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Abstract

Cloud computing, as a computing method based on Internet, allows varieties of shared

hardware and software resources being provided through terminals or devices. Like all

other Internet-based services, performing tasks in the cloud could consume resources.

Thus using resources effectively is an important subject for the cloud service provider.

In this thesis, we classify two cases of cloud environment and propose several algorithms

to reduce cloud configuration cost based on them. For each algorithm we analyze the

performance of it in detail and justify it by real world data.
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Chapter 1

Introduction

In cloud environment, cloud service providers are responsible for providing varieties of

cloud service, such as computing and storage, to their customers. For example, in the

SaaS (Software as a Service) model, customers should be able to access the software and

data though Internet, and cloud service provider should maintain such a platform and

make sure it is working correctly. Cloud services are often supported by a large network

data center. In such an environment, resources held by the service provider are always

limited. Thus it is important to reasonably allocate resources to customers.

There are numbers of services distributed across the environment, where tasks are as-

signed to. Each service has a certain amount of VMs (virtual machines) to perform

tasks. The number of VMs required could be the scale to weigh how large the workload

of a task. As the time goes, the size of workload varies. So we need to adjust services by

booting up or shutting down some VMs as the change of workload. A larger workload

always requires booting up more VMs to complete the task, which could accordingly cost

more time and energy. However, it is possible to save reconfiguration cost, according to

the type of services. Here we are going to discuss the method to save reconfiguration

cost, based on two different cases.

In homogeneous services, all services are of the same type and same scale of workloads,

which means we can mix them to reach our purpose. Specifically, if a service which

requires more VMs (which means some VMs in this service need to boot up) is mixed

with a service which requires less VM (which means some VMs in this service need to

shut down), we can reuse VMs which ought to shut down to reduce the number of VMs

which is needed to boot up, and reconfiguration cost is saved by that. We will describe

the method in detail for homogeneous case in Chapter 2.

1



Introduction 2

In heterogeneous service, the type of services are not necessarily the same. Thus we need

some specific parameters to measure workloads. Besides that, the method of mixing

services is not applicable anymore since we cannot mix services with different type.

In place of that, we transfer files which required by the task through services. As a

result, we avoid booting up more VMs since we moved some task to spare VMs, and

reconfiguration cost is saved. The method of heterogeneous case is described in Chapter

3.



Chapter 2

Homogeneous services

2.1 Problem formulation

We can treat each service as a vector w[i], the entries in the vector represents the

workload at corresponding time slot. We define the reconfiguration cost of a vector as

the sum of the difference between peak value and vale value of all increasing phase (since

we don’t care about the cost of shutting down a VM).

In the case of homogeneous services, all services are of the same type. So we can mix

vectors in order to save reconfiguration cost. When mixing two vectors, we add each

entry of two vectors separately, for example:

w[1] = [2, 9, 5, 5, 6], reconfiguration cost= (9− 2) + (6− 5) = 8

w[2] = [9, 5, 8, 3, 9], reconfiguration cost= (8− 5) + (9− 3) = 9

The total reconfiguration cost of w[1] and w[2] is 8 + 9 = 17

If we mix w[1] and w[2], we get a mixed vector [11, 14, 13, 8, 15] with the reconfiguration

cost of (14− 11) + (15− 8) = 10.

So we saved 17− 10 = 7 unit of workload by mixing w[1] and w[2].

Notation Explanation

w Set of vectors(services)

n Number of vectors in w

l Length of vectors

c Server capacity

Table 2.1: Notation summary

3



Homogeneous services 4

There is another parameter called server capacity, which prevents us from mixing vectors

unrestrainedly. With capacity c, each mixed vector cannot have any entry that is greater

than c.

Our goal is saving reconfiguration cost as much as possible by mixing vectors without

exceeding capacity.

2.2 Algorithm description

To have a comparison, we implement three methods on this problem: brute force, dy-

namic programing and greedy.

