
UNIVERSITY OF OREGON

Sieving Algorithms for Lattice Problems

by

Matthew Jagielski

A thesis submitted to

Computer and Information Science

University of Oregon

in partial fulfillment for the

degree of Bachelor of Science

supervised by Xiaodi Wu

June 2016

University Web Site URL Here (include http://)
https://www.cs.uoregon.edu/
University Web Site URL Here (include http://)
https://ix.cs.uoregon.edu/~xiaodiwu/

Acknowledgements

I would like to acknowledge Xiaodi Wu for guiding me through the process of learning

and writing. He has invested a lot of time helping prepare me for graduate school.

I would also like to thank all my teachers and professors for helping me become the

student I am, and my friends and family for shaping me into the person I am.

i

Contents

Acknowledgements i

1 Introduction 1

2 Preliminaries 3

2.1 Lattices . 3

2.2 Lattice Problems . 5

2.3 Basis algorithms . 6

2.3.1 Gram-Schmidt Orthogonalization 7

2.3.2 LLL basis . 8

2.4 History of Lattice Problems . 11

3 AKS Sieving Algorithm 14

3.1 Algorithm . 15

3.1.1 Sampling . 15

3.1.2 AKS algorithm . 16

3.2 Analysis . 17

3.2.1 Invariants . 17

3.2.2 Running Time . 18

3.2.3 Correctness . 18

3.3 Improvements . 20

4 CVP with Preprocessing using Voronoi Cells 24

4.1 Preliminaries . 25

4.2 Algorithm . 26

4.2.1 Dimension Reduction . 27

4.2.2 Calculating Voronoi Cell . 28

4.2.3 Voronoi Cell for CVPP . 29

ii

Chapter 1

Introduction

A lattice is a mathematical object which takes a set of vectors in Rn and combines them

in all possible integer linear combinations. In this way, they form a regularly spaced,

infinite subset of Rn. Mathematicians and computer scientists have been studying lat-

tices for hundreds, if not thousands, of years [1–5]. Some uses of lattices that have made

them interesting have been their use in integer programming, coding theory, polynomial

factoring, and some areas in pure math including group theory and number theory. Re-

cently, however, interest in these objects has been increased significantly, thanks to the

advent of quantum computation.

Quantum computation weakens the security of commonly used cryptographic protocols,

and lattices are thought to be able to strengthen this security. A common method is

RSA encryption, which relies upon the hardness of factoring large integers. In 1994,

Peter Shor published an algorithm which can factor an integer in polynomial time using

quantum computing. In order to circumvent this, one must find a new problem that

can not be solved efficiently with quantum computers. Some of these problems that are

being investigated are lattice problems.

There are a couple lattice problems that, as of now, seem to be resistant to quantum

attacks, as well as NP-hard on classical computers. Two such problems are the shortest

vector problem and the closest vector problem. The shortest vector problem is to find

the shortest nonzero vector in a lattice. The closest vector problem is to find the closest

vector in a lattice to some target point. These are being increasingly more well studied,

and are the two problems I will discuss in this document, with reference to algorithms

developed to solve them.

1

Introduction 2

Sieving methods and Voronoi cell preprocessing are two methods that have been used to

solve these problems, and are the ones discussed in this document. Others are enumer-

ation based techniques, which generate large amounts of lattice vectors until the goal

vector is found [1, 2]. Another type that will not be discussed is a recent method called

Discrete Gaussian Sampling [6, 7]. This new method has improved runtime over the

other methods.

This document will contain preliminaries and follow with the two types of algorithms

-sieving and Voronoi cell preprocessing. The preliminaries will introduce lattices in more

formality, as well as provide some basic and important algorithms on lattices. It will

follow with some history of the problems. The sieving chapter will contain the original

algorithm presented with analysis, then proceed to discuss extensions that have been

made to improve running time. The Voronoi cell preprocessing chapter will contain the

original problem with proof and some analysis of runtime and correctness.

As far as we know these days, the exact shortest vector and closest vector problems can

only be solved in exponential time. Every algorithm for these problems, presented or

omitted from this document, achieve no better than 2n time. Even quantum algorithms

achieve no significant speedup for this problem, and so, as of now, these problems seem

to be candidates for quantum resistant cryptographic protocols.

Chapter 2

Preliminaries

We want to start by defining some preliminaries that will be required to understand the

later chapters. We will start with definitions, follow with important algorithms, and

finish with a brief history of the computational landscape of the important problems.

2.1 Lattices

Definition 2.1. A rank d lattice L ⊂ Rn is the set of all integer linear combinations of

d linearly independent vectors from a basis B = {b1, b2, · · · bd}, bi ∈ Rn,. Then

L(B) =

{
d∑
1

aibi | ai ∈ Z

}
. (2.1)

We may also write a basis as a matrix
· · ·

b1 b2 · · · bn

· · ·

 . (2.2)

We denote the lattice constructed from a basis B as L(B). Furthermore, if B contains

n vectors, we call L(B) full rank. In this document, we will assume lattices are full rank.

Example 2.1. Consider Z2 as an example of a lattice.

This is a rank 2 lattice in R2, so it is a full rank lattice. An example of a basis for Z2 is

B0 =
{
e0 = [1, 0]T , e1 = [0, 1]T

}
. Then any [a, b]T ∈ Z2 = ae0 + be1.

3

Preliminaries 4

However, also note that any [a, b]T can also be written as (a−2b) [3, 1]T +(−a+3b) [2, 1]T ,

so another basis for Z2 is B1 =
{

[3, 1]T , [2, 1]T
}

. This illustrates an interesting fact -

lattice bases aren’t unique. This is important for the rest of the paper. Changing be-

tween bases can make solving some problems more efficient.

We also want to define a couple other mathematical objects that each lattice has, as

they will come up later in this paper.

Definition 2.2. For any lattice L, we define

λ1(L) = {‖v‖ | ‖v‖ ≤ ‖x‖ , v, x ∈ L\0}, (2.3)

λi(L) = inf{r | dim(span(L ∩B(0, r))) ≥ i}. (2.4)

The first value is the length of a shortest non-zero vector v ∈ L. The second value is a

generalized way of talking about shortest vectors. In this way, λi(L) is the radius of the

smallest ball containing i linearly independent vectors.

Example 2.2. Let us reconsider Z2 using this new concept.

If we look at the first basis we came up with, B0 =
{
e0 = [1, 0]T , e1 = [0, 1]T

}
, it is

clear that both e0, e1 are shortest vectors of Z2.

If, instead, the goal was to find the shortest vector of the lattice L(B1), where B1 ={
[3, 1]T , [2, 1]T

}
, the calculation becomes less trivial. Instead, we use the basis B2 ={

[571, 209]T , [418, 153]T
}

, and this problem becomes almost unapproachable. This is

despite the fact that B0, B1, and B2 are all bases for Z2. This problem will be revisited

several times during this document.

Definition 2.3. The fundamental parallelepiped of a lattice

P(L(B)) =

{
n∑
1

xibi | 0 ≤ xi < 1, bi ∈ B

}
. (2.5)

Note that this definition depends on the basis used to construct the lattice, while λ1(L),

for example, depends only on the lattice.

