
	 1	

EVALUATING SPATIOTEMPORAL SEARCH STRUCTURES FOR ANALYSIS FROM

LAGRANGIAN BASIS FLOWS

by:

Ouermi Timbwaoaga Aime Judicael (TAJO)

Presented to the Department of Computer and Information Science

at the University of Oregon

in partial fulfillment for the degree of

Bachelor of Science

June 2016

	 2	

THESIS APROVAL PAGE

Student: Ouermi Timbwaoga Aime Judicael (TAJO)

Title: Evaluating Spatiotemporal Search Structures for Analysis from Lagrangian

 Basis Flows.

This thesis has been accepted and approved in partial fulfillment of the

requirements for the Bachelor of Science degree in the Department of Computer

and Information Science by:

Hank Childs Advisor

Original approval signatures are on file with the Department of Computer and

Information Science at the University of Oregon

Degree awarded June 2016

	 3	

THESIS ABSTRACT

Ouermi Timbwaoga Aime Judicael (TAJO)

Bachelor of Science

Computer and Information Science

June 2016

Title: Evaluating Spatiotemporal Search Structures for Analysis from

Lagrangian Basis Flows.

Visualization Approved: ______________________________

Hank Childs

While flow visualization has traditionally been performed from the Eulerian

perspective, the Lagrangian approach is gaining momentum in the scientific

community. This is because the Lagrangian approach offers more opportunities to

mitigate I/O limitations than the traditional Eulerian approach. Particle trajectory

tracing using the Lagrangian approach is performed by extracting Lagrangian basis

flows, and using these flows to construct new trajectories from particle seed

locations. Tracing the trajectory of a given particle requires finding its neighboring

basis flows. Our work investigates different spatiotemporal search structures for the

purpose of particle trajectory tracing from Lagrangian basis flows. We conducted

our study by evaluating the storage size, the build time, and the search time of the

different search structures over various configurations.

Key Words:

Lagrangian basis flows, Bounding Volume Hierarchy, K-d Tree.

	 4	

Table of Contents

1 INTRODUCTION 6-10

2 RELATED WORK 10-13

2.1 Data Compression……………………………………………………………….10-11

 2.2 Lagrangian Based Particle Path Tracing …………………………………..11-12

 2.3 Introduction to Bounding Volume Hierarchy…………………………….12-13

3 STUDY 13-23

 3.1 Configuration …………………………………………………………………….13-14

 3.2 Best Split Identification ……………………………………………………….15-16

 3.3 K-d Trees Search Structures ………………………………………..............16-19

 3.3.1 K-d Tree “with no primitive split”………………………………16-17

 3.3.2 K-d Tree “with primitive split”…………………………………..18-19

 3.4 BVHs Search Structures ……………………………………………..............19-22

 3.4.1 BVH “with no primitive split” ……………………………………19-21

 3.4.2 BVH “with primitive split” ……………………………………….21-22

 3.5 Search Structure …………………………………………………………………22-23

4 EXPERIMENTAL OVERVIEW 23-26

 4.1 Experimental Factors …………………………………………………………..23-24

 4.2 Evaluation Criteria …………………………………………………………………..24

 4.3 Measurements ……………………………………………………………………24-26

 4.3.1 Number of Primitives and Number of Nodes …………………….25

 4.3.2 Storage Overhead …………………..…………………………………..25

 4.3.3 Build Time…………………………………………………………….25-26

 4.3.4 Search Time ………………………………………………………………26

 4.4 Machine ………………………………………………………………………………..26

	 5	

5 RESULTS 26-40

 5.1 Number of Primitives and Nodes ……………………………………………27-30

 5.2 Storage Overhead ……………………………………………………………….30-33

 5.3 Build Time …………………………………………………………………………33-36

 5.4 Search Time ………………………………………………………………………36-39

 5.5 Results Summary ………………………………………………………………..39-40

6 FUTURE WORK AND CONCLUSION 41-42

7 REFERENCES 42-46

List of Tables

Table 1: Number of primitives and nodes for K-d Tree “with no primitive split” …27

Table 2: Number of primitives and nodes for K-d Tree “with primitive split” ……..28

Table 3: Number of primitives and nodes for BVH “with no primitive split” ..……..28

Table 4: Number of primitives and nodes for BVH “with primitive split” ..…………29

Table 5: Storage overhead for K-d Tree “with no primitive split” ……………………..30

Table 6: Storage overhead for K-d Tree “with primitive split” …………………………31

Table 7: Storage overhead for BVH “with no primitive split” ..……..………………….32

Table 8 Storage overhead for BVH “with primitive split” ..………………………………32

Table 9: Build time for K-d Tree “with no primitive split” ………………………………33

Table 10: Build time for K-d Tree “with primitive split” …………………………………34

Table 11: Build time for BVH “with no primitive split” ..……..………………………….35

Table 12: Build time for BVH “with primitive split” ..……………………………………..35

Table 13: Search time for K-d Tree “with no primitive split” …………………………..36

Table 14: Search time for K-d Tree “with primitive split” ……………………………….37

Table 15: Search time for BVH “with no primitive split” ..……..………………………..38

Table 16: Search time for BVH “with primitive split” ..…………………………………..39

Table 17: Results Summary ………………………………………………………………………40

	 6	

1 INTRODUCTION

Flow visualization enables understanding and exploration of fluids, mixing, wind,

and many other phenomena. It gives scientists the opportunity to explore

phenomena they would not otherwise be able to explore, and plays a vital role in

scientific advancement and discoveries in fields such as medicine, mechanical

engineering, and astrophysics.

McLouglin et al. [1]surveyed a variety of methods for particle path tracing used in

flow visualization. The majority of these flow analysis techniques study the

trajectory of particles placed at seed positions. That is, particles are placed at an

initial position, and the underlying vector field from the input data set is used to

calculate the path each particle follows. A variety of techniques, such as

streamlines, line integral convolution [6], pathlines [10], stream surfaces [8],

streamlines [11], and FTLE [7], then use these trajectories to form their respective

visualizations or analyses.

The type of flow field utilized in flow studies can be categorized in two main

groups: “steady” and “unsteady.” A “steady” flow is a flow in which the vector field

is independent of time --- the flow does not change as time evolves. On the

contrary, “unsteady” flow represents a flow in which the vector field is time

dependent. This means that the flow field changes as time progresses.

The traditional method for calculating a particle trajectory begins by evaluating its

position with respect to the input data’s vector field, and then displacing it in a

small distance along the velocity direction at the particle’s location. This process

continues iteratively, with the particle moving small distances each iteration, again

in the direction of the vector field at the particle’s current location. Thus, this can

be viewed as an ordinary differential equation problem. In order to ensure accuracy

	 7	

in solving the equation, numerical methods such as the Runge-Kutta scheme [9],

can be used. In total, calculating the trajectory of a particle can be very

computationally intensive because it requires calculating thousands of steps for

millions or even billions of particles.