2.2.1 Brute force

We first traverse the number of mixed servers (groups), on each traversal, we use M [i]

to mark the location of the ith vector (i.e. M [i] = l means the ith vector is in the lth

group) and have two constrains:

1. M [i] ≤ m for all i, where m is the number of groups

2. Maxt
∑

iw[i][t] ≤ c

The first constrain means the total number of groups cannot be greater than m, the

second means that combined vector in each group cannot exceed the capacity. If both

constrains stand, we calculate the total cost saving and find the maximum saving by

that. Otherwise, we look at the next possible M (next possible combination), here if we

can consider M as a m-base number and increase M by 1. This method is guaranteed to

give us the optimal solution since it traverses all possible combinations for all possible

number of groups. However, since there are nn different M , it will take exponential

time.

2.2.2 Dynamic Programing

We derive the recursive relationship so that one can easily implement either a recursive

computation or a dynamic programming method to obtain the optimal solution to our

workload categorization problem for a single server. Using f(i, c) to denote the optimal

reconfiguration cost saving for the first i workloads, and using c to denote the residual

capacity (i.e., the free capacity or the capacity to be occupied), we consider the (i +
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Algorithm 1 Brute force for homogeneous services

max saving ← 0
for m = 1→ n do
M ← [1] ∗ n
while True do
exceed← False
initiate G [G is a list of groups, each group contains a mixed vector, which is all
0 at first]
for i = 1→ n do

Add w[i] into the M [i]th group
if max{G[M [i]]} > c then

exceed← True
break

end if
end for
if not exceed then
mixed saving ←

∑m
i=1 saving(G[i])

if mixed saving > max saving then
max saving ← mixed saving

end if
end if
increase M by 1
if M > [m] ∗ n then

break
end if

end while
end for

return max saving

1)th workload w[i] + 1, if we reject it to be part of the group, then we have f(i +

1, c) = f(i, c); if we accept it to the group, then we have f(i + 1, c−max{w[i] + 1}) =

reconfig(f(i, c), w[i] + 1), where c −max{w[i] + 1} approximately calculates the new

residual capacity, and reconfig(f(i, c), w[i] + 1) is a function that calculates the new

reconfiguration cost saving, given the current reconfiguration cost saving f(i, c). To sum

up, we have the following:

f(i, c) =

max(f(i− 1, c), reconfig(f(i− 1, c− w[i]), w[i]))) ifw[i] ≤ c

f(i− 1, c) otherwise

Note that, in the above, one vector subtracting another vector is defined as using

each element of the former to subtract each corresponding element of the latter, and

one vector being no larger than another vector is defined as each element of the for-

mer being no larger than each corresponding element of the latter. The function
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reconfig(f(i, c), w[i] + 1) to calculate the reconfiguration cost saving of mixing the ex-

isting workloads, i.e., a subset of {w[1], w[2], , w[i]}, and the workload w[i + 1] based on

the previous models and definitions. Note that since we fill each group one by one, the

order of vectors would influence our result. Therefore, we can randomize the order of

vectors and run this algorithm on them for several times to obtain a better solution.

Algorithm 2 Dynamic programing for homogeneous services

mixed saving ← 0
while True do
for i = 1→ n do

initiate f as all 0
if w[i] already in another group then

continue
end if
if current group is empty then

add w[i] into current group
continue

end if
for j = c→ 0 do
if j ≥ max{w[i]} then
if reconfig(f [i− 1][j − w[i]], w[i]) > max(f [i− 1][j]) then

f [i− 1][j] = reconfig(f [i− 1][j − w[i]], w[i])
add w[i] into current group

else
f [i][j] = f [i− 1][j]

end if
else
f [i][j] = f [i− 1][j]

end if
end for

end for
mixed saving = mixed saving + f [n][c]

end while

return mixed saving

2.2.3 Greedy

We also propose a greedy method that may not obtain the optimal solution like the

above recursion, but can obtain a solution of reasonably good quality in faster exe-