Example 2.3. We revisit Z2 with the new definition.

Preliminaries 5

We see that P(L(B)) is just the unit square: [0, 1) × [0, 1). If instead we used B1, we

would get a parallelogram. An interesting thing to note is that the volume of the fun-

damental parallelepiped does not depend on the basis used even though the shape does.

On top of this, if we view the basis as a matrix, its determinant is actually the volume

of the fundamental parallelepiped.

2.2 Lattice Problems

Two important problems on lattices are the search shortest vector problem (SVP) and

the search closest vector problem (CVP).

Definition 2.4. The search shortest vector problem (SVP) - given an input of a lattice

basis B, output a lattice vector v ∈ L(B), ‖v‖ = λ1(L(B)).

We can also parameterize the shortest vector problem in order to only require an ap-

proximate solution. The language for this follows:

Definition 2.5. The approximate search problem γ-SVP, where γ = γ(n) > 1 is an

approximation factor where we want to take the same input as SVP and output an

approximate shortest vector, some v ∈ L(B), ‖v‖ ≤ γλ1(L(B)).

Definition 2.6. The search closest vector problem, is a problem to, given an input of

a lattice basis B and a target vector t, output v ∈ L(B),∀x ∈ L(B), ‖v − t‖ ≤ ‖x− t‖,
so that v is closer to t than any other vector in L(B).

In the same way as with SVP, we can parameterize CVP in the following way:

Definition 2.7. The approximate search problem γ-CVP, with γ = γ(n) > 1 an ap-

proximation factor takes as input a lattice basis and a target vector t. It will instead

output v ∈ L(B), ∀x ∈ L(B), ‖v − t‖ ≤ γ ‖x− t‖.

If these problems seem to be very similar, they are. Most algorithms in this paper have

been developed for one or the other and can, with modifications, be applied to another.

In addition, there is a polynomial reduction from CVP to SVP.

Preliminaries 6

Theorem 2.8. Given an oracle for CVP, we can, using polynomially many queries to

the oracle, solve SVP.

Proof. Suppose we are tasked with solving SVP on a basis B = {b1, b2, · · · , bn}. Then

define Bi = {b1, · · · 2bi, · · · , bn} so all basis vectors are the same as those for B, except

bi is replaced by 2bi. Then we compute CVP on each Bi with target bi, calling the

output vi. We will return the shortest vector vi − bi.

First, observe that bi cannot be in L(Bi). If it were, then bi ∈ L(B/bi). But this cannot

happen as then B would be a linearly dependent set. So we can proceed.

Write the shortest vector of the lattice v =
∑n

i=1 cibi ∈ L(B). We want to show that at

least one of the vi satisfies vi − bi = v. In order to do this, we want to show that, if ci

is odd, then vi = v + bi.

First, note that if ci is odd, v + bi ∈ L(Bi). The coefficient of bi in v + bi will be ci + 1,

which is even. Then v+bi ∈ L(Bi). Now, suppose there is some other vector w ∈ L(Bi)

closer to bi. Then

‖w − bi‖ < ‖(v + bi)− bi‖ = ‖v‖ .

But w, which is in L(B), has smaller norm than our shortest lattice vector, and is

nonzero (as bi /∈ L(Bi)). Then we have a contradiction and we can calculate v = vi−bi

if ci odd. All ci cannot be even, as then 1
2v ∈ L(B), which would contradict v being the

shortest lattice vector.

2.3 Basis algorithms

Suppose we have a lattice vector v ∈ L(B), and we want to know its coefficients as

vectors in B. This is a pretty fundamental computation for a lattice - as one can

imagine, several algorithms (including LLL and AKS) do this many times. It would be

appealing to work in a basis where this computation is efficient. In order to make this

an efficient operation, an algorithm for the computation is needed. Treating the basis B

as a matrix, the vector of coefficients c is just the solution to Bc = v. So we just need

to calculate the inverse of the basis matrix and calculate c = B−1v.

One way that is known to make a calculation like this more efficient is by using a QR

decomposition. The Gram-Schmidt process takes in a basis and returns a new basis

from which the original basis can be produced by multiplication by an upper diagonal

matrix, mimicking the QR decomposition.

Preliminaries 7

2.3.1 Gram-Schmidt Orthogonalization

The Gram-Schmidt orthogonalization of a set of linearly independent vectors, such as

a lattice basis B = {b1, b2, · · · , bn}, is an output B̃ = {b̃1, b̃2, · · · , b̃n} where all b̃i

are mutually orthogonal. The Gram-Schmidt orthogonalization is constructed using the

Gram-Schmidt process, described in Algorithm 1.

Algorithm 1 The Gram-Schmidt Process

function proju(v) return u·v
u·vu

end function
function Gram-Schmidt(B)

for i = 1 · · ·n do
b̃i = bi
for j = 0 · · · i− 1 do b̃i = b̃i−projbjbi
end for

end for
return {bi}

end function

The idea behind this algorithm is to incrementally build a basis by extracting the or-

thogonal part of each basis vector when compared against the span of all previously used

vectors. Note, however, that the values of each u·v
u·v might not be integers, in which case

the lattice for the Gram-Schmidt orthogonalization of a basis will not be the same as

the original lattice.

One interesting thing about this construction is that the basis transformation from B̃

to B is the matrix

G =



1 projb1(b2) projb1(b3) · · · projb1(bn)

0 1 projb2(b3) · · · projb2(bn)

0 0 1 · · · projb3(bn)
...

...
...

. . .
...

0 0 0 · · · 1


.

This means that if we treat these bases as matrices as in 2.2, we have B = B̃G This

is an upper triangular matrix, with all diagonal entries 1. Then det(B) = det(B̃G) =

det(B̃) detG = det(B̃). But then consider the parallelepiped for L(B̃). The basis B̃ is

an orthogonal basis, which means that the parallelepiped looks just like a rectangular

prism in Rn, and has volume
∏n
i=1

∥∥∥b̃i∥∥∥. Because the determinants of B̃ and B are

equal, any basis of L(B) will have this volume.

Preliminaries 8

Theorem 2.9. Given a lattice L(B), we can bound the length of the shortest vector

from below as: λ1(L(B)) ≥ mini

∥∥∥b̃i∥∥∥.

Proof. Consider a vector v ∈ L(B)/0. Let B̃ be the Gram-Schmidt orthogonalization

of B. For each 1 ≤ i ≤ n, consider v projected onto b̃i.

This projection could be one of the hyperplanes a · b̃i + L(B̃/b̃i), a ∈ Z. If it is, then

‖v‖ ≥ a ·
∥∥∥b̃i∥∥∥.

If this projection is 0, then we can project the lattice onto B̃/b̃i. Then recursively

consider the Gram-Schmidt orthogonalization of this new lattice and our new v. Project

this new v on another one of these Gram-Schmidt vectors and continue on smaller and

smaller subspaces until we find a nonzero projection.

One of these projections is not zero, or we have a zero vector. Then ‖v‖ ≥ minj

∥∥∥b̃j∥∥∥.

