
EXPLOITING USB POWER READINGS FOR HIGH-RESOLUTION HOST

FINGERPRINTING

by

CAMERON JUAREZ

A THESIS

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the honors requirements
for the degree of

Bachelor of Science

June 2014

THESIS APPROVAL PAGE

Student: Cameron Juarez

Title: Exploiting USB Power Readings for High-Resolution Host Fingerprinting

This thesis has been accepted and approved in partial fulfillment of the requirements
for the Bachelor of Science honors program in the Department of Computer and
Information Science by:

Prof. Kevin Butler Advisor

Degree awarded June 2014

ii

c© 2014 Cameron Juarez

iii

THESIS ABSTRACT

Cameron Juarez

Bachelor of Science

Department of Computer and Information Science

June 2014

Title: Exploiting USB Power Readings for High-Resolution Host Fingerprinting

Having confidence that a user can identify a machine they want to communicate

with is critical for users who wish to keep their data safe. Being able to establish

the identity of a machine is of critical importance for establishing user trust. In

this paper, we outline a methodology to leverage the ubiquitous USB interface and

power measurements consisting of voltage, wattage, and amperage to uniquely identify

machines. We collect USB power samples from a corpus of 45 machines on the

University of Oregon campus and through machine learning classifier techniques,

we demonstrate that it is possible to use statistical metrics extracted from these

samples to differentiate hosts based on class label. Using these statistical metrics,

we are able to correctly differentiate sampled hosts by ID with an upwards of 94%

accuracy. In addition we are able to identify characteristics about the machines such

as model number and operating system with an accuracy of 98%. Using a Random

Forest classifier were are able to generate fingerprints that are capable of consistently

distinguishing hosts that are seemingly identical with an accuracy of 98% as well.

Later in our analysis we show that our methods can be extended to determine other

characteristics about target hosts as well such as what USB devices are connected.

Our techniques are deployable in an accessible, low-cost fashion.

iv

v

CURRICULUM VITAE

NAME OF AUTHOR: Cameron Juarez

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
University of Oregon, Eugene

DEGREES AWARDED:
Bachelor of Science, Computer and Information Science, 2014, University of
Oregon

AREAS OF SPECIAL INTEREST:
Machine Learning
Web Applications
Backend Infrastructure
Security
Cryptography

PROFESSIONAL EXPERIENCE:

Software Engineer, Google, Mountain View, California, Summer 2014 - Present

Developer, Venture Dept., Eugene, Oregon, Fall 2013 - Spring 2014

Software Engineer Intern, Google, Mountain View, California, Summer 2013

Software Development Engineer Intern, Amazon.com, Seattle, Washington,
Summer 2012

i

ACKNOWLEDGEMENTS

I would like to thank Adam Bates for his time, guidance, and mentorship
throughout the completion of this thesis. I would like to thank Kevin Butler and
the OSIRIS lab for their input and feedback.

ii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

1.1 Background . 1

II. METHODOLOGY . 5

2.1 Why Power Readings . 5

2.2 Implementation . 7

2.3 Collecting Samples . 13

2.4 Data Corpus . 17

2.5 Feature Extraction . 19

III. EVALUTATION . 22

3.1 Classification Algorithms . 22

3.2 Results . 23

IV. DISCUSSION . 25

4.1 Analysis . 25

4.2 Future Work . 28

iii

Chapter Page

V. RELATED WORK . 30

5.1 USB Fingerprinting . 30

5.2 Remote Fingerprinting . 31

5.3 Learning Based Classifier Evasion 31

VI. CONCLUSION . 33

REFERENCES CITED . 34

iv

LIST OF FIGURES

Figure Page

2.1 An image of our setup while the programmer can communicate with the
power gauge. 8

2.2 Power gauge output before source modifications. 10

2.3 Unaltered printDotDecimal function used in place of the Arduino floating
point library to print floats. 11

2.4 printDotDecimal with our additions to support 3 decimal points. 12

2.5 Main loop function loaded on the power gauge. While the device is on,
this function is called in repetition indefinitely. 13

2.6 An image of the power gauge we used (provided by Adafruit). 14

2.7 Voltage over time from raw measurements of iMac 13.2’s in our data
corpus. 15

2.8 Cumulative distribution functions for amperage and wattage measurements
across all iMac 13.2 hosts. 17

2.9 Cumulative distribution functions for voltage measurements across all
iMac 13.2 hosts. 20

4.1 Voltage cumulative distribution functions of a single iMac 12.2 named
Ortega. 26

4.2 Cumulative distribution functions for amperage and wattage measurements
on Ortega host with three load variations. 27

v

LIST OF TABLES

Table Page

2.1 Description of data corpus. 18

2.2 The 5 highest ranked features by information gain. 21

3.1 OS Version accuracies by class label. 23

3.2 OS Model accuracies by class label. 23

4.1 Identification accuracy under varied loads of the machine, Ortega. . . . 27

4.2 The 5 highest ranked features by information gain for Ortega samples
with varied load. 28

vi

CHAPTER I

INTRODUCTION

Long has the topic of machine identification been a discussion in the computer

security community. In today’s world, the transfer of sensitive data is a commonplace

transaction that people utilize every day (e.g. online banking, job applications [SSN],

secure sign-on, etc) via a variety of different data transfer mediums such as flash

drives, the Internet, and USB cables. Encryption exists to protect this data, but a

more challenging problem remains posed: how can one determine if the machine they

are communicating with is actually the one they think it is? Solving this problem has

proven to be more challenging than it seems.

1.1 Background

Being able to establish identity is a core prerequisite for establishing trust.

