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People have congregated along the Columbia River’s banks throughout history, 

from the earliest settlements to contemporary metropolises, but this close proximity has 

posed a serious threat when extreme flooding occurs. Understanding how climate 

change will affect the future flood risk throughout the Columbia River Basin is 

imperative for risk mitigation and infrastructural planning. To address this question, we 

analyze an ensemble data set which provides daily streamflow values (1950-2100) for 

172 different future projections for 396 locations in the Columbia River Basin. The 

ensemble members were created with a modeling decision chain which included two 

representative concentration pathways, ten global climate models, two meteorological 

downscaling methods, and four hydrological model setups. From the daily timestep 

streamflow data, we use extreme events from each water year to estimate flood flow 

values for floods with 10-, 20- and 30-year return periods. From this analysis, we find a 

substantive increase in flood risk for all simulated stream gauge locations in the 

Columbia River Basin. Our results emphasize how the hydrologic response to climate 

change at an streamflow location is intrinsically region and watershed dependent. Sites 

along the Columbia and Willamette Rivers are estimated to have a higher increase in 

flood-risk the further downstream the site is located. Sites along the Snake River, 

however, are estimated to have a lower increase in flood-risk the further downstream 

the site is located. 
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1. Introduction 

Water cycles constantly through stages in the atmosphere, land and oceans as 

precipitation, runoff, evaporation and transpiration. A dynamic and naturally variable 

system, the hydrological (water) cycle sets the stage for all life to exist. The Earth’s 

surface water, its rivers, lakes and oceans, have long provided resources as cultural, 

ecological, and economic agents in society. As a result, people have congregated along 

riverbanks and coastlines for millennia, from the earliest settlements to contemporary 

metropoles. The close proximity of civilization and rivers, however, poses a serious 

threat when extreme flooding occurs. Anthropogenic climate change is altering the 

hydrologic cycle in complex ways over varying time and geographic scales across the 

globe (Bates et al. 2008). The field of hydro-climatology studies the influence of 

climate upon the hydrologic cycle. It is critical we study hydroclimate extremes in order 

to understand the impacts of these changes and mitigate risks for nearby populations. 

There are several approaches for studying the hydroclimate – theory, 

observation, and simulation. While each of these approaches have a role in moving our 

societal understanding forward, this thesis focuses on computer simulation in the form 

of hydrologic models. Hydrologic models are numerical models that represent the 

hydrologic system by using physical laws to simulate river flow over time. They 

provide a laboratory in which we can run experiments on the hydroclimate and predict 

potential impacts before they happen. Projections from calibrated, well-tested and 

validated models are more meaningful than extrapolations from observational data 

because they are designed to capture the essence of our natural world. Of course, these 

simulations are only useful if they accurately capture the complexities of the hydrologic 

system – a decidedly difficult thing to do.   
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An effective strategy for improving model confidence is running an ensemble of 

simulations. An ensemble is a set of projections produced by a sequence of model runs. 

This sequence is created by making a chain of decisions about the model’s 

configuration and inputs. The model completes numerous runs given these different 

parameters and outputs an ensemble of future projections which simulate the 

hydroclimate until the end of the 21st century. The resulting analysis considers all 

members of the ensemble, finding not only an average future projection, but also a 

measure of confidence depending on how much spread there is between the ensemble 

members. 

A key factor when using models to study the hydroclimate is ensuring the 

model’s resolution is fine enough to capture the small-scale physics and diverse 

topography of river basins. This is of particular importance when studying highly 

mountainous river basins which vary in elevation and climatic regions in short 

distances. Some climate measures, like temperature and sea-level rise, are useful at the 

global level and can be analyzed using global climate models. For the practical planning 

of local issues such as water availability and flood defense, however, a global view is 

relatively meaningless. There is little use for a global average river flow because the 

study of the hydroclimate, particularly extremes like flooding, are intrinsically region 

and basin dependent.  

This thesis considers the confluence of these topics – regional ensemble 

simulations, hydrologic extremes, and climate change – in the context of the Columbia 

River Basin (CRB). The Columbia River is significant in its size, resources, and 

populous basin. It is the fourth largest river by volume in North America, flowing 

through seven states and two countries, the United States and Canada. Hydroelectric 
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dams on its main stem and tributaries produce nearly half of all U.S. hydroelectric 

power. The river meanders through a diverse array of landscapes and populations 

densities, from snow-capped peaks to inland deserts and large cities to rural expanses. 