cution. We sort all the workloads in the ascending order based on maxt∈T (w[i][t])

which can be deemed as the size of the workload w[i]. Note maxt∈T (
∑

i∈I w[i][t] ≤∑
i∈I maxt∈T (w[i][t])), indicating if the right-hand side of this inequality does not ex-

ceed the server capacity, the left-hand side is guaranteed not to exceed it. After doing

the sorting, we traverse the workload from the one with the smallest size to the one with
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the largest size. We select a workload to be part of a group in order. And if selecting a

vector will exceed the capacity of a group, we create a new empty group and place the

vector in it.

Algorithm 3 Greedy for homogeneous services

Sort all vectors by their peak value (increasing order)
mixed saving ← 0
cur ← empty set
for i← 1ton do

add w[i] into cur
if cur exceeds capacity then

remove w[i] from cur
mixed saving = mixed saving + saving(cur)
cur ← empty set
add w[i] into cur

end if
end for
mixed saving = mixed saving + saving(cur)

return mixed saving

2.3 Data collection/process

We collected our dataset from Google cluster data trace at Github, which include 29

days of data at May 2011 on a cluster of about 12.5k machines. There are 6 sets of

.csv file in total and we mainly focused on task events.csv which can be appropriately

modeled into our problem. In the task events table, each event has following useful

features:

• Timestamp: in terms of microseconds.

• Job ID: used to identify each task.

• Event type: including one of the following type: (0) submit, (1) schedule, (2) evict,

(3) fail, (4) finish, (5) kill, (6) lost, (7) update pending, (8) update running. Here

we treat (0) and (1) as the start of a task, (2), (3), (4), (5) and (6) as the stop of

a task, and ignore (7) and (8).

• Machine ID: used to identify the location of each task.

We built vectors based on each machine. And each entry on the vector represents the

number of running tasks during 2-hour duration. Thus, there are about total of 12500

vectors (equal to the number of machines) with length of 348(29*24/2). Note that the
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data is not perfectly matched to the reality. Some task data are missing machine ID so

it is useless to our problem, so we just ignore them.

Figure 2.1: 8 vectors randomly selected from google cluster data

If increasing and decreasing of workloads happens at same timeslot between different

vectors, we can reduce the total workload by mixing them. To show the potential of

reducing the workloads, we have a figure of cumulative distribution function for vec-

tors generated by google cluster data and showing how many pairs of increase/decrease

overlaps as timeslot goes.

Figure 2.2: cumulative distribution function

From the figure 2.2, we can see there is significant potential to save workloads.
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2.4 Experiment setup

We compare 3 methods by running them on different size of data. For a set of input data,

we have following parameters which could influence the performance of the algorithm:

• number of vectors

• length of vectors

• size of capacity

To have a comparison, each time we set one of parameters as variable and fix the value of

others. And we compare the performance of each algorithm by both time and accuracy.

2.5 Result

We firstly look at accuracy, then computational overhead:

Figure 2.3: l=348, c=250, n varies (normalized)

From these figures, we can easily see that brute force only works on very small data.

Dynamic programing can give us high accuracy result (which is equivalent to brute force

when data is small), but its computational overhead is bad when n is large. Greedy, by

contrast, has the shortest run time, and its result is worse than dynamic programing.
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Figure 2.4: n=200, l=348, c varies (normalized)

Figure 2.5: n=200, c=250, l varies (normalized)

Figure 2.6: l=348, c=250, n varies (normalized)
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Figure 2.7: n=200, l=348, c varies (normalized)

Figure 2.8: n=200, c=250, l varies (normalized)



Chapter 3

Heterogeneous services

3.1 Problem formulation

In the case of heterogeneous services, the type of each service are different. So we need

more parameter to weigh workloads (i.e. boot time and transfer time). Furthermore, we

cannot mix services to reduce reconfiguration cost. One alternative way is to transfer

file/code between VMs. For example, if service A need one more VM to do some task

and a VM on service B just finish its task and about to shut down, we can transfer

files which are needed for the task from service A to service B, instead of boot a VM

on service A and shut down the spare VM on service B. In general, the time spent by

transferring data between VMs is less than booting up a VM. So the reconfiguration

cost gets saved by this way.