2.3.2 LLL basis

While the Gram-Schmidt process provides some information to help handle the shortest

vector problem, just performing Gram-Schmidt doesn’t provide too much help in actu-

ally computing more accurate answers to SVP or CVP. Fortunately, Lenstra, Lenstra,

and Lovász presented an algorithm for turning an arbitrary lattice basis into one with

smaller vectors [1]. This will provide an approximate answer to SVP, and will also be a

good starting point for other algorithms later in the paper.

To start with, consider a modified Gram-Schmidt orthogonalization process which saves

the scaling factors in each step, presented in Algorithm 2.

Algorithm 2 The Modified Gram-Schmidt Process

function Modified Gram-Schmidt(B)
for i = 1 · · ·n do

b̃i = bi
for j = 0 · · · i− 1 do

µi,j =
bi·bj
bj ·bj

b̃i = b̃i − µi,jbj
end for

end for
return {b̃i}

end function

In this way, each bi = µi,1b1 + · · ·+ µi,i−1bi−1 + b̃i.

Preliminaries 9

Definition 2.10. Let δ ∈ [14 , 1]. A basis B = [b1, b2, · · · , bn] is called δ-LLL reduced if

1. ∀1 ≤ i < j ≤ n, | µi,j |≤ 1
2 ,

2. ∀1 ≤ i < j ≤ n− 1
∥∥∥b̃i+1

∥∥∥2 ≥ (δ − µ2i+1,i)
∥∥∥b̃i∥∥∥2.

The algorithm for constructing an LLL basis is presented in Algorithm 3.

Algorithm 3 The LLL Basis Reduction Algorithm

function LLL(B = b1, b2, · · · , bn)
while True do

B̃ =Gram-Schmidt(B)
for i = 2 · · ·n do

for j = i− 1 · · · 1 do
bi = bi − int(µj,i)bj

end for
end for
if ∃i,

∥∥∥b̃i + 1
∥∥∥ <√δ − µ2i+1,i

∥∥∥b̃i∥∥∥ then

Swap bi, bi+1

else
return B = b1, b2, · · · , bn

end if
end while

end function

Theorem 2.11. The LLL basis reduction algorithm presented in Algorithm 3 provides

a 2O(n) approximation to the shortest lattice vector in polynomial time.

Termination: In order to prove that the LLL algorithm terminates, we define a function φi(B):

φi(B) =
i∏

j=1

∥∥∥b̃j∥∥∥ . (2.6)

We also define φ(B) as follows:

φ(B) =

n∏
i=1

φi(B). (2.7)

This is a potential function - we want to see how φ(B) changes as the LLL basis

reduction algorithm is run on B. When we start the algorithm on B, we have

φ(B) =
∏n
i=1

∏i
j=1

∥∥∥b̃j∥∥∥ ≤ maxi

∥∥∥b̃i∥∥∥O(n2)
.

We also want to bound this function from below. We know φn(B) =
∏n
i=1

∥∥∥b̃i∥∥∥ =

det(B). But B is a linearly independent set (so determinant is nonzero) and B is

Preliminaries 10

an integer lattice, so the determinant must be an integer. Then | det(B)| ≥ 1, and

therefore φ(B) ≥ 1.

Now we consider what happens after each step of the computation. When we are

subtracting basis vectors from each other to reduce their size, the Gram-Schmidt

vectors do not change. This is because we are only subtracting vectors that ap-

peared earlier in the basis. Then φ(B) does not change in this step.

In the next step, where we swap basis vectors, then φ(B) will change. But if bi

is swapped with bi+1, then the only factor φj(B) that will change will be φi(B).

This is because either one of two things will happen in the other two cases: φj(B)

has neither
∥∥∥b̃i∥∥∥ or

∥∥∥b̃i+1

∥∥∥ as factors and so this swap will leave the product in-

variant, or φj(B) has both
∥∥∥b̃i∥∥∥ and

∥∥∥b̃i+1

∥∥∥ as factors and so the swap will leave

the product invariant. Then if before the swap our basis is B0 and after it is B1,

then

φi(B0)

φi(B1)
=

∥∥∥b̃i∥∥∥∥∥∥b̃i+1

∥∥∥ .
but the condition on the two swapping is that

∥∥∥b̃i+1

∥∥∥ <√δ − µ2i,i+1

∥∥∥b̃i∥∥∥. Then

φi(B0)

φi(B1)
>

1√
δ − µ2i,i+1

>
1√
δ
.

Now, δ < 1 by assumption, so φ(B) decreases by a factor of
√
δ at each swap, and

we have 1 ≤ φ(B) ≤ maxi

∥∥∥b̃i∥∥∥O(n2)
, so there are polynomially many swaps that

can happen: the maximum number of swaps should be
O(n2) logmaxi‖b̃i‖

log
√
δ

, which is

polynomial in the size of the input. Then the algorithm will run in polynomial time.

Correctness: After the program terminates, we have some guarantees about what the result of

the algorithm will be. We know that there have been no swaps, so all vectors are

in the index they were in before the current iteration. Also, we know that all steps

of the form bi = bi − int(µj,i)bj have made it so that µj,i ≤ 1
2 , as the integer part

has been subtracted. The other reason is that j is decremented from i− 1 to 1, so

µj,i will not be modified by earlier subtractions (recall that b̃k is constructed by

subtracting only vectors of the form b̃m,m < k).

Preliminaries 11

2.4 History of Lattice Problems

Lattice problems have been researched for quite a long time. Thousands of years ago,

Euclid came up with the Euclidean algorithm, which can be viewed as a solver for SVP

in Z. When we are considering algorithms that can be applied to any Rn, however, the

Euclidean algorithm is not very helpful. Thankfully, many others have contributed to

improving solutions to the problem:

In 1982, Lenstra, Lenstra, and Lovász published their paper presenting the LLL algo-

rithm for basis reduction [1]. I have already presented the algorithm and its analysis,

so I only wish to highlight here that it is a polynomial time algorithm that can solve

approximate 2n/2-SVP. This is not a very strict approximation, but the algorithm is very

significant as the best approximation that can be done to SVP in polynomial time. It is

also useful for cryptographers - knowing what approximation factors can be computed

in polynomial time helps construct cryptosystems.

Perhaps the longest standing application of the LLL algorithm is its use as a basis re-

duction algorithm. It returns a basis that satisfies certain ’niceness’ properties, which

I have already described in 2.10. To review in plain language, the new basis vectors

are in ascending order of size and there is a lower bound on the angle between any two

basis vectors. This makes it so they can be approximately orthogonal. These properties,

along with only a polynomial running time, make LLL a very reasonable preprocessing

step in other algorithms which seek a better approximate solution or an exact solution

to SVP. In fact, the analysis of both algorithms presented in following chapters relies on

the basis being LLL-reduced.

The first method intended to solve exact SVP and CVP was presented in Kannan’s

1987 paper - ’Minkowski’s convex body theorem and integer programming.’ [2]. It is

an enumeration based technique, which means that it generates many lattice vectors

with the goal of finding the shortest or closest to a target. Because it is exact, we can’t

expect it to run as fast as LLL, and it doesn’t - it runs in nO(n) time but polynomial

in space. This is a large runtime and has been surpassed by many algorithms, but it is

still a significant algorithm. If not for its historical significance as the first exact lattice

problem solver, it is still the fastest polynomial space algorithm for solving SVP/CVP.

