 times, from the pool of 50 % length alignments.
The ML tree was calculated from the first member of the pair, and the Likelihood
of the second member of the pair was caloulated from that tree. Then the log

likelihoods generated through the 10 runs were averaged to give the C'V scores. The
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same heterotachous model of evolution, and the same evolutionary relationships were
utilized for the full-length sequence as were for the % length sequences.

Trends were plotted for the various modet selection techniques in Microsoft Excel,
and visually evaluated. In most cases the trends were very clear, and conclusions
were drawn fairly easily.

For the second portion of the experiment 1,2, and 3 evolutionary rate categories
were assumed for each of the 10 initial alignments, and tested under each combination
of varied branch length and proportion of sites in one or the other model. For this

very data intensive portion of the experiment, AIC, AIC, and BIC were tested.

4. RESULTS AND DISCUSSION

To make assumptions about the performance of the mode! selection techniques
across an infinite number of possible conditions given a finite number of tests, one
must examine the results for telling trends, and hypothesize that the trends more
or less predict the untested conditions. Figure 7 shows the average number of rate
categories selected with standard error bars as the sequence length increases given
various model selection techniques. The general trend is that most model selection
techniques become more accurate as the sequence length increases. The notable
exception to this trend is C'V which starts off the closest to the correct generating
model, two categories, and becomes more biased toward choosing an overly complex
model of evolution as the sequence length increases. Additionally it can be plainly
seen from the error bars that CV also has the least certainty of all the techniques.
Given that most researchers would not have the time or computing power necessary

to re-run model selection many times over to be sure to account for the variance, CV
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seems like a relatively poor choice especially given the apparent high performance,
and low cost of the other techniques. Another notable piece of information presented
is that BIC is strongly biased toward selecting an overly simplified model of evolution
at least when the sequence length is below 5000. There have been findings in the
past that agree with this relative tendency of BIC' to select a more simple model
of evolution than AIC, but in that case AJC' may have been selecting an overly
complex model of evolution(Alfaro and Huelsenbeck, 2006). At least for selecting
the number of evolutionary rate categories, AIC, AIC,, and LRT outperform BIC
and CV in the case of four taxa under the computationally difficult Felsenstein zone
like tree as described in the Methods section.

Tt is not clear from the empirical analysis of ATC and AIC, which performs better.
However the trend is quite clear that at low sequence length and low taxa, AIC and
AIC, both penalize too much and select an overly simplified model of evolution.
Civen that even AIC over-penalizes at low sequence length and taxa, the additional
penalty ATC, provides at short sequences no longer makes sense.

A more telling viewpoint of C'V's variance is perhaps its distribution of models
selected under different techniques. Figures 8(a) and 8(b) show the model selected
and the selection technique on the bottom axes, and the number of times that model
was selected on the vertical axis. As can be seen, when the sequence length is 5000
(Figure 8(a)) all methods other than CV and BIC select the correct model every
time. CV has the unique distinction of being the most variable, and of selecting an
overly complex model of evolution at all sequence lengths tested given 4 taxa.

The performance of the techniques as the number of taxa increases was examined

to see if any interesting selection biases emerged. As shown in Figure 9 an interesting
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FIGURE 7. Results from the experiments testing the 2 rate category
heterotachous model on four taxa as sequence length increases from
10 nucleotides to 5000 nucleotides. Error bars show standard error
measurements. All the data for this graph was generated using the
model of evolution posed in Figure 5(a).

pattern did emerge. It seems that LRT has a tendency to select increasingly complex
models of evolution as the number of taxa increases and the sequence length remains
fixed and relatively short at 500 nucleotides. Through the same trend A7C' and AIC,
converge on the correct result, and BIC remains overly conservative. Additionally

CV became less variable as shown in figure 8(c), and also, on average, converged on
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various techniques at the highest sequence length sequence length of 1000. CV was also highly
tested (5000 for BIC, AIC, AICc, and LRT; 4000 variable at all other sequence lengths tested, al-

for CV).

FiGURE 8. The variance in the model selected by C'V. In these figures

the z axis represents the simple count out of 50 trials that each value
was observed.

though it decreased in variability as the number

of taxa increased.
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the true model as shown in Figure 9. Still, the form of CV tested did not perform

as well as the computationally simpler technique of A/C, and AIC,.

The form of CV tested can be ruled out as an optimum technique due to its

exceedingly high variance compared to other techniques (see Figures 7, 9, and 8)

even though it performed slightly better at higher taxa (see Figure 9 and 8(c)).

CV'’s computational cost does not warrant its use for this problem given the higher
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FIGURE 9. This figure examines the trend of model selected as the
number of taxa are increased but the sequence length remains the
same. The sequence length is fixed at 500 for all of these data-points.
See Figure 5 to see the trees used to simulate data for each number of
taxa on this graph. Note that in all cases 2 branch length categories
is the correct value.

accuracy of the computationally simpler AIC. Additionally other forms of C'V may
perform better in general for the problem of selecting the number of branch length
categories.

Given more time and resources, data with longer sequence lengths and higher
numbers of taxa should also be explored. In these conditions would LRT have
converged on the correct result like AIC and AIC, or would it have remained biased
toward an overly complex model of evolution? Similarly would BIC have eventually

converged on the correct result from being overly conservative? Also would C'V
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exchibit less variation and converge on the correct result while following this trend?

