
	
	

	
	

CAN I SEE SOME IDENTIFICATION?

DETECTING AND PATCHING SSL SOURCE CODE

VULNERABILITIES

by

JEREMY LIPPS

A THESIS

Presented to the Department of Computer and Information Science

and the Robert D. Clark Honors College
in partial fulfillment of the requirements for the degree of

Bachelor of Science

June 2015

	
	

ii	
	

An Abstract of the Thesis of

Jeremy Lipps for the degree of Bachelor of Science
in the Department of Computer and Information Science to be taken June 2015

Title: Can I See Some Identification?: Detecting and Patching Source Code
Vulnerabilities

Approved: _______________________________________

Boyana Norris

This paper reflects research with the goal of building source analysis of security

vulnerabilities for poorly written or faulty code intended to connect two parties via

online interaction. Today’s world is becoming more inundated with technology and

increased digital functionality through the use of the Internet, and as a result code

libraries have been built to support these data transfers. However, these libraries still

contain unsafe code and often lack the ability to inform developers of improper usages

of the libraries’ tools. In this proof of concept project, the research uses the C

programming language and the ROSE compiler to search through the libcurl SSL

source code library in an effort to locate such problems and warn the developer of them.

The libcurl variable insecure_ok was found to be uninitialized, and so code was built in

order to find it and other such variables, as well as warn programmers of its potential

dangers. These represent the first steps for further research into other problems within

SSL libraries and improvement of checks within the SSLChecker suite.

	
	

iii	
	

Acknowledgements

First and foremost, I would like to thank Professor Norris for the hours upon

hours of aid she provided me throughout the completion of this research. I knew from

having had previous classes with her how generous and patient she was with her

students, and so it was with little hesitation I approached her about finding a topic I

could work on for my thesis. Despite her busy schedule, she always made time for me

and helped me with every step along the way, from finding me resources to aid my

research to consoling me when I occasionally felt lost and disheartened. I consider this

thesis a joint project because I could not have done this without her.

Second, thank you to my other committee members, Professors Mossberg and

Li. Professor Mossberg led my thesis prospectus class and never stopped encouraging

her students to be passionate in their work and always believe in themselves. I could

always count on her optimism and love for life to lift my spirits and motivate my work.

Professor Li was kind enough to come on as my Second Reader and apply his many

years of expertise in working with security to improve my work and understanding of

the topic. He helped me to understand the incredible importance of security in the

software world and the significant impact that each bit of code can have.

Last, I want to express my eternal gratitude to all my friends and family. If not

for them, I would not be who I am or where I am today, and though I will never be able

to fully reciprocate what they have given me, I won’t waste a chance to thank them for

their ceaseless love and support.

	
	

iv	
	

Table of Contents

Introduction 1	

Technological	 Growth	 1	
Data	 Transfer	 and	 Security	 2	
Man	 In	 The	 Middle	 Attacks	 4	

Research/Methods 7	

Current	 Research	 7	
SSLChecker	 and	 ROSE	 9	

Process 12	

Language	 and	 Library	 12	
Insecure_ok	 13	

Results and the Future 17	
Bibliography 19	

	
	

v	
	 	

List of Acronyms

API: Application Programming Interface

AST: Abstract Syntax Tree

IDE: Integrated Development Environment

MITM: Man In The Middle

SSL: Secure Sockets Layer

TCP/IP: Transmission Control Protocol/Internet Protocol

TSL: Transport Layer Security

	
	

vi	
	

List of Figures

Figure 1: MITM attack. veracode.com 5	
Figure 2: A Syntax Tree representation example for a small program. 11	
Figure 3: The accumulated instances of insecure_ok. Personal screenshot. 13	

	

1	

Introduction

Technological Growth

The advancements made in technology in recent years have prompted

unprecedented interaction between customers and digital products, especially within the

realms of e-commerce and the Internet. Online shopping has become a trillion dollar

world economy, and while it still only represents single digit percentages of the retail

market, its rate of growth far exceeds that of in-store shopping (Jordan, “The tipping

point”). Even though the United States represents roughly a fifth of the world’s e-

commerce on its own, a huge boom in mobile phone shopping has occurred in the

populous and rapidly developing Asian-Pacific countries. Thanks to smartphones,

many people now have convenient and “on-the-go” access to massive digital stores like

Amazon and eBay for their shopping needs, especially if people are located in more

isolated or rural areas. These stores are accessed through what are commonly referred

to as “apps,” or software that is designed to improve consumer’s interaction with the

store and products. Digital programs like these help dictate nearly every action an

average citizen participates in while accessing the Internet, from web browsers that

navigate the world wide web to company-specific apps that make using their product

easier.