Consider a server in a data center, one would expect that verifying characteristics

such as the model number, serial number, etc should be sufficient to confidently

assume that the machine belongs to the data center and has not been tampered

with. Despite this, even if the machine is physically present and can be observed to

be as expected, there is little preventing the machine from surreptitiously relaying

commands to an external host and providing responses from the same host in place

of the machine’s. Such a relay attack was posed by Parno who dubbed it a "cuckoo"

attack [?].

How to alter and effectively fake a machine’s serial number is common knowledge

thanks to easily accessible resources on the Internet [?]. As a result, a machine can be

swapped in place of another machine with the same hardware and serial number while

1

avoiding detection by the owner of the original machine. Methods of creating uniquely

identifying "fingerprints" of machines have been posed in previous works with the

potential to thwart such an attack but these methods suffer from low accuracy in

practice [?].

In this thesis we propose that ubiquitous USB interface supported by USB ports

found on nearly every modern computer and some mobile devices can be used to

determine identity with higher accuracy than previous works. With the methods we

propose, even seemingly identical machines composed of the same hardware can be

uniquely differentiated. Minute differences in USB stack and hardware imperfections

cause USB power readings taken from the same device to vary across different

machines. With this we are able to create high-resolution fingerprints based on

voltage, amperage, and wattage provided by a host measured using a device connected

to one of their USB ports. In this work we demonstrate the practicality of this method

and its strengths over previously proposed methods of USB Fingerprinting [?].

Making use of machine learning classifiers, we show that through the collection

of power measurements we are also able to accurately differentiate hosts based on

operating system, model, and manufacturer. Taking this further, we found that our

classifier was able to uniquely identify host machines with a nearly equal level of

accuracy. Through our machine identification trials we found that with our USB

Fingerprinting method our classifier could construct a set of models that consistently

identifies 94% of our corpus of 45 machines. Additionally we found that the classifier

was able to identify 98% of a field of 10 seemingly identical machines from our corpus.

This thesis makes the following contributions:

– A methodology for feature extraction of USB power measurements:

We collect measurements containing voltage, amperage, and wattage via a small,

2

inexpensive embedded device. From there we develop a feature extraction

methodology that we apply to 22,500 measurements. We conduct a survey

across several university computer labs of USB stack behavior yielding a data

set of 45 different machines with a few different makes, models, and operating

systems. We quantify and express the information gain of resulting feature

vectors across our sampled machines.

– Design and evaluation of USB-Power-based host classification

techniques: We use USB power output data to differentiate between different

machine models with 98% accuracy and between different operating systems

with 98% as well. Through the use of statistical techniques we refined

classification results for individual machines and achieve a fingerprint that can

uniquely identify 98% of a field of 10 seemingly identical machines. We analyze

our methods used for classification along with the information gain of elements

in our feature vectors in order to produce a more accurate result.

– Development of collection tools suitable for commodity deployment:

Previous works were able to eliminate the need for expensive USB analyzers in

favor of commodity smartphones [?]. We demonstrate an alternative approach

that uses even less expensive hardware (around $10 worth). We develop a

method for collecting power samples using the even less expensive power gauge

mini-kit and a USBTinyISP AVR Programmer produced and sold by Adafruit.

We use the fact that the power gauge is open source and explain how we used

this to further refine our measurement collection process.

The rest of this thesis is structured as follows: Section ?? provides the details of

how we collected power measurements and extracted feature vectors with statistical

3

tools for better classification results. Section ?? describes our classification techniques

and results.

4

CHAPTER II

METHODOLOGY

We begin by observing that the USB interface is now nearly ubiquitous across

both consumer and enterprise devices (e.g. desktop computers, laptops, mobile

phones, etc). Hundreds of millions of people rely on devices which communicate via

USB on a daily basis. Throughout this work it will become clear that the ubiquitous

nature of USB devices works towards our advantage as we describe a method for host

identification via USB fingerprints.

Previous works in USB fingerprinting relied extensively on custom hardware,

expensive USB analyzers and Android smartphones for fingerprint collection [?].

These works were unable to consistently identify machines with greater than 90%

accuracy. In this study we propose an even lower cost solution which has proven to

provide more accurate results than previous works. To do this we examined variance

in the power output of USB ports belonging to different hosts. In particular, we used

voltage, wattage, and amperage to form unique USB fingerprints for individual hosts.

2.1 Why Power Readings

In order to create high-resolution host fingerprints we used a novel approach. By

collecting power measurements commonplace to Electrical Engineers (EEs) and other

EE related fields, we were able to form samples composed of power readings that were

viable for host identification. After some pre-processing, we fed these samples into

our machine learning classifier in order to form these high-resolution host fingerprints.

This was possible in part because of the identifying information leaked through USB

power readings.

5

With the findings of our work we assert that the information leaked by a host

via power analysis is sufficient to be considered uniquely identifying. Although the

USB specification calls for USB hosts to be provisioned with a downstream port that

applies 5 volts to a connected device, it mentions that there is room for imperfections.

According to the specification, an applied voltage anywhere between 4.75-5.25 is

considered tolerable for a downstream port when a device is connected [?]. In practice,

mechanical and other imperfections give rise to subtle variations in applied voltage

and amperage from a connected source that can be observed from outside of the host

as a side channel [?], [?], [?].

Each measurement we collected contained voltage, amperage, and wattage values

read from the machine being fingerprinted via a low cost power gauge. Voltage was

particularly useful for us during classification because different machines typically

had consistent voltage output. In addition to this consistency, we found each sampled

machine to have values that varied enough from the other machines to be accurately

identified by our machine learning classifier with a high success rate. Moreover we

found that many tuples of (voltage, amperage, wattage) measured from the same

machine were unique to that machine.

Amperage tended to be much less consistent than voltage on a per machine

basis. We measured the average variance per machine for voltage to be 1.06 ∗ 10−4

volts versus the average variance for amperage, 4.25∗10−2 amps, nearly 400x greater.