One thing to mention is that in heterogeneous services, we don’t need to care about

capacity since we don’t mix vectors anymore, nor do we add extra workload on each

service, we only ”recycle” spare VMs.

Notation Explanation

T boot
i Time cost of booting up a VM in the ith service

T transfer
i,j Time cost of transferring file between VMs from the ith service to jth

service (i 6= j), note that T transfer
i,j is not necessarily equal to T transfer

j,i

Table 3.1: More notations

12
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3.2 Algorithm description

Since we cannot mix services in this case, the method that uses the size of capacity to

represent the status of the problem which we used in homogeneous case is not applicable

anymore. Furthermore, as each vector is distinct in heterogeneous case, it requires ex-

ponential space to represent each status. Therefore, we abandon dynamic programming

approach and find two greedy strategies instead.

3.2.1 Greedy: max saving first

At each time slot, for each service i which has growth trend(i.e. requires more VMs to

do the task), we find a declined service j (i.e. requires less VMs) which gives us the

most saving. In other word we find j which has the smallest T transfer
i,j for the service

i. Then we transfer file from i to j as much as possible. If there is no more spare VM

on j and i still need more VM, we find another service which has next most saving and

transfer file from i to it. We repeatedly do this until i doesn’t need any more VM or

there is no service have spare VM. Then we move to next time slot and do the same or

we finish all time slots.

3.2.2 Greedy: max boot time first

The basic idea is similar with the first strategy. Besides that, for each increasing vector

i, instead of find j which gives us the most saving in current time slot, we find the j

which has the largest T boot
j and transfer file from i to j. The reason for us to adopt this

strategy is that, if we need to boot VM on j in future, it would cost more time to do so,

which is not we disired. So we keep then VMs on j running by transferring file to them

to avoid booting them up in future.

We expect that this strategy performs better than the first one when most vectors have

growth trends, as in such situation more VMs are forced to boot as time goes on.

3.3 Data collection/process

Dataset of vectors in homogeneous services can still be used here. However, in hetero-

geneous service we need more parameters: boot time of VM in each service and data

transfer time between VMs in each pair of services. Since it is hard to create real cloud

environment and get data from it, we build VMs on VM software and measure the data

we need instead.
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Algorithm 4 Greedy: max saving first

saving ← 0
for j ← 1tol − 1 do

for i← 1ton do
if w[i][j + 1] ≤ w[i][j] then

continue
end if
while True do
max saving ← −1
max index← −1
for k ← 1ton do

if w[k][j + 1] ≥ w[k][j] then
continue

end if
if T boot[i]− T transfer[i, k] > max saving then
max saving ← T boot

i − T transfer[i, k]
max index← k

end if
end for
if max index = −1 then

break
end if
if w[i][j + 1]− w[i][j] ≤ w[max index][j]− w[max index][j + 1] then

saving = saving+ (T boot[i]−T transfer[i,max index])∗ (w[i][j + 1]−w[i][j])
w[max index][j + 1] = w[max index][j + 1] + w[i][j + 1]− w[i][j]
w[i][j + 1] = w[i][j]
break

else
saving = saving + (T boot[i]− T transfer[i,max index]) ∗ (w[max index][j]−
w[max index][j + 1])
w[i][j + 1] = w[i][j + 1]− (w[max index][j]− w[max index][j + 1])
w[max index][j + 1] = w[max index][j]

end if
end while

end for
end for

return saving
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Algorithm 5 Greedy: max boot time first