Moreover, mobile financial applications have become a huge part of developing

countries, allowing isolated people and communities access to Internet stores, online

banking, and even a local form of currency. Kenya and Uganda, for example, have

become part of the vanguard of mobile financial services, simply through necessity of

	

2

progression. With our current technological status, cell phone coverage is not a

prohibitively expensive operation, even in poorer nations. In fact, even in rural African

countries, 30% of households own cell phones (Voigt). This connectivity has enabled

online interaction like never before, growing local economy by significant margins,

simply by allowing businesses to set up shop and use e-currency for their goods or

giving farmers the opportunity to check where they can find the best prices for their

livestock.

Data Transfer and Security

Almost everyone knows that they need Internet access in order to connect with

the products they want, play their games, or browse the web, but what is the actual

behind-the-scenes process that allows them to do so? The short and woefully

incomplete answer is that our network-connecting devices follow a series of rules, the

Transmission Control Protocol/Internet Protocol (TCP/IP), that tell them how and when

to transmit and receive packets of data. Since there is rarely a direct line from one

computer to another, the data is sent over the Internet from one terminal to another,

which includes personal computers, each of which then forward it onto the next

destination until it finally reaches its goal. This data comprises all the visible aspects of

interacting with the Internet, such a web page, and a lot of hidden information, such a

computer’s digital fingerprint or the encryption of the data. The security of the data

being transferred is oftentimes overlooked because while we can physically prevent

other people from seeing our screens, we rely on our device’s software to protect our

information.

	

3

One of the most common, current methods for keeping data private and secure is

o use TSL/SSL (Transport Layer Security/Secure Sockets Layer), so called for the

layering of data with encryption and the connected servers acting as two ends of a

transfer. This is a system that makes use of cryptography to provide a secure and

verified connection between two computers, so that the data being transferred cannot be

read and abused by an outside source. The host server, i.e., the computer being

accessed by the consumer, has purchased an SSL certificate from a web services

company that essentially confirms that the purchaser is who they say they are through

research and reference checking. Once confirmed, the certificate is awarded, thus

allowing a company to verify their online identity, use a hosting server, and uniquely

encrypt any data going into or leaving their online service. This all comes into play

when consumers attempt to connect to the service through their own network

devices. Initially, the consumer’s device makes a connection to the website, but before

transferring any data they verify the service with the SSL certificate. If that checks out,

a connection, or “handshake,” is formed between the two computers, and data flows

back and forth, scrambled on departure and descrambled on arrival according to the

certificate’s encryption. This sort of security is widely used in web browsing, e-mail,

messaging, and e-commerce, among others, because they are all areas that have the

potential to reveal a great deal of personal and important information.

	

4

Man In The Middle Attacks

Despite all the money, effort, and research that has gone into improving the

security of our Internet connections, virtual identity theft, hacked accounts, and stolen

financial information are not uncommon news stories. In addition, online privacy rights

have been a large issue in developed countries since the Internet’s inception and

widespread popularization. Edward Snowden achieved infamy recently for his release

of government documents detailing some questionable investigative activities the

United States government has performed on its citizens. In interviews he still advocates

that people avoid using potentially insecure products like Dropbox, Facebook, Google,

and unencrypted text messages (Snowden). The underlying similarity between products

like these is the concern for the security of transferred information. For example,

Snowden cites Dropbox because it only encrypts data during transfer, rather than while

it is still on the machine, allowing a vulnerability in the case that some error occurs

during the transfer or prior to the encryption, allowing an opportunity for a Man-in-the-

Middle (MITM) attack to occur.