Historic floods in the basin include the Heppner Flood of 1903, the second deadliest 

flashflood in U.S. history, and the Vanport Flood of 1948, which obliterated the now 

non-existent city of Vanport, OR. Rivers in the basin have reached flood levels as 

recently as April, 2019, when the Willamette River flowed over highways and 

neighborhoods in the Central Willamette Valley.  

The central research question of this thesis asks how an ensemble of hydrologic 

simulations estimate the future flood risk in the CRB.  This is not the first time that 

future flood risk in the CRB has been studied; this research is unique because we 

consider an ensemble of hydrologic model runs. The Pacific Northwest (PNW) presents 

a mosaic of regional hydroclimates. Using streamflow data for over 300 simulated 

stream gauge sites in the CRB, this thesis is a hyper-localized study of the future flood 

risk for each regional watershed. It differentiates between watersheds which are rain or 

snow dominant to ensure the results are of maximum relevance for local stakeholders. 

This analysis of future flood risk as projected by an ensemble of hydrologic simulations 

is expected to help inform the international renegotiation of the Columbia River Treaty 

between the U.S. and Canada.  
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2. Related Work 

Flooding in the Pacific Northwest (PNW) is often attributed to extreme 

precipitation by the general public. In reality there is a complex array of processes 

which interact to lessen or amplify the effect that precipitation has on flooding. While 

there may be public doubt that changes in extreme precipitation and flooding are related 

to global climate change at all, direct effects of global warming have been shown to 

affect the hydrological response to precipitation regardless of whether precipitation 

trends change (Tohver et al. 2014). In other words, direct effects of climate change, like 

warming temperatures, elevating freezing levels, and retreating mountain snowpack, 

would change how the land distributes today’s heavy precipitation, let alone the future’s 

precipitation storms. As such, over the next few decades, climatic processes could 

change the frequency and magnitude of flooding in the PNW.  

Extreme precipitation is projected to increase in the PNW (Duliére et al. 2013) 

and is associated with atmospheric river events. Atmospheric rivers are narrow 

corridors of water vapor which often release large amounts of precipitation as rain or 

snow. They are particularly prevalent along the West Coast and are a key feature in the 

hydrologic cycle in the CRB (Colle and Mass 1996; Garvert et al. 2007; Warner et al. 

2012). Changes in atmospheric rivers could have significant effects on future 

hydrologic extremes in the PNW (Neiman et al. 2011). Global climate models have 

shown that extreme precipitation in the PNW is estimated to occur more frequently by 

the second half of the 21st century due to intensifying atmospheric rivers along the West 

Coast (Janssen et al. 2015, Wang and Kotamarthi 2015). Similarly, regional climate 

models have shown increases in extreme precipitation events across the PNW 

(Dominguez et al. 2012).  
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The interaction between the atmosphere and land in the hydrologic system 

highlights the importance of integrating precipitation and surface hydrology models to 

conduct hydroclimate analyses. The main method for using simulations to estimate 

flood risk in the PNW has been downscaling either global or regional climate model 

data and using this data as an input for regional hydrologic models. Tohver et al (2014) 

projected changes in flood risk in the PNW by using climate information from a global 

climate model as driving input for a hydrologic model (method described in Hamlet et 

al. 2013). Flood risk was assessed using the method of fitting generalized extreme value 

curves to projected streamflow for 197 sites in the PNW to estimate flood flow values 

(Hamlet and Lettenmaier 2007). The results found widespread increases in flooding 

across the PNW due to wetter winters and an increase in snow levels during storms 

associated with warmer weather. The largest increases in flooding were generally found 

in watersheds west of the Cascade ridge.  

Tohver et al (2014) describes the future hydrologic extremes in the PNW and 

identifies important mechanisms contributing to the impacts of climate change. The 

results, however, are understated because the simulations were based on monthly 

climate model output. Daily changes in precipitation were assumed to scale to the 

changes in monthly precipitation. Thus, this analysis is missing valuable variability in 

precipitation which could have significant impact on the response of hydrologic 

extremes. Salathé et al (2013) responded to these limitations by using climate 

information from a regional climate model to drive the hydrologic model. Regional 

climate models have a finer resolution and can better represent features, such as 

atmospheric rivers, which determine local changes in precipitation and flooding. The 

results of the streamflow analysis from this modeling set-up also show increased flood 
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risk for many sites across the PNW due to the combination of reduced snowpack and 

more intense precipitation events. 

