
Speeding up the Tortoise

A Case Study in Optimizing Forward-Moving Evolutionary Simulations

Jared Galloway

A thesis presented for the partial fulfillment of

Departmental Honors in Computer and Information Science

CIS Faculty Advisor: Dr. Boyana Norris

Principle Investigator: Dr. Peter Ralph

Ralph Lab — HPCL

June 2018

Acknowledgments

Thanks to Dr. Peter Ralph for suggesting this project, helping every step of the

way, and teaching me so much throughout the last year. Thanks to Dr. Ben

Haller for giving me the opportunity to work on SLiM, lots of help, and being

a great cribbage partner. Thank you to Dr. Boyana Norris for advising and

helping me structure this thesis. Finally, thanks to my parents for the constant

support throughout my college career.

This work benefited from access to the University of Oregon high-performance

computer, Talapas.

i

Contents

1 Abstract 1

2 Introduction 1

3 SLiM 3

3.1 Software Overview . 3

3.2 Eidos . 5

4 TreeSeq 6

4.1 Genealogical Tree Sequence Recording 6

4.2 Succinct Tree Sequence Data Structures in msprime 9

5 Analysis 10

5.1 Neutral Model Benchmark Simulations 10

5.2 Non-Neutral Benchmark Simulations 12

6 SLiM TreeSeq Implementation 15

6.1 Pseudo Code . 15

6.2 Algorithm and Data Structure Improvements 18

7 Conclusions and Future Work 20

8 Code for Examples and Figures 22

8.1 Algorithm with Optimizations . 23

8.2 Recipe for Figure 1 . 24

8.3 msprime code tree printing . 25

8.4 Recipes for Neutral Simulations 26

8.5 Recipes for Non-Neutral Simulations 26

ii

1 Abstract

Large-scale, forward-moving evolutionary simulations are starting to play a key

role in research surrounding populations genetics. Simulations can help biol-

ogists understand data we observe from natural populations in fields such as

molecular ecology, evolutionary genetics, and conservation biology. However,

the magnitude of these simulations is limited by the current capabilities of the

hardware they are running on. This draws interest in exploring methods that

make the results of large-scale simulations more feasible. Earlier this year, a

strategy was introduced allowing simulations to avoid tracking and propagating

neutral mutations as a consequence of storing the entire genealogical history of

sampled genotypes. In this thesis, we use succinct tree sequences, introduced by

msprime, to explore and implement the method of genealogical tree sequence

recording (TreeSeq) in forward-moving evolutionary simulations. We then ana-

lyze the runtime performance gain of one to two orders of magnitude as a result

of implementing this strategy into a popular evolutionary framework, SLiM.

Finally, we explain the workflow, algorithms, and data structures behind the

implementation.

2 Introduction

From an evolutionary standpoint, it makes sense that the tortoise has no need to

be quick. Yet, an evolutionary biologist might wonder, how did this adaptation

come about at the genomic and ecological level? How important is connectivity

between habitats for the tortoise? The use of population genetics gives biologists

the tools to better understand parameters including population size, migration

rates, and evolutionary history in fields such as molecular ecology, evolutionary

genetics, and conservation biology [6].

Commonly, science is conducted through the use of observation, analysis, and

verbal hypothesis. To test the validity of a verbal hypothesis, one must show

“proof of concept”— which is where researchers would like to use mathematical

models. A key component to understanding how the evolutionary forces relate

to the data sets we observe in nature can be further analyzed through the use

of theoretical evolutionary models. Population genetics often makes progress

by gaining an understanding of the behavior underlying models, then observing

nature to compare whether the models are compatible [1].

When attempting to model realistic evolutionary dynamics, the use of large-

1

scale, forward-moving simulations is becoming increasingly popular [7]. Simula-

tions have the ability to capture the underlying impact of dynamic population

sizes, migration rates, and geography on various evolutionary forces throughout

ecological timescales1. Evolutionary simulations are a powerful tool when there

is some map connecting the parameters we want to learn about and the genetic

data we observe in nature. Without knowledge of what that map is, simulations

can invert the relationship to go from observed genomic data to the parameter

values that must be driving the system, assuming the model is correct.

Like the tortoise and its evolution, these simulations can be slow. In some

scenarios, evolutionary biologists would like to model large populations where

individuals have realistic genome sizes. Unfortunately, these large parameter

sets tend to have a quadratic or even cubic effect on the time complexity. This

means the time and memory it takes for large simulations to run becomes quickly

prohibitive on the models that would be interesting to study. Many large-scale

simulations can take weeks or even months on state-of-the-art machines [4]. This

is what motivates us to take advantage of data structures, multi-threading, and

algorithmic strategies that avoid unnecessary computations.

Recently, an efficient strategy for recording the genealogical tree sequence

was released as a means of avoiding the tracking of neutral2 mutations and

collecting the genealogical history from a sample of individuals within a simula-

tion. In fwdpp, a C++ template library for implementing efficient forward-time

population genetic simulations [8], this strategy resulted in about 50X speedup

in certain models [4]. Impressively, runtimes of the genealogical tree sequence

recording showed linear time complexity as the magnitude of the parameter val-

ues increased. This is in sharp contrast to the quadratic time complexity we

observe in simulations which tracked neutral mutations throughout.

In this paper, we implement and analyze genealogical tree sequence recording

in SLiM, a popular forward-moving simulation. The implementation is exciting

for two reasons; (1) Without tracking and propagating a large number of neutral

mutations, simulations have much less strict constraints on the magnitude of

the parameter sets. (2) Recording the genealogical history of samples opens the

door for population genetics to study gene trees under a breadth of evolutionary

forces previously thought to be wildly inefficient.

Today, the study of genealogical histories is done using coalescent theory, a

1Timescales on which we can see the impact of ecological processes such as evolution
2changes in the DNA which are neither beneficial nor deleterious to the individual who

possesses them.