The algorithms that surpass it in running time all run in 2O(n) time and space. It re-

mains an open question whether an algorithm exists for exact SVP or CVP that runs

Preliminaries 12

in 2O(n) time but only uses 2o(n) space.

Another method of solving SVP has been with sieving algorithms. The idea behind a

sieving algorithm is to randomly select lattice vectors, then compare them (often by

subtracting close vectors to get smaller vectors) in order to end up getting the shortest

lattice vector after running the algorithm for many steps. The first of this type of algo-

rithm was the Ajtai-Kumar-Sivakumar (AKS) algorithm.

The AKS algorithm was first published in 2000 [3], with a proven running time of

25.9n = 2O(n) and requiring 22.95n = 2O(n) space. The constants for the complexity of

the original AKS algorithm weren’t calculated in the original paper, but Nguyen and

Vidick managed to prove the above running time [8]. The demonstrated running time

is quite large, but over the years, there have been many improvements made to the

algorithm to reduce its time and space requirements. The results have had enormous

speedups, although they still all run in 2O(n) time and space with much smaller constants

in the exponent.

One notable improvement to AKS was Micciancio and Voulgaris’s ListSieve and GaussSieve

algorithms [9]. The ListSieve Algorithm can be proven to run in 23.199n time and 21.325n

space, a huge improvement over AKS, but still exponential time and space. GaussSieve

goes farther than ListSieve’s improvements, at the cost of not being able to prove run-

time. GaussSieve heuristically reduces the running time to 20.48n and space of 20.18n, but

is, again, not proven. It seems to be much better in practice than previous algorithms,

however. Another method that built upon this was using locality sensitive hashing.

Locality sensitive hashing is a hashing technique that will, with some probability, asso-

ciate two vectors ’close’ to each other to the same hash value. It has been applied to

image recognition and clustering for data analysis in the past (see [10]), and Laarhoven

had the idea to apply it to lattice vectors for sieving based algorithms [11]. Using this

technique, we can search the list more quickly by only comparing a vector to other

vectors with the same hash value. This faster searching technique reduces the heuris-

tic (but not proven) sieving algorithm runtime to 20.3366n+o(n) and space complexity to

20.2075n+o(n). This increases the space complexity from GaussSieve slightly (we need to

store hash tables), but reduces the runtime. We’ve reduced the exponent of the runtime

by a factor of over 17x and space’s by a factor of over 14x from the original AKS algo-

rithm. However, let’s also look at other techniques aside from sieving.

Preliminaries 13

One other technique was using Voronoi cells for solving CVP. This algorithm was

published in 2009 by the same Micciancio and Voulgaris as published ListSieve and

GaussSieve [4]. The algorithm is technical, but the general idea is that there is a way to

reduce a CVP computation to several CVP computations in lower dimension, and using

some preprocessing, we can do these smaller CVP computations more quickly, ending

in a CVP runtime of 4n. Note that this is a deterministic runtime, the fastest current

deterministic algorithm for CVP or SVP. Recall that SVP can be solved in polynomially

many CVP calls 2.8, so this is also a 4n runtime for SVP as well.

Chapter 3

AKS Sieving Algorithm

In this chapter, we will start by introducing some basic ideas necessary for the AKS

Sieving algorithm. Next, we will present the algorithm. After this, some analysis will

be done, to prove running time and correctness. And finally, some improvements upon

AKS will be presented - those discussed in Section 2.4.

In 2000, Ajtai, Kumar, and Sivakumar published ’A Sieve Algorithm for the Shortest

Lattice Vector Problem’, which presented a 2O(n) randomized algorithm for solving SVP

[3]. The first paper presenting this technique as a possible method for solving SVP, it

has spawned a large amount of publications modifying and improving the algorithm it

presented. The presentation of this chapter is based on the lecture notes from Vaikun-

tanathan [12] and Regev [13] on the AKS algorithm.

Recall the fundamental parallelepiped 2.5. Any vector in the ambient space can be rep-

resented as the sum of a lattice vector and a member of a fundamental parallelepiped.

For example, r ∈ R2 must be the sum of an integer lattice point (the integer part of

r’s coordinates) and a member of the fundamental parallelepiped for Z2 (the fractional

part of r’s coordinates).

The idea behind the AKS algorithm is to sample a large number of lattice vectors, all

perturbed by a small amount. We do this by first sampling a large number of points from

a small ball around 0. For each point x generated by this sampling, we can use them to

calculate a lattice vector by first solving Bv = x. This v will allow us to represent the

points as linear combinations of the lattice vectors. Rounding the coefficients can give

us a lattice vector z, and the perturbation of z is y, given by y = z + x.

14

AKS Sieving Algorithm 15

As an example of this process, say we sampled x = [0.3,−0.1]T with the basis for Z2

from earlier, B1 =
{

[3, 1]T , [2, 1]T
}

. We treat B1 as a matrix as in 2.2 and get the

equation B1v = x, which we can solve to get v = [0.5,−0.6]T . Then rounding gives us

the lattice vector z = [1, 0]T , and the perturbation y = [1.3,−0.1]T . We remember each

vector x,y, z of these vectors for the next steps.

After we have sampled many perturbed lattice vectors, we put them into locality-based

buckets, based on some radius. This means that we will have one perturbed lattice

vector at the center of some ball, and many other ones grouped based on the center

they are closest to. When this procedure is done, we subtract from each perturbation

the lattice vector corresponding to the center of its ball. This way all the new lattice

vectors generated from this subtraction will be at most a small amount larger than the

radius of the balls. We can make new balls of even smaller radius now, decreasing the

maximum length of the lattice vectors in each step. The process of making smaller and

smaller balls terminates when the radius of the ball is small enough that we can expect

to be able to find the shortest lattice vector.

3.1 Algorithm

In this section, we present the algorithm. Before the algorithm, it is necessary to discuss

a sampling subroutine.

3.1.1 Sampling

The first step of the algorithm is to sample a large number of points in Rn, called Y .

Then we need to refine this set of points according to some parameter R to produce a

resulting set of points C with the following properties:

1. C contains at most 5n points

2. For all y ∈ Y , there is some y′ ∈ C with ‖y − y′‖ < R/2

The algorithm that completes this refinement, call it Sieve(Y) presented in Algorithm

4.

AKS Sieving Algorithm 16

Algorithm 4 Sieve step of AKS

function Sieve(Y)
C ← {}
ν ← {}
for y ∈ Y do

if ∃y′ ∈ C with || y − y′ ||< R/2 then
Set hash function ν(y) = y′

else
C = C ∪ {y}

end if
end for
return C

end function

3.1.2 AKS algorithm

This algorithm assumes that the shortest vector will be in the range [2, 3) and can be

generalized for any [2x, 3x). We can assume this, because the polynomial time LLL algo-

rithm gives us a 2n bound. This 2n bound can be split into [2, 3) , [3, 4.5) , · · · , [2n/1.5, 2n).

There are polynomially many of these intervals, so only a polynomial number of AKS

algorithm runs will need to be executed if we do the polynomial time LLL algorithm as

preprocessing.

