
An Empirical Study of OpenStack++ in edge computing

Xin(Adam) Chen

University of Oregon
achen@uoregon.edu

Abstract

The emergence of cloud computing leads the variety of computer branches and technologies. As a
branch of cloud computing, edge computing is a distributed computing diagram which allows
edge devices as edge nodes to provide computation. To achieve this, the OpenStack++, as known
as cloudlet, is introduced to represent a new architectural element in the 3-tier hierarchy: device
- cloudlet - cloud. This empirical study will briefly introduce the OpenStack++, including the
code structure, implementation, and features. Then, the thesis will examine the performance of
OpenStack++ and compare it with Amazon EC2 instances and Microsoft Azure Virtual Machines.

I. Introduction

OpenStack++ is developed by Elijah project at
Carnegie Mellon University from 2012 to 2017.
It is built based on 4 different Github reposito-
ries: Elijah-OpenStack, Elijah-provisioning, Elijah-
QEMU, Elijah-discovery-basic. It was success-
fully implemented and it leads the develop-
ment of more practical applications. This thesis
mainly focus on Elijah-OpenStack, which inte-
grates cloudlet functionality and provides cus-
tomized graphical user interface in the Open-
Stack [1].

i. OpenStack++ features

The important attribute of OpenStack++ is that
it only has the soft state. It does not have any
hard state. The avoidance of hard state means
that each cloudlet adds close to zero manage-
ment burden after installation: it is entirely
self-managing [2]. To support the soft state in
OpenStack++, it has the following features.

Import Base VM. This feature allows devel-
opers to import VM images to OpenStack++.
The VM doesn’t have to be running a Linux dis-
tribution. It even could be a Windows 7/10 VM
that users use as virtual desktops. Certainly,
users can import a customized VM which in-
cludes all the libraries and packages. However,

due to OpenStack++ uses modified QEMU fo
visulization, before importing, the VM image
should be obtained by using the export-base
command of clouldet via terminal.

Resume VM. After importing the base VM,
this feature allows initializing a VM instance
from the base VM. It will restore the state
from the memory snapshot and disk snapshot
provided by the base VM. It is necessary to
soft-reboot the new VM instance because the
network interface the base VM has may be
different from the one which is used by cur-
rent machine and then a soft-reboot will restart
Nova service to resolve the network interface
configuration.

Create VM Overlay. This feature will ana-
lyze and compare the current VM and its base
VM, and then extract the compressed differ-
ences of the disk and memory snapshots with
the base VM [3]. The operation will apply opti-
mizations to generate a minial VM overaly and
finally save the VM overlay in Glance storage
[4]. The VM Overaly also contains some meta-
data associated with the base VM into JSON
format and pass it as a URL. By performing
’Create VM Overlay’, developers can get the
VM overlay which could be used for VM Syn-
thesis later.

Perform VM Synthesis. VM Synthesis al-

1

mailto:achen@uoregon.edu


lows developers can obtain the customized VM
by synthesizing the VM overlay and the base
VM during the run-time. A back-end server of
a nearby OpenStack++ will be launched based
on users’ requests so that it can receive the
VM overlay information via an HTTP POST
message. By extracting the metadata about the
base VM from the JSON, the OpenStack++ will
initialize the base VM first, and then the VM
Overlay will be applied into the instance too.

VM handoff. VM handoff will be triggered
When users have physical movements between
different OpenStack++ clusters. To provide
smooth and same experience among differ-
ent OpenStack++ clusters, the current Open-
Stack++ will execute the VM handoff which
will migrate a running VM instance to another
OpenStack++ as needed. First, it will authenti-
cate the credential information of other Open-
Stack++ clusters to ensure that the another
OpenStack++ is trustable. Then it will generate
the VM Overlay and send it to another Open-
Stack++ by HTTP POST request. Similarly, like
the process of performing VM Synthesis, once
the new OpenStack++ receive and extract the
configuration from the URL, it will automati-
cally perform VM Synthesis to build the same
VM instance users had before.

ii. OpenStack++ code structure and
implementation

The another important attribute of Open-
Stack++ is that it was built based on standard
cloud technology: It encapsulates offload code
from mobile devices in virtual machines (VMs),
and thus resembles classic cloud infrastructure
such as Amazon EC2 and OpenStack. In ad-
dition, each cloudlet has functionality that is
specific to its cloudlet role [2]. Technically, the
OpenStack++ heavily re-use some OpenStack
APIs so that the OpenStack++ will always be
compatible with the OpenStack. In the elijah-
openstack repository, the whole code structure
can be divided into three parts: installation
scripts, OpenStack++ GUI codes, and cloudlet
APIs implementation. It should be pointed it
out that cloudlet APIs belongs to high-level

design since more infrastructural implementa-
tions are done in Elijah-provisioning and Elijah-
QEMU, not in Elijah-OpenStack++.