2

backward-in-time simulation model. The nature of retrospective simulations like

this provides a computationally feasible way to track gene trees. Unfortunately,

coalescent simulations are limited by assumptions of random mating, neutrality,

and small sample size relative to the population. When pedigrees are recorded

in forward moving simulations, it becomes much easier to study the dynamics of

gene trees with more realistic evolutionary dynamics such as continuous space

or selection on many alleles.

This case study will first explore the method of genealogical tree sequence

recording and why implementing it into SLiM opens the door to a wide range of

population genetics research. We then analyze the performance of tree sequence

recording that reduced runtime by over 100X in neutral simulations, and 24X

in non-neutral simulations. Next, we explain our initial implementation and

the optimizations we make to improve it by exploring the data structures for

storing the genealogical tree sequence. We then conclude with a discussion and

future work.

3 SLiM

A large portion of the work done in this thesis refers to a popular evolution-

ary framework known as SLiM. Here we give a quick description of the core

functionality as well as Eidos, the interpreted language used as input to the

framework.

3.1 Software Overview

Many evolutionary framework-based simulation packages have been created in

recent years. While impressive, many of these packages are limited in their

ability to model specific scenarios, which is often what researchers need to fit

the needs of their research. Commonly, if an evolutionary biologist would like

to create something original, they are required to be a competent programmer

in C/C++ to modify the source code, or simply build one from scratch [2].

SLiM 2 (Selection on Linked Mutations) is set apart in its flexibility and

ease of use. With a custom scripting language Eidos (A-dose) as input, the user

needs little to no programming experience to model complex dynamics such as

gene sweeps, lethal epistasis, and sympatric speciation.

SLiM was originally created as an extended Wright-Fisher model but has

recently extended to allow for non Wright-Fisher properties. The core function

3

of SLiM allows the user to set up subpopulations with any number of individ-

uals connected by migration to any other subpopulation. Populations can be

discrete, or continuous such that individuals have a spatial position in one, two

or three dimensions. The simulation life cycle of each generation is as follows.

First, generate offspring by: (1) choose parents based on cached fitness val-

ues, migration rates, and mate choice. (2) perform recombination of parental

genomes. (3) allow for mutation in offspring genomes (4) modify child by a

defined callback. Next, offspring become individuals before fitness is evaluated

for the next generation. Finally, the generation counter is incremented.

SLiM acts as an API for Eidos, where Eidos gives the user a toolset to ma-

nipulate the model with lack of constraint in the way that only a programming

language could achieve.

// s e t up a s imple neut ra l s imu la t i on
i n i t i a l i z e () {

i n i t i a l i z eMuta t i onRa t e (1 e−7);

// m1 mutation type : neu t ra l
i n i t i a l i z eMuta t i onType (”m1” , 0 . 5 , ” f ” , 0 . 0) ;

// g1 genomic element type : uses m1 f o r a l l mutations
in i t ia l i zeGenomicElementType (” g1 ” , m1, 1 . 0) ;

// uniform chromosome o f l ength 100
in i t i a l i z eGenomicE lement (g1 , 0 , 99999) ;
i n i t i a l i z eRecomb ina t i onRate (1 e−8);

}

// c r e a t e a populat ion o f 500 i n d i v i d u a l s
1 {

sim . addSubpop (”p1 ” , 500) ;
}

// output samples o f 10 genomes p e r i o d i c a l l y
1000 l a t e () { p1 . outputSample (1 0) ; }
2000 l a t e () { p1 . outputSample (1 0) ; }
2000 l a t e () { sim . outputFixedMutations () ; }

The above code is a simple example of the input to SLiM. This “recipe” will

run a neutral model for 2000 generations; It has 1 (p1) population containing

500 diploid individuals, a mutation rate3 of 10−7, recombination rate4 of 10−8

3Mean number of mutation events, for every position along the genome, each generation
4Mean number of recombination breakpoints for every position along the genome, each

generation

4

across a genome containing 100, 000 loci5 .

The code blocks allow the user to define functionality at any time throughout

the simulation, where time is measured in units of generations. Furthermore,

callbacks such as MateChoice(), Fitness(), ModifyChild() and more, allow the

user to redefine the default behavior for complex scenarios.

Under the hood, SLiM is written in C/C++ and is highly optimized. Using

an Object Oriented approach, the highest level class in the hierarchy is the

simulation. More conceptually separate ideas like populations or mutations

have their own classes. The modularity of the software made the organization

of our genealogical tree sequence recording implementation straightforward.

3.2 Eidos

Eidos is an interpreted language built specifically to fit the needs of SLiM and

its users. This makes Eidos very nice for things like pausing the simulation,

taking single generational steps, and many other features included with the

SLiM GUI. Eidos is dynamically typed, all operation are vectorized, and many

of the built-in functions were made to emulate R. There are side effects and the

functions are not higher-order. The language is recursively parsed and types

are inferred except for function definitions, in which parameter types can be

specified. If the user would like type checking of functions to be inferred at

runtime, the user can substitute “ * ” for the parameter or return types.

This language was made to be approachable by biologists with little pro-

gramming experience, yet is familiar to an experienced programmer. To give

you an example of Eidos, here is a function defined to take in a vector of integers

and return a boolean vector indicating which respective numbers are prime.

> f unc t i on (l) i sPr ime (i nums){
l o g i c a lR e t = NULL;
f o r (n in nums){

mods = n % (2 : c e i l (s q r t (n))) ;
numZeros = s i z e (mods [mods == 0]) ;
l o g i c a lR e t = c (l og i c a lRe t , numZeros==0 | n==2) ;
}

re turn l o g i c a lR e t ;
}

> i sPr ime (c (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13))

F T T F T F T F F F T F T

5abstraction of a position along the genome

5

This being a case study in improving SLiM, it should be noted that the

nature of the interpreter makes SLiM quite difficult to parallelize. However, it

is not uncommon for research to be conducted using a slew of small simulations

which can all be run in parallel, thus, there is an argument for each simulation

to run on a single thread. There is an ongoing discussion about expressiveness

vs. efficiency in the future of Eidos.