These prior studies suggest that future changes in extreme weather systems may 

have substantial effect on flood frequency. The hydrologic system in this region is 

highly complex because of the mesoscale processes which govern it. Mesoscale 

processes function on the scale between weather systems and microclimates. In this 

case, these processes include topographically forced air-flows such as downslope 

windstorms, the blocking and channeling of the winds by orography (mountain 

topography), and the prediction of precipitation over diverse terrain. This complexity is 

difficult to model and heightens the effects of methodological choices in simulating 

streamflow, underscoring the need for comprehensive multi-model ensemble analysis 

(Salathé et al. 2013). Our study follows Tohver et al (2014) and Salathé et al (2013) in 

being concerned with the future flood risk in the CRB under climate change. In 

addition, we follow similar techniques in using hydrologic simulation data for 

frequency analysis to characterize changing flood risk. However, our study contrasts 

and builds upon previous work because we use data from an ensemble of hydrologic 

simulations as opposed to a single hydrologic model with different climate scenarios. 

This study extends the previous work by considering a multi-model analysis for 

increased model confidence. In particular, we are seeking a better understanding of the 

spatial variability of flood risk in both the past and future climate.  
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3. Methodology 

In order to accomplish our goal of estimating future flood risk in the CRB, we 

analyzed streamflow from an ensemble of hydrologic simulations. This project expands 

on previous work on future flood risk in the CRB by considering an ensemble of 

hydrologic simulations instead of a single projection. This data set was developed 

before the inception of this project (Chegwidden et al. 2018) to address the influence of 

methodological choices on streamflow projections. By understanding which modeling 

decisions had little to no effect on how streamflow is simulated, we were able to reduce 

the data set by a factor of four, from 160 different projections per streamflow location to 

40 projections. This reduction loosened the computational constraints of this project; 

details of the reduction are in section 3.1 below. To better understand the changing 

flood risk in the CRB, we wrote computer programs to extract useful information from 

the daily streamflow data and present this information in meaningful visuals.  

We defined two metrics which we calculate from the streamflow data: flood-risk 

and snow dominance. Both of these metrics are discussed broadly here and in detail in 

their respective sections, 3.2 and 3.3. Flood risk can be interpreted and quantified in 

many ways – by flood hazard, exposure, vulnerability or performance. This study 

provides an important insight on regional flood risk by focusing on the flood hazard 

component: the probability and magnitude of extreme streamflows. Streamflow in this 

data set has units of cubic meter per second (cms) and describes the volume of water 

which passes through a site each second. 

We quantify flood risk by using common statistical procedures for extreme 

value analyses. Specifically, we considered the return period for extreme streamflow 

values from the data. A flood flow value is a large daily streamflow value which is 
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associated with some return period. An example of a flood flow value, and a common 

term heard and often misconstrued, is the “100-year flood.” This term is intended to 

simplify the definition of a flood which has a 1% chance of occurring in a given year. It 

is often misinterpreted, however, as meaning a flood flow value which only occurs 

every 100 years. In reality, a 100-year flood flow value can happen two years in a row 

or even twice in the same year. It simply has a return period of 100 years, a probability 

estimated through a process called frequency analysis. By performing frequency 

analysis on our daily streamflow values, we can calculate flood flow values for various 

return periods during the beginning of our time window, the mid-20th century, and the 

end of the window, the late-21st century, and observe how these flood flow values have 

changed.  

The snow-dominance metric is used to differentiate between rain- and snow-

dominant watersheds to ensure our results are as locally relevant as possible. Climate 

change is likely to have different effects on streamflow locations in the CRB with 

annual cycles driven by different phenomena. An annual cycle describes the average 

streamflow for each month throughout a year or across years. A snow dominant 

watershed’s annual cycle peaks later in the water year (which begins in October) 

because the majority of the water contributing to the stream flow is coming from 

snowmelt in the spring months. A rain dominant watershed’s annual cycle peaks earlier 

in the water year, receiving the bulk of its flow from the rainy winter months. Figure 1 

shows example annual cycles for two different streamflow locations: (1) The Columbia 

River at The Dalles, OR, representing a snow-dominant watershed and (2) The 

Willamette River at Portland, OR, representing a rain-dominant watershed. The figure 

shows the flow peaking in December at the rain-dominant site and in February-March 
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for the snow-dominant site. To make our results valuable to local stakeholders, we 

introduce a metric of snow dominance to distinguish flood-risk trends between 

watersheds driven by rain or snow.  
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Figure 1: Annual Cycles for The Dalles, OR and Portland, OR.  