Despite widespread usage, the traditional method for particle trajectories of

unsteady flow presents some limitations. The limitations from this method stem

from limitations in I/O. First, it is important to note that the simulation calculates

the velocity field over all time, but can only save a subset of this information to

disk. The most common tradeoff made by simulation codes is to save complete

state information for some snapshots in time, and to save no information for the

times in between the snapshots. This temporal sparsity introduces errors in

interpolation. When tracing the particles’ trajectories at the “post hoc” stage, the

missing information about the flow between “time slices” may have relevant

information about the flow’s behavior. The probability of getting inaccurate

interpolation increases as the data become sparser. Furthermore, this problem is

only getting worse. Despite the fact that I/O bandwidth is increasing in almost

every new supercomputer, I/O is not keeping up with their ability to generate data.

This leads to more temporal sparsity in the simulation’s data saved to disk for post

hoc analysis, thus increasing error further.

Fluid mechanics considers two approaches for studying flow: Eulerian and

Lagrangian. In the Eulerian approach, a fixed frame of reference is defined in which

an observer can watch the flow go by. Traditionally, this framework is what has

been used to study flow fields; particles are seeded at different positions and

displaced tangent to the velocity of the input data’s vector field by solving an

ordinary differential equation:

											
𝑑𝑃
𝑑𝑡

= 𝑉 𝑃, 𝑡 																																																																																																																	(1)

	 8	

Where P(x, y, z, t) defines the particle position.

With sparse data, this introduces errors. The first most significant work on the

Lagrangian approach was introduced by G. Haller et al. [12,13] The Lagrangian

approach for particle trajectory tracing was introduced as an alternative method in

order to resolve the limits with the traditional approach. In this approach, a frame

of reference is defined according to the particle’s motion, also known as a

Lagrangian frame of reference. In this frame, the observer sees the flow from the

perspective of the particle. Particles are seeded at different positions and use the

neighboring basis flows, which were precomputed, to displace each particle to its

next position. This new approach is gaining momentum in the scientific

visualization community because it yields better performance and results, and

helps mitigate the limits of the previous approaches.

Both paradigms present significant challenges that affect performance and accuracy

for flow analysis. The temporal sparsity problem due to the limitation in I/O can be

resolved by performing tasks “in situ” [24]. However, this approach implies knowing

the type of work to be performed a priori. Thus, the “in situ” paradigm is not well

suited for exploration-oriented visualization [29]. In exploration oriented-

visualization, the tasks to be performed are not known beforehand because the

objective is to investigate the flows interactively to gain insight and learn from

them.

Another approach adopted by the scientific community, which helps resolve the

sparsity and accuracy issues, is Lagrangian path tracing. In the Lagrangian

technique, “time intervals” are used as opposed to “time slices.” This minimizes

the sparsity in the data and provides better accuracy when interpolation is

performed. The Lagrangian method is executed in two phases: “in situ” and “post

hoc.” The “in situ” phase focuses on extracting the optimal Lagrangian flows. In the

“post hoc” phase, seeded particles’ paths are traced using the underlying basis flow

	 9	

extracted during the “in situ” stage from a given flow field. Tracing a given particle

trajectory requires access to its neighbors to perform an interpolation. The search

for the neighbors is computationally intensive, and to our knowledge, no extensive

work has been done to evaluate how to optimally locate the neighbors in a

spatiotemporal data set of Lagrangian basis flows for visualization.

As mentioned previously, flow anlyses are often very computationally intensive.

For a given particle, performing the interpolation, requires finding its neighboring

Lagrangian basis flows, and calculating their trajectories. These trajectories are

then used to determine the next position of the particle. The nature of the

challenges faced in this problem necessitates techniques to diminish the

computational burden while tracing the particles’ trajectories.

This study explores new avenues for spatiotemporal search structures for analysis

from Lagrangian basis flows. As mentioned earlier, to our knowledge, no ample

studies have been conducted to evaluate and determine well-suited search

structures for the Lagrangian base flow visualization. Chandler et. al [3] used a

modified 3D K-d Tree as an accelerated search structure to find the neighbors of a

given particle in the process of tracing its trajectory. Here, we propose a different

approach for locating the neighbors of a given particle. We investigated the use of

spatiotemporal K-d Trees as search structures. In addition to the K-d Trees, we

explore the use of spatiotemporal Bounding Volume Hierarchies (BVH) to evaluate

the choice of search structure for particle trajectory tracing purposes. BVH [21] and

K-d Trees [15] are often used in ray tracing as an accelerated structure for

rendering.

In terms of contribution, this study considers a novel approach for search structure

to accelerate Lagrangian particle trajectory tracing, given a spatiotemporal data set.

Using spatiotemporal search structures enables us to perform a one-time build

instead of building the search structure at each time step. Our research indicates

	 10	

that BVH yields better performance than the K-d Tree approach. This contributes to

improving particle trajectory construction during the “post hoc” stage and

obtaining significant improvement in performance overall.

Our investigation consisted of three major phases. In the first phase, we built our

data structures. As noted before, we considered two versions of 4D K-d Trees and

two versions of 4D BVHs. In the second phase we used the already built data

structures to perform a spatiotemporal search for neighbors. In the third phase, we

analyzed and compared each data structure performance by measuring its build

time and search time for a given data sets and seeded particles.

2 RELATED WORK

2.1 Data Compression

Vector field compression is one approach for addressing I/O limitations with

traditional Eulerian particle trajectory tracing. Different vector compression

techniques are used to compress a given vector field while preserving its topology

and main characteristics. This process produces a smaller data set, which is then

used to calculate the trajectories of given particles. Lodah et al. [24], and Theisel et

al. [25, 26] examined 2D spatial compression methods for reducing the data at each

time step of the simulation. Tong et al. [27] explored temporal compression

methods for reducing the number of time steps from N to M. Agranovsky et al. [28]

explored determining which vector to retain based on priority, and then

interpolating new vectors from the subset stored.

Vector field compression reduces the computational burden because it reduces the

data size. However, it introduces errors. Vector field compression typically focuses

	 11	

on the vector field’s main features, omitting its minor characteristics. This

omission may result in inaccurate interpolations when tracing particles’

trajectories.

