
	 1	

 

EVALUATING SPATIOTEMPORAL SEARCH STRUCTURES FOR ANALYSIS FROM 

LAGRANGIAN BASIS FLOWS 

 

 

 

 

 

 

 

 

by: 

Ouermi Timbwaoaga Aime Judicael (TAJO) 

 

 

 

 

 

 

 

 

 

 

Presented to the Department of Computer and Information Science  

at the University of Oregon  

in partial fulfillment for the degree of   

Bachelor of Science 

June 2016 

 

 



	 2	

THESIS APROVAL PAGE 

 

 

Student: Ouermi Timbwaoga Aime Judicael (TAJO) 

 

 

Title: Evaluating Spatiotemporal Search Structures for Analysis from Lagrangian      

           Basis Flows. 

 

 

This thesis has been accepted and approved in partial fulfillment of the 

requirements for the Bachelor of Science degree in the Department of Computer 

and Information Science by: 

 

 

Hank Childs    Advisor 

 

 

Original approval signatures are on file with the Department of Computer and 

Information Science at the University of Oregon 

 

 

Degree awarded June 2016 

 

 

 



	 3	

THESIS ABSTRACT 
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Hank Childs 

 

While flow visualization has traditionally been performed from the Eulerian 

perspective, the Lagrangian approach is gaining momentum in the scientific 

community. This is because the Lagrangian approach offers more opportunities to 

mitigate I/O limitations than the traditional Eulerian approach. Particle trajectory 

tracing using the Lagrangian approach is performed by extracting Lagrangian basis 

flows, and using these flows to construct new trajectories from particle seed 

locations. Tracing the trajectory of a given particle requires finding its neighboring 

basis flows. Our work investigates different spatiotemporal search structures for the 

purpose of particle trajectory tracing from Lagrangian basis flows. We conducted 

our study by evaluating the storage size, the build time, and the search time of the 

different search structures over various configurations.  
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1 INTRODUCTION 

 

Flow visualization enables understanding and exploration of fluids, mixing, wind, 

and many other phenomena. It gives scientists the opportunity to explore 

phenomena they would not otherwise be able to explore, and plays a vital role in 

scientific advancement and discoveries in fields such as medicine, mechanical 

engineering, and astrophysics.  

 

McLouglin et al. [1]surveyed a variety of methods for particle path tracing used in 

flow visualization. The majority of these flow analysis techniques study the 

trajectory of particles placed at seed positions. That is, particles are placed at an 

initial position, and the underlying vector field from the input data set is used to 

calculate the path each particle follows. A variety of techniques, such as 

streamlines, line integral convolution [6], pathlines [10], stream surfaces [8], 

streamlines [11], and FTLE [7], then use these trajectories to form their respective 

visualizations or analyses.   

 

The type of flow field utilized in flow studies can be categorized in two main 

groups: “steady” and “unsteady.” A “steady” flow is a flow in which the vector field 

is independent of time --- the flow does not change as time evolves. On the 

contrary, “unsteady” flow represents a flow in which the vector field is time 

dependent. This means that the flow field changes as time progresses. 

 

The traditional method for calculating a particle trajectory begins by evaluating its 

position with respect to the input data’s vector field, and then displacing it in a 

small distance along the velocity direction at the particle’s location. This process 

continues iteratively, with the particle moving small distances each iteration, again 

in the direction of the vector field at the particle’s current location. Thus, this can 

be viewed as an ordinary differential equation problem. In order to ensure accuracy 
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in solving the equation, numerical methods such as the Runge-Kutta scheme [9], 

can be used. In total, calculating the trajectory of a particle can be very 

computationally intensive because it requires calculating thousands of steps for 

millions or even billions of particles. 

 

Despite widespread usage, the traditional method for particle trajectories of 

unsteady flow presents some limitations. The limitations from this method stem 

from limitations in I/O. First, it is important to note that the simulation calculates 

the velocity field over all time, but can only save a subset of this information to 

disk. The most common tradeoff made by simulation codes is to save complete 

state information for some snapshots in time, and to save no information for the 

times in between the snapshots. This temporal sparsity introduces errors in 

interpolation. When tracing the particles’ trajectories at the “post hoc” stage, the 

missing information about the flow between “time slices” may have relevant 

information about the flow’s behavior. The probability of getting inaccurate 

interpolation increases as the data become sparser. Furthermore, this problem is 

only getting worse. Despite the fact that I/O bandwidth is increasing in almost 

every new supercomputer, I/O is not keeping up with their ability to generate data. 

This leads to more temporal sparsity in the simulation’s data saved to disk for post 

hoc analysis, thus increasing error further. 

 

Fluid mechanics considers two approaches for studying flow: Eulerian and 

Lagrangian. In the Eulerian approach, a fixed frame of reference is defined in which 

an observer can watch the flow go by. Traditionally, this framework is what has 

been used to study flow fields; particles are seeded at different positions and 

displaced tangent to the velocity of the input data’s vector field by solving an 

ordinary differential equation: 

 

											
𝑑𝑃
𝑑𝑡

= 𝑉 𝑃, 𝑡 																																																																																																																	(1) 
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Where P(x, y, z, t) defines the particle position.  

 

With sparse data, this introduces errors. The first most significant work on the 

Lagrangian approach was introduced by G. Haller et al. [12,13] The Lagrangian 

approach for particle trajectory tracing was introduced as an alternative method in 

order to resolve the limits with the traditional approach. In this approach, a frame 

of reference is defined according to the particle’s motion, also known as a 

Lagrangian frame of reference. In this frame, the observer sees the flow from the 

perspective of the particle. Particles are seeded at different positions and use the 

neighboring basis flows, which were precomputed, to displace each particle to its 

next position. This new approach is gaining momentum in the scientific 

visualization community because it yields better performance and results, and 

helps mitigate the limits of the previous approaches. 