A MITM attack is when a third party is able to gain access to the connection

between two parties by intercepting the data being transferred. Recalling the TCP/IP

process mentioned earlier, data must travel through multiple machines until it reaches

its destination, which means that if anyone manages to insert themselves in the data’s

path, the hijacker has a chance at eavesdropping on the digital conversation. The best

opportunity for a person to hack the connection is by knowing the location of the sender

or the receiver. For this reason, most MITM attacks occur on unsecured WiFi

	

5

connections, but hackers can also wait outside popular server addresses like those of

online banks. Here, there is a brief window in which the person can employ a variety of

methods to gain the sender’s trust, which include stealing the server’s identification key,

mimicking the server’s certificate authority, or taking advantage of the sender’s lack of

validation process. If any of these work, an exchange of public encryption keys occurs

such that the middleman can read the data sent by either side, as well as send data to

one party under the guise of the other. A simplified visual representation of a common

financial MITM attack is shown below:

Figure 1: MITM attack. veracode.com

MITM attacks are one of the greatest threats to personal information because if

someone can get a hold of the digital key that unlocks the SSL encryption scheme, that

person has free reign with the transferred data to decrypt it, read it, modify it, re-encrypt

it with the other computer’s key, and forward it. Although these attacks are often used

	

6

by those with malicious motives, sometimes they are done to spy on and watch over

others. Following Snowden’s release on NSA surveillance and news coverage of strict

government control over the Internet in other countries like China and North Korea,

people are becoming more wary of George Orwell’s 1984 Big Brother scenario turning

from fiction to reality. However, those most at risk are the ones who use everyday

mobile applications, often related to online shopping, as these programs are used the

most often and have been found to have many susceptibilities. Studies have shown that

many developers build broken code on purpose, or that after being notified of a

vulnerability in their code they will choose not to fix it, or if they do then it often takes

over a year (Bates et. al.). The report does not indicate why that is (a route for further

research), but one possibility is simply a desire to save time, money, and energy by

cutting corners, especially if the application works most of the time and is consequently

easier to use. Considering our world’s ever-growing e-market and pursuit of

convenience through mobile devices, continued research in this field becomes

proportionally more relevant and important in its efforts to sustain optimum security

through the detection and prevention of vulnerabilities.

	

7

Research/Methods

Current Research

The current research was motivated by the report “Detecting and Patching

Vulnerable SSL Source Code with ROSE” by Adam Bates, Braden Hollembaek, and

Dave Tian of the University of Oregon. The report focuses on the inability of clients to

accurately authenticate the server when presented with its public key certificate.

Essentially, how do we as consumers know that the online service we are connecting to

is legitimate? To give a real life example, imagine going through the checkout line at

the supermarket and paying for your items with a credit card. There are a few under-

the-surface assumptions being made that we tend not to think about during these

interactions. One is that our money is being extracted in the correct amount from our

bank account and that it is actually going to the store, rather than the cashier’s own

account. Another is that our card’s information is not somehow being saved locally and

abused at a later date. These are difficult for us to control or ensure, so we have to trust

the system. Another assumption from the store’s end is that the person paying for the

items is also the owner of the card. The cashier can ask, “Can I see some

identification?” to validate that customer is the card’s owner, but that certainly doesn’t

happen every time, which leaves an opportunity for a real-life MITM attack to use your

information without your consent. Additionally, if the store doesn’t teach their

employees how to verify a card’s owner, then it becomes impossible for the consumer

to hope that in future interactions where the credit card is used, the owner will be

validated.

	

8

The ultimate problem is that SSL certificate validation is broken in many critical

software applications and libraries, primarily due to terrible design of the application

programming interfaces, or APIs, to underlying SSL libraries. APIs are collections of

code that provide similar services but allow a developer to implement those services

according to their needs. An everyday example would be a deck of cards. Their

general purpose is to be played with, but the execution is up to the user. A person can

play any number of card games, either on their own or with others, with only their own

rules to govern their actions. Once you own the cards, they simply provide a platform

for your implementation. An example of an API on the Internet could be Facebook. If

you have ever seen those Facebook buttons on websites asking you to like them or

check out their page, that is a Facebook API. It is not Facebook itself, but rather a tool

whose primary purpose is to link to Facebook, and which allows the website to

customize its click destination, placement on the page, and so on. To understand the