4 TreeSeq

Genealogical tree sequence recording (TreeSeq, in the SLiM manual) is a strat-

egy for efficiently recording the genealogical history from forward-moving sim-

ulations [4]. This history, called the embellished pedigree is represented by the

forest of trees relating all sampled individuals to each other over every genomic

interval. TreeSeq uses a collection of tabular data structures to encode this

history (called a succinct tree sequence), which was introduced for use in the

coalescent simulator msprime [3]. Using TreeSeq, simulations in SLiM can

avoid the cost of tracking and propagating neutral mutations as a by-product

of obtaining the origins of all sampled genotypes.

4.1 Genealogical Tree Sequence Recording

One of the most computationally expensive tasks in evolutionary simulations, is

the tracking of mutations in individuals. However, in 1989 Motoo Kimura sug-

gested neutral theory which asserted that the majority of evolutionary polymor-

phisms6 were not due to Darwinian selection, but random fixation of selectively

neutral alleles [5]. Neutral mutations are changes in the DNA which are nei-

ther beneficial nor deleterious to the individual who possesses them. Therefore,

they have no impact on the population process determining the outcome of the

simulations. This was the key idea behind genealogical tree sequence record-

ing. After all, if population genetics are often only interested in exploring the

history resulting in a specific sample of genotypes7, why trouble the expense of

simulating neutral mutations for every genome throughout the simulation run.

Rather, if we knew the genealogical histories resulting in the genotypes we care

about, we could simulate neutral mutations for only the individuals belonging

to that specific history. Earlier this year, a strategy of efficient genealogical tree

6Genetic variation resulting from several different genotypes existing in a population, such
as eye or hair color

7the mutation state of all positions along the genome

6

sequence recording was introduced which would allow simulations to track the

history of samples genotypes and avoid simulating neutral mutations through-

out the run. This strategy was made possible by recording and simplifying

the embellished pedigree in a set of table data structures called succinct tree

sequences introduced by msprime [3].

An embellished pedigree is defined as — the complete history of parent-

offspring relationships of an entire population going back to a remote time and

the genetic outcomes of each ancestral meiosis [4]. The embellished pedigree is

not to be confused with a vanilla pedigree which simply records all parent-child

relationships. The process of recombination during meiosis gives the offspring

a re-assortment of the parental genomes, meaning an individuals ancestry is

not simply defined by the parents of that individual. Rather, many segments

of DNA across an individuals genome have separate origins, each derived from

their respective genealogical history. Recording this history results in a series

of gene trees representing the relation of all individuals, at any position across

the genome. Given the embellished pedigree output from a simulation post -

run, the neutral mutations can be simulated (laid) over the trees such that the

result is statistically identical to simulating the mutations throughout.

We are able to prune the embellished pedigree simply because gene trees only

need represent a coalescent event, which is where two or more DNA segments

have a common ancestor. Consequently, many nodes that exist in the pedigree

that do not act as a common ancestor to extant genotypes can be removed.

When the tree is simplified to include only the genealogical histories of sampled

individuals, laying the neutral mutations over the trees comes at a fraction of

the computational cost compared to simulating neutral mutations throughout.

The first implementation into fwdpp, showed that this strategy can reduce the

runtime of the simulations by one to two orders of magnitude [4].

Here, we periodically measure the size of the embellished pedigree data struc-

tures and prune at intervals which are dynamically determined by the ratio of

the table size before and after the previous simplifications. Without pruning the

succinct tree sequences, simulating and laying the neutral mutations over the

trees has no performance gain, and the data structures which store the pedigree

would grow past the current capacity for RAM in even modest sized simulations.

7

(a) Unsimplified.

(b) Simplified

Figure 1: The above shows an example a of single gene tree within the em-
bellished pedigree of a population simulated in a SLiM non-Wright Fischer
model, defined on the interval [0,52859). The tree was build and printed by
the msprime succinct tree sequence Python API. Tree (a) was simplified to
represent the genealogical histories of all extant individuals which resulted in
tree (b). With possibly hundreds of thousands of these trees defined on separate
gene segments, it should be clear that the number of neutral mutations needed
to be simulated without simplification is much greater than after.

8

4.2 Succinct Tree Sequence Data Structures in msprime

The simplification and storage of the embellished pedigree was made possible

by succinct tree sequences, introduced by msprime [3]. These data structures

store the correlated histories between sets of sampled individuals and are close to

optimal in terms of algorithmic complexity and space. Succinct tree sequences

are crucial for the genealogical tree sequencing strategy because they allow us

to efficiently insert information, simplify, and reconstruct gene trees. For the

purposes of the implementation in SLiM, we use four primary tables.

(1) The Node table, in which each row represents a single genome within a

diploid individual. The information stored in this table is primarily the birth

time of the genome as well as the population ID to which the individual belongs.

Conceptually, this table is needed for the reference of parent-child relationships

when inherited genomic intervals are recorded in the Edge table. Keeping the

ID of the individual equivalent to its’ index in the table allows for quick access

of individual for sorting, simplifying, and building tree sequences.

(2) The Edge table is used to store each genomic interval [left, right), where

left and right are genomic locations of two breakpoints. In addition, it needs

to store the parental genome who passed each interval down, and the offspring

who inherited it. Because there is often quite a bit of overlap between trees

defined on intervals which are close in proximity along the genome, keeping the

edges separate from the individuals (and the IDs of nodes mutable by index)

allows correlated trees within the embellished pedigree to share edges.

Given the Node and Edges tables, we can reconstruct a gene tree at any

given location, X, along the genome. This is because edges record the intervals

at which a genome inherits from an ancestor, so we can simply use all edges,

and their respective nodes, such that X ∈ [left : right) to rebuild the tree at

that location.

(3 and 4) Optionally, the Mutation and Sites tables are then used to record

any non-neutral mutations that are being tracked so that the origin of those

mutations are recorded within the succinct tree sequence. This will efficiently

give us the genotype8 information for any node in the tree. The Site table

includes the position and the ancestral state so that if no mutation occurs at

that location further down the lineage, all nodes will inherit that state. The

Mutation table then records the derived state, the site, and the first node to

have that mutation. Then, all nodes in the subtree below that node will inherit

8the mutation state of all positions along the genome

9

the same mutation at that position unless another mutation occurs.