2.2 Lagrangian-Based Particle Path Tracing.

Agranovsky et al. [2] explored a Lagrangian representation for flow study. Their

approach had two phases: “in situ” and “post hoc.” Lagrangian basis flows were

extracted from the simulation in the “in situ” stage, by seeding particles on a

uniform grid at regular time intervals, and allowing them to exist in the simulation

for a uniform constant time. At the end of a time interval, only the final position of

each particle is stored to disk. The files generated contain Lagrangian basis flows

instead of velocity vectors as in the traditional Eulerian method. These Lagrangian

basis flows are then used to construct seeded particles’ trajectories.

In the “post hoc stage,” particles are arbitrarily seeded, and the uniform grid is then

utilized to construct tetrahedrons around the particles. Nielson et al. [14] offer

multiple tools for breaking cells into tetrahedrons. Tetrahedrons are chosen here

because they can form the minimal possible convex envelope around a given point

in a 3D space. Once the tetrahedrons are formed, the particles’ positions are

expressed in terms of the tetrahedrons’ vertices. These vertices are used to

determine the particles’ next positions. This process is repeated over a time interval

in order to trace the journey of seeded particles over the given time interval.

Argranovsky et al. [2] found the Lagrangian approach to be more accurate, require

less I/O, and be less computationally intensive compared to the traditional Eulerian

representation. For a time that lies between two consecutive “time slices,” the

traditional approach reads the vector field of the two “time slices” and interpolates

between them to calculate the desired velocity. However, the Lagrangian approach

will consider one file which covers a time interval of interest. This results in less

	 12	

files required in the Lagrangian method, which translates into less I/O. In the

traditional approach, the interpolation between the two consecutive “time slices”

introduces error because the time of interest is not saved to disk. The Lagrangian

approach is more accurate because it considers “time intervals” as opposed to “time

slices.” Additionally, it is less computationally intensive because it is not

performing a numerical integration as in the traditional Eulerian approach.

Chandler et al. [3] use K-d Trees as the search structure for performing particles’

paths tracing from Lagrangian basis flows. In this approach, Lagrangian basis flows

extracted from the simulation are defined as a mapping 𝑃:ℝxℕ → 	ℝ/. A particle i at

time t (i.e (i, t) in ℝxℕ) is mapped to a 3D location (xi, yi, zi). In the process of

constructing the particles’ trajectories, the data from the time-step in

consideration is loaded and used to build a K-d Tree. This K-d Tree is then used to

search a given particle’s neighbors in order to perform the required interpolation in

order determine the particle’s next position.

2.3 Introduction to Bounding Volume Hierarchy

BVHs are used in collision detection [17, 18] and ray tracing [16] as acceleration

search structures. Similar to K-d Trees, BVHs are trees constructed from a data set.

This type of tree is built such that every child is contained in its parent, and every

node has a tight bounding box, which leads to BVHs having no empty nodes as

opposed to K-d Trees [15]. One challenge in building BVHs, and even K-d Trees,

comes from deciding where to split a given node in order to create its children.

Different approaches, including Spatial Median [19, 20] and Surface Area Heuristic

[21], have been used to effectively choose the split location. With the Spatial

Median techniques, the split location is chosen to be the middle of the node’s

bounding box, whereas the Surface Area Heuristic cost uses a formula to determine

the optimal split with the minimum possible number of overlaps.

	 13	

Stich et al. [4] compared multiple variants of BVHs and K-d Trees and determined

that BVHs perform significantly better than K-d Trees for ray tracing. As opposed to

K-d Trees, BVHs construct trees which often have fewer nodes, and no empty

nodes. Because K-d Trees’ construction does not yield nodes with tight bounding

boxes, the resulting tree may end up with empty nodes. This difference allows BVHs

to gain in performance and memory usage because they have less nodes to search

from and to store in memory.

In our project, we consider the problem of searching for Lagrangian basis flows. We

extend the work by Chandler in several key ways. First, we consider BVHs in

addition to K-D Trees. Second, our study considers a spatiotemporal situation,

which helps mitigate the problems related to temporal sparsity. Third, we consider

a situation where the search structure in constructed once at the beginning, as

opposed to periodic construction at each step.

3. STUDY

3.1 Configuration

We focused our work on how to find the neighbors of given particles using

underlying Lagrangian basis flows extracted from a flow vector field. We developed

a routine to generate basis flows, which is then used to build the search structures.

We used the Arnold-Beltrami-Childress (ABC) [23] flow, a time dependent 3D

vector field, to generate the data. We chose A = 3, B = 2, and C = 1.

												
𝑑𝑥
𝑑𝑡

= 𝐴 sin 𝑧 + 𝐶	sin	(𝑦)																																																																																						(2)

	 14	

												
𝑑𝑦
𝑑𝑡

= 𝐵 sin 𝑥 + 𝐴	sin	(𝑧)																																																																																						(3)

												
𝑑𝑧
𝑑𝑡

= 𝐶 sin 𝑦 + 𝐵	sin	(𝑥)																																																																																						(4)

Where the particle position is defined by P(x, y, z, t) and A, B, and C are constants.

We generated multiple data sets from this vector field, varying the basis flows.

An important consideration for building a search structure is whether the input

geometry is subdivided to optimize searching. We refer to this process as

“primitives split.” Incorporating this idea, we then built four spatiotemporal search

structures to evaluate the different search methods for finding the neighbors of

given particles. The four search structures are:

• K-d “with no primitive split”

• K-d “with primitive split”

• BVH “with no primitive split”

• BVH “with primitive split”

The construction of the different search structures requires the identification of a

split location at each step. For each node, the split location is used to determine the

children’s bounding boxes. To compute the split location, we explore three

different methods:

• Primitives Median Split

• Spatial Median Split

• Surface Area Heuristic cost / Volume Heuristic cost

In our work we’ll refer to Surface Area Heuristic as Volume Heuristic instead

because we are working with a 4D space as opposed to a 3D space.

	 15	

3.2 Best Split Identification

With the Primitives Median [19, 20] approach, primitives are sorted along one of

the axes. In our work, we chose the axis with the largest range, and the median

primitive is picked as the split location. The Primitives Median often yields a

balanced tree because the median primitive is always picked. However, it does not

ensure fast search because this approach does not take into account the density of

the Lagrangian basis flows. For very skewed data, this approach may result in poor

performance. That said, the Primitive Median split yields an optimal split location

when applied to a roughly uniform distribution of Lagrangian basis flows.

Sorting primitives is not necessary in the Spatial Median [19, 20] approach. For a

given node, the different axes are compared and the middle of the axis with largest

range is chosen to be the split location. The Spatial Median does not explicitly

incorporate the density distribution in the decision of the split location. However,

because space itself is the parameter considered in finding the split, it returns a

better density distribution compared to the Primitives Median approach. This

method does not yield a balanced search structure in the case of non-uniformly

distributed Lagrangian basis flows. Additionally, finding the Spatial Median is

performed in a constant time because sorting is not required. This results in a faster

construction of the search structure. Similar to the Primtives Median techniques,

the Spatial Median technique returns an optimal split location if the Lagrangian

basis flows exhibit a roughly uniform distribution.