 

Both paradigms present significant challenges that affect performance and accuracy 

for flow analysis. The temporal sparsity problem due to the limitation in I/O can be 

resolved by performing tasks “in situ” [24]. However, this approach implies knowing 

the type of work to be performed a priori. Thus, the “in situ” paradigm is not well 

suited for exploration-oriented visualization [29]. In exploration oriented-

visualization, the tasks to be performed are not known beforehand because the 

objective is to investigate the flows interactively to gain insight and learn from 

them. 

 

Another approach adopted by the scientific community, which helps resolve the 

sparsity and accuracy issues, is Lagrangian path tracing. In the Lagrangian 

technique, “time intervals” are used as opposed to “time slices.” This minimizes 

the sparsity in the data and provides better accuracy when interpolation is 

performed. The Lagrangian method is executed in two phases: “in situ” and “post 

hoc.” The “in situ” phase focuses on extracting the optimal Lagrangian flows. In the 

“post hoc” phase, seeded particles’ paths are traced using the underlying basis flow 
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extracted during the “in situ” stage from a given flow field. Tracing a given particle 

trajectory requires access to its neighbors to perform an interpolation. The search 

for the neighbors is computationally intensive, and to our knowledge, no extensive 

work has been done to evaluate how to optimally locate the neighbors in a 

spatiotemporal data set of Lagrangian basis flows for visualization.   

 

As mentioned previously, flow anlyses are often very computationally intensive. 

For a given particle, performing the interpolation, requires finding its neighboring 

Lagrangian basis flows, and calculating their trajectories. These trajectories are 

then used to determine the next position of the particle. The nature of the 

challenges faced in this problem necessitates techniques to diminish the 

computational burden while tracing the particles’ trajectories. 

 

This study explores new avenues for spatiotemporal search structures for analysis 

from Lagrangian basis flows. As mentioned earlier, to our knowledge, no ample 

studies have been conducted to evaluate and determine well-suited search 

structures for the Lagrangian base flow visualization. Chandler et. al [3] used a 

modified 3D K-d Tree as an accelerated search structure to find the neighbors of a 

given particle in the process of tracing its trajectory. Here, we propose a different 

approach for locating the neighbors of a given particle. We investigated the use of 

spatiotemporal K-d Trees as search structures. In addition to the K-d Trees, we 

explore the use of spatiotemporal Bounding Volume Hierarchies (BVH) to evaluate 

the choice of search structure for particle trajectory tracing purposes. BVH [21] and 

K-d Trees [15] are often used in ray tracing as an accelerated structure for 

rendering.  

 

In terms of contribution, this study considers a novel approach for search structure 

to accelerate Lagrangian particle trajectory tracing, given a spatiotemporal data set. 

Using spatiotemporal search structures enables us to perform a one-time build 

instead of building the search structure at each time step. Our research indicates 
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that BVH yields better performance than the K-d Tree approach. This contributes to 

improving particle trajectory construction during the “post hoc” stage and 

obtaining significant improvement in performance overall. 

 

Our investigation consisted of three major phases. In the first phase, we built our 

data structures. As noted before, we considered two versions of 4D K-d Trees and 

two versions of 4D BVHs. In the second phase we used the already built data 

structures to perform a spatiotemporal search for neighbors. In the third phase, we 

analyzed and compared each data structure performance by measuring its build 

time and search time for a given data sets and seeded particles. 

 

 

2 RELATED WORK 

 

2.1 Data Compression 

 

Vector field compression is one approach for addressing I/O limitations with 

traditional Eulerian particle trajectory tracing. Different vector compression 

techniques are used to compress a given vector field while preserving its topology 

and main characteristics. This process produces a smaller data set, which is then 

used to calculate the trajectories of given particles. Lodah et al. [24], and Theisel et 

al. [25, 26] examined 2D spatial compression methods for reducing the data at each 

time step of the simulation. Tong et al. [27] explored temporal compression 

methods for reducing the number of time steps from N to M. Agranovsky et al. [28] 

explored determining which vector to retain based on priority, and then 

interpolating new vectors from the subset stored.  

 

 

Vector field compression reduces the computational burden because it reduces the 

data size. However, it introduces errors. Vector field compression typically focuses 
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on the vector field’s main features, omitting its minor characteristics. This 

omission may result in inaccurate interpolations when tracing particles’ 

trajectories. 

 

2.2 Lagrangian-Based Particle Path Tracing. 

 

Agranovsky et al. [2] explored a Lagrangian representation for flow study. Their 

approach had two phases: “in situ” and “post hoc.” Lagrangian basis flows were 

extracted from the simulation in the “in situ” stage, by seeding particles on a 

uniform grid at regular time intervals, and allowing them to exist in the simulation 

for a uniform constant time. At the end of a time interval, only the final position of 

each particle is stored to disk. The files generated contain Lagrangian basis flows 

instead of velocity vectors as in the traditional Eulerian method. These Lagrangian 

basis flows are then used to construct seeded particles’ trajectories. 

 

In the “post hoc stage,” particles are arbitrarily seeded, and the uniform grid is then 

utilized to construct tetrahedrons around the particles. Nielson et al. [14] offer 

multiple tools for breaking cells into tetrahedrons. Tetrahedrons are chosen here 

because they can form the minimal possible convex envelope around a given point 

in a 3D space. Once the tetrahedrons are formed, the particles’ positions are 

expressed in terms of the tetrahedrons’ vertices. These vertices are used to 

determine the particles’ next positions. This process is repeated over a time interval 

in order to trace the journey of seeded particles over the given time interval. 

 

Argranovsky et al. [2] found the Lagrangian approach to be more accurate, require 

less I/O, and be less computationally intensive compared to the traditional Eulerian 

representation. For a time that lies between two consecutive “time slices,” the 

traditional approach reads the vector field of the two “time slices” and interpolates 

between them to calculate the desired velocity. However, the Lagrangian approach 

will consider one file which covers a time interval of interest. This results in less 
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files required in the Lagrangian method, which translates into less I/O. In the 

traditional approach, the interpolation between the two consecutive “time slices” 

introduces error because the time of interest is not saved to disk. The Lagrangian 

approach is more accurate because it considers “time intervals” as opposed to “time 

slices.” Additionally, it is less computationally intensive because it is not 

performing a numerical integration as in the traditional Eulerian approach. 