The pruning algorithm which simplifies the trees can be vaguely described

through a simple “paint pot” explanation. (1) paint each sample genome a

unique color, follow each lineage back in time, giving the intervals inherited

from each parent the respective color. (2) Whenever two colors merge in the

same spot on an ancestor, record a coalescence and (3) paint the overlapped

colors an entirely new color before continuing [4]. This is quite oversimplified

and does not include all details and edge cases, but explains the core properties

of the algorithm.

5 Analysis

For an analysis of our implementation, we will look at the comparison of ge-

nealogical tree sequence recording in contrast to simulating neutral mutations.

We use runtime as our primary performance measure but also look at memory

usage. In two separate model types, we observed large performance gains. In

trivial model comparisons, genealogical tree sequence recording reduced run-

times by approximately two orders of magnitude. For more realistic model

comparisons, we observed 24X speedup.

For all simulations with tree sequence recording, we retroactively laid neutral

mutations over the trees at the same mutation rate using msprime. We then

added the time it took to the runtime of the simulations. This was to ensure

all simulations produced statistically equivalent results.

5.1 Neutral Model Benchmark Simulations

First, we compare trivial models in which all mutations are neutral. This gives

us a baseline of the performance difference between the two strategies as tracking

mutations is the heaviest consumer of the computation time. The neutral model

also allows us to compare our simulations to a coalescent in msprime, given that

they do not violate the Markovian process9 A fixed mutation and recombination

rate allow for us to compare the models as their magnitude is scaled by the length

of the chromosome from 105 to 1010. The models have 500 diploid10 individuals

(so N=Ne=1000 in msprime), mutation rate of 10−7 (or 0, when doing TreeSeq),

9the conditional probability distribution of future states of the process (conditional on both
past and present states) depends only upon the present state, not on the sequence of events
that preceded it.

10having two sets of homologous chromosomes

10

and a recombination rate of 10−8. All simulations were run for 5000 generations

and the size of the genome was scaled to increase the total amount of work.

In Figure 2, we can see that the genealogical tree sequence recording has

no performance gain until the length of the chromosome reaches 107. After

approaching realistic size genomes 108, we start to see pedigree run just un-

der two orders of magnitude faster compared to simulating neutral mutations

throughout. Unexpectedly, at 1010 scaled chromosome lengths, the forward-

moving simulation runtime was less than its coalescent counterpart’s runtime

for all sample sizes. It is unclear whether this is a result of the nature of the

simulations or simply a difference in the implementations.

chromosome length

tim
e

(s
ec

on
ds

)

105 106 107 108 109 1010

10
−1

10
0

10
10
2
10
3
10
4
10
5

SLiM (extrapolated)
SLiM treeSeq
SLiM treeSeq (pre-overlay)
msprime coalescent (n = N)
msprime coalescent (n = N /10)
msprime coalescent (n = N /100)

Figure 2: Total runtime as a function of chromosome length in each simula-
tion. This chart shows SLiM tracking neutral mutations (Blue), SLiM with
genealogical tree sequence recording (Green), and msprime coalescent (Red)
with different sample sizes. Plotted on a log scale we can see the scalability of
the genealogical tree sequence recording strategy as it reduces runtime by over
two orders of magnitude for realistic size genomes.

11

5.2 Non-Neutral Benchmark Simulations

Next, we reproduce the simulation benchmarks done with the simulation frame-

works fwdpp in [4]. These models represent how more realistic forward-moving

simulations behave under selection. Thousands of deleterious11 mutations are

introduced and acted upon by selection. As selected mutations impact the out-

come of the simulation, TreeSeq must track them throughout the simulation

run for every genome that carries a deleterious mutation type. Therefore, all

time savings from TreeSeq come directly from not tracking neutral mutations

throughout. Furthermore, the selection on multiple mutations is a violation of

the exchangeability assumptions of the coalescent, meaning regressive simula-

tions cannot recreate this model and the trees they create are novel.

Each simulation was a Wright-Fisher model with N individuals and ran for

a total of 10N generations. ρ is an estimation of the total amount of work

to be done in the simulation as it represents twice the number recombination

events per generation. The size (ρ) of the simulations was increased over two

separate values of N to observe the scalability of this strategy. recombination

and mutation rates were each set to ρ/4N/108, where 108 was the total number

of loci12 per genome. The number of new mutations and breakpoints13 per

diploid, per generation, were equivalent.

As can be seen in Figure 3, pedigree recording on non-neutral models reduced

runtimes dramatically. With ρ = 105, for both sizes of N , we saw 10-fold time

savings. The largest savings were seen at parameter valuesN = 103 and ρ = 105,

where tracking neutral mutations ran in 8230.91 seconds and TreeSeq only took

354.78 second resulting in a 23.2X speedup. At N = 104 and ρ = 105, tracking

neutral mutations ran in 8230.91 seconds in comparison to TreeSeq which only

took 354.78 seconds, giving a 14.17X speedup.

For smaller simulations, TreeSeq took a larger amount of memory when com-

pared to tracking neutral mutations. This is relatively unsurprising when you

consider that we’re tracking the simplified genealogical history of all individu-

als throughout the simulation. Impressively, as seen in Figure 4, we observed

memory savings at larger parameter values. This illustrates that tracking the

accumulation of neutral mutations in large population sizes becomes more of a

burden on RAM compared to storing the genotype origins. For N = 104 and

11mutations which are harmful to an individuals fitness
12abstraction of a position along the genome
13a breakpoint is the position on the chromosome that breaks during meiosis before recom-

bining with its homologous chromosome

12

Figure 3: Total runtime as a function of ρ = 4Nr, where r is the effective
recombination rate. All simulations were run with two different values of popu-
lation size (N) to observe scaling of number of individuals. On the left we can
see the runtimes for SLiM tracking all neutral mutations and not recording the
genealogical tree sequence. The dashed pink and light blue were run with the
stable release version of SLiM 2.6. On the right, we show the same simulations
run with genealogical tree sequence recording and laying neutral mutations over
the trees retroactively. Here, dashed pink and light blue represent genealogical
tree sequence recording with the [recordmutations = F] option.