The Surface Area Heuristic [21] uses a probabilistic approach to identify the cost of

performing a split at a specific location. In ray tracing, it determines the probability

that a given ray will intersect with a bounding box [5]. This method is used to pick

the split location which minimizes the number of overlaps with primitives. In our

	 16	

work, we are using a Volume Heuristic formula which is adapted from the Surface

Area Heuristic formula, since we are dealing with 4D space instead of 3D.

												𝐶𝑜𝑠𝑡		 = 		
𝑉 𝐿 ×𝑁 𝐿 + 𝑉 𝑅 ×𝑁(𝑅)

𝑉
																																																																				(5)

Where V(L) represents the volume of the left bounding box, V(R) represents the

volume of the right bounding box, N(L) represents the number of nodes that

overlap with left bounding box, and N(R) represents the number of nodes that

overlap with the right bounding box. V represents the node’s volume heuristic.

In order to determine the best split, the different possible split locations are

considered and their costs are calculated. This process is performed for all four

axes. The split with the minimal cost is kept as the optimal split location. This

method is expensive, but it yields a good split location. This technique, as opposed

to the others, is built not only to minimize the number of overlaps with each split

location, but also to include the density distribution in the split decision. It

intrinsically uses the 4D space and the number of primitives to identify the optimal

split location. Therefore, the Volume Heuristic approach exhibits characteristics

that may contribute in building an optimal search structure.

3.3 K-d Trees Search Structures

As mentioned earlier, we built K-d Trees, which we compared with BVHs. We built

two variants of K-d Trees. Both are constructed by first identifying the split

location, which uses the three approaches described in section 3.2. The search

structure is recursively built starting from the root and continuing until reaching

the leaves. The termination criterion is determined by a threshold. Here the

threshold is set to be a minimum number of primitives at the leaves.

3.3.1 K-d Tree “with no primitive split”

	 17	

This K-d Tree does not incorporate primitive splitting. After the split location is

found, iteratively, primitives’ IDs of a given node are copied into their left child

and/or right child depending on whether or not they overlap with the children’s

bounding boxes. This method generates several duplicate IDs in the resulting tree.

The large number of duplicates not only increases memory footprint, but also

incurs performance overhead. The duplicates need to be stored and taken into

account when performing a search. Below is our implementation of a K-d tree “with

no primitive split.”

K-d tree “with no primitive split split”

1 load data from file

2 create root node

3 build(node)

 4 findBestSplit(node)

 5 performSplit(node)

 6 for each primitive

7 if(overlaps with split location)

 8 Copy its ID in the left_child and right_child

9 else

 10 Copy its ID in the left_child or right_child

 11 end for

 12 if(left_child is not a leaf)

 13 build(left_child)

 14 if(right_child is not a leaf)

15 build(right_child)

	 18	

--

3.3.2 K-d Tree “with primitive split”

Paragraph: how K-d tree with splits is implemented

The K-d tree “with primitive split” uses a very similar method to the K-d tree “with

no primitive split”. For a given node, the split location is identified using the

techniques described in section 3.2. Then, the node is divided at the split location

creating its left and right child. Iteratively, the primitives’ ID’s are copied into the

child they overlap with once the children are created. While iterating, the

primitives which overlap with the split location are split into two new primitives.

The data is updated with the new primitives and their IDs are copied into their

matching children. This process is done recursively starting with the root node. The

K-d Tree “with primitive split” generates less ID duplicates compared to the K-d

Tree “with no primitive split.” Below is our implementation of a K-d Tree “with

primitive split.”

 --

K-d tree “with primitive split split”

--

1 load data from file

3 create root node

3 build(node)

 4 findBestSplit(node)

 5 performSplit(node)

 6 for each primitive:

7 if(overlaps with split location)

 8 Split primitives into 2 primitives

	 19	

 9 Update data with new primitives

 10 Copy new primitive 1 ID in left_child

 11 Copy new primitive 2 ID in righ_child

12 else

 13 Copy its ID in the left_child or right_child

 14 end for

 15 if(left_child is not a leaf)

 16 build(left_child)

 17 if(right_child is not a leaf)

18 build(right_child)

--

3.4 BVHs Search Structures

Both versions of K-d Trees described above do not take into account the notion of

tight bounding boxes, which is the primary difference between BVHs and K-d Trees.

Similar to the K-d Trees, we implemented two versions of BVHs: Spatial Split BVH

[4] which we refer to as a BVH “with primitive split,” and regular BVH, which we

refer to as BVH “with no primitive split.” Again they both utilize the techniques in

section 3.2 to choose the split location, and they are built recursively.

3.4.1 BVH “with no primitive split”

BVH [21] “with no primitive split” has traditionally been used in ray tracing as an

optimization over K-d Trees. For a given node, building a BVH requires the

identification of the best split location. The split location is then used to construct

the node’s children. During the process of splitting the node, for the primitives

which overlap with the split location, their IDs are copied into the children which

contain their center. After each split, the children bounding boxes are adjusted in

	 20	

order to keep them tight with respect to the primitives they contain. The recursive

construction of this search structure is initiated from the root node, which contains

all the IDs. This approach yields tightly bounded nodes and no duplicates between

siblings. Because no splitting is performed, the size of the data remains constant

during the process. However, the bounding boxes of siblings may overlap. Below is

the description of our implementation of BVH “with no primitive split”.

BVH “with no primitive split split”

1 load data from file

4 create root node

3 build(node)

 4 findBestSplit(node)

 5 performSplit(node)

 6 for each primitive

7 if (center <= split location)

 8 Copy its ID in the left_child

9 Update left_child bounding box

10 else

 11 Copy its ID in the right_child

 12 Update right_child bounding box

 13 end for

 14 if(left_child is not a leaf)

 15 build(left_child)

 16 if(right_child is not a leaf)

17 build(right_child)

	 21	

--

3.4.2 BVH “with primitive split”

Spatial Split BVH [4] is similar to regular BVH, except that primitives which overlap

with the split location are split in two. As in all the previous structures, the split

location for a given node is identified using the methods described in section 3.2.

The node split location is then used to construct its children. In the process of

splitting the node, the primitives which overlap with the split location are also

split. The data is updated with the new primitives generated from the splitting, and

the IDs of the primitives are copied into the children they overlap with. The Spatial

Spilt BVH returns a tree with nodes which are tightly bounded, along with no

overlaps among siblings.