 

Chandler et al. [3] use K-d Trees as the search structure for performing particles’ 

paths tracing from Lagrangian basis flows. In this approach, Lagrangian basis flows 

extracted from the simulation are defined as a mapping 𝑃:ℝxℕ → 	ℝ/. A particle i at 

time t (i.e (i, t) in ℝxℕ) is mapped to a 3D location (xi, yi, zi). In the process of 

constructing the particles’ trajectories, the data from the time-step in 

consideration is loaded and used to build a K-d Tree. This K-d Tree is then used to 

search a given particle’s neighbors in order to perform the required interpolation in 

order determine the particle’s next position. 

 

  

2.3 Introduction to Bounding Volume Hierarchy 

 

BVHs are used in collision detection [17, 18] and ray tracing [16] as acceleration 

search structures. Similar to K-d Trees, BVHs are trees constructed from a data set. 

This type of tree is built such that every child is contained in its parent, and every 

node has a tight bounding box, which leads to BVHs having no empty nodes as 

opposed to K-d Trees [15]. One challenge in building BVHs, and even K-d Trees, 

comes from deciding where to split a given node in order to create its children. 

Different approaches, including Spatial Median [19, 20] and Surface Area Heuristic 

[21], have been used to effectively choose the split location. With the Spatial 

Median techniques, the split location is chosen to be the middle of the node’s 

bounding box, whereas the Surface Area Heuristic cost uses a formula to determine 

the optimal split with the minimum possible number of overlaps. 



	 13	

 

Stich et al. [4] compared multiple variants of BVHs and K-d Trees and determined 

that BVHs perform significantly better than K-d Trees for ray tracing. As opposed to 

K-d Trees, BVHs construct trees which often have fewer nodes, and no empty 

nodes. Because K-d Trees’ construction does not yield nodes with tight bounding 

boxes, the resulting tree may end up with empty nodes. This difference allows BVHs 

to gain in performance and memory usage because they have less nodes to search 

from and to store in memory.  

 

In our project, we consider the problem of searching for Lagrangian basis flows. We 

extend the work by Chandler in several key ways. First, we consider BVHs in 

addition to K-D Trees. Second, our study considers a spatiotemporal situation, 

which helps mitigate the problems related to temporal sparsity. Third, we consider 

a situation where the search structure in constructed once at the beginning, as 

opposed to periodic construction at each step. 

 

 

3. STUDY 

 

3.1 Configuration 

 

We focused our work on how to find the neighbors of given particles using 

underlying Lagrangian basis flows extracted from a flow vector field. We developed 

a routine to generate basis flows, which is then used to build the search structures. 

We used the Arnold-Beltrami-Childress (ABC) [23] flow, a time dependent 3D 

vector field, to generate the data. We chose A = 3, B = 2, and C = 1. 

 

												
𝑑𝑥
𝑑𝑡

= 𝐴 sin 𝑧 + 𝐶	sin	(𝑦)																																																																																						(2) 
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𝑑𝑦
𝑑𝑡

= 𝐵 sin 𝑥 + 𝐴	sin	(𝑧)																																																																																						(3) 

 

												
𝑑𝑧
𝑑𝑡

= 𝐶 sin 𝑦 + 𝐵	sin	(𝑥)																																																																																						(4) 

 

Where the particle position is defined by P(x, y, z, t) and A, B, and C are constants. 

We generated multiple data sets from this vector field, varying the basis flows. 

 

An important consideration for building a search structure is whether the input 

geometry is subdivided to optimize searching. We refer to this process as 

“primitives split.” Incorporating this idea, we then built four spatiotemporal search 

structures to evaluate the different search methods for finding the neighbors of 

given particles. The four search structures are: 

 

• K-d “with no primitive split” 

• K-d “with primitive split” 

• BVH “with no primitive split” 

• BVH “with primitive split” 

 

The construction of the different search structures requires the identification of a 

split location at each step. For each node, the split location is used to determine the 

children’s bounding boxes. To compute the split location, we explore three 

different methods: 

 

• Primitives Median Split 

• Spatial Median Split 

• Surface Area Heuristic cost / Volume Heuristic cost 

 

In our work we’ll refer to Surface Area Heuristic as Volume Heuristic instead 

because we are working with a 4D space as opposed to a 3D space. 
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3.2 Best Split Identification 

 

With the Primitives Median [19, 20] approach, primitives are sorted along one of 

the axes. In our work, we chose the axis with the largest range, and the median 

primitive is picked as the split location. The Primitives Median often yields a 

balanced tree because the median primitive is always picked. However, it does not 

ensure fast search because this approach does not take into account the density of 

the Lagrangian basis flows. For very skewed data, this approach may result in poor 

performance. That said, the Primitive Median split yields an optimal split location 

when applied to a roughly uniform distribution of Lagrangian basis flows. 

 

Sorting primitives is not necessary in the Spatial Median [19, 20] approach. For a 

given node, the different axes are compared and the middle of the axis with largest 

range is chosen to be the split location. The Spatial Median does not explicitly 

incorporate the density distribution in the decision of the split location. However, 

because space itself is the parameter considered in finding the split, it returns a 

better density distribution compared to the Primitives Median approach. This 

method does not yield a balanced search structure in the case of non-uniformly 

distributed Lagrangian basis flows. Additionally, finding the Spatial Median is 

performed in a constant time because sorting is not required. This results in a faster 

construction of the search structure. Similar to the Primtives Median techniques, 

the Spatial Median technique returns an optimal split location if the Lagrangian 

basis flows exhibit a roughly uniform distribution. 