saving ← 0
for j ← 1tol − 1 do

for i← 1ton do
if w[i][j + 1] ≤ w[i][j] then

continue
end if
while True do
max boot time← −1
max index← −1
for k ← 1ton do

if w[k][j + 1] ≥ w[k][j] then
continue

end if
if T boot[k] > max boot time then

max boot time← T boot[k]
max index← k

end if
end for
if max index = −1 then

break
end if
if w[i][j + 1]− w[i][j] ≤ w[max index][j]− w[max index][j + 1] then

saving = saving+ (T boot[i]−T transfer[i,max index])∗ (w[i][j + 1]−w[i][j])
w[max index][j + 1] = w[max index][j + 1] + w[i][j + 1]− w[i][j]
w[i][j + 1] = w[i][j]
break

else
saving = saving + (T boot[i]− T transfer[i,max index]) ∗ (w[max index][j]−
w[max index][j + 1])
w[i][j + 1] = w[i][j + 1]− (w[max index][j]− w[max index][j + 1])
w[max index][j + 1] = w[max index][j]

end if
end while

end for
end for

return saving
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The VM software we use is VMware Workstation Pro 12.5.5. In order to measure the

boot time of a VM, we create a VM with Ubuntu 64 bit operating system and 1GB

memory. We want a stable result so measure 1000 times could be fair. Thus, we create

a Linux shell and implement following approach:

1. Use command ”systemd-analysis” to get boot time and write it into a text file.

2. Check the number of lines of the text file, if less than 1000, reboot.

We set the shell as a boot up item. So the VM will automatically reboot 1000 times

and each time the boot time is recorded, which shows as figure 3.1.

Figure 3.1: boot times

From the figure we can see the boot time is in the range 5.8s to 7.0s. The deviation

which is under 1.2s is acceptable.

Regarding to data transfer time. We create another VM which has same configure as

above and use SSH to transfer file between two VMs. According to official documents

of several common web servers (IIS, Apache, nginx), the local disk usage of a web server

is usually in range 10MB to 20MB (not including websites under it). Therefore, we use

files in such range as test file and measure time cost of transfering them between VMs.

The measurement result shows as figure 3.2.

As we expected, as the file becomes larger, the transfer time is increasing in the range

of 1.2s to 2.6s. In addition, transfer time is in the same order as the boot time but

obviously shorter than boot time, which is the desired result. Thus, we can generate

inputs for the algorithm according to the measurement result we obtained above.
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Figure 3.2: file transfer time

3.4 Experimental setup

As stated before, we don’t care about capacity in heterogeneous case as we cannot mix

vectors as a group. Besides of that, we do something similar with other two parameters

(number and length of vectors) as homogeneous case: keep one fixed and another varies,

and compare results by both accuracy and computational overhead. Since two strategies

have the same time complexity, they are expected to have same run time as well.

Note that the boot time and file transfer time will not affect run time nor accuracy but

final result. So we do not need to test with different value of them. According to the

range of values we measured in section 3.3, we generate random numbers and use them

as part of input.

3.5 Result

We firstly look at accuracy, then computational overhead:

From figure we can see, our algorithms work well for the input which is generated from

real data. In comparison, the performance of two strategies are close. However, in the

most part, the results from the first strategy are a little better. And run time of both

are close as we expected.
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Figure 3.3: l=348, n varies (normalized)

Figure 3.4: n=200, l varies (normalized)

Figure 3.5: l=348, n varies (normalized)
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Figure 3.6: n=200, l varies (normalized)



Chapter 4

Conclusion

In this thesis, we described several algorithms to computing the decrements of reconfig-

uration cost in the cloud environment for both homogeneous and heterogeneous cases.

For the homogeneous case, the main idea is mixing services. And for the heterogeneous

case which services cannot be mixed, we transfer data between services instead.

In the homogeneous case, there is a trade off between time and accuracy (dynamic

programming and greedy algorithm). We can choose the one which is more appropriate

based on our actual demand.

We collect and generate data from the real world and use it as input to evaluate and

justify our method. The result shows that our algorithms work correctly for the real

world data.

20
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