Algorithm 5 The AKS Sieving Algorithm

function AKS
Initialization
R0 ← n ·max ‖bi‖ , N ← 28n logR0

Sample {x1,x2, · · · ,xN} ← B(0, 2)
Calculate ∀i ∈ {1, · · · , N},yi = ximodP(B)
Let R← R0, X ← {xi}i∈{1..N}, Y ← {yi}i∈{1..N}, Z ← {(xi,yi)}i∈{1..N}
Sieving
while R > 6 do

C ← Sieve(Y)
for yi ∈ Y do

if yi ∈ C then Discard yi
elseyi ← yi − (yν(i) − xν(i)), where ν is the hashing function from Sieve
end if

end for
R← R

2 + 2
end while
Output: return Shortest vector (yj − xj)− (yk − xk) : (xj ,yj), (xk,yk) ∈ Z

end function

AKS Sieving Algorithm 17

3.2 Analysis

In order to prove that this algorithm works, several invariants must be proven to be

invariant. We start with one necessary for correctness.

3.2.1 Invariants

Theorem 3.1. The vector yj − xj is at every step a lattice vector.

Proof. First, observe that during initialization, xi ≡ yi mod P(B) - this means

yi − xi ≡ 0 mod P(B). This is equivalent to saying that yi − xi is a lattice vector.

During the computation, yi may be reduced yi → yi− (yν(i)−xν(i)), which means that

yi−xi → (yi−xi)− (yν(i)−xν(i)). Because both yi−xi and (yν(i)−xν(i)) are lattice

vectors, their difference is a lattice vector. Then yi−xi is at every step a lattice vector

for any i. This means the return value must also be a lattice vector.

Some other invariants we need will help us understand the running time of the algorithm.

Theorem 3.2. After one iteration through 0 Algorithm 5’s while loop, each ‖yi‖ ≤
R
2 + 2.

Proof. Due to the sieve step, we have
∥∥yi − yν(i)∥∥ ≤ R

2 . Also, each xi satisfies ‖xi‖ ≤ 2

by the sampling procedure. As a result, the new yi value yi ← yi − (yν(i) − xν(i)) has

norm∥∥∥yi − (yν(i) − xν(i))
∥∥∥ =

∥∥∥(yi − yν(i)) + xν(i))
∥∥∥ ≤ ∥∥∥yi − yν(i)

∥∥∥+
∥∥xν(i))∥∥ ≤ R

2
+ 2

by the triangle inequality.

Theorem 3.3. The algorithm 0 runs through at most 2 log(R0) iterations of the while

loop.

Proof. Consider two iterations of the while loop, starting with radius R. This will take

R→ R
2 + 2→ R/2+2

2 + 2 = R
4 + 3. Because we can assume R > 6 (this is the condition

for the while loop to continue), the radius after two steps is R
4 + 3 < R

2 . Then radius

is reduced by at least a factor of 2 every 2 iterations of the while loop, giving at most

2 log(R0) iterations total.

AKS Sieving Algorithm 18

We want to also calculate how many points will remain at the end of the while loop

- those that haven’t been discarded. This will help make sure we have a very small

probability of error.

Theorem 3.4. The number of remaining points in Z after the while loop ends is at

least 27n log(R0).

Proof. We start with N = 28n log(R0) points. The points that are removed are all part

of the set of center points C at some step in the algorithm. We knew that we could

bound the size of this set as |C| ≤ 5n. Then after at most 2 log(R0) iterations of the

while loop (and therefore 2 log(R0) Sieves), we have removed at most 2 log(R0)5
n points.

This leaves

(28n − 2 · 5n) log(R0) ≥ 27n log(R0)

points, because 2 · 5n ≤ 27n.

3.2.2 Running Time

The initialization step will take 2O(n) time. We need to make 2O(n) samples, and cal-

culate the corresponding lattice vectors for each of them. These operations total 2O(n)

time, as sampling is constant time and calculating lattice vectors can be done in poly-

nomial time.

The inside of the while loop should also take 2O(n) time. This is because every point is

processed twice - in the Sieve algorithm 4, and in the reducing step. The sieving step

should take at the most 2O(n) time for any point - it needs to find if there is a center

point near it, and the center point set can be of size 5n. In the reduction step, we need

to find ν(i) and do some vector arithmetic. The hashing step should be no more than

2O(n) time. As a result, the entire loop body runs in 2O(n) time.

Putting it all together, the inside of the while loop will be run only 2 log(R0) times maxi-

mally, which is O(log(n)) times. Then the running time is 2O(n)+O(log(n))2O(n) = 2O(n)

time.

3.2.3 Correctness

We wish to show that this algorithm correctly returns the shortest vector of the lattice.

We see that there are at least 27n perturbed lattice points remaining after the while loop

finishes. Each point xi,yi ∈ Z, represented as zi = yi −xi has norm ‖zi‖ ≤ 8, because

‖yi‖ ≤ 6 and ‖xi‖ ≤ 2.

AKS Sieving Algorithm 19

Then there are 27n lattice points fit into a ball of radius 8 around the origin. Recall

that we assumed λ1(L(B)) ∈ [2, 3) (we made this assumption right before presenting

the algorithm). But then around each lattice point in this ball, there is a ball of radius

1 where there can be no lattice points. Then we can do the same calculation as for

enumerating C in the sieving piece for enumerating the number of possible remaining

lattice points:

V ol(B(0, 9))

V ol(B(0, 1))
= 9n.

So there are at most than 9n possible lattice points, but 27n total points. This seems

very likely that the shortest vector will show up at least once, but it’s also possible that

it doesn’t. We want to figure out the probability that this does happen.

First, call the shortest vector v. Observe that, because 2 ≤ ‖v‖ < 3, it is possible to

find pairs of points xi,xj ∈ B(0, 2), such that xi = v + xj . Then xi ≡ xjmodP(B),

so yi = yj , when their result modulo the fundamental parallelepiped are calculated.

Because xi values for the vectors remaining after the while loop are never used, the

algorithm will run exactly the same, even if these xi are replaced with the other vector

mapping to the same yi value. We can formalize this by defining a function

flip(x) =


x + v : x ∈ B(0, 2) ∩B(−v, 2)

x− v : x ∈ B(0, 2) ∩B(v, 2)

x else

, (3.1)

and noticing that the algorithm runs the exact same way for values that remain after

all iterations through the loop body, whether the original x value is used or flip(x) is

used instead. First, let us decide how frequently we will have a point that is changed

by flip. This will enlighten us to the probability that our true shortest vector is obtained.

Theorem 3.5. For an x value sampled from B(0, 2), Pr[x ∈ B(0, 2) ∩ B(−v, 2) ∨
B(0, 2) ∩B(v, 2)] ≥ 2 · 2−2n.

Proof. First, let us consider B(0, 2) ∩ B(−v, 2). The same argument will be applicable

to B(0, 2) ∩B(v, 2).

Because we assumed ‖v‖ < 3, we can inscribe a ball of radius 1
2 in B(0, 2) ∩ B(−v, 2),

given by B(v2 , 0.5) ∈ B(0, 2) ∩ B(−v, 2). The volume of this ball relative to the entire

sampling space B(0, 2) is

V ol(B(v/2, 0.5))

V ol(B(0, 2))
=

0.5n

2n
= 2−2n.