 

The Surface Area Heuristic [21] uses a probabilistic approach to identify the cost of 

performing a split at a specific location. In ray tracing, it determines the probability 

that a given ray will intersect with a bounding box [5]. This method is used to pick 

the split location which minimizes the number of overlaps with primitives. In our 
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work, we are using a Volume Heuristic formula which is adapted from the Surface 

Area Heuristic formula, since we are dealing with 4D space instead of 3D. 

 

												𝐶𝑜𝑠𝑡		 = 		
𝑉 𝐿 ×𝑁 𝐿 + 𝑉 𝑅 ×𝑁(𝑅)

𝑉
																																																																				(5) 

 

Where V(L) represents the volume of the left bounding box, V(R) represents the 

volume of the right bounding box, N(L) represents the number of nodes that 

overlap with left bounding box, and N(R) represents the number of nodes that 

overlap with the right bounding box. V represents the node’s volume heuristic. 

 

In order to determine the best split, the different possible split locations are 

considered and their costs are calculated. This process is performed for all four 

axes. The split with the minimal cost is kept as the optimal split location. This 

method is expensive, but it yields a good split location. This technique, as opposed 

to the others, is built not only to minimize the number of overlaps with each split 

location, but also to include the density distribution in the split decision. It 

intrinsically uses the 4D space and the number of primitives to identify the optimal 

split location. Therefore, the Volume Heuristic approach exhibits characteristics 

that may contribute in building an optimal search structure. 

  

3.3 K-d Trees Search Structures 

 

As mentioned earlier, we built K-d Trees, which we compared with BVHs. We built 

two variants of K-d Trees. Both are constructed by first identifying the split 

location, which uses the three approaches described in section 3.2. The search 

structure is recursively built starting from the root and continuing until reaching 

the leaves. The termination criterion is determined by a threshold. Here the 

threshold is set to be a minimum number of primitives at the leaves. 

 

3.3.1 K-d Tree “with no primitive split” 
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This K-d Tree does not incorporate primitive splitting. After the split location is 

found, iteratively, primitives’ IDs of a given node are copied into their left child 

and/or right child depending on whether or not they overlap with the children’s 

bounding boxes. This method generates several duplicate IDs in the resulting tree. 

The large number of duplicates not only increases memory footprint, but also 

incurs performance overhead. The duplicates need to be stored and taken into 

account when performing a search. Below is our implementation of a K-d tree “with 

no primitive split.” 

 

            ------------------------------------------------------------------------- 

K-d tree “with no primitive split split” 

------------------------------------------------------------------------- 

 

1 load data from file 

2      create root node 

 

3          build(node) 

  4      findBestSplit(node) 

 5      performSplit(node) 

  6       for each primitive 

7       if(overlaps with split location) 

  8        Copy its ID in the left_child and right_child 

9        else 

  10        Copy its ID in the left_child or right_child 

 11       end for 

  12      if(left_child is not a leaf) 

     13       build(left_child) 

  14      if(right_child is not a leaf) 

15        build(right_child) 
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-------------------------------------------------------------------------- 

 

3.3.2 K-d Tree “with primitive split” 

 

Paragraph: how K-d tree with splits is implemented 

The K-d tree “with primitive split” uses a very similar method to the K-d tree “with 

no primitive split”. For a given node, the split location is identified using the 

techniques described in section 3.2. Then, the node is divided at the split location 

creating its left and right child. Iteratively, the primitives’ ID’s are copied into the 

child they overlap with once the children are created. While iterating, the 

primitives which overlap with the split location are split into two new primitives. 

The data is updated with the new primitives and their IDs are copied into their 

matching children. This process is done recursively starting with the root node. The 

K-d Tree “with primitive split” generates less ID duplicates compared to the K-d 

Tree “with no primitive split.” Below is our implementation of a K-d Tree “with 

primitive split.” 

 

            ------------------------------------------------------------------------ 

K-d tree “with primitive split split” 

------------------------------------------------------------------------ 

 

1         load data from file 

3       create root node 

 

3 build(node) 

  4     findBestSplit(node) 

 5     performSplit(node) 

  6      for each primitive: 

7      if(overlaps with split location) 

 8   Split primitives into 2 primitives 
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  9   Update data with new primitives 

  10   Copy new primitive 1 ID in left_child 

  11   Copy new primitive 2 ID in righ_child    

12      else 

  13   Copy its ID in the left_child or right_child 

 14  end for 

  15     if(left_child is not a leaf) 

     16  build(left_child) 

  17     if(right_child is not a leaf) 

18  build(right_child) 

-------------------------------------------------------------------------- 

 

 

3.4 BVHs Search Structures 

 

Both versions of K-d Trees described above do not take into account the notion of 

tight bounding boxes, which is the primary difference between BVHs and K-d Trees. 

Similar to the K-d Trees, we implemented two versions of BVHs: Spatial Split BVH 

[4] which we refer to as a BVH “with primitive split,” and regular BVH, which we 

refer to as BVH “with no primitive split.” Again they both utilize the techniques in 

section 3.2 to choose the split location, and they are built recursively. 

 

3.4.1 BVH “with no primitive split” 

 

BVH [21] “with no primitive split” has traditionally been used in ray tracing as an 

optimization over K-d Trees. For a given node, building a BVH requires the 

identification of the best split location. The split location is then used to construct 

the node’s children. During the process of splitting the node, for the primitives 

which overlap with the split location, their IDs are copied into the children which 

contain their center. After each split, the children bounding boxes are adjusted in 
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order to keep them tight with respect to the primitives they contain. The recursive 

construction of this search structure is initiated from the root node, which contains 

all the IDs. This approach yields tightly bounded nodes and no duplicates between 

siblings. Because no splitting is performed, the size of the data remains constant 

during the process. However, the bounding boxes of siblings may overlap. Below is 

the description of our implementation of BVH “with no primitive split”. 