Based on our preliminary tests, it seemed that voltage would be more useful for

classification. Partly because of the lack of consistency of amperage values we

measured, we measured power as well. By observing that power is directly related

to both amperage and voltage via P = IV (P is power measured in watts, I is

current measured in amperes, and V is voltage measured in volts) we can see that we

6

have increased chances of each measurement taken with our power gauge being in a

consistent ballpark with others taken from the same machine (power hovered around

the measured voltage despite less consistent amperage readings).

2.2 Implementation

By using a $10.00 power gauge mini-kit developed by Adafruit [?] which includes

a multipurpose Atmel ATtiny85 microcontroller we were able to take power readings

across 45 different (but in some cases identically specified) machines. Before getting

started with the power gauge we assembled and used a $22.00 USBTinyISP AVR

programmer kit [?] also sold by Adafruit to change code on the gauge. The Adafruit

power gauge was specifically purposed for the task of collecting measured voltage,

amperage, and wattage and outputting these measurements via TTL serial output [?].

The power gauge arrived unassembled so it was necessary to solder the male and

female USB connectors prior to taking measurements. In the next subsections we

describe how we used the AVR programmer to load code onto the power gauge in

further detail.

2.21 Using the Programmer

In this section we describe the Adafruit USBTinyISP AVR Programmer used

in this study. With the programmer we were able to load altered source code

onto the power gauge which allowed us to get more decimal points of precision

from our measurements and to double the sampling rate. The Programmer was

assembled from the USBTinyISP AVR Programmer Kit sold by the company, Adafruit

(mentioned above). The kit arrived as a circuit board, case, series of resistors, micro

controller, capacitor, buffer chip, and LEDs. From there we spent 3-4 hours soldering

7

FIGURE 2.1: An image of our setup while the programmer can communicate with
the power gauge.

the components to the circuit board as described in the instructions provided on

Adafruit’s support website. Once the Programmer was assembled we verified that it

worked correctly by plugging it into a Linux machine with the supplied USB cable

and observing that the green LED on the programmer was illuminated. We then

loaded a sample blink sketch onto an Arduino UNO board using the programmer and

a standard USB cable and saw that the specified LED blinked as intended.

Using the 6-pin connector included in the USBTinyISP Programmer Kit, we

connected the programmer to the USB power gauge (as shown in Figure ??) in order to

load our modified source code onto it. To initiate the loading process we used Arduino

IDE with a few custom settings to communicate with the power gauge. For starters

we had to update the file avrdude.conf with the necessary settings for an ATtiny85

microcontroller. Then because we used Arduino IDE on OSX it was necessary to

update a faulty linker included with the Arduino IDE software to allow sketches

8

larger than 4KB in size to be uploaded to the power gauge [?]. There wasn’t actually

documentation for completing this process specific to the power gauge mini-kit, but

we found that the provided instructions for the nearly identical, Adafruit Trinket

microcontroller worked fine. After making these alterations, we launched Arduino

IDE and selected the correct settings to communicate with both the programmer and

the power gauge. In our case, these were (from the Arduino IDE menu bar) Tools ->

Board -> Adafruit Trinket 16 MHz and Tools -> Programmer -> USBTinyISP.

From here we were able to successfully upload our custom source code with precision

and timing modifications to the power gauge.

2.22 Modifying the Power Gauge

Out of the box the power gauge did not offer the precision or sampling

rate that we desired. Luckily the power gauge was created for makers and fully

reprogrammable. The 10 sample measurement in Figure ?? gathered by the power

gauge demonstrates its initial lack of precision. A mere single decimal point of

precision caused too many shared voltage and wattage values. In particular we found

that many machines shared the voltage values: 4.8, 4.9, and 5.0 volts. After previously

examining the USB 2.0 Power Delivery specifications, we found these numbers to be

unsurprising [?]. However this shortage of possible values would have been detrimental

to our accuracy when feeding those values into our machine learning classifier down

the road. To remedy this problem, we were tasked with increasing the precision of

the power gauge. We found that the power gauge was actually capable of up to three

decimal points of precision with a few slight adjustments to the source code loaded

on the device.

9

V: 4.9 I: 39 mA Watts: 0.2
V: 4.9 I: 15 mA Watts: 0.1
V: 4.9 I: 15 mA Watts: 0.1
V: 4.9 I: 25 mA Watts: 0.1
V: 4.9 I: 27 mA Watts: 0.1
V: 4.9 I: 31 mA Watts: 0.2
V: 4.9 I: 18 mA Watts: 0.1
V: 4.9 I: 15 mA Watts: 0.1
V: 4.9 I: 27 mA Watts: 0.1
V: 4.9 I: 27 mA Watts: 0.1

FIGURE 2.2: Power gauge output before source modifications.

Originally the device collected voltage measurements in millivolts via a method

called readVCC() and subsequently measure the current in milliamperes via a method

called readCurrent(). Finally it would calculate the wattage using the equation

P = IV in milliwatts and divide this value by 1000 to convert it to watts. The

power gauge would then pass the measured values for voltage and wattage to another

method called printDotDecimal(value, numDecimalPoints) which would print the

values with precision specified by the second argument. The reason this method is

necessary is because the power gauge does not have enough onboard memory for the

Arduino floating point library. The floating point library is around 2,000 extra bytes

in size while the power gauge source uses 5,302 bytes out of 5,310 available without

the library but with our modifications. Because amperage was displayed by the power

gauge in milliamperes (as an integer) the standard Arduino print() method was used

to print it.