ρ = 105, tracking neutral mutations had nearly twice the resident size in KB.

It’s important to note the speed-memory tradeoff that is made when decid-

ing how often to simplify the tables. If the user were to simplify the tables very

frequently, the implementation would require less memory due to the smaller

average size of tables, yet it would run slower because of the computation re-

quired in simplification. Alternatively, infrequent simplification would cause the

tables to grow large and require more memory. Here, we measure the ratio of

the tables before and after each simplification to determine when to simplify

next. By default, the ratio is set to 10; meaning we adjust the simplification

interval such that the size of the tables after simplification is ≈ 1/10th of the

13

Figure 4: Total memory (maximum resident set size in KB) as a function of
ρ = 4Nr, where r is the effective recombination rate. All simulations were run
with two different values of population size (N) to observe scaling of num-
ber of individuals. On the left we can see the memory for SLiM tracking
all neutral mutations and not recording the genealogical tree sequence. The
dashed pink and light blue were run with the stable release version of SLiM
2.6. On the right, we show the same simulations run with genealogical tree
sequence recording and retroactively laying neutral mutations over the trees.
Here, dashed pink and light blue represent genealogical tree sequence recording
with the [recordMutations = F] option.

table sizes before simplification.

The TreeSeq implementation optionally includes the ability to record muta-

tions ([recordMutations = T]) in the sites and mutations tables as part of the

succinct tree sequence. For all TreeSeq simulations, the difference in runtime

using this feature was trivial. This is exciting because tracking the selected

mutations in the gene trees gives us insight into the origins of genotypes and

tree dynamics under the influence of evolutionary forces.

14

6 SLiM TreeSeq Implementation

Conceptually, this implementation uses the conjunction of SLiM and msprime

to easily allow the investigation of a large number of dynamics surrounding

gene trees generated through large, forward-moving simulations with a very

straitforward workflow: (1) Create any model which you would like to study in

SLiM and simply flip a switch in the initialize block which tells SLiM to record

the embellished pedigree — keeping in mind the model does not need to include

neutral mutations, which allows much less strict constraints on the magnitude

of simulations. (2) Import the tables file generated by SLiM, and load it into

the msprime Python API to gain access to a large number of analysis tools.

More Specifically, the user is simply able to add a single line of code to their

SLiM model with the following function signature:

(void) i n i t i a l i z eT r e e S e q (
[l o g i c a l $ recordMutat ions = T] ,
[f l o a t $ s imp l i f i c a t i o nRa t i o = 10] ,
[l o g i c a l $ checkCoalescence = F] ,
[l o g i c a l $ runCrossChecks = F]) ;

This tells SLiM to record the embellished pedigree into the succinct tree se-

quence, as well as periodically simplify on samples and extant individuals through-

out the simulation run. When the user would like to access the tables for anal-

ysis, they can then simply add

(void) sim . treeSeqOutput (
s t r i n g $ path ,
[l o g i c a l $ s imp l i f y = T]) ;

to write the tables file either in text or binary at any given generation. The

tables file, compatible with msprime python API allows the user to easily lay

neutral mutations over the trees, compute statistics, or even run a coalescent

simulation on top of the trees to complete the history.

6.1 Pseudo Code

Here, we will describe the initial proof-of-concept implementation. This de-

scribes what was done initially to record the genealogical history (Nodes and

Edges) from the internal source code of SLiM into the tables code found in

msprime. the C code was isolated into it’s own API so that we could compile

it with SLiM. The following are the core function signatures called from within

SLiM.

15

1: procedure nodeTableAddRow

2: Self← Reference to NodeTable being added to

3: Time← Generation that the Genome was born

4: Population← Reference to subpopulation genome was born in

5: procedure edgeTableAddRow

6: Self← Reference to EdgeTable being added to

7: Left← Left hand side of Genomic Interval, closed

8: Right← Right hand side of Genomic Interval, open

9: Parent← msprime Node id (index) of Parent Node

10: Child← msprime Node id (index) of Offspring Node

11: procedure sortTables

12: Nodes← Reference to NodeTable

13: Edges← Reference to EdgeTable

14: procedure simplifyTables

15: Nodes← Reference to NodeTable

16: Edges← Reference to EdgeTable

To record the embellished pedigree, we needed to record all new genomes be-

ing generated, as well as the parent-child relationships of each genomic interval

being passed down. In terms of the code that needed to be added, we needed

(1) a method that was called (In Eidos) when the user initialized tree recording

(2) a method that was called for each recombination event (twice directly after

each individual was created), giving us a vector of all breakpoints. (3) a method

to simplify the tables against the set of all extant individuals and samples. (4)

a method that was called (In Eidos) when the user wants to write out the tree

sequences.

When recording a node and it’s respective edges, conceptually, we are record-

ing the result of a meioses event in which gametes 14 produce germ cells 15 Each

individual in the SLiM simulation has a unique ID and each individual has two

genomes. Consequently, to keep an original genome ID with reference to the

individual who possesses it, we decided to follow the heuristic

individual.genome1.id = individual.id * 2, and,

individual.genome2.id = individual.id * 2 + 1.