 

------------------------------------------------------------------------- 

BVH “with no primitive split split” 

------------------------------------------------------------------------- 

 

1         load data from file 

4      create root node 

 

3        build(node) 

  4     findBestSplit(node) 

 5     performSplit(node) 

  6          for each primitive 

7                if (center <= split location) 

  8   Copy its ID in the left_child 

9   Update left_child bounding box 

10      else 

  11   Copy its ID in the right_child 

  12   Update right_child bounding box 

 

 13  end for 

  14     if(left_child is not a leaf) 

     15  build(left_child) 

  16     if(right_child is not a leaf) 

17  build(right_child) 
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-------------------------------------------------------------------------- 

 

3.4.2 BVH “with primitive split” 

 

Spatial Split BVH [4] is similar to regular BVH, except that primitives which overlap 

with the split location are split in two. As in all the previous structures, the split 

location for a given node is identified using the methods described in section 3.2. 

The node split location is then used to construct its children. In the process of 

splitting the node, the primitives which overlap with the split location are also 

split. The data is updated with the new primitives generated from the splitting, and 

the IDs of the primitives are copied into the children they overlap with. The Spatial 

Spilt BVH returns a tree with nodes which are tightly bounded, along with no 

overlaps among siblings.  

 

    ------------------------------------------------------------------------- 

BVH “with primitive split split” 

------------------------------------------------------------------------- 

 

1         load data from file 

5       create root node 

 

3 build(node) 

  4     findBestSplit(node) 

 5     performSplit(node) 

  6          for each primitive: 

7                if(overlaps with the split location) 

          8   Split primitives into 2 primitives 

  9   Update data with new primitives 

  10   Copy new primitive 1 ID in left_child 

  11   Update left_child bounding box 
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  12   Copy new primitive 2 ID in righ_child 

  13   Update right_child bounding box 

14      else 

15   Copy its ID in the left_child or right_child 

  16   Update left_child or right_child bounding box 

 17  end for 

  18     if(left_child is not a leaf) 

     19  build(left_child) 

  20     if(right_child is not a leaf) 

21  build(right_child) 

-------------------------------------------------------------------------- 

 

 

3.5 Search 

 

After we built the search structures, we constructed a search routine to find the 

neighbors of given particles. The routine has two main steps. In the first step, we 

recursively searched our structure, K-d Tree or BVH, for all the smallest possible 

nodes which overlaps with our search criteria. The search parameters consisted of a 

point P(x, y, z, t) and a radius r. In the second step, we looped through the resulting 

nodes obtained from the first step and extract all the primitives’ IDs which met the 

constraints imposed by the search parameters. This search routine is used for all 

our different search structures. Below is a brief algorithm which describes the 

search steps. 

 

------------------------------------------------------------------------- 

Search  

------------------------------------------------------------------------- 

 

1 findOverlappedNode (node, P, r) 
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  2     if(P is in left_child) 

     3  findOverlappedNode(left_child, P, r) 

  4     else 

     5  save node in result 

  6     if(P is in right_child) 

     7  findOverlappedNode(right_child, P, r) 

  8     else 

     9  save node in result 

 

10 extractPrimitives(result) 

  11     for each node in result: 

     12  if(getRadius(P) < r) 

  13      save primitive in final_result 

------------------------------------------------------------------------- 

     

4 EXPERIMENTAL OVERVIEW 

 

4.1 Experiment Factors 

 

Our experiment consisted of comparing the different search structures, in order to 

inform the optimal spatiotemporal search structure for particle path tracing from 

Lagrangian basis flows. Our experiments had three key varying parameters: the 

method used to determine the split location, the type of search structure, and the 

number of Lagrangian basis flows. For determining the split location, we utilized 

the Spatial Median, Primitives Median, and Volume Heuristic approaches which are 

described in section 3.2. For the search structures, we focused on the two variants 

of K-d Trees and two variants of BVHs. For the number of Lagrangian basis flows we 

used three different sets from ABC data. The cross product of these different 

parameters gives us  
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• 3 x 4 x 3 = 48 experiments.  

 

i.e., 3 split identification methods, 4 search structures, and 3 sets of ABC 

Lagrangian basis flows. 

 

4.2 Evaluation Criteria 

 

In this work, we investigate different approaches for finding neighboring 

Lagrangian basis flows when given a spatiotemporal coordinate. More specifically it 

examines the different spatiotemporal search structures with the following three 

factors: 

 

• Storage Overhead: The overhead to represent the search data structure is 

very important because it relates to the memory usage. Significant overhead 

leads to higher memory accesses and increased memory to store the 

Lagrangian basis flows and the search structures. 

 

• Build time: The time it takes to build the search structures is a one-time 

cost amortized by the many searches. That said, high build times can be 

problematic. 

 

• Search time: The primary focus of our work is to evaluate the time it takes to 

search the neighbors of a given particle. This is important because in the 

process of tracing the trajectory of a particle, the search for neighbors is 

required at every step. 

 

 

4.3 Measurements 
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Our methodology focuses on making various measurements of the different key 

aspects of the search structures. These key aspects play a vital role in the 

performance of the search structures. The key characteristics measures are: 

• Number of primitives and number of nodes 

• Size of the search structures and Lagrangian basis flows 

• Build time of the search structures  

• Search time for finding neighbors 

 

 

4.3.1 Number of primitives and number of nodes 

 

The increase in number of primitives and/or nodes is directly related to the increase 

in data size for the Lagrangian basis flows and the search structures. We compared 

the number of primitives before and after the building of the search structures. We 

also compared the number of primitives and nodes among the various search 

structures. 

 

 

4.3.2 Size of search structures and data 

 

Often, large memory is required to store the Lagrangian basis flows and the search 

structures. We analyzed the memory usage by comparing the data size before and 

after the building of the search structures. In addition, we compared the data size 

among the different search structures. 

  

 

4.3.3 Build time 

 

Build time is the time, in seconds, that it takes to build a search structure given a 

set of Lagrangian basis flows. There are two main factors that dictate the build 
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time: the time it takes to find the split location and the time it takes to perform the 

actual split on the node. We measured the time it takes to build the different search 

structures and compared them to each other. 