Before being altered, the code on the power gauge would call printDotDecimal

using the result from readVCC() (the measured voltage in millivolts) as the first

argument and using the integer value 1 as the second. This would only output the

voltage value in volts to one decimal despite the fact that the code clearly supports

10

1 void printDotDecimal(uint16_t x, uint8_t d) {
2 ss.print(x/1000);
3 if (d > 0) {
4 ss.print(’.’);
5 x %= 1000;
6 ss.print(x / 100);
7 }
8 if (d > 1) {
9 x %= 100;

10 ss.print(x / 10);
11 }
12 }

FIGURE 2.3: Unaltered printDotDecimal function used in place of the Arduino
floating point library to print floats.

two out of the box. Using the AVR programmer and Arduino IDE we changed the

second argument to 2 and loaded the code onto the power gauge. After this change

succeeded, we decided that two decimal points was an improvement but three would

be even better. To accomplish this we made a few additions to the printDotDecimal

method above. In the original method, the input value x (millivolts or milliwatts,

both of which were typically greater than 100 but less than 6,000 in our case) and

at most (when the second argument is 2) printing the digit in the 100 column, 10−1

column, and 10−2 column while throwing out the digit in the 10−3 column. To add

this 10−3 decimal digit to the output we appended our new code shown in Figure ??

after the closure of the last if statement in the original method.

After this minor change we successfully collected and displayed voltage and

wattage measurements with three decimal points of precision using printDotDecimal(vcc,

3) and printDotDecimal(watt, 3) respectively in the main loop.

Despite having higher precision from our new additions to the code loaded onto

the power gauge we encountered another issue. The original source code took samples

at a painfully slow rate. Prior to making any modifications, the code loaded onto the

11

1 void printDotDecimal(uint16_t x, uint8_t d) {
2 ss.print(x/1000);
3 if (d > 0) {
4 ss.print(’.’);
5 x %= 1000;
6 ss.print(x / 100);
7 }
8 if (d > 1) {
9 x %= 100;

10 ss.print(x / 10);
11 }
12 // Print a third decimal point if d >= 3.
13 if (d > 2) {
14 x %= 10;
15 ss.print(x);
16 }
17 }

FIGURE 2.4: printDotDecimal with our additions to support 3 decimal points.

device took over 15 minutes to collect 50 samples from a machine. In order to reduce

the amount of time necessary for data collection we found it necessary to increase

the sampling rate of the device. To do this we took a look into the main loop of the

original code described in Figure ??.

We noted that the variable printCounter dictated how fast the loop would

iterate over the block of code responsible for measuring and printing the power

readings. We then effectively doubled the sample rate by replacing

1 printCounter %= 10;

with

1 printCounter %= 5;

after this adjustment, it took only around 7 minutes and 30 seconds to collect 50

samples from a machine. This meant we could take samples 2x faster, a considerable

speedup. We decided not to increase the sampling rate any further in order to

retain some accuracy during the measurement taking process. Despite this we note

12

1 void loop() {
2 ...
3
4 if (printCounter == 0) {
5 while (Lidx != 0) {}
6 // TIMSK &= ~_BV(OCIE1A);
7 printStringDelay("\n\rV: "); //ss.println(vcc);
8 vcc += 50; // this is essentially a way to ’round up’
9 printDotDecimal(vcc , 1);

10 delay (50);
11 printStringDelay(" I: ");
12 if (icc < 100) ss.print(’ ’);
13 if (icc < 10) ss.print(’ ’);
14 ss.print(icc);
15 printStringDelay(" mA ");
16 delay (50);
17 printStringDelay("Watts: ");
18 watt += 50; // this is essentially a way to ’round up’
19 printDotDecimal(watt , 1);
20 delay (50);
21 // TIMSK |= _BV(OCIE1A);
22 }
23 printCounter ++;
24 printCounter %= 10;
25 ...
26 }

FIGURE 2.5: Main loop function loaded on the power gauge. While the device is on,
this function is called in repetition indefinitely.

that accuracy was not our prime concern. As long as the power gauge produced

precise measurements, the measured voltage, amperage, and wattage were not that

important. This means to say that if the power gauge were to incorrectly offset

something such as the measured voltage by +.2 volts, this was okay as long as this

offset occurred for every measurement.

2.3 Collecting Samples

In order to get the power gauge to start enumerating measurements, it was

necessary to plug a USB compatible device into the device side shown in Figure ??.

Our first attempt was to use a USB 2.0 to Micro B cable with an Android smartphone

13

FIGURE 2.6: An image of the power gauge we used (provided by Adafruit).

(in this case, the Samsung Galaxy S4) connected to the Micro B side. We found

that the smartphone would not always negotiate for the same amount of voltage

and current during the enumeration step of the USB connection. As a result voltage

readings jumped at times by over a volt during different fingerprinting instances of the

same machine. To remedy this approach, we plugged a simpler flash drive (SanDisk

Cruzer 16GB USB 2.0) into the device side instead. After making this modification,

voltage measurements from the power gauge no longer displayed this behavior.

To be able to read and record output from the power gauge we used Adafruit’s

USB to TTL serial cable in conjunction with the command line tool, screen. After

plugging in the power gauge to a host we wanted to sample, we would connect the

GND -> GND and RX -> TX pins respectively from the cable to the power gauge. In

order to get more consistent results, each of the samples we took was collected a

few seconds after a fresh reboot before running any non-system related programs or

logging in.

14

4.86

4.87

4.88

4.89

4.9

4.91

4.92

4.93

4.94

4.95

4.96

0 5 10 15 20 25 30 35 40

V
ol

ta
ge

 (V
ol

ts
)

Measurement Instance

iMac 13.2 Voltage Over Time

FIGURE 2.7: Voltage over time from raw measurements of iMac 13.2’s in our data
corpus.