AKS Sieving Algorithm 20

So we have Pr[x ∈ B(0, 2) ∩ B(−v, 2)] ≥ 2−2n and, similarly, that Pr[x ∈ B(0, 2) ∩
B(v, 2)] ≥ 2−2n. But these are disjoint sets (except for maybe the origin if ‖v‖ = 2),

because we assumed ‖v‖ ≥ 2. Then the total probability Pr[x ∈ B(0, 2) ∩ B(−v, 2) ∨
B(0, 2) ∩B(v, 2)] ≥ 2 · 2−2n, as we wanted to show.

Then with high probability (we can apply a Chernoff bound here), there are about

27n−2n = 25n total x,y pairs that fell into either of the two sets. With these 25n points

and only 9n possible lattice points, we know that there is at least 1 lattice point w

with 25n/9n ≈ 21.8n remaining points which could have been flipped near it. We just

need that two of the x values fell into different sets (around v or −v), which there is

overwhelming probability of happening, given that there is a pool of 21.8n x values.

In fact, suppose they were all zero - we could have instead flipped some of x values

prior (randomly), and been returned w + v or w − v instead of w. Because some of

the values would have given some w± v and some values would have resulted in w, the

AKS algorithm would be guaranteed to return v.

As a result, we have that the probability of error is in fact the probability that all x

values belong to the same set x ∈ B(0, 2) ∩ B(−v, 2) or B(0, 2) ∩ B(v, 2), which is

very unlikely - there are 21.8n vectors all needing to belong to the same set, giving a

probability of ≈ 2−2
1.8n

.

3.3 Improvements

While this is a 2O(n) time and space algorithm, the constants are larger than they need

to be. The algorithm presented in the original paper can be modified to run in 25.9n time

and 22.95n space, as shown by Nguyen and Vidick [8]. Let us consider the first step of

the algorithm - sampling. The algorithm samples a very large number of vectors just in

order to start the algorithm. One might consider this a large investment, and conjecture

that the algorithm’s runtime could be improved by interleaving sampling and reducing,

stopping when as many vectors as are needed are generated. This should improve both

the time and space complexities. It is this insight that led to Daniele Micciancio’s and

Panagiotis Voulgaris’ paper: ’Faster exponential time algorithms for the shortest vector

problem.’[9]

In Micciancio and Voulgaris’ paper, they present two algorithms - ListSieve 6 and

GaussSieve 7, which sample as the algorithm runs instead of all before the algo-

rithm starts. ListSieve is proven in the paper to run in 23.199n time and 21.325n space.

GaussSieve was not presented with a runtime proof (it was proven to use 20.41n space

at most), but heuristics were given to show that it runs in 20.48n time and 20.18n space.

The end condition for these algorithms is different from the end of AKS, though. While

AKS Sieving Algorithm 21

AKS finishes when R gets to be small enough, these algorithms finish when there is a

vector whose length is smaller than a predetermined cutoff length µ. The similarity,

though, is that AKS assumes that the shortest vector is in a range [2x, 3x), so the top

of the range for running AKS can be used as the µ value for ListSieve or GaussSieve.

The algorithms are shown below.

Algorithm 6 The Modified Sieving Algorithm - ListSieve

function Sample(B, d)
Sample e← B(0, d)
p← emodP(B)
return (p, e)

end function

function ListReduce(p, L, δ)
while ∃vi ∈ L such that ‖vi − ‖p‖‖ ≤ δ ‖p‖ do

p← p− vi
end while
return p

end function

function ListSieve(B,µ)
Initialization
List L← {0}
δ ← 1− 1

n
i← 0
ζ ← 0.685
MaxIterations← 2cn

Sampling and Reducing
while i < MaxIterations do

i← i+ 1
(pi, ei)← Sample(B, ζµ)
pi ← ListReduce(pi, L, δ)
vi ← pi − ei
done up to here
if vi /∈ L then

if ∃vj ∈ L such that ‖vi − vj‖ < µ then
return vi − vj

end if
L.append(vi)

end if
end whilereturn No correct vector

end function

One very slow piece of even these improved algorithms is the step where we determine if

there exists a vi ∈ L : such that ‖vi‖ ≤ ‖p‖∧ ‖vi − ‖p‖‖ ≤ δ ‖p‖. Finding close vectors

in high dimensional space is in general a very difficult problem. We know how to do it

effectively in one dimension - sorting and using binary search, or constructing a binary

AKS Sieving Algorithm 22

Algorithm 7 The Modified Sieving Algorithm - GaussSieve

function GaussReduce(p, L, S)
while ∃vi ∈ L : such that ‖vi‖ ≤ ‖p‖ ∧ ‖vi − ‖p‖‖ ≤ δ ‖p‖ do

p← p− vi
end while
while ∃vi ∈ L such that ‖vi‖ > ‖p‖ ∧ ‖vi − p‖ ≤ ‖vi‖ do

L.remove(vi)
S.push(vi − p)

end while
return p

end function
function GaussSieve(B,µ)

Initialization
List L← {0}
Stack S ← {}
Collisions← 0
Sieving
while Collisions < MaxCollisions do

if S.notEmpty() then
vnew ← S.pop()

elsevnew ← SampleGaussian(B)
end if
vnew ← GaussReduce(vnew, L, S)
if vnew = 0 then

Collisions← Collisions+ 1
elseL← L.append(vnew)
end if

end while
end function

tree and searching in the tree. These are both methods of preprocessing a list of size N

in O(N log(N)) time, allowing for a O(log(N)) search. But in multiple dimensions, we

don’t really know how to do this effectively, and so a linear search is how we’d imple-

ment it for these algorithms, giving an O(N) = 2(O(n)) runtime for each search. There

is an algorithm, however, that has been used for image recognition and other machine

learning applications, that can do this. It is called Locality Sensitive Hashing - the idea

is to create a hash function that has a high probability of collisions if vectors are close

together, and then instead of searching the whole list, we can just search through vectors

with the same hash value.

In 2014, Thijs Laarhoven published ’Sieving for shortest vectors in lattices using locality-

sensitive hashing.’ It takes GaussSieve as I’ve described above, and applies this locality

sensitive hashing technique to reduce search space. The result is an algorithm that runs,

heuristically, but not provably, in 20.3366n time and 20.2075n space. In order to reproduce

AKS Sieving Algorithm 23

the algorithm here, I would need to explain locality sensitive hashing in more detail (and

it is quite technical), so one may find the original paper here: [11].

Chapter 4

CVP with Preprocessing using

Voronoi Cells

In this chapter, we will see a new method of attacking the Closest Vector Problem,

Preprocessing with Voronoi cells. We start by defining some terms which will be impor-

tant in describing and discussing the algorithm. Next, I will present each step of the

algorithm, with some discussion accompanying each step. The first step is dimension

reduction - converting CVP computations into smaller ones. The second step is prepro-

cessing - coming up with a way to solve SVP fairly quickly. The third step is the SVP

solver, using the preprocessing.