These are open questions that could be answered given more resources.
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FIGURE 10. p and x are derived as shown in figure 6. Note that in
the above graphs, when x = 0 and p = 0 that represents the lightest
form of heterotachy, while when x and p = 0.5 that represents the
most extreme form of heterotachy. It is also important to note that
the model used to generate this graph had a very short internal branch
length of 0.005 rather than 0.1 as used in the rest of the experiments.
This gives a more extreme case of heterotachy for which the correct
model of evolution is theoretically more critical. In these graphs the z
axis is the average number of heterotachous partitions selected over 10
repetitions.

Figure 10 shows the results from the other main part of this experiment. In this
analysis, AIC, AIC,, and BIC were compared to see which selects the correct model

across the most diverse set of conditions described in figure 6 and 10. Note that when
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X = 0.5, there is essentially no heterotachy because all branches from both rate sets
are of length 0.5. Also note that there is essentially no heterotachy when P=0.0
because in that case all sites are generated by one of the two possible rate sets. This
figure shows that under the most extreme forms of heterotachy, that is when X and
P are high, AIC and AIC, choose the correct model of evolution in more cases than

does BIC.

5. CoONCLUSION

Given the data examined, AIC is the best candidate for a model selection tech-
nique to use for the problem of selecting the number of evolutionary rate categories
for use in an MBL model. AIC does not exhibit increasing biases toward overly
complex models like LRT does at shorter sequence lengths, and increasingly higher
taxa(Figure 9). Also AIC is not overly conservative like BIC(Figures 7, and 9).
Additionally the AIC does not have the variability problems that CV has espe-
cially at lower taxa(Figures 8(a), and 8(b)). Also compared to BIC, AIC selects
the correct model across varying extremities in the computational complexity of the
heterotachy tested (Figure 10).AIC has an added bonus of being extremely compu-
tationally cheap if preliminary likelihood scores are already calculated. That in mind
AIC seems to be the best choice although more work should be done across a more
diverse range of conditions to be sure of this finding.

AIC and AIC, performed very similarly on the data tested. Since Al C., is correct-
ing for a liberal bias at low sequence length, A7C, can be disregarded as the optimal

technique for this problem. At low sequence lengths, AJ/C does not have a tendency
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to select an overly complex model for this problem, in fact it selects an overly sim-
plified model as seen in Figure 7. Thus at the low sequence lengths where AIC,
makes a difference, it would actually bias AIC further toward selecting an overly
simplified model. For this reason AIC is the optimal model selection technique for
use in selecting the number of branch length categories for use in the mixed branch

length model.

6. FUTURE WORK

This paper presents the examination of the effectiveness of various model selec-
tion techniques at determining the number of heterotachous partitions under one
computationally difficult scenario. The work does not say for sure whether or not
the same model selection techniques that performed well under the conditions tested
would also perform well under other conditions such as varied sequence length and
taxa, and/or more heterotachous partitions. To get a more thorough idea of how
the techniques perform, one should examine other conditions as well, and see how
the techniques perform in those circumstances. Although it would be important to
evaluate a wider range of evolutionary conditions, more weight should always be
placed on models shown to lead to phylogenetic error if an incorrect number of evo-
lutionary rate categories were chosen. Thus any future analyses of the performance
of model selection techniques should also include an analyses of the performance of
the selected model at uncovering the true phylogeny as well.

Another important future research project is to check which model selection tech-

niques lead to a selected model of evolution that generates the true phylogeny in the
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majority of all cases. The analyses presented were concerned with selecting the gen-
erating model of evolution, rather than determining whether the model of evolution
chosen, if incorrect, was at least good enough to generate the true phylogeny.

Since this analysis was performed on a very specific case of heterotachy with long
branches of 0.75 and short ones at .25, it would be ilﬁportant to examine the ac-
curacy of the mixed branch length mode! while varying the length long and short
branches. Additionally the majority of the analysis was performed with data gen-
erated using an equal proportion of all sites falling under each rate category. It be
important to examine more data in which the proportion of sites falling under the
rate categories is varied, and examine the accuracy of the model selection techniques.

Despite the fact that CV performed very poorly when the implementation as
- described by Zhou et al. (2007) was used, the analysis should be re-run using different
proportions of sites in the training set versus the test set. In this paper, only half of
the sequence was used to approximate parameters that are applied to the remainder
of the sequence. It is possible that if the proportion of sites in the training set were
greater, and test set smaller, that CV would perform more optimally.

Finally the sequence length was varied with the number of taxa fixed at four,
and the number of taxa was varied with the sequence length fixed at 500, but more
work should be done with further variation of sequence length and taxa to sce if
any other patterns turn up. For example many model selection techniques choose an
overly complex model of evolution as the number of taxa grew; would these methods
converge on the correct answer as the sequence length grows as well, or would the

greater sequence length cause the techniques to choose an even more complex model?
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Regardless of the model selection technique that ultimately proves to be the best
fit for the MBL model, the MBL model of evolution is an important development in
phylogenetic analysis. The added accuracy of the model provides Maximum Like-
lihood with a much more realistic model of evolution to work with, pushing ML
analyses closer to the goal of statistical consistency. If more work were put into
optimizing a maximum likelihood package incorporating the MBL model, it should

surely become one of the more important tools available to phylogeneticists.
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