To fetch the output we were interested in from screen, we used the

command screen -L /dev/tty.NoZAP-PL2303-0000X014 9600,cs7 where X varied

from 1 to 2 depending on which USB port the serial cable was plugged

in to. The command created a file called screenlog.0 in the working

directory which contained power measurements from the sampled host. After

sampling a single host, we renamed this file to adhere to the following pattern:

location_MachineIDModel#OperationSystem so that we could later conveniently

process these files. For example, a raw sample file for a iMac 12.2 in Deschutes was

called des_WhoaiMac12,2OSX10,8,5.

Each sample we took was comprised of raw 10 measurements. In preliminary

testing we observed that amperage and wattage readings had high variance and would

likely not be useful in classification (contrasting voltage as shown in Figure ??, voltage
15

typically varied between 2-3 values per machine). In an attempt to reduce variance, we

arranged to have each sample to be comprised of the maximum likelihood estimations

(MLEs) of raw measurements. We collected 50 samples at a time from each distinct

machine. Even with our custom increased sampling rate, taking 500 measurements

with the power gauge took on average 7 minutes and 30 seconds per machine. In

total we spent over 5 hours and 37.5 minutes collecting samples. Prior to sampling

each of the hosts, we recorded a few identifying characteristics about the machine

including OS name and version number, USB Firmware version number and USB

Controller Manufacturer as well as USB Driver Version into an excel spreadsheet

for use later with our machine learning classifier.

To recap, the process for data collection was as follows:

1. Record identifying attributes about the target machine.

(a) Machine ID.

(b) Machine Model (w/ Model Number).

(c) Operating System (w/ OS Version).

(d) USB Hardware Manufacturer (w/ Firmware Version).

(e) USB Driver Version Number.

2. Reset the target machine.

3. Allow the target to reach the login screen.

4. Plug in the host side of the power gauge into the target.

5. Using the USB to TTL serial cable connected to the power gauge, plug in the

USB cable into the sample collecting machine.

16

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30 35 40 45

A
m

pe
ra

ge
 (m

A
)

Cumulative Percentage

iMac 13.2 Amperage Cumulative Distribution Functions

0

0.2

0.4

0.6

0.8

1

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

W
at

ta
ge

 (W
at

ts
)

Cumulative Percentage

iMac 13.2 Wattage Cumulative Distribution Functions

FIGURE 2.8: Cumulative distribution functions for amperage and wattage
measurements across all iMac 13.2 hosts.

6. Run the screen command mentioned above.

7. Let the power gauge collect samples via screen for 7 minutes and 30 seconds.

8. End the screen process and rename the output file (screenlog.0) using the format

mentioned above.

The procedure was used in order to eliminate potential outside variables that

could possibly affect our results. Future work remains to determine whether this

approach is robust when the machine is either under load or operating with more

(or less) plugged-in USB devices than a mouse and keyboard. Future work is also

required to determine whether the power gauge is precise enough to regularly gather

consistent measurements from the same host.

2.4 Data Corpus

By using the procedure detailed in the section above, we collected samples from

a variety of university owned machines. These machines were located across four

different computer labs on the University of Oregon campus. The labs were by

17

in large homogenous typically consisting of either one or two groups of machines

with identical specifications. Many of these nearly identical machines were also

running the same operating system installed from a shared disk image. Our data

set contained samples from 30 hosts running Microsoft Windows 7 Service Pack

1 and 15 hosts running Apple’s OS X 10.8.5. Our corpus is described in more

detail in Table ??. In total we collected 500 measurements per machine for a

total of 22,500 measurements taken which constituted 2,250 samples. We collected

additional measurements from machines that we had already fingerprinted to ensure

the measurements were consistent with ones we had already collected. We did not

include these additional measurements in our data corpus. Our work suffers from a

relatively small data set but the results we found proved to be promising for future

work.

Class Label Host Count
OS

OSX 10.8.5 15
Windows 7 SP1 30

Model
Apple iMac 12.2 5
Apple iMac 13.2 10
Dell Optiplex 980 13
Dell Optiplex 990 13
Dell Optiplex 9010 4
TOTAL MACHINES INSPECTED 45
TOTAL MEASUREMENTS COLLECTED 22,500

TABLE 2.1: Description of data corpus.

18

2.5 Feature Extraction

After collecting raw samples from our corpus of machines, we used a custom

ruby script to parse out meaningful data. Our raw data consisted of a 3-tuple per

measurement: the measured voltage, amperage, and wattage of the target host (see

Figure ?? for an example raw measurement). Voltage and wattage were recorded in

volts and watts respectively with three decimal points of precision. Amperage was

recorded in milliamperes with three digits of precision. To get a better representation

of the raw data, we constructed a per-sample feature vector of statistical metrics that

we later used as input to our machine learning classifier. We repeated these metrics

for each of voltage, amperage, and wattage. In total our feature vectors were formed

of 9 distinct features that proved to be great for consistently accurate classification

of our sampled hosts.

We chose our first metric included in the feature vector to be mean. Because

measurements from a single machine typically jumped around a lot we found an

average of each of the quantities being measured to be a useful tool. Our feature

vector contained mode as well, this was especially useful when considering voltage

because each machine typically varied over only 2-3 unique values for voltage during

sample collection. Given this consistency, mode was a great feature for our classifier.

Lastly we measured standard deviation of each voltage, amperage, and wattage to

get a snapshot of how much values from a single machine varied. We found standard

deviation to be beneficial when classifying machines whose values varied more from

the average than other machines.

We utilized a custom ruby script to automate the process of computing and

aggregating these feature vectors for each of our 2,250 samples and then exported

them to a single .csv file. The format of the feature vector extracted from each

19

0

0.2

0.4

0.6

0.8

1

4.86 4.87 4.88 4.89 4.9 4.91 4.92 4.93 4.94 4.95 4.96

V
ol

ta
ge

 (V
ol

ts
)

Cumulative Percentage

iMac 13.2 Voltage Cumulative Distribution Functions

FIGURE 2.9: Cumulative distribution functions for voltage measurements across all
iMac 13.2 hosts.

sample is as follows: Machine ID,Voltage Mean,Voltage Mode,Voltage Standard

Deviation,Amperage Mean,Amperage Mode,Amperage Standard Deviation,Wattage

Mean,Wattage Mode,Wattage Standard Deviation. For the purposes of creating a

meaningful visual presentation of our data, we also wrote a bash script to parse the

.csv output of our ruby script and generate several GNUPlot scripts. GNUPlot is a

portable, command line graphing tool commonly used for data visualization in the

academic community.