In 2010, Daniele Micciancio and Panagiotis Voulgaris (who you may recognize from an

improvement upon AKS) presented ’A Deterministic Single Exponential Time Algo-

rithm for Most Lattice Problems based on Voronoi Cell Computations.’[4] This paper

contained an algorithm as fast (asymptotically) as AKS, but has a few key differences.

First, the algorithm is deterministic, while AKS is randomized. This means that AKS

has a very small probability of not producing the correct shortest lattice vector, while

the MV algorithm will always produce the correct shortest vector. Another difference

is that MV is not a sieving algorithm. It instead uses a different technique - its goal

is to use the connection between three different problems on a lattice to come up with

the shortest vector. In order to discuss this in more detail, we need to define some terms.

24

Voronoi Cell CVP Algorithm 25

4.1 Preliminaries

In this chapter, we will write Bi to represent the basis B but restricted to only the first

i basis vectors. That is, if B = {b1, b2, · · · , bn}, then Bi = {b1, b2, · · · , bi}.

Definition 4.1. The Closest Vector Problem with Preprocessing is the problem, when

given some π(B) and a target vector t, to output the closest lattice vector v to the

target vector t. That is, ‖v − t‖ ≤ ‖x− t‖ for any x ∈ L(B).

The function π can be thought of as giving a hint for solving CVP. The particular hint

used in this algorithm is the Voronoi cell:

Definition 4.2. The Voronoi cell of a lattice point v ∈ L(B), denoted V(v), is the set

of all points

{x| ‖x− v‖ ≤ ‖x−w‖ ∀w ∈ L(B)} (4.1)

It is now possible to see a connection between Voronoi cells and CVP. If we are searching

for the closest vector to t, we want to find the lattice vector v such that t ∈ V(v). So

there is some intuition for the MV algorithm. It uses, as a hint, a Voronoi cell V(0).

However, before we are able to give a Voronoi cell as a hint, we need to come up with a

way to describe it. A Voronoi cell consists of an uncountably infinite number of points,

so instead of describing its interior, we should look at its boundary. To start:

Definition 4.3. Let v and w be lattice vectors in the lattice L(B). A half space Hw(v)

is the set of all points

{x| ‖x− v‖ ≤ ‖x−w‖} . (4.2)

These are all the points that are closer to v than w.

Note that the Voronoi cell V(v) = ∩w∈L(B)Hw(v). This is because the Voronoi cell is

the set of all points closer to v than any other lattice vector. However, not all of these

half spaces are needed to determine the Voronoi cell.

If we have a minimal set V of half spaces such that V(v) = ∩w∈VHw(v), we call V a set

Voronoi Cell CVP Algorithm 26

of Voronoi-relevant vectors. This Voronoi-relevant set will be the way we describe the

Voronoi cell to be passed into our CVP with Preprocessing algorithm. It is important

for our running time analysis to know how many vectors there can possibly be in the

Voronoi-relevant set. The correct maximum number is 2(2n−1), as shown by Minkowski

[5].

Now we can discuss the algorithm itself. It relies on the interaction between two problems

- calculating the Voronoi cell, and solving the Closest Vector Problem using the Voronoi

cell. The interaction is not just that solving CVP helps you find a Voronoi cell, and

vice versa. That would get us stuck in an infinite loop. The interaction is described in

Algorithm 8.

Algorithm 8 Recursively Solving CVP(t,Bn)

function CVP(t, Bi+1)
Calculate V for Bi, then solve 2i/2 instances of CVPP(t′,V)

end function
function Voronoi Cell Calculation(Bi)

Solve 2i instances of CVP(Bi) to generate Voronoi cell
end function
function CVPP(t,V in dimension i)

2O(n) time algorithm using the Voronoi cell
end function

So in order to solve this one computation of CVP(t, Bn), we calculate the Voronoi cell

using 2n calculations of CVP in Bn. In order to do these CVP computations, we do

2n/2 CVP computations in Bn−1. Each of these is done using a Voronoi cell calculation

in Bn−1, which is in turn built using smaller CVP calculations and so on.

Let us calculate the resulting time complexity, given that the computation of CVPP

runs in 2O(n) time. For each k from 1, 2, · · ·n, we need to solve 2k · 2k/2 CVPP instances

on Bk. This gives us a resulting runtime of
∑n

k=1 21.5k2O(n) = 2O(n).

4.2 Algorithm

The goal is to solve CVP for a target vector t in a basis B. We first assume B is LLL-

reduced. Recall that this is just a polynomial time algorithm, and so does not contribute

significantly to the runtime of the algorithm. Additionally, if B is LLL-reduced, so is

any Bi. Also, as usual, the notation b̃i represents the ith Gram-Schmidt vector of the

basis B.

Voronoi Cell CVP Algorithm 27

I will first discuss the dimension reduction piece of the algorithm. Next, I will show

how to calculate a Voronoi cell. And finally, I will demonstrate how knowledge of the

Voronoi cell can be used to solve CVP.

4.2.1 Dimension Reduction

Our goal is to be able to calculate the closest lattice vector v ∈ Bi+1 to a target vector

t using several solutions to the CVP problem vj in Bi. The way we do this is by

considering several planes that our target vector could lie on, and find the closest vector

on each of these planes. Each plane has a smaller dimension than the original space, so

we have a smaller CVP computation as a result.

First, we assume that t is in the subspace spanned by Bi+1. Otherwise, we just project

t onto the subspace. We also define the value ct = 〈t, b̃i+1〉/〈b̃i+1, b̃i+1〉, the part of

t parallel to b̃i+1. The algorithm, assuming t has been projected onto the subspace

spanned by Bi+1, is the following:

Algorithm 9 CVP Dimension Reduction

function Dimension Reduction(t, Bi+1)
for each c such that |c− ct| ≤ 1

2

√
2i+1 − 1 do

si,c ← CVP(t− cbi+1, Bi)
end for
Output: return Vector si,c + cbi+1 ∈ L(Bi+1) that minimizes ‖t− (si,c + cbi+1)‖

end function

Theorem 4.4. The above algorithm will produce the closest vector to t from Bi+1.

Proof. We can consider the lattice L(Bi+1) as the union of all layers of the lattice

Lc = {x + cbi+1|x ∈ Bi, c ∈ Z}, so each Lc lies on a distinct i dimensional hyperplane.

Then the minimum distance from any lattice point on fixed layer Lc to t is at least

|c− ct| ·
∥∥∥b̃i+1

∥∥∥ . (4.3)

This is because the entire hyperplane {x + cbi+1|x ∈ Bi, c ∈ Z} has this distance from

t, and each lattice point lies on this hyperplane.

In addition, using Babai’s nearest plane algorithm [14] could produce a lattice vector

within distance ρ = 1
2

√∑i+1
j=1

∥∥∥b̃j∥∥∥2. Because the basis is LLL-reduced, it has the

Voronoi Cell CVP Algorithm 28

property that for any k,
∥∥∥b̃k+1

∥∥∥ ≥ ∥∥∥b̃k∥∥∥ /2. We can use this to obtain

ρ =
1

2

√√√√ i+1∑
j=1

∥∥∥b̃j∥∥∥2 ≤ 1

2

√√√√ i+1∑
j=1

2i−j+1
∥∥∥b̃i+1

∥∥∥2 =
1

2

√
2i+1 − 1

∥∥∥b̃i+1

∥∥∥ . (4.4)

Combining equations 4.1 and 4.2, we have that |c−ct| ≤ 1
2

√
2i+1 − 1. Then enumerating

over each of these and finding the closest vector among all of them will return the

shortest.