14sex cells
15a cell containing one genome to be recombined with a germ cell of the opposite sex

containing the homologous set of chromosomes, such as a sperm or an egg

16

Algorithm 1 Genealogical Tree Sequence Recording

1: #include msprime as msp
2: memberNodeTable
3: memberEdgeTable
4: memberMspidMAP
5: procedure RecordNewGenome
6: breakpoints← vector of genomic intervals inherited from each parent
7: parent← pointer to parental individual
8: top:
9: time← −1 ∗ currentGeneration

10: offSpringMSPID← msp.nodeTableAddRow(NodeTable, time, newGenome)
11: newGenome.MSPID← offspringMSPID
12: genome1MSPID← MspidMAP[parent.pedigreeID ∗ 2]
13: genome2MSPID← MspidMAP[genome1MSPID + 1]
14: left← 0.0
15: polarity← TRUE
16: for k = 0, k++, while k < breakpoints.size()

17: right← breakpoints[k]
18: parent← polarity ? genome1MSPID : genome2MSPID
19: msp.edgeTableAddRow(left, right, parent, offspringMSPID)
20: left← right
21: polarity← ! polarity

22: right← chromosome.lastPosition + 1
23: parent← polarity ? genome1MSPID : genome2MSPID
24: msp.EdgeTableAddRow(left, right, parent, offspringMSPID)

25: procedure Simplify
26: top:
27: Samples← []
28: newMap← [:]
29: newGenomeMSPID← 0
30: for ind in extantIndividuals:
31: g1← ind.pedigreeID ∗ 2
32: g2← g1 + 1
33: Samples.append(MspidMap[g1])
34: Samples.append(MspidMap[g2])
35: MspidMap[g1]← newGenomeMSPID++
36: MspidMap[g2]← newGenomeMSPID++

37: msp.sortTables(Nodes,Edges)
38: msp.simplifyTables(Nodes,Edges)
39: MspidMap = newMap

17

Given this information, the implementation just needed to loop through the

breakpoints and give the correct nodes and edges to the msprime API so it

could record the data. Once the correct information from the simulation was

recorded into the tables, we needed to periodically simplify the tables so they

don’t grow too big.

SLiM individual ID’s were fixed and generated sequentially throughout the

simulation. In contrast, msprime node IDs are dynamically kept as their index

into the tables. One complication with this was referencing parent-child rela-

tionships when adding edges. Up to the first simplification, these IDs would be

identical. However, one consequence of the simplification algorithm was that all

sampled individuals which were being simplified against would be moved to the

top of the table, changing their respective ID in msprime. consequently, we had

to map SLiM IDs to msprime node IDs for each simplification. In Algorithm 1,

we can see the pseudo-code for (2) RecordNewGenome and (3) Simplify.

6.2 Algorithm and Data Structure Improvements

A bottleneck for our implementation was the mapping of genome IDs in SLiM

to node IDs in the msprime tables code. In certain simulations, the re-mapping

insertion and key-value searches could take up 40% of the entire simulation

runtime. The consistent use of the map was due to genomic intervals (edges)

being recorded to the edge table. Each edge needs access to the msprime id of

the parent passing down that value.

Our initial map was implemented as a red-black tree where each internal node

was a unique key (SLiM Genome ID) containing its respective value (msprime

node). This data structure is similar to a binary search tree, providing an

ordered representation of the data it holds. Balancing the tree through a method

of subtree rotations at time of insertion guarantees that the height of the tree

will remain 2 log2 n+ 1 given n nodes in the tree. As a result of this tree height,

each search and insertion into the map was completed in O(log n) time where n

was the existing number of entries into the tree.

For every simplification, we needed two entries per individual into the map,

Then for every genome recorded afterward, we needed two additional searches

into the map. This resulted in a time complexity of O(n log n) yet a large

constant from heavy use make it very inefficient. Ordered data structures like

this tend to be more efficient when there are fewer entries in the table. In our

case, large simulations could lead to potentially hundreds of thousands of entries

18

into the tables.

Fortunately, the use of an ordered data structure was not necessary for our

implementation. So our first step to optimizing this bottleneck was to replace

the red-black tree with a hash table. A hash table can be thought of as an array

of ’buckets’, each having a unique hash value representing the ’hash’ of a range

of the keys inserted into the tables. Each bucket is essentially a linked list data

structure which contains the key-value pairs.

To add a key-value pair to the table simply apply the hash function to the

key, index to the respective hash bucket, and insert the value at the end of the

table. a search for the key-value is then a similar process of hashing the key and

doing a linear search through the bucket until the value is found. The amortized

complexity of search, insert, and removal, is O(1).

This method of using an unordered map allowed for a significant increase

in speed. Using the ρ benchmark model as a comparison between the two data

structure implementations, we found that using an unordered map sped up the

initial a genealogical tree sequence recording simulation by 20%.

Initially, our use of these data structures was to try and keep the implemen-

tation from messing with SLiM’s core code. However, keeping a reference to the

msprime node ID directly with the genome objects, would eliminate the need for

an external data structure. Furthermore, we were already doing the necessary

computations to reassign these values in SimplifyTables(). Keeping reference

directly with the genome objects resulted in some non-trivial time savings as

well as simplifying the code

Below we show a table of the run times for each implementation using the

same simulations seen in Figure 3 for the non-neutral, genealogical tree sequence

recording model at parameter values N = 104 and ρ = 104. We compare the

runtimes of an ordered map, unordered map, and keeping the reference directly

with the genome objects.

Runtime Performance Gain

Implimentation runtime

(seconds)

speedup from

Neutral

speedup from

Initial

Neutral Muts 9942.8 – –

Red-Black 2593.5 3.84X –

Hash 2091.4 5.75X 1.24X

Reference 1549.0 6.418X 1.67X

19

7 Conclusions and Future Work

This paper covers the basics of genealogical tree sequence recording and the

core of its implementation SLiM. We have shown that this method results in

large performance in gains in runtime and even memory after at large param-

eter values. Additionally, we have conveyed how genealogical tree sequence

recording opens the door to a wide range of theoretical population genetics re-

search surrounding gene trees through the use of forward-moving evolutionary

simulations. We have shown how the general public can make use of this imple-

mentation and the core of it’s implementation. Finally, we have explored the

optimizations that make this strategy even faster.

It should be noted that the remaining bottleneck in out implementation lies

with having to sort the tables before each simplification. Given the nature of

the tables and the algorithm for recording/simplifying them, a (possibly large)

portion of the edge table remains sorted between simplification intervals. The

portion of the tables up to the oldest individual in the last simplification does

not need to be re-sorted as the individuals cannot possibly be parents to the

generation of offspring following simplification. This implies that we could po-

tentially save computation by sorting only the necessary portions of the tables.

Unfortunately, the implementation of the tables API was created for regressive

simulations, meaning the order the tables are sorted in makes this optimization

much less trivial, but not impossible.