Figure ?? shows that by visual inspection, voltage was for the most part distinct

across different machines. We expected voltage to be more useful during classification

than amperage and wattage because of the variance shown in Figure ??. Despite

this, calculated information gain showed that this variance could actually be useful.

20

Feature Information Gain

Voltage Mean 3.88 bits
Wattage Mode 3.02 bits
Voltage Standard Deviation 2.27 bits
Amperage Standard Deviation 2.25 bits
Voltage Mode 2.19 bits

TABLE 2.2: The 5 highest ranked features by information gain.

Voltage mean had the highest information gain as expected but wattage and amperage

standard deviation made the top 5 as well as shown in Table ??.

21

CHAPTER III

EVALUTATION

In this section we further explore the discriminating potential of USB power

readings. We do so by employing several machine learning classifiers which attempt

to identify where input samples originated after examining a training set. Using these

classifiers, we took a look at different defining characteristics of the machines in our

data corpus and whether the classifiers were able to accurately distinguish them. We

used a subset of the stock set of classifiers provided by the well-respected WEKA

libraries to accomplish this. Lastly we seek to develop a fingerprint that will uniquely

identify individual hosts amidst other identically specified machines.

3.1 Classification Algorithms

Building off the findings of previous works [?] we found supervised learning

algorithms such as decision tree classifiers to be particularly accurate and robust

when paired with our data set. Supervised learning algorithms analyze training data

instances (each containing a vector of attributes and a class label) to construct an

inferred function which can be used for mapping new data instances. When talk

about the accuracy of these supervised learning algorithms, we are referring to the

percentage of unseen instances which whose class labels were correctly determined by

the classifier.

We experimented with a number of different classifiers provided by the WEKA

libraries in an ad hoc fashion. These classifiers included J48 Decision Trees,

Random Forest, Random Tree, and Instance-Based Learners (using a nearest neighbor

22

OS Version Accuracy

OSX 10.8.5 98%
Windows 7 SP1 99%

TABLE 3.1: OS Version accuracies by class label.

MNF Model Number Accuracy

Apple iMac 12.2 OSX 10.8.5 96%
Apple iMac 13.2 OSX 10.8.5 97%
Dell Optiplex 980 Windows 7 SP1 99%
Dell Optiplex 990 Windows 7 SP1 98%
Dell Optiplex 9010 Windows 7 SP1 99%

TABLE 3.2: OS Model accuracies by class label.

algorithm). Ultimately we found the Random Forest classifier to yield the highest

accuracy although it only slightly edged out WEKA’s IB1 classifier.

3.2 Results

We began by using our classifier to distinguish machine operating system. We

found that the classifier generated a model which correctly identified the operating

system of machines in our data corpus with 99% accuracy (as shown in Table ??).

Admittedly this number might be overly optimistic due to the homogeneity of OS

versions of the machines in our data corpus.

We then turned our attention to classification using machine model as the class

label and found some particularly interesting results. In addition to 98% accuracy

when distinguishing host models as shown in Table ??, we found our classifier only

mistaken 9 out of 1,500 sample instances of Dell/Windows hosts for iMac/OSX hosts.

The classifier did slightly worse when identifying iMac/OSX hosts mistaking 13 out

of 750 instances for Dell/Windows machines. Overall the classifier was very effective

in identification with machine model as the class label.

23

3.21 Machine Identification

Lastly we put our Random Forest classifier to the test using Machine ID as

the class label. We found the model generated by the classifier to yield even better

results than previous works [?] with 94% accuracy when distinguishing hosts in our

data corpus. Such a high accuracy percentage attests to the viability of using our

power measurement methods to form host fingerprints. Additionally, in a field of 10

identically specified machines our classifier achieved an accuracy of 98%.

24

CHAPTER IV

DISCUSSION

In order to promote and advance the techniques of USB Fingerprinting via power

readings, we released our source code and instructions on how to load it to the

power gauge we used (see Section ??). Although our exact approach requires specific

hardware, we believe our methodologies can be revised and deployed effectively on

any device that is capable of measuring USB power output in a precise manner.

4.1 Analysis

In order to determine the robustness of our approach we found it necessary to

take a closer look at host power output while under varying loads. It would seem

natural that with more connected power delivery (PD) devices, a host would output

less power through the power gauge than it would with no other connected USB

devices. To test this assumption, we took 50 samples containing 10 measurements

each from a machine in our data corpus with the following load variances (for each

of these we used the procedure outlined in Section ?? to collect measurements):

– No Load: Before resetting the machine we disconnected all USB devices from

the machine until sample collection was finished.

– Regular Load: We reset the machine with the mouse and keyboard connected

and collected samples as usual.

– Load: Before resetting the machine we connected an uncharged Android

smartphone to the target host along with the mouse and keyboard to the target

host until sample collection was finished.
25

0

0.2

0.4

0.6

0.8

1

4.905 4.91 4.915 4.92 4.925 4.93 4.935 4.94 4.945 4.95 4.955 4.96

V
ol

ta
ge

 (V
ol

ts
)

Cumulative Percentage

Ortega Voltage Cumulative Distribution Functions

Regular Load
Heavy Load

No Load

FIGURE 4.1: Voltage cumulative distribution functions of a single iMac 12.2 named
Ortega.