Now we have reduced the dimension of our CVP computations, so now we should come

up with our method of solving the CVP computations.

4.2.2 Calculating Voronoi Cell

Recall that calculating a Voronoi cell is equivalent to calculating the Voronoi-relevant

vectors. We will construct points that are halfway between two lattice vectors, and find

the closest vectors to these. Then the vector between these two should be a Voronoi

relevant vector.

The subroutine used for this is the RelevantVectors algorithm from Agrell, Eriksson,

Vardy, and Zeger in [15]. The method is presented in Algorithm 10.

Algorithm 10 Voronoi Cell Computation

function RelevantVectors(Bi)
V ← {}
for each c ∈ {0, 1}i/0 do

t← 1
2cBi

s← CVP(t, Bi)
if 2 possible s are closest then
V.add(2(s + t))
V.add(−2(s + t))

end if
end for
Output: return V

end function

Unfortunately, this subroutine can’t be run as part of this algorithm. This is because the

CVP solving does not know how many shortest vectors there are. In MV’s algorithm,

±2(s + t) are just added for every c. Because there are 2i − 1 possible values for c, the

description of the Voronoi cell will have fewer than 2i+1 vectors. While there may be

some repetition, it will not be enough to significantly increase the running time of the

algorithm.

Voronoi Cell CVP Algorithm 29

Now that a Voronoi cell has been computed, we may use it to calculate instances of

CVPP.

4.2.3 Voronoi Cell for CVPP

This piece of the algorithm takes Voronoi cells and attempts to find a path between 0

and t by moving between adjacent Voronoi cells.

Recall that, by definition of Voronoi cell, if the target vector t for the closest vector

problem is in the Voronoi cell V(v) for some lattice vector v, then v is a closest vector

to t. The target t may be at the intersection of multiple Voronoi cells, in which case it

would have multiple closest lattice vectors. For now, we restrict ourselves to the case

where t ∈ 2V(0). Later, this will be extended.

To start, we define a graph G, with nodes N and edges E, with

N = {t + v|v ∈ L(Bi), (t + v) ∈ 4V}, E = {(x,y)|x− y ∈ V}. (4.5)

So that nodes are lattice vectors shifted by t which fall inside of 4V, and nodes are

connected if their Voronoi cells border each other.

Algorithm 11 CVPP given Voronoi cell

function CVPPSolver(V, t)
G← (N,E)
return Shortest x such that x is connected in G to t

end function

The shortest x can be found by doing a graph traversal starting from t of G. This

can be done in polynomial time in the size of N and E, which is 2O(n) time because

|N |, |E| ∈ 2O(n). Then two statements remain to be shown. First, we need that the

closest vector to t is actually connected to t in the G. For the proof of this, one can

read the original paper: [4]. The other statement is that we can reduce the problem of

CVPP on arbitrary t to solving CVPP on t ∈ 2V.

Consider what the output of the CVPP solver is. It is an x such that x ∈ V, where

x = t+v, with t ∈ 2V and v ∈ L(Bi). What if t was not in 2V, but instead in some 2kV?

We could instead run the algorithm with the description of 2k−1V, to find some vector

x ∈ 2k−1V with x = t + v, with v ∈ 2k−1L(Bi). But now we’ve reduced calculating the

closest vector to t to instead calculating the closest vector to x, then adding −v. But

Voronoi Cell CVP Algorithm 30

x ∈ 2k−1V, so only k iterations of this procedure are required.

Bibliography

[1] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring poly-

nomials with rational coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[2] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math-

ematics of operations research, 12(3):415–440, 1987.

[3] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. A sieve algorithm for the

shortest lattice vector problem. In Proceedings of the thirty-third annual ACM

symposium on Theory of computing, pages 601–610. ACM, 2001.

[4] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential

time algorithm for most lattice problems based on voronoi cell computations. SIAM

Journal on Computing, 42(3):1364–1391, 2013.

[5] Hermann Minkowski. Allgemeine lehrsätze über die convexen polyeder. Nachrichten

von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische

Klasse, 1897:198–220, 1897.

[6] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz.

Solving the shortest vector problem in 2 n time using discrete gaussian sampling.

In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of

Computing, pages 733–742. ACM, 2015.

[7] Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz. Solving the

closest vector problem in 2ˆ n time–the discrete gaussian strikes again! In Founda-

tions of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages

563–582. IEEE, 2015.

[8] Phong Q Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector

problem are practical. Journal of Mathematical Cryptology, 2(2):181–207, 2008.

[9] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms

for the shortest vector problem. In Proceedings of the twenty-first annual ACM-

SIAM symposium on Discrete Algorithms, pages 1468–1480. Society for Industrial

and Applied Mathematics, 2010.

31

Bibliography 32

[10] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards re-

moving the curse of dimensionality. In Proceedings of the thirtieth annual ACM

symposium on Theory of computing, pages 604–613. ACM, 1998.

[11] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-

sensitive hashing. In Advances in Cryptology–CRYPTO 2015, pages 3–22. Springer,

2015.

[12] Vaikuntanathan. Ajtai-kumar-sivakumar algorithm for exact shortest vectors.

http://people.csail.mit.edu/vinodv/6876-Fall2015/index.html, Septem-

ber 2015.

[13] Regev. A simply exponential algorithm for svp (ajtai-kumar-sivakumar). https:

//www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/, September 2004.

[14] László Babai. On lovászlattice reduction and the nearest lattice point problem.

Combinatorica, 6(1):1–13, 1986.

[15] Erik Agrell, Thomas Eriksson, Alexander Vardy, and Kenneth Zeger. Closest point

search in lattices. Information Theory, IEEE Transactions on, 48(8):2201–2214,

2002.

[16] Chris Peikert. A decade of lattice cryptography. Technical report, 2015.

[17] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in

nearest neighbor searching with applications to lattice sieving. Preprint, 2015.

[18] Noah Stephens-Davidowitz. Discrete gaussian sampling reduces to cvp and svp.

arXiv preprint arXiv:1506.07490, 2015.

http://people.csail.mit.edu/vinodv/6876-Fall2015/index.html
https://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/
https://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/

	Acknowledgements
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Lattice Problems
	2.3 Basis algorithms
	2.3.1 Gram-Schmidt Orthogonalization
	2.3.2 LLL basis

	2.4 History of Lattice Problems

	3 AKS Sieving Algorithm
	3.1 Algorithm
	3.1.1 Sampling
	3.1.2 AKS algorithm

	3.2 Analysis
	3.2.1 Invariants
	3.2.2 Running Time
	3.2.3 Correctness

	3.3 Improvements

	4 CVP with Preprocessing using Voronoi Cells
	4.1 Preliminaries
	4.2 Algorithm
	4.2.1 Dimension Reduction
	4.2.2 Calculating Voronoi Cell
	4.2.3 Voronoi Cell for CVPP