BVH “with primitive split split”

1 load data from file

5 create root node

3 build(node)

 4 findBestSplit(node)

 5 performSplit(node)

 6 for each primitive:

7 if(overlaps with the split location)

 8 Split primitives into 2 primitives

 9 Update data with new primitives

 10 Copy new primitive 1 ID in left_child

 11 Update left_child bounding box

	 22	

 12 Copy new primitive 2 ID in righ_child

 13 Update right_child bounding box

14 else

15 Copy its ID in the left_child or right_child

 16 Update left_child or right_child bounding box

 17 end for

 18 if(left_child is not a leaf)

 19 build(left_child)

 20 if(right_child is not a leaf)

21 build(right_child)

--

3.5 Search

After we built the search structures, we constructed a search routine to find the

neighbors of given particles. The routine has two main steps. In the first step, we

recursively searched our structure, K-d Tree or BVH, for all the smallest possible

nodes which overlaps with our search criteria. The search parameters consisted of a

point P(x, y, z, t) and a radius r. In the second step, we looped through the resulting

nodes obtained from the first step and extract all the primitives’ IDs which met the

constraints imposed by the search parameters. This search routine is used for all

our different search structures. Below is a brief algorithm which describes the

search steps.

Search

1 findOverlappedNode (node, P, r)

	 23	

 2 if(P is in left_child)

 3 findOverlappedNode(left_child, P, r)

 4 else

 5 save node in result

 6 if(P is in right_child)

 7 findOverlappedNode(right_child, P, r)

 8 else

 9 save node in result

10 extractPrimitives(result)

 11 for each node in result:

 12 if(getRadius(P) < r)

 13 save primitive in final_result

4 EXPERIMENTAL OVERVIEW

4.1 Experiment Factors

Our experiment consisted of comparing the different search structures, in order to

inform the optimal spatiotemporal search structure for particle path tracing from

Lagrangian basis flows. Our experiments had three key varying parameters: the

method used to determine the split location, the type of search structure, and the

number of Lagrangian basis flows. For determining the split location, we utilized

the Spatial Median, Primitives Median, and Volume Heuristic approaches which are

described in section 3.2. For the search structures, we focused on the two variants

of K-d Trees and two variants of BVHs. For the number of Lagrangian basis flows we

used three different sets from ABC data. The cross product of these different

parameters gives us

	 24	

• 3 x 4 x 3 = 48 experiments.

i.e., 3 split identification methods, 4 search structures, and 3 sets of ABC

Lagrangian basis flows.

4.2 Evaluation Criteria

In this work, we investigate different approaches for finding neighboring

Lagrangian basis flows when given a spatiotemporal coordinate. More specifically it

examines the different spatiotemporal search structures with the following three

factors:

• Storage Overhead: The overhead to represent the search data structure is

very important because it relates to the memory usage. Significant overhead

leads to higher memory accesses and increased memory to store the

Lagrangian basis flows and the search structures.

• Build time: The time it takes to build the search structures is a one-time

cost amortized by the many searches. That said, high build times can be

problematic.

• Search time: The primary focus of our work is to evaluate the time it takes to

search the neighbors of a given particle. This is important because in the

process of tracing the trajectory of a particle, the search for neighbors is

required at every step.

4.3 Measurements

	 25	

Our methodology focuses on making various measurements of the different key

aspects of the search structures. These key aspects play a vital role in the

performance of the search structures. The key characteristics measures are:

• Number of primitives and number of nodes

• Size of the search structures and Lagrangian basis flows

• Build time of the search structures

• Search time for finding neighbors

4.3.1 Number of primitives and number of nodes

The increase in number of primitives and/or nodes is directly related to the increase

in data size for the Lagrangian basis flows and the search structures. We compared

the number of primitives before and after the building of the search structures. We

also compared the number of primitives and nodes among the various search

structures.

4.3.2 Size of search structures and data

Often, large memory is required to store the Lagrangian basis flows and the search

structures. We analyzed the memory usage by comparing the data size before and

after the building of the search structures. In addition, we compared the data size

among the different search structures.

4.3.3 Build time

Build time is the time, in seconds, that it takes to build a search structure given a

set of Lagrangian basis flows. There are two main factors that dictate the build

	 26	

time: the time it takes to find the split location and the time it takes to perform the

actual split on the node. We measured the time it takes to build the different search

structures and compared them to each other.

4.4.4 Search Time

Search time is the time, in seconds, that it takes to find the neighbors of a given

particle using the underlying Lagrangian basis flows. The search time is affected by

the number of nodes visited when performing a search, and the time it takes to

obtain the matching primitives from the nodes found during the traversal. We

measured the average number of visits and the search time of the various search

structures, and then compared them to each other.

4.4 Machine

Our experiments were conducted on a machine using an Intel(R) Core(TM) i-7 with

a frequency of 3.6GHz. The memory size is 16 GB and it runs at frequency of 1600

MHz.

5. RESULTS

This section discusses the results obtained from the different experiments.

5.1 Number of Primitives and Nodes

	 27	

Tables 1, 2, 3, and 4 show the show the sizes, in terms of the number primitives and

nodes, for K-d Tree and BVH. These sizes are directly related to the amount of

storage required. For small numbers of Lagrangian flows, the K-d Tree “with

primitive no split” coupled with Primitive Median split yields the smallest number

of primitives in its output. As the number of primitives increases, the BVH “with

primitive split” coupled with the Volume Heuristic yields the best result. With

10,000 Lagragian basis flows, the number of primitives and nodes for the BVH “with

primitive split” are half the the number of primitives and node of the K-d Tree

“with primitive split.”

K-d Tree “with no primitive split”

Split type # Lagrangian basis

flows

Final number of

primitives

Number of

nodes

Spatial

Median

100

1000

10000

4777

49100

0.51 106

375

22117

106

Primitive

Median

100

1000

10000

4777

49100

0.51 106

59

711

16765

Volume

Heuristic

100

1000

10000

4777

49100

0.51 106

113

971

106

Table 1: Results related to K-d Tree “with primitive no split.” This table shows the

number of primitives and the number of nodes given different Split methods and

number of Lagrangian basis flows.

	 28	

K-d Tree “with primitive split”

Split type # Lagrangian

basis flows

Number of

input

primitives

Final number

of primitives

Number

of nodes

Spatial

Median

100

1000

10000

4777

49100

0.51 106

8444

0.90 106

14.98 106

375

20263

112563

Primitive

Median

100

1000

10000

4777

49100

0.51 106

5671

90103

1.55 M

65

1035

9559

Volume

Heuristic

100

1000

10000

4777

49100

0.51 106

5544

0.11 106

1.94 106

21

635

12621

Table 2: Results related to K-d Tree “with primitive split.” This table shows the

number of primitives and the number of nodes given different Split methods and

number of Lagrangian basis flows.