Installation Scripts. The OpenStack++ uti-
lizes Ansible Playbook to install and configure
OpenStack Kilo release and OpenStack++. Be-
fore running these scripts, developers have to
configure the public network interface and the
flat network interface to configure Nova ser-
vice of OpenStack work properly during the
setup. First, the Ansible script will check and
install any required dependencies, such fabric,
openSSH and Git. Then, it will modify the
kernel modules and reload them to meet some
necessary installation requirements. After that,
it will begin to install OpenStack Kilo release
and add OpenStack++ module into it. The next
thing is replacing the nova config files so that
it can accept the base VM generated by Open-
Stack++. After installation, developers are able
to use the functionality either by terminal or
dashboard of OpenStack. However, the virtual
interface is not persistent and will be lost af-
ter reboot [3], so it is necessary to re-run the
whole Ansible script to re-create the interface
and restart nova service.

OpenStack++ GUI. OpenStack++ imple-
ments the GUI by encapsulating Horizon and
Glance APIs of OpenStack and rendering
Django template HTML pages to customize
a new tab under Project section. It defines
several GUI modules, such as forms, panels,
views. These modules are used in Model-View-
Controlle pattern. When GUI widgets are trig-
gered, the corresponding APIs will be invoked.

Cloudlet APIs implementation. As I intro-
duced at first, OpenStack++ encapsulates major
part of cloudlet infrastructure which is devel-
oped in Elijah-provisioning, Elijah-QEMU, Elijah-
discovery-basic into some high-level APIs. Since
OpenStack++ is the integration of cloudlet li-
brary functionality , it will be more clear to
describe the APIs by interpreting the corre-
sponding feature.

Import Base VM. the OpenStack++ API for
cloudlet base creation actually invokes some
existing Glance storage APIs from OpenStack,
because essentially the process of importing a

2



base VM can be considered as saving its disk
image, memory snapshot and their hash value
lists in Glance. However, to distinguish the
Cloudlet’s base VM, some unique markers are
necessary. When ’export-base’ command of
cloudlet is executed via terminal, the image
will be tagged by a special keyword: cloudlet-
type. Meanwhile, for further implementation,
some other properties are kept in the metadata
as well, such as UUIDs of all other associated
files, VM’s libvirt configuration and so on.

Resume VM. Resuming VM is similar to in-
stantiating a new VM instance using a VM
snapshot [4]. The command will be passed
to the nova-compute node for launching VM.
The OpenStack++ builds a customized driver:
cloudletDriver which inherited from Libvirt-
Driver from OpenStack. The driver will check
whether the VM imported has the tag ’cloudlet-
type’ or not. If it has, then it will get the VM’s
libvirt configuration from its metadata and use
them to do the VM visualization. The impor-
tant difference between traditional OpenStack
and OpenStack++ is OpenStack will initialize
a VM instance from booting but OpenStack++
will resume the VM from its original status
such that OpenStack++ is able to switch in-
stances among different OpenStack++ without
losing any configuration and data.

Create VM Overlay.: Generating a VM Over-
lay is a process that the compressed differ-
ences of the disk and memory snapshots with
the base VM, so actually it is also a pro-
cess of resizing and rebooting itself. Hence,
when ’Create VM Overlay’ command is con-
veyed, it will be passed to the visualization
driver(cloudletDriver). Then a customized API
which inherits the nova RPC is invoked to gen-
erate VM Overlay. Finally, the VM Overlay will
be store in the Glance. Until now, we are able to
have a perspective about how cloudlet service
providers interact with developers and how
developers deploy their applications within
cloudlet nodes. Specifically, cloudlet service
providers could build and deploy cloudlet
nodes around customers. To keep it light and
usable, the cloudlet node should have a base
VM which contains minimal common libraries

for application developments. Then, devel-
opers could just deliver their VM overlays to
cloudlet, which saves more time and resources.