The average streamflow for each month throughout 1950 is shown for (a) a snow 
dominant site: The Dalles, and (b) a rain-dominant site: Portland. The Dalles peaks later 

(May-June) because the majority of the water contributing to the streamflow is coming 
from snowmelt in the spring months. Portland peaks earlier (March) because the bulk of 
its flow comes from the rainy winter months. 

The data set is encapsulated in a 25GB NetCDF file (Rew and Davis 1990). It is 

large enough to have required that we seek computational power beyond a single 

workstation. We accessed the necessary storage and computational power by using the 

University of Oregon’s supercomputer, Talapas. Any program which reduced the 
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dimensionality of the entire data set by extracting useful metrics, like flood-risk and 

snow dominance, ran on Talapas. The extracted data, much smaller in size than the 

original netcdf file, was then transferred to a workstation where we used the Python 

programming language (G. van Rossum 1995), particularly its xarray (Hoyer et al. 

2017) and matplotlib (Hunter 2007) libraries, in the Jupyter Notebook software 

(Kluyver et al. 2016) to perform final computations and create plots of the data. The 

following sections provide details on the ensemble data set and the flood-risk and snow 

dominance metrics.  

3.1. The Ensemble Data Set 

While we analyze a state-of-the-art ensemble data set of simulations in this 

study, the development of this data set took considerable effort from an array of 

scholars before this project’s inception. The data set was developed by scholars at the 

University of Washington and Oregon State University in the UW Hydro | Computation 

Hydrology Group and the Oregon Climate Change Research Institute respectively. The 

ensemble was created by running a chain of models with different permutations of 

modeling decisions. Each modeling decision determines how the model will ingest 

climate information and produce estimates of hydrologic impacts. The modeling 

decision chain used to create this data set, originally described and published in 

Chegwidden et al (2018), is shown in Figure 2. 
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Figure 2: Making the Ensemble Data Set: The Modeling Decision Chain 

This figure is from Chegwidden et al. (2018), the paper which describes the production 
of the ensemble dataset. The modeling decision chain consists of four decision points, 
represented by the four boxes. Every permutation of the bulleted list of modeling 
decision choices was considered to create the ensemble. 

Representative concentration pathways (RCPs) describe different 21st century 

pathways of greenhouse gas (GHG) emissions and atmospheric concentrations, air 

pollutant emissions and land use (IPCC 2014). While the data set considers both an 

intermediate emission scenario (RCP 4.5) and a high emission scenario (RCP 8.5), our 

analysis only considers projections with RCP 8.5. In order to reduce the data set by a 

factor of two, thereby reducing necessary computations, we only consider the high 

emission scenario. Future work could consider a similar analysis on the RCP 4.5 

projections to consider future flood risk under an intermediate emissions scenario. 

Global Climate Models (GCMs) use RCPs to simulate the future of the Earth’s 

climate. Research groups around the world have produced a large number of GCMs, 

which implement and simulate the Earth’s system in different ways (Rupp et al. 2013). 

Output from GCMs is downscaled from their coarse native resolution (~150km) to the 

scale of the hydrologic model resolution (~6 km). After it has been downscaled, the 
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climate information output from a GCM is used as the input for the hydrologic model. 

Using different downscaling methods does not have a significant effect on how 

streamflow is projected (Chegwidden et al. 2018). As such, we have chosen to only 

consider projections which used the Multivariate Adaptive Constructed Analogs 

(MACA) method. This again reduced our data and computations by a factor of two. We 

did, however, use all ten GCMs, as GCMs were shown to have significant impact on 

streamflow projections (Chegwidden et al. 2018).  