API problem as it relates to SSL, imagine that the Facebook button did not employ SSL

checking properly, so when you were redirected and asked to sign into your account,

someone else managed to steal your login information. Certificate validation in the

initial handshake is critical to the success of a secure connection, so when code is

created that ignores, breaks, or does not fully address this issue, man-in-the-middle

attacks are much more likely to succeed. The research that’s already been done on this

issue has noticed that most of the fault lies with the developers themselves because the

SSL libraries being used are mainly correct. Programmers simply don’t use the

provided code correctly, or they misunderstand the numerous options, parameters, and

return values given by the library’s working code. Thus, this research does not seek to

	

9

improve existing libraries and SSL code, but rather identify when written code is failing

to achieve the desired security result.

SSLChecker and ROSE

This research focuses on building an automatic and scalable program called

SSLChecker for going through the original, or “source,” code of vulnerable SSL

applications and making sure those validation checks are in place. This program makes

use of ROSE, an open source compiler infrastructure developed at the Lawrence

Livermore National Laboratory (Quinlan et. al.). Like a compiler, its job is to take in

source code and convert it into different source or machine code so that the computer

can read and understand the operations it is being asked to perform. In everyday life,

this process could be compared to that of a grammar checker in a text editor. The editor

does not actually understand what the sentence is saying or the context it is being

written in. All it knows is that there are certain structural rules that clauses and

sentences must follow in order to be considered valid, such as the necessary presence of

a subject and a verb, or that two commas in a row does not make sense. The sentence is

broken down to its component parts of speech and its punctuation, and from there a set

of rules is consulted to make sure that they are all abiding by the grammatical laws of

the language. So, after the compiler finishes the translation from source to machine

code, it creates a new type of file called an object file that can be run and execute the

actions dictated by the source code.

	

10

ROSE provides source code parsing for various programming languages, as well

as a variety of program analysis and transformation tools. This is because as the code is

being compiled and the component parts are being identified, ROSE builds a tree data

structure, setting each part as its own “node” with a ROSE equivalent explanation of

what the node’s function is. In effect, ROSE is making the code transformation

processes available to the programmer in more a more readable and analyzable fashion,

specifically through the creation of a traversable abstract syntax tree, or AST. An AST

is an inverted tree-looking representation of source code’s syntactic structure detailing

the component parts, their locations in the code, and their relationships to one

another. Because ROSE has its own nomenclature for these parts, ROSE can

implement a unique traversal method to visit every node and get its information,

through a variation on the Visitor Pattern. Depending upon the programmer’s

preference, ROSE can then display the information, change the node, or simply move to

the next node. Below is a small example of an abstract syntax tree with its associated

code, though the reader should keep in mind the number of nodes present for only five

lines of simple code, as well the fact that ROSE’s complex infrastructure would add

many additional layers for the same code:

	

11

Figure 2: A Syntax Tree representation example for a small program.

Using ROSE to step through every piece of the source code, automatic

modifications can be made to the source code if SSLChecker finds an absence of a

critical verification method or mistake in the verification process. So, if the user fails to

make the host server identify itself, that code will be added directly into the

application. This result is designed to create an “idiot-proof” method for fixing,

alerting, and optimizing code automatically, simply telling the developer what was

wrong and how it was fixed, hopefully providing an incentive and means for easier code

improvement. Although a prototype SSLChecker has already been built, the “Detecting

and Patching Vulnerable SSL Source Code with ROSE” report details a great many

ways that the software could be improved upon moving forward, and as of now this is

something the research will focus on. Some examples include adding checks for non-

existent but necessary methods for verification, analyzing the returned statuses of the

validation functions, detecting which library is being used to build the application

software so that only the appropriate checks are being run, and running the checker on

unfamiliar software.