 

 

4.4.4 Search Time 

 

Search time is the time, in seconds, that it takes to find the neighbors of a given 

particle using the underlying Lagrangian basis flows. The search time is affected by 

the number of nodes visited when performing a search, and the time it takes to 

obtain the matching primitives from the nodes found during the traversal. We 

measured the average number of visits and the search time of the various search 

structures, and then compared them to each other.  

 

 

4.4 Machine 

 

Our experiments were conducted on a machine using an Intel(R) Core(TM) i-7 with 

a frequency of 3.6GHz. The memory size is 16 GB and it runs at frequency of 1600 

MHz. 

 

 

 

5. RESULTS  

 

This section discusses the results obtained from the different experiments. 

 

 

5.1 Number of Primitives and Nodes  
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Tables 1, 2, 3, and 4 show the show the sizes, in terms of the number primitives and 

nodes, for K-d Tree and BVH. These sizes are directly related to the amount of 

storage required. For small numbers of Lagrangian flows, the K-d Tree “with 

primitive no split” coupled with Primitive Median split yields the smallest number 

of primitives in its output. As the number of primitives increases, the BVH “with 

primitive split” coupled with the Volume Heuristic yields the best result. With 

10,000 Lagragian basis flows, the number of primitives and nodes for the BVH “with 

primitive split” are half the the number of primitives and node of the K-d Tree 

“with primitive split.” 

 

K-d Tree “with no primitive split” 

Split type # Lagrangian basis 

flows 

Final number of 

primitives 

Number of 

nodes 

Spatial 

Median 

100 

1000 

10000 

4777 

49100 

0.51 106 

375 

22117 

106 

Primitive 

Median 

100 

1000 

10000 

4777 

49100 

0.51 106 

59 

711 

16765 

Volume 

Heuristic 

100 

1000 

10000 

4777 

49100 

0.51 106 

113 

971 

106 

 

Table 1: Results related to K-d Tree “with primitive no split.” This table shows the 

number of primitives and the number of nodes given different Split methods and 

number of Lagrangian basis flows. 
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K-d Tree “with primitive split” 

Split type # Lagrangian 

basis flows 

Number of 

input 

primitives 

Final number 

of primitives 

Number 

of nodes 

Spatial 

Median 

100 

1000 

10000 

4777 

49100 

0.51 106 

8444 

0.90 106 

14.98 106 

375        

20263 

112563 

Primitive 

Median 

100 

1000 

10000 

4777 

49100 

0.51 106 

5671 

90103 

1.55 M 

65 

1035 

9559 

Volume 

Heuristic 

100 

1000 

10000 

4777 

49100 

0.51 106 

5544 

0.11 106 

1.94 106 

21 

635 

12621 

 

Table 2: Results related to K-d Tree “with primitive split.” This table shows the 

number of primitives and the number of nodes given different Split methods and 

number of Lagrangian basis flows. 

 

 

BVH “with no primitive split” 

Split type # Lagrangian basis 

flows 

Final number of 

primitives 

Number of 

nodes 

Spatial 

Median 

100 

1000 

10000 

4777 

49100 

0.51 106 

219 

1999 

12227 
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Primitive 

Median 

100 

1000 

10000 

4777 

49100 

0.51 106 

63 

481 

7761 

Volume 

Heuristic 

100 

1000 

10000 

4777 

49100 

0.51 106 

73 

537 

16159 

 

Table 3: Results related to BVH “with primitive no split.” This table shows the 

number of primitives and the number of nodes given different Split methods and 

number of Lagrangian basis flows. 

 

 

BVH “with primitive split” 

Split type # Lagrangian 

basis flows 

Number of 

input 

primitives 

Final number 

of primitives 

Number of 

nodes 

Spatial 

Median 

100 

1000 

10000 

4777 

49100 

0.51 106 

8456 

1.30 M 

19.43 106 

161 

19097 

90515 

Primitive 

Median 

100 

1000 

10000 

4777 

49100 

0.51 106 

7888 

1.09 106 

1.63 106 

103 

15117 

80453 

Volume 

Heuristic 

100 

1000 

10000 

4777 

49100 

0.51 106 

5867 

70968 

880979 

95 

539 

3771 
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Table 4: Results related to BVH “with primitive split.” This table shows the number 

of primitives and the number of nodes given different Split methods and number of 

Lagrangian basis flows. 

 

 

5.2 Storage Overhead 

 

Tables 5, 6, 7, and 8 show the size of memory, in bytes, required to store the 

Lagrangian basis flows and the search structures. For a small amount of Lagrangian 

basis flows, the K-d Tree “with no primitive split” coupled with Volume Heuristic, 

requires the smallest amount of memory. However, as the number of Lagrangian 

basis flows becomes larger the BVH “with no primitive split” coupled with the 

Volume Heuristic split method requires the least amount of storage for the 

Lagrangian basis flows and the search structures. With 10,000 Lagrangian basis 

flows, the of storage required for BVH “with no primitive split” coupled with the 

Volume Heuristic is almost 2X the storage required for BVH “with primitive split,” 

4X the storage required for K-d Tree “with primitive split,” and 9X the storage 

required for K-d Tree “with no primitive split,” 

 

 

K-d Tree “with no primitive split” 

Split type # Lagrangian 

basis flows 

Storage of 

Lagrangian 

flows in bytes 

Structure 

size in 

bytes 

Total 

data size 

in bytes 

Spatial 

Median 

100 

1000 

10000 

0.65 M 

6.68 M 

69.04 M 

0.42 M 

33.41 M 

952.41 M 

1.07 M 

40.09 M 

103 M 
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Primitive 

Median 

100 

1000 

10000 

0.65 M 

6.68 M 

69.04 M 

0.13 M 

2.23 M 

50.31 M 

0.78 M 

8.91 M 

119.35 

Volume 

Heuristic 

100 

1000 

10000 

0.65 M 

6.68 M 

69.04 M 

0.25 M 

3.80 M 

843.48 M 

0.90 M 

10.35 M 

912.52 M 

 

Table 5: Results related to K-d Tree “with primitive no split.” This shows the 

storage size required for Lagrangian basis flows and the search structures. 