What we found was unsurprising in some ways. The voltage provided by the

target host while the machine was under load was on average lower than the voltage

provided when the machine was under no load. This can be seen in more detail

in Figure ??. Despite this result, the "regular load" samples we took with our

original batch of samples proved to be outliers. We believe this possibly to be due

to temperature differences during the times that we took measurements (the original

batch of samples was collected during a warmer day than the load samples). On their

website, Adafruit mentioned that measurements from the low cost power gauge are

susceptible to a small amount of noise due to thermal changes [?].

26

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

A
m

pe
ra

ge
 (m

A
)

Cumulative Percentage

Ortega Amperage Cumulative Distribution Functions

Regular Load
Heavy Load

No Load

0

0.2

0.4

0.6

0.8

1

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

W
at

ta
ge

 (W
at

ts
)

Cumulative Percentage

Ortega Wattage Cumulative Distribution Functions

Regular Load
Heavy Load

No Load

FIGURE 4.2: Cumulative distribution functions for amperage and wattage
measurements on Ortega host with three load variations.

Class Label Accuracy

Ortega Heavy Load 100%
Ortega No Load 98%
Ortega Regular Load 96%

TABLE 4.1: Identification accuracy under varied loads of the machine, Ortega.

While the smartphone was connected to the target host (labeled as "heavy load"),

the power gauge measured the amperage and wattage provided by the host to be more

consistent. This can be observed in Figure ??.

When we piped the data we collected under varied load to our machine learning

classifer described in Section ??, we found that our classifier was successful in

identifying each of the variations. Our classifier consistently identified all but 3

samples from a data set of 150 samples collected while the machine was under a

varied load. As shown in Table ??, our classifier was able to distinguish between

the three host states with an upwards of 99% accuracy. These results attest to the

possibility of using the fingerprinting methods described in this work to not only

profile machines, but also to profile the devices connected to the machines.

27

In this case of varied load on a single target host, amperage mode and wattage

mode proved to be better metrics for our machine learning classifier than voltage

mean. The information gain of each of these attributes can be seen in Table ??.

Feature Information Gain

Amperage Mode 1.55 bits
Wattage Mode 1.36 bits
Wattage Standard Deviation 1.32 bits
Amperage Standard Deviation 1.32 bits
Voltage Mean 1.27 bits

TABLE 4.2: The 5 highest ranked features by information gain for Ortega samples
with varied load.

Despite this result, voltage mean was again a useful metric for classification and

still showed up in the 5 highest information gain attributes.

4.2 Future Work

While highly accurate, the work presented in this thesis will require a larger, more

diverse data corpus for the results of our classification trials to be effectively validated.

Ideally a larger data set containing measurements from several more homogeneous

computer labs will continue to show even more promise for USB Fingerprinting via

USB power readings. Although our feature vectors proved to be sufficient for the

classification trials we conducted, it would undoubtedly increase the accuracy of our

machine learning classifier to add more features.

4.21 Measurement Tools

One drawback to our approach is that the power gauge we used is not a

multimeter replacement [?] and therefore might not be as accurate or precise as

we need. Additionally the maximum amount of decimal points the device is capable
28

of collecting and reporting when taking power measurements is three. This leaves

only around 2 ∗ 103 = 2000 possible values for voltage and wattage (this is a rough

estimate taking into consideration that these values varied between 4-5 volts and 0-1

watts respectively). Considering the number of PCs in 2013 was estimated to be

more than 1.5 billion [?], more decimal points of precision will be necessary in order

to to avoid multiple machines sharing the same or a very similar fingerprint (because

of our feature extraction procedures, the chance of this happening is greatly reduced

but still possible).

4.22 Measurement Consistency

Due to time constraints, we were unable to determine whether the USB port used

to plug in our power gauge made any difference in the measurements we collected.

Despite the fact that different ports from the same host shared the same USB

stack (hardware, firmware version, driver version), one could postulate that slight

imperfections in each port could cause unforeseen variance in the measurements taken.

In light of this concern, we did return to a machine we had collected samples on

during a different day to collect and compare measurements. From visual inspection

it seemed that these measurements were consistent but future trials measuring the

variance in power readings over different USB ports on the same host would make

this concern more transparent.

29

CHAPTER V

RELATED WORK

Fingerprinting has been employed as a device identification method using various

different approaches. Some of these methods have been used to identify devices

on a WiFi network [?], internet users’ browsing habits (using attacks resistant to

celebrated obfuscation platforms such as https and Tor) [?], [?], and of course

hosts connected to another device via a data transfer medium such as USB [?].

Fingerprinting works because of information leaks (or side channels) resulting from

either measurable signals caused by hardware imperfections in analog circuitry or

visible usage patterns (such is the case in website fingerprinting mentioned above) to

uniquely identify devices. Other related works include attempts to subvert machine

learning classification techniques such as the ones used in this thesis to identify

machines and their characteristics [?].

5.1 USB Fingerprinting

Adam Bates et al. used timing data they gather from low level USB interactions

to form uniquely identifying host fingerprints. Their work was shown to be resistant

to concept drift and relay attacks while being employable for a low cost. Despite

the benefits of their approach, the paper’s reported host identification accuracy was

between 53%-80%. We were able to improve upon their results with our average

accuracy of 94% when identifying randomly picked hosts out of our corpus. In order

to have confidence that a machine has been correctly identified, methods of USB

Fingerprinting must be refined so that an even higher identification accuracy may be

reached.

30

5.2 Remote Fingerprinting

Remote fingerprinting schemes identify devices via web traffic analysis [?], [?]

and metadata leaked via characteristics of their communication methods (such as

browser plugins, fonts installed, etc) [?]. Although the accuracy of these methods

is celebrated, network fingerprinting techniques are easily fooled by systems who

spoof their visible characteristics at a network level, such as Honeyd [?] or user agent

spoofing browser extensions [?]. Another approach focuses on timing analysis of

802.11 probe request frames to create unique fingerprints for devices connected to

a WiFi network. This method suffers from a significantly lower accuracy than the

previous and is further decreased when target devices are further from the WiFi access

point.