	

12

Process

Language and Library

The process began by identifying which programming language the team wanted

to analyze with SSLChecker and ROSE, as they both have the capacity of working with

C, C++, Java, Python, and PHP. The plan at the beginning of the project was to work

with Java in order to make use of the Eclipse IDE as both a helpful programming tool

and hopefully allowing us to incorporate any changes made into Eclipse’s automated

code checking itself. However, it was later decided that C would be the best language

to begin in because it is the most stable environment for both SSLChecker and ROSE,

as well as the fact that libcurl’s SSL source code base could be analyzed. The libcurl

library is a collection of URL transfer protocols written in C (hence the lib-c-url name)

that purports to allow a programmer to establish secure online connections, including

HTTPS and SSL certificates (Stenberg et. al.). Many large and well-known companies

like Apple, Adobe, and Google use libcurl for their online platforms, so it is important

that the library and its security-based connections are as safe as possible to prevent

MITM attacks. A potential end goal for this project is to be able to run SSLChecker on

a large source code library like libcurl, hone in on the uses of SSL certificate

verification, and then find cases where either the correct SSL verification functions are

absent, or where critical variables are set incorrectly.

	

13

Insecure_ok

Because ROSE is a complicated environment where many lines of code are

needed to sift through ROSE’s tree structure correctly, we decided to start by finding

one instance of a variable that was created, or “declared”, unsafely and then writing

code to find it. Thus, we searched through libcurl’s library and found a Boolean (true or

false) variable insecure_ok that matched our requirements for faulty variables. Figure 1

below shows all the instances of insecure_ok in the libcurl library, and what is

interesting to note is that when the variable was declared, it was not assigned a constant

value of any sort, meaning that it was potentially uninitialized.

Figure 3: The accumulated instances of insecure_ok. Personal screenshot.

An analogy for an uninitialized variable in the English language could be

explained via the sentence, “Bob went to the store and it was good.” Whatever

problems the sentence might have, let us focus on the use of the word it. When we say

it was good, what does that mean? Was it the trip to the store, the store, the shopping

experience, Bob himself, or something else entirely? In this instance, it represents our

uninitialized variable and creates an issue because it was not explicit

enough. Uninitialized variables are often a cause of bugs in programs because the

language can set that variable to any value. Some programming languages like Java

and Python have built in checks, such as not allowing the use of such variables, but C

	

14

was designed for systems programming in which developers were aware of the dangers

uninitialized variables posed to performance. In C, variables are allocated stack space,

and a collection of these spaces make up a stack frame. An uninitialized variable can

then be assigned the value of where the stack pointer is located, which is typically a

virtual address within the computer. Thus, the problem is that insecure_ok has an

arbitrary value when it is initialized, and if it is used before it is given a constant

true/false value, like when tool_operate.C checks its value in Figure 1, an error

can occur if the value is not a constant. Alternatively, a hacker might manage to force

the system to give a certain value to the uninitialized variable, that would set

insecure_ok to true, allow for insecure SSL connections to go through, and open the

connection to a MITM attack.

Like the paper mentioned before, this research builds off of the previously

constructed SSLChecker code to create additional checks for problems like the one

mentioned above. The file sslc_c.C was part of that suite and checked C code using

ROSE, so the team modified the visitorTraversal function of the program, which visits

and identifies every component node, to run additional checks for this variable and

others like it. In ROSE, this involves identifying all variable declarations that exist

within the source code, then consecutively ensuring that an initializer and assignment

initializer both exist. If the initializer exists, then we know that there is an equals sign

indicating that the variable is being initialized to some value. If the assignment

initializer is not empty or set to a NULL value, then we know that some value is being

assigned by the developer to the variable. At this point, the right-hand-side operand can

	

15

be checked for its type, such as an integer, Boolean, text string, or some other

constant. If it is a static and unchanging constant, then we know the variable is properly

initialized. This does not necessarily ensure that the constant being assigned is correct,

but that is beyond the scope of this research. However, if it turns out that one variable

is being assigned the value of another variable, then the cycle of safety checking begins

anew with the new variable. It could be the case that when it is declared elsewhere in

the library, perhaps even in another file or directory, it is uninitialized, given a bad

value, or assigned to yet another variable. Hence, we conservatively check for

assignment with a constant on the right-hand-side.