 

 

 

K-d Tree “with primitive split” 

Split type # Lagrangian 

basis flows 

Storage of 

Lagrangian 

flows in bytes 

Structure 

size in 

bytes 

Total 

data size 

in bytes 

Spatial 

Median 

100 

1000 

10000 

1.15 M 

121.97 M 

69.04 M 

0.61 M 

140.85 M 

345.00 M 

1.76 M 

262.82 M 

414.04 M 

Primitive 

Median 

100 

1000 

10000 

0.77 M 

12.25 M 

205.85 M 

0.15 M 

3.82 M 

83.13 M 

0.92 M 

16.09 M 

288.98 M 

Volume 

Heuristic 

100 

1000 

10000 

0.75 M 

14.58 M 

256.85 M 

0.09 M 

5.17 M 

149.54 M 

0.84 M 

19.75 M 

406.39 
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Table 6: Results related to K-d Tree “with primitive split.” This shows the storage 

size required for Lagrangian basis flows and the search structures. 

 

BVH “with no primitive split” 

Split type # Lagrangian 

basis flows 

Storage of 

Lagrangian 

flows in bytes 

Structure 

size in 

bytes 

Total 

data size 

in bytes 

Spatial 

Median 

100 

1000 

10000 

0.65 M 

6.68 M 

69.04 M 

0.32 M 

14.16 M 

344.69 M 

0.97 M 

21.02 M 

413.73 M 

Primitive 

Median 

100 

1000 

10000 

0.65 M 

6.68 M 

69.04 M 

0.12 M 

1.80 M 

27.02 M 

0.77 M 

8.48 M 

96.06 M 

Volume 

Heuristic 

100 

1000 

10000 

0.65 M 

6.68 M 

69.04  M 

0.17 M 

2.36 M 

59.89 M 

0.82 M 

9.04 M 

102.93 M 

 

Table 7: Results related to BVH “with primitive split.” This shows the size of 

storage required for Lagrangian basis flows and the search structure. 

 

 

BVH “with primitive split” 

Split type # Lagrangian 

basis flows 

Storage of 

Lagrangian 

flows in bytes 

Structure 

size in 

bytes 

Total data 

size in 

bytes 



	 33	

Spatial 

Median 

100 

1000 

10000 

1.15 M 

177.32 M 

2.15 103 M 

0.34 M 

120.29 M 

1.78 103 M 

1.49 M 

297.61 M 

3.93 103 M 

Primitive 

Median 

100 

1000 

10000 

1.07 M 

147.35 M 

2.15 103 M 

0.23 M 

65.80 M 

1.08 103 M 

1.30 M 

213.15 

3.23 103 M 

Volume 

Heuristic 

100 

1000 

10000 

0.80 M 

9.65 M 

119.81 M 

0.24M 

3.58 M 

54.19 M 

1.04 M 

13.23 M 

174.00 M 

 

Table 8: Results related to BVH “with primitive split.” This shows the size of 

storage required for Lagrangian basis flows and the search structure. 

 

 

5.3 Build Time 

 

As mentioned previously, the search structure build time is dependent on the time 

it takes to find the split location and the time it takes to perform a split on a given 

node. The Spatial Median approach for finding a split location does not require any 

sorting as opposed to the other approaches. Tables 9, 10, 11, and 12 show that the 

Primitive Median approach yields a shorter build time compared to the Volume 

Heuristic approach. The Volume Heuristic approach considers multiple locations 

when calculating the split location as opposed to the other two. These results 

match our expectations. 

 

K-d Tree “with no primitive split” 

Split type # Lagrangian basis flows Build time in sec 
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Spatial Median 100 

1000 

10000 

0.009 

0.445 

12.932 

Primitive Median 100 

1000 

10000 

0.007 

0.120 

1.829  

Volume Heuristic 100 

1000 

10000 

0.081 

1.19 

138.55 

 

Table 9: Results related to K-d Tree “with primitive no split.” This table shows the 

time it takes to build the different search structures using the various split location 

methods. 

 

 

K-d Tree “with primitive split” 

Split type # Lagrangian basis flows Build time in sec 

Spatial Median 100 

1000 

10000 

0.010 

0.713 

11.900 

Primitive Median 100 

1000 

10000 

0.008 

0.142 

1.940 

Volume Heuristic 100 

1000 

0.098 

0.899 
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10000 20.54 

 

Table 10: Results related to K-d Tree “with primitive split.” This table shows the 

time it takes to build the different search structures using the various split location 

methods. 

 

 

BVH “with no primitive split” 

Split type # Lagrangian basis flows Build time in sec 

Spatial Median 100 

1000 

10000 

0.015 

4.48 

7.190 

Primitive Median 100 

1000 

10000 

0.017 

0.101 

1.171 

Volume Heuristic 100 

1000 

10000 

0.382 

4.476 

126.045 

 

Table 11: Results related to BVH “with primitive split.” This table shows the time it 

takes to build the different search structures using the various split location 

methods. 

 

BVH “with primitive split” 

Split type # Lagrangian basis flows Build time in sec 
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Spatial Median 100 

1000 

10000 

0.013 

0.896 

11.57 

Primitive Median 100 

1000 

10000 

0.021 

0.760 

11.707 

Volume Heuristic 100 

1000 

10000 

0.080 

0.922 

9.758 

 

Table 12: Results related to BVH “with primitive split.” This table shows the time it 

takes to build the different search structures using the various split location 

methods. 

 

 

5.4 Search Time 

 

Tables 13, 14, 15, and 16 show the average number of visits and the average search 

time. The smallest possible search time is desirable because the search is performed 

at every step when tracing a particle trajectory. The BVH “with primitive split” 

using the Volume Heuristic approach for determining the split location yields a 

shorter search time and a smaller average number of traversals compared to the 

others. 