5.3 Learning Based Classifier Evasion

Methods proposed by Laskov et al. suggest ways to subvert machine learning

classifiers such as the ones employed by this thesis. In their study, they tested the

publicly available PDFRate (a machine learning classifier based program to determine

if a PDF is malicious or not) to demonstrate the viability of arbitrarily altering

confidence scores of a machine learning classifier [?]. Their goal was to show that a

skilled adversary could confuse the classifier into giving a false classification. They

found that by altering a small subset of features the machine learning classifier

considered, they were able to take a dataset of PDFs which was previously classified

by PDFRate as malicious and trick the classifier into thinking that 75% of the files

were actually benign. Their collection of attacks relies on the ability to alter data

before classifying it. Because of this our proposed methods of USB Fingerprinting are

31

safe from these learning based classifier attacks unless the data collected is altered by

an adversary before being submitted to our machine learning classifier.

32

CHAPTER VI

CONCLUSION

In this thesis we created a viable USB Fingerprinting technique for uncovering

uniquely identifying information about USB hosts using power measurements. We

showed that other information such as operating system and model can also

be extracted from our USB Fingerprinting technique with an upwards of 99%

accuracy. We showed that this information extraction is possible using just a few

inexpensive devices and a publicly available machine learning classifier with minimal

configuration. We achieved an accuracy of 94% when uniquely identifying machines

(some seemingly identical with matching specifications) from a large data corpus.

This high accuracy was an improvement from previous works that used similar

machine learning classifier USB Fingerprinting methods.

This thesis lays foundation for more rigorous work in fingerprinting using USB

power readings. It also suggests the possibility of using this type of fingerprinting with

other power providing interfaces such as phone connectors or Apple’s Thunderbolt.

Future work will involve validating USB Fingerprinting via power readings by

incorporating larger, more diverse data corpuses and automating data collection.

Future work remains to determine whether USB Fingerprinting can be used to detect

attacks on a target host and whether it is resistant to attacks itself.

33

REFERENCES CITED

[1] Adafruit. Adafruit power gauge mini-kit product page.
http://www.adafruit.com/products/1549, June 2014.

[2] Adafruit. Adafruit usbtinyisp avr programmer kit product page.
http://www.adafruit.com/product/46, June 2014.

[3] Adafruit. Setting up with arduino ide for attiny85 boards.
https://learn.adafruit.com/introducing-trinket/setting-up-with-arduino-ide,
June 2014.

[4] A. Bates, R. Leonard, H. Pruse, K. Butler, and D. Lowd. Leveraging usb to
establish host identity using commodity devices. University of Oregon, Tech.
Rep. CIS-TR-2013-12, 2013.

[5] H. Blodget. The number of smartphones in use is about to pass the number of
pcs.
http://www.businessinsider.com/number-of-smartphones-tablets-pcs-2013-12,
December 2013.

[6] M. contributors. Universal serial bus revision 2.0 power delivery specification.
http://www.usb.org/developers/docs/usb20_docs/, March 11 2014.

[7] C. P. T. D. Loh, C. Y. Cho and R. S. Lee. Identifying unique devices through
wireless fingerprinting. In Proceedings of the 1st ACM Conference on Wireless
Network Security, WiSec ’08, pages 46–55, New York, NY, USA, 2008. ACM.

[8] J. R. R. P. R. Dakshi Agrawal, Bruce Archambeault. The em side—channel(s).
In C. P. Burton S. Kaliski, çetin K. Koç, editor, Cryptographic Hardware and
Embedded Systems, volume 2523 of Lecture Notes in Computer Science, pages
29–45. Springer Berlin Heidelberg, 2002.

[9] P. Eckersley. How unique is your web browser?
https://panopticlick.eff.org/browser-uniqueness.pdf.

[10] P. L. Nedim Srndic. Practical evasion of a learning-based classifier: A case
study. In 35th IEEE Symposium on Security and Privacy, 2014.

[11] W. J. C. K. F. P. G. V. Nick Nikiforakis, Alexandros Kapravelos. Cookieless
monster: Exploring the ecosystem of web-based device fingerprinting.
https://seclab.cs.ucsb.edu/media/uploads/papers/sp2013_cookieless.pdf.

34

[12] B. Parno. Bootstrapping trust in a “trusted” platform. In Proceedings of the 3rd
USENIX Workshop on Hot Topics in Security, pages 1–6, San Jose, CA,
August 2008.

[13] S. M. Patrick McDaniel. Security and privacy challenges in the smart grid.
IEEE Security and Privacy, 7(3):75–77, May 2009.

[14] N. Provos. Developments of the honeyd virtual honeypot.
http://www.honeyd.org/, July 2008.

[15] B. M. G. Stefan Mangard, Thomas Popp. Side-channel leakage of masked cmos
gates. In A. Menezes, editor, Topics in Cryptology, volume 3376 of Lecture
Notes in Computer Science, pages 351–365. RSA, Springer Berlin Heidelberg,
2005.

[16] C. TJ, Teresa. wikihow: How to change a windows serial number.
http://www.wikihow.com/Change-a-Windows-Serial-Number.

[17] B. J. R. J. Xiang Cai, Xin Cheng Zhang. Touching from a distance: Website
fingerprinting attacks and defenses. In CCS ‘12: Proceedings of the 19th ACM
Conference on Computer and Communications Security.

[18] N. B. Xun Gong, Negar Kiyavash. Fingerprinting websites using remote traffic
analysis. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, 2012.

35