In addition, a check for global variables is included in order to provide greater

analysis and understanding of the variable. Global variables are declared outside of any

functions and can be used anywhere in the code. When a global variable’s value is set

or changed in one location, every instance of the variable is updated with the new

value. This is distinguished from local variables which may be declared and used in a

single function. While global variables can provide some usefulness in simplifying

code by making it easily accessible to all the functions and classes in a program, it is

common practice to avoid them for their potentially dangerous consequences. The

nonlocality of globals makes testing them, constraining their program-wide influence,

preventing simultaneous usage, and optimizing memory allocation difficult, and when

these factors are not controlled, errors and bugs become more likely.

Specifically for this research, assigning the value of a global variable to another

variable may make tracking the value to its source more straightforward, but it also

	

16

leaves room for other variables of the same name as the global to change the value to an

unallowed type or constant. The variable insecure_ok is a global variable, though as

can be seen from Figure 1, the uses are limited and easily tracked. Searching for the

declaration of toggle, the value given to insecure_ok after its declaration, in the libcurl

library, its only usage is inside the tool_getparam.c file, and it is even initialized

to TRUE. Upon closer examination, however, toggle can be switched from FALSE

depending upon the input parameters. Thus, a user decides whether to allow for

Boolean values to be used in their program by inputting their own argument at launch-

time. Though this by itself does not cause an issue in the program, leaving an

opportunity available for such uncontrolled and unrestricted input could be a source for

error in the future.

	

17

Results and the Future

Though the newly added checks to the SSLChecker suite might not sound

extensive, the importance of this first step should not be underestimated. The fact is

that those simple but hard-fought for steps act as a proof of concept for greater changes

to be made and improved upon within the pre-established suite. There already exists a

problem in software development where programmers ignore warnings or suppress

them entirely for the sake of creating and using workable code. However, the fact that

they exist at all to be examined and fixed is the key to optimizing code, and so this

research attempts to improve upon SSLChecker’s functionality by adding those types of

warnings when faulty code is found. Simply by warning any programmer that uses this

software on a large SSL source code library that potentially dangerous uninitialized

variables exist, or that critical functions for ensuring the security of data via the SSL

process are missing or set incorrectly, previously unknown problems emerge for

analysis and correction.

With software, it is important to understand that even small changes can have an

enormous impact. If using the wrong type of variable can cost the European Space

Agency $7.5 billion with the explosion of the Ariane 5 rocket, then it is not a stretch to

say that any size of fix to SSL source code libraries could save people and their banks

an enormous amount of time, stress, and money over the years. With identity fraud

occurring once every two seconds, resulting in billions of dollars stolen each year,

providing increased security and safer SSL libraries should be a priority. Especially as

continuously more people enter into the digital methods of banking, shopping, and

	

18

transferring money, it should be our duty as programmers to ensure that such widely

used services provide the best possible experience for their users, including

ourselves. That is why it is imperative that this research continues so that the checks

established now can be expanded upon to work with different programming languages

and SSL libraries. Additionally, these checks should be incorporated into the

programming integrated development environments, or IDEs (where code is written), so

that rather than run the third party SSLChecker on a library, the checks can be done

automatically as the code is being written for the convenience of the developer. This

way, the problems are addressed at the source, rather than after the software has been

completed and distributed.

The digital revolution has brought about miraculous advancements to our world

in such a short amount of time, and the evolution of technology still increases

exponentially. Meanwhile, these same changes have also brought with them their fair

share of problems, demonstrating that the results of this progress are merely tools that

can be used for either good or bad. The Internet has undoubtedly changed the world,

though being as imperfect as it is, much of its effect on society and people has been

negative. Keeping this in mind, however, and understanding the role SSL connections

play in netizen (net citizen) interactions with the web, are some of the most impactful

ways that we can help alleviate these burdens for ourselves and all the netizens to come.

	
	

19	

Bibliography

Bates, A., Hollembaek, B., and Tian, D. “Detecting and patching vulnerable SSL source
code with ROSE”. Tech. Rep. Department of Computer and Information
Science, University of Oregon, Eugene, OR, USA, May 2014.

Conti, M., Dragoni, N., and Gottardo, S. “MITHYS: Mind the hand you shake -
protecting mobile devices from SSL usage vulnerabilities”. In Security and
Trust Management, R. Accorsi and S. Ranise, Eds., vol. 8203 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2013, pp. 65-81.