This paper highlights the most fundamental aspects of implementing tree

sequence recording. In contrast, it fails to explore the detail and complexity

of the actual code put into SLiM that will be available to the public. Peter

Ralph, Ben Haller, and Jerome Keller and I have put a large amount of work

into testing, extending user features, optimizations, and making genealogical

tree sequence recording receptive to the flexibility of SLiM.

20

References

[1] John h Gillespie. Population genetics : A concise guide, volume 2. The

Johns Hopkins University Press, 2004.

[2] Benjamin C. Haller and Philipp W. Messer. SLiM 2: Flexible, interactive

forward genetic simulations. Molecular Biology and Evolution, 34(1):230–

240, 2017.

[3] Jerome Kelleher, Alison M Etheridge, and Gilean McVean. Efficient coa-

lescent simulation and genealogical analysis for large sample sizes. PLOS

Computational Biology, 12(5):1–22, 05 2016.

[4] Jerome Kelleher, Kevin Thornton, Jaime Ashander, and Peter Ralph. Ef-

ficient pedigree recording for fast population genetics simulation. bioRxiv,

2018.

[5] Motoo Kimura. The neutral theory of molecular evolution and the world

view of the neutralists. Genome, 31(1):24–31, 1989. PMID: 2687096.

[6] Gordon Luikart, Phillip R. England, David Tallmon, Steve Jordan, and

Pierre Taberlet. The power and promise of population genomics: From

genotyping to genome typing. Nature Reviews Genetics, 4:981 EP –, Dec

2003.

[7] Hoban Sean. An overview of the utility of population simulation software in

molecular ecology. Molecular Ecology, 23(10):2383–2401, 2014.

[8] Kevin R. Thornton. A c++ template library for efficient forward-time pop-

ulation genetic simulation of large populations. Genetics, 198(1):157–166,

2014.

21

8 Code for Examples and Figures

Here, we provide the code for all simulations run in analysis section, the opti-

mized code from the improved data structures, and the msprime code used to

read in tree files. Additional bash scripts, raw data, and msprime python code

can be found at https://github.com/jgallowa07/SLiM_TSBenchmarks The

source code for this paper can be found at https://github.com/jgallowa07/

UndergraduateThesis

22

https://github.com/jgallowa07/SLiM_TSBenchmarks
https://github.com/jgallowa07/UndergraduateThesis
https://github.com/jgallowa07/UndergraduateThesis

8.1 Algorithm with Optimizations

Algorithm 2 Genealogical Tree Sequence Recording Algorithm

1: memberNodeTable
2: memberEdgeTable
3: procedure RecordNewGenome
4: breakpoints← vector of genomic intervals inherited from each parent
5: newGenome← a pointer to the genome object being created
6: parent1← pointer to initial parental genome
7: parent2← pointer to second parental genome
8: top:
9: time← −1 ∗ currentGeneration

10: offSpringMSPID← nodeTableAddRow(NodeTable, time, newGenome)
11: newGenome.MSPID← offspringMSPID
12: genome1MSPID← parent1.MSPID
13: genome2 MSPID← (!parent2) ? genome1MSPID : parent2.MSPID
14: left← 0.0
15: polarity← TRUE
16: for k = 0, k++, while k < breakpoints.size()

17: right← breakpoints[k]
18: parent← polarity ? genome1MSPID : genome2MSPID
19: edgeTableAddRow(left, right, parent, offspringMSPID)
20: left← right
21: polarity← ! polarity

22: right← chromosome.lastPosition + 1
23: parent← polarity ? genome1MSPID : genome2MSPID
24: EdgeTableAddRow(left, right, parent, offspringMSPID)

25: procedure Simplify
26: top:
27: Samples← []
28: newGenomeMSPID← 0
29: for g in extantGenomes:

30: Samples.append(g.MSPID)
31: g.MSPID← newGenomeMSPID++

32: sortTables(Nodes,Edges)
33: simplifyTables(Nodes,Edges)

23

8.2 Recipe for Figure 1

i n i t i a l i z e (){
se tSeed (1523562691046) ;
in i t ia l i zeSLiMModelType (”nonWF”) ;
i n i t i a l i z eT r e e S e q (runCrosschecks=T) ;
de f ineConstant (”K” , 5) ;
i n i t i a l i z eMuta t i onType (”m1” , 0 . 5 , ” f ” , 0 . 0) ;
m1. conver tToSubst i tut ion = T;
in i t ia l i zeGenomicElementType (” g1 ” , m1, 1 . 0) ;
in i t i a l i z eGenomicE lement (g1 , 0 , 99999) ;
i n i t i a l i z eMuta t i onRa t e (1 e−7);
i n i t i a l i z eRecomb ina t i onRate (1 e−8);

}
r eproduct ion ()
{

subpop . addCrossed (ind iv idua l , subpop . sample Ind iv idua l s (1)) ;
r e turn NULL;

}
1 ea r l y ()
{

sim . addSubpop (”p1 ” , 5) ;
}
e a r l y ()
{

p1 . f i t n e s s S c a l i n g = K / p1 . ind iv idua lCount ;
}
10 l a t e ()
{

sim . treeSeqOutput (”˜/Documents/UndergraduateThesis / \
Uns impl i f i edTable /” , b inary = F, s imp l i f y = F) ;

sim . treeSeqOutput (”˜/Documents/UndergraduateThesis / \
S imp l i f i edTab l e /” , b inary = F, s imp l i f y = T) ;

sim . s imu la t i onF in i shed () ;

}

24

8.3 msprime code tree printing

from t e s t u t i l s import ∗
import sys
import i o
#/Users / ja redga l l oway /Documents/UndergraduateThesis /Uns impl i f i edTable
nodes U = open (”/ Uns impl i f i edTable /NodeTable . txt ” ,” r ”)
edges U = open (”/ Uns impl i f i edTable /EdgeTable . txt ” ,” r ”)
mutations U = open (”/ Uns impl i f i edTable /MutationTable . txt ” ,” r ”)
s i t e s U = open (” Uns impl i f i edTable / S i teTable . txt ” ,” r ”)

nodes S = open (”/ S imp l i f i edTab l e /NodeTable . txt ” ,” r ”)
edges S = open (”/ S imp l i f i edTab l e /EdgeTable . txt ” ,” r ”)
mutations S = open (”/ S imp l i f i edTab l e /MutationTable . txt ” ,” r ”)
s i t e s S = open (”/ S imp l i f i edTab l e / S i teTab le . txt ” ,” r ”)