Finally, four different hydrological models were used to develop this data set: 

three distinct implementations of the Variable Infiltration Capacity (VIC) model (Liang 

et al. 1994) and an implementation of the Precipitation Runoff Modeling System 

(PRMS) (Markstrom et al. 2015). The key difference between these models is what and 

how data were used to calibrate the model. Calibration in this case is adjusting the 

model such that its simulation for the historical period matches historical observational 

records as close as possible.  

Overall, this data set contains 160 individual daily streamflow time series for 

396 streamflow locations (shown in Figure 3 from Chegwidden et al 2018). In this 

study, we analyze 40 projections for each of the 396 streamflow locations. The 

reduction from 160 projections to 40 projections came from the choices to use only 

RCP 8.5 and MACA for the RCP and downscaling method decision points. For each 

site, we calculated the average flood risk and snow dominance values across the 40 

projections. A description of the flood risk and snow dominance metrics follows below.  
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Figure 3: Simulated Stream Gauge Locations in the Columbia River Basin  

This figure is from Chegwidden et al. (2018), the paper which describes the production 

of the ensemble dataset. The study domain is shown above using Köpen-Geiger 
climatic regions. The streamflow locations are shown in black. 

3.2. Flood Risk Metric 

The flood risk metric is quantified as the ratio of a future flood flow value (in 

volume per second) over the past flood flow value. For example, we can calculate a 

streamflow value associated with a 10-year flood for the future and the past. A 10-year 

flood is a flood which has a return period of 10 years, or a 0.1 probability of recurring in 

a year. If the future 10-year flood flow value is greater than the past 10-year flood, the 

ratio of future/past will be greater than one and will indicate an increase in flood-risk. If 

the ratio is less than one, this indicates a decrease in flood-risk.  

Flood flow values for the future and past can be calculated from decades of 

streamflow data at either end of the total time range 1950-2100. Two options for 
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snapshots of the future and past are 30- and 50-year time windows. The 30-year time 

window defines the past as 1950-1979 and the future as 2070-2099. The 50-year time 

window defines the past as 1950-1999 and the future as 2050-2099. Using the 30-year 

window, we consider floods with return periods of 10 and 20 years. Using the 50-year 

window, we consider floods with return periods of 30 years.  

We use an empirical method to find flood flow values directly from the 

streamflow data in the past and future time windows. An example of finding the past 

(1950-1979) 10- and 20-year flood flow values for a single ensemble member at The 

Dalles, Or, is shown in Figure 4 below. Given a timeseries of daily streamflow, we find 

and sort maximum streamflow values for each year in descending order. We calculate 

the probability of exceedance (PE) (number of values above current value divided by 

the total number of values) for each max and select the max whose PE is closest to the 

value 1/(return period). This selected annual max is the flood flow value for the given 

return period. We calculate this value for the future and past and find the ratio of 

future/past to represent the change in flood risk. The flood-risk ratio is calculated for all 

40 projections. The average of these 40 ratios is the final flood risk metric for the 

streamflow location. 
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Figure 4: Calculating a Flood Flow Value Example Using Simulated Streamflow 

The PE for annual maximums from 1950-1979 are shown for one projection (RCP 8.5, 
CanESM2, BCSD, VIC P1). The red line shows the maximum which corresponds to a 

10-year flood flow value with a PE of 0.1. The green line shows the maximum which 
represents the 20-year flood flow value with a PE of 0.05. 

3.3. Snow Dominance Metric 

We use the centroid of timing as a proxy for snow dominance in this study. The 

centroid of timing is defined as the day of the water-year when half of the total annual 

flow has passed through a system. A snow-dominant watershed will have a later 

centroid because of the large contribution of snowmelt late in the water-year to the 

streamflow. A rain-driven watershed will have an earlier centroid due to heavy rainfall 

in the late fall and winter months. Refer to the annual cycles for The Dalles, OR and 

Portland, OR in Figure 1 for a visualization of differences in timing of streamflow 

between snow- and rain-dominant sites. 



 
 

 
 

4. Results 

The central research question of this thesis asks how an ensemble of hydrologic 

simulations estimate the future flood risk in the CRB. We break this question into three 

levels of focus: individual streamflow locations, main rivers, and across the entire basin. 

Analyses of key streamflow locations (described in 4.1) show how the simulations 

project daily streamflow over time. A further zoomed out analysis of the basin’s three 

main rivers (described in 4.2) shows how trends between flood-risk and snow-

dominance differ between the major watersheds in the basin. Finally, a view over all 

points in the basin (described in 4.3) gives a high-level perspective of the changing 

flood risk in the entire CRB.  