Ducklin, Paul. "The TURKTRUST SSL certificate fiasco - What really happened, and
what happens next?" Naked Security. SOPHOS, 08 Jan. 2013. Web. 21 Nov.
2014. <https://nakedsecurity.sophos.com/2013/01/08/the-turktrust-ssl-
certificate-fiasco-what-happened-and-what-happens-next/>.

DuPaul, Neil. "Man in the middle (MITM) attack." Man in the Middle Attack: Tutorials
& Examples. Veracode, n.d. Web. 2 Apr. 2015.
<http://www.veracode.com/security/man-middle-attack>.

Ellis, Blake. "Identity fraud hits new victim every two seconds." CNNMoney. Cable
News Network, 6 Feb. 2014. Web. 13 May 2015.
<http://money.cnn.com/2014/02/06/pf/identity-fraud/>.

Fahl, S., Harbach, M., Perl, H., Koetter, M., and Smith, M. “Rethinking SSL
development in an applied world”. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer; Communications Security (New York, NY, USA,
2013), CCS '13, ACM, pp. 49-60.

Fisher, D. “Microsoft Revokes Trust in Five Diginotar Root Certs”. Wired. Sept. 2011.
<http://threatpost.com/microsoft-revokes-trust-five-diginotar-root-certs-mozilla-
drops-trust-staat-der-nederland-cert>.

Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., and Shmatikov, V. “The
most dangerous code in the world: Validating SSL certificates in non-browser
software”. In Proceedings of the 2012 ACM conference on Computer and
communications security (Raleigh, NC, USA, 2012), CCS '12, ACM, pp. 38-49.

Jordan, Jeff. "The tipping point (e-commerce version)." Recode, 14 Jan. 2014. Web. 5
Feb. 2015. <https://recode.net/2014/01/14/the-tipping-point-e-commerce-
version/>.

Marlinspike, M. “New tricks for defeating SSL in practice”. BlackHat DC, Feb. 2009.

Mills, E. “Comodo: Web attack broader than initially thought”. CNET, March 2011.
<http://news.cnet.com/8301-27080_3-20048831-
245.html?part=rss&tag=feed&subj=InSecurityComplex>.

20

Nichols, T., Bates, A., Pletcher, J., Hollembaek, B., Tian, D., Alkhelaifi, A., and Butler,
K. R. “Talk certy to me feat. 2 Chainz: Securing SSL certificate verification
through dynamic linking”. Tech. Rep. TR- 201405-01, Department of Computer
and Information Science, University of Oregon, Eugene, OR, USA, May 2014.

Quinlan, Daniel J., Chunhua Liao, Justin Too, Robb P. Matzke, and Markus Schordan.
ROSE Compiler Infrastructure. Lawrence Livermore National Laboratory, n.d.
Web. 12 January 2015. <rosecompiler.org/>.

Snowden, Edward. "The Virtual Interview: Edward Snowden at the New Yorker
Festival." Interview by Jane Mayer. The New Yorker, 11 Oct. 2014. Web. 17
Mar. 2015. <http://www.newyorker.com/new-yorker-festival/live-stream-
edward-snowden>.

Sounthiraraj, D., Sahs, J., Greenwood, G., Lin, Z., and Khan, L. “SMV-HUNTER:
Large scale, automated detection of SSL/TLS man-in-the-middle vulnerabilities
in android apps”. In Proceedings of the 19th Network and Distributed System
Security Symposium. (2014).

Stenberg, Daniel, Dan Fandrich, and Yang Tse. “Libcurl - the multiprotocol file transfer
library”. Computer software. Haxx AB, n.d. Web. 4 Apr. 2015.
<http://curl.haxx.se/libcurl/>.

United States. Census Bureau. Dept. of Commerce. Economics and Statistics
Administration. "E-Stats 2013: Measuring the electric economy." Washington:
US Census Bureau, 28 May 2015. Web. 28 May 2015.
<https://www.census.gov/content/dam/Census/library/publications/2015/econ/e1
3-estats.pdf>.

Voigt, Kevin. "Mobile phone: Weapon against global poverty." CNN Tech. CNN, 09
Oct. 2011. Web. 28 Oct. 2014.
<http://www.cnn.com/2011/10/09/tech/mobile/mobile-phone-poverty/>.