 

K-d Tree “with no primitive split” 

Split type # Lagrangian basis 

flows 

Av number of 

node visits 

Av search time 

in sec 
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Spatial 

Median 

100 

1000 

10000 

4.91 

5.36 

4.20 

0.020 

0.030 

8.383 

Primitive 

Median 

100 

1000 

10000 

5.00 

10.13 

13.51 

0.028 

0.032 

0.049 

Volume 

Heuristic 

100 

1000 

10000 

14.84 

3.22 

2.28 

0.023 

0.023 

0.607 

 

Table 13: Results related to K-d Tree “with primitive no split.” This table shows the 

average number of traversals and the average build time for the different search 

structures. 

 

 

K-d Tree “with primitive split” 

Split type # Lagrangian basis 

flows 

Av number of 

node visits 

Av search time 

in sec 

Spatial 

Median 

100 

1000 

10000 

4.92 

5.29 

6.46 

0.028 

0.196 

3.00 

Primitive 

Median 

100 

1000 

10000 

4.20 

9.76 

16.15 

0.050 

0.048 

0.187 
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Volume 

Heuristic 

100 

1000 

10000 

5.06 

21.78 

141.73 

0.035 

0.167 

3.626 

 

Table 15: Results related to K-d Tree “with primitive split.” This table shows the 

average number of traversals and the average build time for the different search 

structures. 

 

 

BVH “no with primitive split” 

Split type # Lagrangian basis 

flows 

Av number of 

node visits 

Av search time 

in sec 

Spatial 

Median 

100 

1000 

10000 

11.23 

5.23 

66.33 

0.019 

0.023 

0.050 

Primitive 

Median 

100 

1000 

10000 

4.23 

5.13 

12.14 

0.020 

0.022 

0.040 

Volume 

Heuristic 

100 

1000 

10000 

12.04 

5.23 

11.59 

0.023 

0.023 

0.067 

 

Table 15: Results related to BVH “with primitive no split.” This table shows the 

average number of traversals and the average build time for the different search 

structures. 
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BVH “with primitive split” 

Split type # Lagrangian basis 

flows 

Av number of 

node visits 

Av search time 

in sec 

Spatial 

Median 

100 

1000 

10000 

3.79 

2.73 

66.34 

0.018 

0.019 

0.051 

Primitive 

Median 

100 

1000 

10000 

4.25 

6.75 

10.96 

0.020 

0.020 

0.038 

Volume 

Heuristic 

100 

1000 

10000 

16.19 

2.99 

4.08 

0.023 

0.021 

0.033 

 

Table 16: Results related to BVH “with primitive split.” This table shows the 

average number of traversals and the average build time for the different search 

structures. 

 

 

5.5 Result Summary 

 

In the previous sections, we made isolated observations about the different 

characteristics measured. In this section, we discuss the different connections that 

exist among the different features utilized to build the search structures. Table 9 

shows the summary of the measurements made for 10,000 Lagrangian basis flows. 

These results indicate that a search structures built with Volume Heuristic + BVH 

has a smaller storage overhead, shorter search time, and longer build time 

compared to any of the other search structures. These results show that the time 
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invested in building the search structures can be amortized with multiple searches 

when using the Volume Heuristic approach. This informs that BVH aids to reduce 

storage overhead and improve search time. 

 

 

Search Structure Data size in 

bytes 

Build Time 

in sec 

Search Time 

in sec 

Spatial Median + K-d Tree 

“with primitive split” 

414.04 M 11.900 3.007 

Spatial Median + BVH “with 

primitive split” 

3.93 103 M 11.570 0.051 

Primitive Median + K-d Tree 

“with primitive split” 

288.98 M 1.940 0.187 

Primitive Median + BVH “with 

primitive split” 

3.23 103 M 11.707 0.038 

Volume Heuristic + K-d Tree 

“with primitive split” 

406.39 M 20.540 3.626 

Volume Heuristic + BVH “with 

primitive split” 

174.00 M 9.758 0.033 

 

Table 9: Summary of different search structures’ results. This table shows the total 

data size in bytes to store search structures and 1,000 Lagrangian basis flows, the 

time it takes to build the search structures, and the time it takes to search the 

neighbors of a set of points given a radius.  
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6 FUTURE WORK AND CONCLUSION 

 

This study indicates that the search structures using the Volume Heuristic approach 

coupled with the BVH “with primitive split” yields better performance than the 

other search structures explored. Various features contributed to the better 

performance observed with this search structure. We evaluated the search 

structures by considering three types of split methods: the Spatial Median, the 

Primitive Median, and the Volume Heuristic. These three split methods were 

coupled with four types of search structures: BVH “with primitive split”, BVH “with 

no primitive split,” K-d Tree “with primitive split,” and K-d Tree “with no primitive 

split.” For a given node, the Volume Heuristic approach chooses a split location 

which takes into account the number of primitives in its children and the density 

distribution of the primitives in 4D space. The BVH “with primitive split” yields a 

search structures with nodes that are tightly bounded, and no ID duplicates among 

sibling nodes.  

 

In terms of future work, we should investigate hybrid versions of the search 

structures to further inform the choice of search structure for finding neighbors 

from Lagrangian flow basis. For instance, we could construct a search structure that 

uses both BVH “with no primitives” and BVH “with primitive split.” In addition, 

this work analyzed the serial versions of the different search structures. Thus, a 

similar analysis must be performed for parallelized versions of the search 

structures. This may lead to great performance gains in the build time and search 

time.  

 

This project is part of a larger scope study, which encompasses the extraction of 

Lagrangian basis flows, the search for neighboring Lagrangian basis flows, and the 

interpolation to compute the particles’ trajectories. This study focused on finding 

the neighboring Lagrangian basis flows when given a spatiotemporal coordinate. 

Therefore, more investigations on how to extract the Lagrangian basis flows, and 
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how to perform the interpolation are required to construct a full story around 

particle trajectory tracing from Lagrangian basis flows. 
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