4.1. Evaluation of streamflow for key streamflow locations 

Looking closely at all 396 streamflow locations in the study area would be an 

unwieldly task. Therefore, we chose three significant rivers and sites along each to 

represent different watershed types: 1) a snowmelt dominant watershed: the Columbia 

River at The Dalles, OR; 2) a transient, mixed rain-snow watershed: the Snake River at 

Brownlee Dam, WA; and 3) a rain dominant watershed: the Willamette River at 

Portland, OR. Figure 5 plots a variety of projected streamflow data for these three 

locations. There are 40 timeseries displayed in blue; these show the annual maximum 

daily streamflow values for the 40 projections. It is these maximum streamflow values 

which are used in the frequency analysis to find the (10,20,30)-year flood flow values 

(described in 3.2). The 10- and 20-year flood flow values for the 30-year time windows 

(1950-1979 for past and 2070-2099 for future) are shown in purple and orange 

respectively. The 30-year flood flow value from the 50-year time window (1950-1999 
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for past and 2050-2099 for future) is shown in green. Figure 5 also shows the average 

annual daily maximum and mean timeseries over the 40 projections in red and magenta 

respectively. This plot shows differences between the streamflow locations in three key 

ways: (1) total streamflow magnitude, (2) the ratio between maximum and mean daily 

streamflow timeseries, and (3) decadal variability. The plots show how flood flow value 

calculations are influenced by the given time window and decadal variability. Each of 

these observations are described in its own paragraph in the remainder of this section.  
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Figure 5: The Dalles, Brownlee and Portland Streamflow (1950-2100) 

Timeseries for the annual maximum daily streamflow for each of the 40 projections are 
shown in blue, the average of these 40 projections in red, the average annual mean daily 
streamflow for the 40 projections in magenta, and the 10-, 20- and 30-year flood flow 

values calculated from the projections over 30 (10- and 20-year floods) or 50 (30-year 
flood) year windows in purple, orange and green respectively. 

The difference in relative size of the watersheds is shown by the differing scales of the 

y-axes, which represent streamflow values in cms. The relative size of a basin is defined 

by the magnitude of its average mean streamflow (in magenta). This value can be seen 

in the figures in sections 4.2 and 4.3 as the size of the points. The Columbia River at 

The Dalles is one of the largest flows in the basin and is decidedly larger than the flows 

at both Brownlee and Portland with a mean flow about 6 times greater (~6,000 cms vs 

~1,000 cms). Brownlee and Portland are similar sized flows, averaging about 1000 cms 

each for an annual mean daily streamflow value.  

The change between the mean streamflow (in magenta) and max streamflow (in 

red) differentiates the significance of the consequences of flood increases between the 

sites. The Dalles’ max streamflow jumps to levels about 3.5 times its mean flow, i.e. 

approximately 21,000 cms. While Brownlee and Portland have a similar average mean 

streamflow, Portland’s average maximum streamflow is higher than Brownlee’s with a 

scaling between mean and max of about 5 compared to Brownlee’s 3. With maximum 

values starting at different orders of magnitude, the significance of an increase in flood 

flow value for The Dalles is much greater than an increase in Portland and Brownlee. 

An increase in flood-value in Portland, then, is slightly more significant than an 

increase at Brownlee. In other words, a flood ratio of 1.5, meaning the future flood flow 
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value is 50% larger than the past value, would have different implications depending a 

basin’s size and the relationship between the mean and maximum averages. 

The flood flow values, plotted with the projections they are calculated from, 

show how running frequency analysis using data from different time ranges affects the 

resultant value. The 30-year flood flow values for each site, for example, are calculated 

from 50 years of streamflow data. The 30-year flood should theoretically be greater in 

magnitude than the 10- and 20-year floods because 30-year floods have a .03 chance of 

occurring in a year compared to .1 and .5 chances for 10- and 20-year floods 

respectively. Instead, the 30-year flood is shown to be less than the 20-year flood flow 

values. The 30-year flood is lower because the outlying peaks which have a great effect 

on the 30-year time window calculations have less weight when 50 years of data are 

considered. As such, there is a trade-off between choosing 50 years of data for better 

statistics but more compression of extremes and choosing 30 years of data for more 

representative variability but less robust statistics. 