BVH “with no primitive split”

Split type # Lagrangian basis

flows

Final number of

primitives

Number of

nodes

Spatial

Median

100

1000

10000

4777

49100

0.51 106

219

1999

12227

	 29	

Primitive

Median

100

1000

10000

4777

49100

0.51 106

63

481

7761

Volume

Heuristic

100

1000

10000

4777

49100

0.51 106

73

537

16159

Table 3: Results related to BVH “with primitive no split.” This table shows the

number of primitives and the number of nodes given different Split methods and

number of Lagrangian basis flows.

BVH “with primitive split”

Split type # Lagrangian

basis flows

Number of

input

primitives

Final number

of primitives

Number of

nodes

Spatial

Median

100

1000

10000

4777

49100

0.51 106

8456

1.30 M

19.43 106

161

19097

90515

Primitive

Median

100

1000

10000

4777

49100

0.51 106

7888

1.09 106

1.63 106

103

15117

80453

Volume

Heuristic

100

1000

10000

4777

49100

0.51 106

5867

70968

880979

95

539

3771

	 30	

Table 4: Results related to BVH “with primitive split.” This table shows the number

of primitives and the number of nodes given different Split methods and number of

Lagrangian basis flows.

5.2 Storage Overhead

Tables 5, 6, 7, and 8 show the size of memory, in bytes, required to store the

Lagrangian basis flows and the search structures. For a small amount of Lagrangian

basis flows, the K-d Tree “with no primitive split” coupled with Volume Heuristic,

requires the smallest amount of memory. However, as the number of Lagrangian

basis flows becomes larger the BVH “with no primitive split” coupled with the

Volume Heuristic split method requires the least amount of storage for the

Lagrangian basis flows and the search structures. With 10,000 Lagrangian basis

flows, the of storage required for BVH “with no primitive split” coupled with the

Volume Heuristic is almost 2X the storage required for BVH “with primitive split,”

4X the storage required for K-d Tree “with primitive split,” and 9X the storage

required for K-d Tree “with no primitive split,”

K-d Tree “with no primitive split”

Split type # Lagrangian

basis flows

Storage of

Lagrangian

flows in bytes

Structure

size in

bytes

Total

data size

in bytes

Spatial

Median

100

1000

10000

0.65 M

6.68 M

69.04 M

0.42 M

33.41 M

952.41 M

1.07 M

40.09 M

103 M

	 31	

Primitive

Median

100

1000

10000

0.65 M

6.68 M

69.04 M

0.13 M

2.23 M

50.31 M

0.78 M

8.91 M

119.35

Volume

Heuristic

100

1000

10000

0.65 M

6.68 M

69.04 M

0.25 M

3.80 M

843.48 M

0.90 M

10.35 M

912.52 M

Table 5: Results related to K-d Tree “with primitive no split.” This shows the

storage size required for Lagrangian basis flows and the search structures.

K-d Tree “with primitive split”

Split type # Lagrangian

basis flows

Storage of

Lagrangian

flows in bytes

Structure

size in

bytes

Total

data size

in bytes

Spatial

Median

100

1000

10000

1.15 M

121.97 M

69.04 M

0.61 M

140.85 M

345.00 M

1.76 M

262.82 M

414.04 M

Primitive

Median

100

1000

10000

0.77 M

12.25 M

205.85 M

0.15 M

3.82 M

83.13 M

0.92 M

16.09 M

288.98 M

Volume

Heuristic

100

1000

10000

0.75 M

14.58 M

256.85 M

0.09 M

5.17 M

149.54 M

0.84 M

19.75 M

406.39

	 32	

Table 6: Results related to K-d Tree “with primitive split.” This shows the storage

size required for Lagrangian basis flows and the search structures.

BVH “with no primitive split”

Split type # Lagrangian

basis flows

Storage of

Lagrangian

flows in bytes

Structure

size in

bytes

Total

data size

in bytes

Spatial

Median

100

1000

10000

0.65 M

6.68 M

69.04 M

0.32 M

14.16 M

344.69 M

0.97 M

21.02 M

413.73 M

Primitive

Median

100

1000

10000

0.65 M

6.68 M

69.04 M

0.12 M

1.80 M

27.02 M

0.77 M

8.48 M

96.06 M

Volume

Heuristic

100

1000

10000

0.65 M

6.68 M

69.04 M

0.17 M

2.36 M

59.89 M

0.82 M

9.04 M

102.93 M

Table 7: Results related to BVH “with primitive split.” This shows the size of

storage required for Lagrangian basis flows and the search structure.

BVH “with primitive split”

Split type # Lagrangian

basis flows

Storage of

Lagrangian

flows in bytes

Structure

size in

bytes

Total data

size in

bytes

	 33	

Spatial

Median

100

1000

10000

1.15 M

177.32 M

2.15 103 M

0.34 M

120.29 M

1.78 103 M

1.49 M

297.61 M

3.93 103 M

Primitive

Median

100

1000

10000

1.07 M

147.35 M

2.15 103 M

0.23 M

65.80 M

1.08 103 M

1.30 M

213.15

3.23 103 M

Volume

Heuristic

100

1000

10000

0.80 M

9.65 M

119.81 M

0.24M

3.58 M

54.19 M

1.04 M

13.23 M

174.00 M

Table 8: Results related to BVH “with primitive split.” This shows the size of

storage required for Lagrangian basis flows and the search structure.

5.3 Build Time

As mentioned previously, the search structure build time is dependent on the time

it takes to find the split location and the time it takes to perform a split on a given

node. The Spatial Median approach for finding a split location does not require any

sorting as opposed to the other approaches. Tables 9, 10, 11, and 12 show that the

Primitive Median approach yields a shorter build time compared to the Volume

Heuristic approach. The Volume Heuristic approach considers multiple locations

when calculating the split location as opposed to the other two. These results

match our expectations.

K-d Tree “with no primitive split”

Split type # Lagrangian basis flows Build time in sec

	 34	

Spatial Median 100

1000

10000

0.009

0.445

12.932

Primitive Median 100

1000

10000

0.007

0.120

1.829

Volume Heuristic 100

1000

10000

0.081

1.19

138.55

Table 9: Results related to K-d Tree “with primitive no split.” This table shows the

time it takes to build the different search structures using the various split location

methods.