#Nodes = msprime . par se nodes (nodes U , base64 metadata=False)

tr U = msprime . l o ad t ex t (nodes=nodes U , edges=edges U ,
s i t e s=s i t e s U , mutations=mutations U ,
base64 metadata=False)

t r S = msprime . l o ad t ex t (nodes=nodes S , edges=edges S ,
s i t e s=s i t e s S , mutations=mutations S ,
base64 metadata=False)

#pr in t (type (t r))
un s imp l i f i e d = tr U . t r e e s ()
s imp l i f i e d = t r S . t r e e s ()

f o r i in un s imp l i f i e d :
p r i n t (i . draw (format=”unicode ”))
p r i n t (i . i n t e r v a l)

f o r i in s imp l i f i e d :
p r i n t (i . draw (format=”unicode ”))
p r i n t (i . i n t e r v a l)

25

8.4 Recipes for Neutral Simulations

i n i t i a l i z e () {
catn (” Seed == ” + getSeed ()) ;
catn (”L == ” + Lstr) ;
catn (”OUTFILE == ” + OUTFILE) ;
catn () ;

de f ineConstant (”L” , a s In t e g e r (Lstr)) ;

i n i t i a l i z eMuta t i onRa t e (1 e−7);
i n i t i a l i z eMuta t i onType (”m1” , 0 . 5 , ” f ” , 0 . 0) ;
in i t ia l i zeGenomicElementType (” g1 ” , m1, 1 . 0) ;
in i t i a l i z eGenomicE lement (g1 , 0 , L−1);
i n i t i a l i z eRecomb ina t i onRate (1 e−8);

}
1 {

sim . addSubpop (”p1 ” , 500) ;
}
5000 l a t e () {

sim . outputFul l (” . / output/”+OUTFILE, binary=T) ;
}

8.5 Recipes for Non-Neutral Simulations

//−−−−−−−−−neut ra l models−−−−−−−−−
i n i t i a l i z e () {

N = n ind ;
rho = s i z e r h o ;
numLoci = 1e8 ;
r = rho / (4∗N) ;
mutat ion recombinat ion Rate = r / numLoci ;
de f ineConstant (”NumInd” ,N) ;
i n i t i a l i z eMuta t i onRa t e (mutat ion recombinat ion Rate) ;
//Neutral Mutations
in i t i a l i z eMuta t i onType (”m1” , 0 . 5 , ” f ” , 0 . 0) ;
// De l e t e r i ou s Mutations
in i t i a l i z eMuta t i onType (”m2” , 0 . 5 , ”g ” , −5 / (2∗N) , 1 . 0) ;
in i t ia l i zeGenomicElementType (” g1 ” , c (m1,m2) , c (9 9 . 0 , 1 . 0)) ;
in i t i a l i z eGenomicE lement (g1 , 0 , numLoci−1);
i n i t i a l i z eRecomb ina t i onRate (mutat ion recombinat ion Rate) ;

}
1 l a t e () { sim . addSubpop (”p1 ” , NumInd) ;

timeToRun = 10 ∗ NumInd ;
sim . r e s chedu l eSc r i p tB lo ck (s1 , timeToRun , timeToRun) ;

}
s1 10000 l a t e () {

catn (” Simulat ion Fin i shed ”) ;
sim . s imu la t i onF in i shed () ;

}

26

// −−−−−−−−−t r eeSeq Models−−−−−−−−−−−−

i n i t i a l i z e () {
i n i t i a l i z eT r e e S e q () ;
N = n ind ;
rho = s i z e r h o ;
numLoci = 1e8 ;
r = rho / (4∗N) ;
mutat ion recombinat ion Rate = r / numLoci ;
de f ineConstant (”NumInd” ,N) ;
i n i t i a l i z eMuta t i onRa t e (mutat ion recombinat ion Rate / 100) ;
// De l e t e r i ou s Mutations (only)
i n i t i a l i z eMuta t i onType (”m1” , 0 . 5 , ”g ” , −5 / (2∗N) , 1 . 0) ;
in i t ia l i zeGenomicElementType (” g1 ” ,m1, 1 . 0) ;
in i t i a l i z eGenomicE lement (g1 , 0 , numLoci−1);
i n i t i a l i z eRecomb ina t i onRate (mutat ion recombinat ion Rate) ;

}
1 l a t e () {

sim . addSubpop (”p1 ” , NumInd) ;
timeToRun = 10 ∗ NumInd ;
sim . r e s chedu l eSc r i p tB lo ck (s1 , timeToRun , timeToRun) ;

}
s1 10000 l a t e () {

t a b l e s f i l e s t r i n g = asS t r i ng (n ind) + ” ” + \
a sS t r i ng (s i z e r h o) + ”Tables ” ;

sim . treeSeqOutput (”˜/Documents/ \
SLiM TSBenchmarks/Bench/Tables /” + t a b l e s f i l e s t r i n g) ;

catn (” Simulat ion Fin i shed ”) ;
sim . s imu la t i onF in i shed () ;

}

27

	Abstract
	Introduction
	SLiM
	Software Overview
	Eidos

	TreeSeq
	Genealogical Tree Sequence Recording
	Succinct Tree Sequence Data Structures in msprime

	Analysis
	Neutral Model Benchmark Simulations
	Non-Neutral Benchmark Simulations

	SLiM TreeSeq Implementation
	Pseudo Code
	Algorithm and Data Structure Improvements

	Conclusions and Future Work
	Code for Examples and Figures
	Algorithm with Optimizations
	Recipe for Figure 1
	msprime code tree printing
	Recipes for Neutral Simulations
	Recipes for Non-Neutral Simulations