Perform VM Synthesis. While performing
VM synthesis, the API will access the VM Over-
lay URL and check the metadata of VM overlay.
First, it reads the information about the asso-
ciated base VM first so that OpenStack++ can
select the instance flavor and start initializing
a VM instance automatically. Then it is similar
as ’Resume VM’, the OpenStack++ will invoke
APIs to let CloudletDriver perform VM visual-
ization. However, the VM spawning methods
are overridden so that OpenStack++ checks
overlay URL first and then perform VM syn-
thesis to ensure the request is differentiated
from the normal request of VM creation.

VM handoff. To switch to another Open-
Stack++, it is no doubt that the original Open-
Stack++ has to have permissions to let another
OpenStack++ perform VM Synthesis. The auto-
token will be sent via a client program so
that the destination keeps the credential in-
formation. After authentication for permis-
sions, the original OpenStack++ cluster will
perform ’Generate VM Overlay’ and send the
JSON payload which contains some metadata
via an HTTP POST request to its destination.
When the destination OpenStack++ success-
fully receive them, it will perform ’VM synthe-
sis’ to obtain the customized VM instance for
users.

II. Performance comparison

under the real application

The thesis designs a simple full-stack video
streaming project to examine the throughput
of the application and compare them by de-
ploying the back-end server at different loca-
tions. The front-end is using the optimized
product build of React.JS, and the back-end is
using standard Express framework based on
Node.JS. The back-end server will transport the
video stream chunk by chunk to the front-end
server. The network performance is captured
and analyzed by Chrome DevTools Network
panel. All tests are performed under a stable

3



Figure 1: Standard deviation comparison

Figure 2: Throughput comparison

and 100 Mbps network connection. For a video
streaming project, a smooth and low-latency
experience is most important for users. So, by
examining the time the whole time spent to
deliver the video and instantaneous network
speed, we can have an insight into the through-
put and stability. The figures above illustrate
the performance comparison among different
locations.

These diagrams clearly state that cloudlet
has better throughput and more stable dur-
ing the tests. Also, if we only compare the
performance among Amazon EC2 instances or
Microsoft Azure Virtual Machines, it is obvious
that the distance between cloud and users has
a significant influence on the performance of
applications. The data may lose or takes longer
time to travel, as the distance increases. Since
the cloud and the cloudlet as being identical
except for the proximity to the user, when ap-
plications run on the cloudlet, it has reduced
latency and more stable because the compu-
tation is placed at the edge which is closer to
the mobile device. More importantly, it really
inspires us that cloudlet could possibly resolve
some last-mile problems in cloud computing.
After deploying enough cloudlet nodes around

end-users, each individual will be empowered
and achieve more personal computing.

III. Implementation flaws in

OpenStack++

Although OpenStack++ provides such an
amazing performance and economic benefits
compared to some traditional and popular
Cloud service in the current market, it is still
noticeable that OpenStack++ has some imple-
mentation flaws which should be resolved be-
fore extensively used by companies which care
more about stability and maintainability. Dur-
ing the development and utilization of Open-
Stack++, I observed these following problems.

Non-persistent Network Interface. The cur-
rent implementation of OpenStack++ will lost
its virtual network interface after a reboot. To
remedy this situation, developers have to re-
run the whole Ansible scripts to recreate the
dummy network interface and restart some
necessary Nova service [3]. First of all, We
can image that, due to the power outage, peri-
odic maintenance or some inappropriate oper-
ations which may result in shutdown or reboot
in OpenStack++ clusters, it may cause fatal
problems that all VM instances running on the
OpenStacks++ cannot continue to work. Sec-
ondly, the executing time for Ansible script
takes least a few minutes for a single ma-
chine. For a larger cluster, it may even take
longer. During that time, services of Open-
Stack++ are not available and users may lose
their important data. Hence, the non-persistent
network interface can bring these serious prob-
lems which should be completely resolved be-
fore using by any applications in a production
environment.