K-d Tree “with primitive split”

Split type # Lagrangian basis flows Build time in sec

Spatial Median 100

1000

10000

0.010

0.713

11.900

Primitive Median 100

1000

10000

0.008

0.142

1.940

Volume Heuristic 100

1000

0.098

0.899

	 35	

10000 20.54

Table 10: Results related to K-d Tree “with primitive split.” This table shows the

time it takes to build the different search structures using the various split location

methods.

BVH “with no primitive split”

Split type # Lagrangian basis flows Build time in sec

Spatial Median 100

1000

10000

0.015

4.48

7.190

Primitive Median 100

1000

10000

0.017

0.101

1.171

Volume Heuristic 100

1000

10000

0.382

4.476

126.045

Table 11: Results related to BVH “with primitive split.” This table shows the time it

takes to build the different search structures using the various split location

methods.

BVH “with primitive split”

Split type # Lagrangian basis flows Build time in sec

	 36	

Spatial Median 100

1000

10000

0.013

0.896

11.57

Primitive Median 100

1000

10000

0.021

0.760

11.707

Volume Heuristic 100

1000

10000

0.080

0.922

9.758

Table 12: Results related to BVH “with primitive split.” This table shows the time it

takes to build the different search structures using the various split location

methods.

5.4 Search Time

Tables 13, 14, 15, and 16 show the average number of visits and the average search

time. The smallest possible search time is desirable because the search is performed

at every step when tracing a particle trajectory. The BVH “with primitive split”

using the Volume Heuristic approach for determining the split location yields a

shorter search time and a smaller average number of traversals compared to the

others.

K-d Tree “with no primitive split”

Split type # Lagrangian basis

flows

Av number of

node visits

Av search time

in sec

	 37	

Spatial

Median

100

1000

10000

4.91

5.36

4.20

0.020

0.030

8.383

Primitive

Median

100

1000

10000

5.00

10.13

13.51

0.028

0.032

0.049

Volume

Heuristic

100

1000

10000

14.84

3.22

2.28

0.023

0.023

0.607

Table 13: Results related to K-d Tree “with primitive no split.” This table shows the

average number of traversals and the average build time for the different search

structures.

K-d Tree “with primitive split”

Split type # Lagrangian basis

flows

Av number of

node visits

Av search time

in sec

Spatial

Median

100

1000

10000

4.92

5.29

6.46

0.028

0.196

3.00

Primitive

Median

100

1000

10000

4.20

9.76

16.15

0.050

0.048

0.187

	 38	

Volume

Heuristic

100

1000

10000

5.06

21.78

141.73

0.035

0.167

3.626

Table 15: Results related to K-d Tree “with primitive split.” This table shows the

average number of traversals and the average build time for the different search

structures.

BVH “no with primitive split”

Split type # Lagrangian basis

flows

Av number of

node visits

Av search time

in sec

Spatial

Median

100

1000

10000

11.23

5.23

66.33

0.019

0.023

0.050

Primitive

Median

100

1000

10000

4.23

5.13

12.14

0.020

0.022

0.040

Volume

Heuristic

100

1000

10000

12.04

5.23

11.59

0.023

0.023

0.067

Table 15: Results related to BVH “with primitive no split.” This table shows the

average number of traversals and the average build time for the different search

structures.

	 39	

BVH “with primitive split”

Split type # Lagrangian basis

flows

Av number of

node visits

Av search time

in sec

Spatial

Median

100

1000

10000

3.79

2.73

66.34

0.018

0.019

0.051

Primitive

Median

100

1000

10000

4.25

6.75

10.96

0.020

0.020

0.038

Volume

Heuristic

100

1000

10000

16.19

2.99

4.08

0.023

0.021

0.033

Table 16: Results related to BVH “with primitive split.” This table shows the

average number of traversals and the average build time for the different search

structures.

5.5 Result Summary

In the previous sections, we made isolated observations about the different

characteristics measured. In this section, we discuss the different connections that

exist among the different features utilized to build the search structures. Table 9

shows the summary of the measurements made for 10,000 Lagrangian basis flows.

These results indicate that a search structures built with Volume Heuristic + BVH

has a smaller storage overhead, shorter search time, and longer build time

compared to any of the other search structures. These results show that the time

	 40	

invested in building the search structures can be amortized with multiple searches

when using the Volume Heuristic approach. This informs that BVH aids to reduce

storage overhead and improve search time.

Search Structure Data size in

bytes

Build Time

in sec

Search Time

in sec

Spatial Median + K-d Tree

“with primitive split”

414.04 M 11.900 3.007

Spatial Median + BVH “with

primitive split”

3.93 103 M 11.570 0.051

Primitive Median + K-d Tree

“with primitive split”

288.98 M 1.940 0.187

Primitive Median + BVH “with

primitive split”

3.23 103 M 11.707 0.038

Volume Heuristic + K-d Tree

“with primitive split”

406.39 M 20.540 3.626

Volume Heuristic + BVH “with

primitive split”

174.00 M 9.758 0.033

Table 9: Summary of different search structures’ results. This table shows the total

data size in bytes to store search structures and 1,000 Lagrangian basis flows, the

time it takes to build the search structures, and the time it takes to search the

neighbors of a set of points given a radius.

	 41	

6 FUTURE WORK AND CONCLUSION

This study indicates that the search structures using the Volume Heuristic approach

coupled with the BVH “with primitive split” yields better performance than the

other search structures explored. Various features contributed to the better

performance observed with this search structure. We evaluated the search

structures by considering three types of split methods: the Spatial Median, the

Primitive Median, and the Volume Heuristic. These three split methods were

coupled with four types of search structures: BVH “with primitive split”, BVH “with

no primitive split,” K-d Tree “with primitive split,” and K-d Tree “with no primitive

split.” For a given node, the Volume Heuristic approach chooses a split location

which takes into account the number of primitives in its children and the density

distribution of the primitives in 4D space. The BVH “with primitive split” yields a

search structures with nodes that are tightly bounded, and no ID duplicates among

sibling nodes.

In terms of future work, we should investigate hybrid versions of the search

structures to further inform the choice of search structure for finding neighbors

from Lagrangian flow basis. For instance, we could construct a search structure that

uses both BVH “with no primitives” and BVH “with primitive split.” In addition,

this work analyzed the serial versions of the different search structures. Thus, a

similar analysis must be performed for parallelized versions of the search

structures. This may lead to great performance gains in the build time and search

time.

This project is part of a larger scope study, which encompasses the extraction of

Lagrangian basis flows, the search for neighboring Lagrangian basis flows, and the

interpolation to compute the particles’ trajectories. This study focused on finding

the neighboring Lagrangian basis flows when given a spatiotemporal coordinate.

Therefore, more investigations on how to extract the Lagrangian basis flows, and

	 42	

how to perform the interpolation are required to construct a full story around

particle trajectory tracing from Lagrangian basis flows.

7 REFERENCES

[1] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen. Over Two

Decades of Integration-Based, Geometric Flow Visualization. In

EuroGraphics 2009 - State of the Art Reports, pages 73–92, April 2009.

[2] A. Agranovsky, D. Camp, C. Garth, E. W. Bethel, K. I. Joy and H. Childs,

"Improved post hoc flow analysis via Lagrangian representations," Large

Data Analysis and Visualization (LDAV), 2014 IEEE 4th Symposium on, Paris,

2014, pp. 67-75.

[3] J. Chandler, H. Obermaier and K. I. Joy, "Interpolation-Based Pathline

Tracing in Particle-Based Flow Visualization," in IEEE Transactions on

Visualization and Computer Graphics, vol. 21, no. 1, pp. 68-80, Jan. 1 2015.

[4] Martin Stich, Heiko Friedrich, and Andreas Dietrich, “Spatial splits in

bounding volume hierarchies,” in Proceedings of the Conference on High

Performance Graphics 2009. ACM, 2009, pp. 7–13.

[5] David J. MacDonald and Kellogg S. Booth. 1990. Heuristics for ray tracing

using space subdivision.Vis. Comput. 6, 3 (May 1990), 153-166

[6] B.Cabral and L. C. Leedom. Imaging vector fields using line integral

convolution. In Proceedings of the 20th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’93, pages 263–270, New

York, NY, USA, 1993. ACM.

	 43	

[7] G. Haller. Distinguished material surfaces and coherent structures in three-

dimensional fluid flows. Physica D: Nonlinear Phenomena, 149(4):248 – 277,

2001.

[8] J. P. M. Hultquist. Constructing stream surfaces in steady 3d vector fields. In

Visualization, 1992. Visualization ’92, Proceedings., IEEE Conference on, pages

171–178, Oct 1992.

[9] J. R. Cash and A. H. Karp. A variable order runge-kutta method for initial

value problems with rapidly varying right-hand sides. ACM Trans. Math.

Softw., 16(3):201–222, Sept. 1990.

[10] F.Sadlo ,A. Rigazzi, and R. Peikert. Time-dependent visualization of

lagrangian coherent structures by grid advection. Topological Methods in

Data Analysis and Visualization, pages 151–165,

2011.

[11] T. Salzbrunn, C. Garth, G. Scheuermann, and J. Meyer. Pathline predicates

and unsteady flow structures. The Visual Computer, 24(12):1039–1051,

2008.

[12] G. Haller and G. Yuan. Lagrangian coherent structures and mixing in two-

dimensional turbulence. Physica D: Nonlinear Phenomena, 147(3-4):352 –

370, 2000.

[13] G. Haller. Finding finite-time invariant manifolds in two-dimensional

velocity fields. Chaos: An Interdisciplinary Journal of Nonlinear Science,

10(1):99–108, 2000.

	 44	

[14] G. M. Nielson. Tools for triangulations and tetrahedrizations. In Scientific

Visualization, Overviews, Methodologies, and Techniques, pages 429–525,

Washington, DC, USA, 1997. IEEE Computer

Society.

[15] Michal Hapala and Vlastimil Havran, “Review: Kd-tree traversal algorithms

for ray tracing,” in Computer Graphics Forum. Wiley Online Library, 2011,

vol. 30, pp. 199–213.

[16] Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared

Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith Morley,

Austin Robison, et al., “Op- tix: a general purpose ray tracing engine,” ACM

Transactions on Graphics (TOG), vol. 29, no. 4, pp. 66, 2010.

[17] Thomas Larsson and Tomas Akenine-Mo ̈ller, “Efficient colli- sion detection

for models deformed by morphing,” The Visual Computer, vol. 19, no. 2, pp.

164–174, 2003.

[18] Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger,

Gabriel Zachmann, Laks Raghupathi, Arnulph Fuhrmann, M-P Cani,

Franc ̧ois Faure, Nadia Magnenat-Thalmann, Wolfgang Strasser, et al.,

“Collision detection for deformable ob- jects,” in Computer graphics forum.

Wiley Online Library, 2005, vol. 24, pp. 61–81.

[19] Brian Smits, “Efficiency issues for ray tracing,” Journal of Graphics Tools,

1998.

[20] Timothy L Kay and James T Kajiya, “Ray tracing complex scenes,” in ACM

SIGGRAPH computer graphics. ACM, 1986, vol. 20, pp. 269–278.

	 45	

[21] Manfred Ernst and Gu ̈nther Greiner, “Early split clipping for bounding

volume hierarchies,” in Interactive Ray Tracing, 2007. RT’07. IEEE Symposium

on. IEEE, 2007, pp. 73–78.

[22] Christopher Johnson, Steven G Parker, Charles Hansen, Gordon L

Kindlmann, and Yarden Livnat, “Interactive simulation and visualization,”

Computer, vol. 32, no. 12, pp. 59–65, 1999.

[23] T. Dombre, U. Frisch, J. M. Greene, M. Hénon, A. Mehr, and A. M. Soward

(1986). "Chaotic streamlines in the ABC flows". Journal of Fluid Mechanics,

167, pp. 353–391 doi:10.1017/S0022112086002859

[24] S. Lodha, J. Renteria, and K. Roskin. Topology preserving compression of 2d

vector fields. In Visualization 2000. Proceedings, pages 343–350, 2000.

[25] H. Theisel, C. Rossl, and H.P.Seidel.Combining topological simplification

and topology preserving compression for 2d vector fields. In Computer

Graphics and Applications, 2003. Proceedings. 11th Pacific Conference on,

pages 419–423, 2003.

[26] H.Theisel, C.Ro ̈ssl, and H.-P. Seidel. Compression of 2d vector fields under

guaranteed topology preservation. Computer Graphics Forum, 22(3):333–

342, 2003.

[27] X. Tong, T.-Y. Lee, and H.-W. Shen. Salient time steps selection from large

scale time-varying data sets with dynamic time warping. In Large Data

Analysis and Visualization (LDAV), 2012 IEEE Symposium on, pages 49–56,

Oct 2012.

	 46	

[28] A. Agranovsky, D. Camp, K. I. Joy, and H. Childs. Subsampling-Based

Compression and Flow Visualization. In SPIE Conference on Visualization

and Data Analysis (VDA), volume 9397, pages 93970J–01–93970J–14, San

Francisco, CA, Feb. 2015.

[29] H. Childs. Data Exploration at the Exascale. Supercomputing Frontiers and
Innovations, 2(3):5–13, Dec. 2015.