Inconsistent building process. Even
though the probability of causing a different
build of OpenStack++ is low, it still exists, due
to a variety of possible reasons. The most com-
mon error I experienced when I build Open-
Stack++ is "No valid host was found. There
are not enough hosts available" appearing on
the OpenStack++ dashboard. According to
my tests, it occasionally happens when I build

4



the OpenStack++ by using the Ansible scripts,
however, it will never happen on my another
machine where I also build OpenStack++ sev-
eral times. In the architecture of OpenStack,
also in OpenStack++, the Nova service is the
part of OpenStack that provides a way to pro-
vision compute instances. The reason about
why OpenStack++ cannot find the valid host
is that OpenStack++ couldn’t find a compute
node to launch the VM. In this case, no avail-
able compute node usually indicates that either
some of Nova services are down or configura-
tion for Nova services is wrong. However, the
deeper reason is that, when developers build
OpenStack++, the Ansible script may not work
properly such that some config files are still
not up to date or services still rely on the orig-
inal configuration since config files changed.
Because of it, Nova service is referencing the
older configuration which causes the hosting
error above or some networking errors between
host machines and running instances on Open-
Stack++.

IV. Possible future work

This research presented in this thesis briefly
discuss the features and code implementation
of OpenStack++ but it also points out some
flaws of OpenStack++ which could work fur-
ther.

Firstly, to address the issue about the non-
persistent network, this thesis hasn’t located
the root of the problem yet, but the possible
reason why it happens is that for single net-
work interface card user, OpenStack++ install
a dummy kernel module to create the virtual
network interface card for OpenStack++. Af-
ter reboot each time, the dummy kernel will
be lost so that the dummy network interface
will be lost as well. According to this infor-
mation, developers may have to think about a
way to make the kernel be persistent so that
the non-persistent network could be resolved.

Secondly, to deal with another issue about
the inconsistent building process, as the thesis
introduced earlier, it is related to the Nova
service of OpenStack++ because it always read

the old configuration files rather than forcibly
read the latest version of config files. Definitely,
developers have to append some new Ansible
scripts to force Nova always read the new files.
Also, it is important to add some additional
logic to make the building process be more
robust so that it could generate more useful
warning logs and the error should be handled
by OpenStack++ itself.

Besides the implementation flaws of Open-
Stack++, the performance test is limited to the
video streaming in this empirical study. To
apply OpenStack++ into real-world produc-
tion, more performance test under different
situations based on lots of running environ-
ment are necessary to work in the future. For
instance, since OpenStack++ provides better
performance and more stable than traditional
heavy cloud services, to keep it close to the
end users, mobile applications should be ideal
for OpenStack++. Developers may have to de-
velop more mobile applications, such as wear-
able cognitive assistants, a video live streaming
project and so on. There are many possibilities
and it is worthy to be explored.

V. Conclusion

Cloud computing is growing even faster than
expected in these decades. More and more
companies are using cloud computing tech-
nologies to develop and deploy their products.
Meanwhile, there are more old brand technol-
ogy companies, such as Oracle, Microsoft, Google
etc. , have invested a lot of resources in cloud
computing. However, as people may notice, the
cloud still has some limits, due to cloud service
locations, cost of developing and maintaining
and more economic factors. The emergence
of cloudlet can help us to resolve these issues
and its market still has many potentials to be
discovered. A cloudlet is a trusted, resource-
rich computer or cluster of computers that are
well-connected to the Internet and available
for use by nearby mobile devices [5]. As this
thesis demonstrated, it provides better perfor-
mance than traditional cloud service. If the
market of cloudlet is developed well, we can

5



image that, in the future, any computation re-
sources are easy to be accessed. People can
achieve more personal computation for differ-
ent fields, such as wearable cognitive assistants
for medical purpose, video lives streaming for
entertainment. Cloudlet opens the door for a
new diagram of cloud computing.

References

[1] Open Edge Computing,
http://openedgecomputing.org/developers.html

[2] Elijah Project Home Page
http://elijah.cs.cmu.edu/index.html

[3] Elijah OpenStack GitHub Repository
https://github.com/OpenEdgeComputing/elijah-openstack

[4] Ha, Kiryong and Mahadev Satyanarayanan.
"OpenStack++ for Cloudlet Deployment."
(2015)

[5] Satyanarayanan, M., Bahl, V., Cac-
eres, R., Davies, N. (2011). The
Case for VM-based Cloudlets in Mobile
Computing. IEEE Pervasive Computing.
doi:10.1109/mprv.2009.64

6


	Introduction
	OpenStack++ features
	OpenStack++ code structure and implementation

	Performance comparison under the real application
	Implementation flaws in OpenStack++
	Possible future work
	Conclusion