Figure 5 also shows differing decadal variability between the sites which 

suggests the effectiveness of using 30- or 50-year time windows as snapshots of the past 

and future depends on the streamflow location. The Dalles, for example, does not depict 

the average maximum streamflow changing significantly in the first or last 50 years, so 

using a 50-year time window to calculate flood flow value could be an appropriate 

approximation for past and future flood-risk. The smaller time window, with a 

weakened statistical analysis, is appropriate, however, for sites like Brownlee and 

Portland which do show decadal change. There is a visible increase in average 

maximum streamflow for both Brownlee and Portland. This increasing trend appears 
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within the first and last 50 years, suggesting using 50-year time windows for these sites 

is not an appropriate snapshot of the past and future.  

4.2. Evaluation of flood risk for the Columbia, Snake, and Willamette Rivers 

Figures 6, 7 and 8 show results of an evaluation of 10-, 20-, and 30-year flood-

risk for the Columbia, Snake and Willamette Rivers. For each streamflow location 

along these rivers, flood-risk ratio (described in 3.2) is plotted against snow-dominance 

(described in 3.3). The size of each point is relative to the size of the streamflow 

location, measured as its annual streamflow. The size of a site can also be interpreted as 

the location of the site along a river - how downstream it is. The size of streamflow 

location indicates how far downstream the site is along a river because the larger the 

site, the more of its flow is contributed by upstream tributaries.  

These figures also indicate the spread between model projections by coloring 

each streamflow location according to the standard deviation of its projections. This 

coloring is an indication of the level of confidence we have in the model simulations. A 

high standard deviation would indicate a lot of spread between projection and thus a 

low level of confidence in the results. A low standard deviation indicates little spread 

amongst the projections and thus a high level of confidence in their results. We use a 

discrete colormap and make each point slightly transparent, so larger points do not 

entirely block smaller points. As such, points which are much darker in value are likely 

two or more points overlapping.  

The relationship between flood-risk, snow-dominance and downstream location 

(size) for all three rivers are shown in the figures below. The [10,20]-year floods given 

a 30-year time window are depicted in figures 6 and 7 and 30-year floods given a 50-
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year time window are shown in figure 8. A discussion of the trends within the rivers 

follows each figure. A discussion of ensemble spread and model confidence follows 

figure 8.  

 
Figure 6: 10-yr flood-risk for the Willamette, Snake and Columbia given a 30-yr time 
window 

The snow-dominance (centroid in number of days past October 1st) vs. flood-risk 
(flood ratio) for a 10-year flood from 30-year time windows is shown for each point 

along the Willamette, Snake and Columbia rivers. The point size represents the 
streamflow location’s relative size (annual streamflow) and the color represents the 
spread (standard deviation) between the 40 projections. 

Figure 6 shows a positive trend between 10-year flood-risk and snow-dominance 

for the Willamette and Columbia Rivers and a downward trend for the Snake River. The 

flood flow values were calculated given a 30-year time window (past: 1950-1979, 

future: 2070-2099). Points along the Willamette, shown on the left surrounded by a 

green box, have early centroid timing, classifying the Willamette as a rain-dominant 

watershed. For these streamflow locations, the later the centroid timing, the higher the 



 
 

24 
 

flood-risk ratio. Sites increasing in centroid timing can be interpreted as sites rising in 

elevation, retreating into the Cascade Range, becoming more affected by snowmelt. A 

similar trend is shown for sites on the main stem of the Columbia River which are 

shown on the right surrounded by a blue box. Sites along the Columbia also increase in 

flood-risk as they increase in snow-dominance, despite the Columbia being a snow-

dominant watershed. Sites along the Snake River, bounded by the center red box, show 

a contradictory trend. As sites become more snow-dominant their flood-risk decreases. 

The Willamette and Snake share similar flood-risk ratio values, ranging from 1.2 to 1.6. 

The Columbia’s flood-risk ratios are lower, ranging from 1 to 1.3.  

Figure 6 also reveals a relationship between a streamflow location’s size and its 

snow-dominance. For all three rivers, catchment areas increase in size as their centroid 

timing decreases and they become more rain-dominant. Water flows down the Cascade 

mountains, as snowmelt or runoff, joining with rain in the lower valleys to create large 

rivers in rain-dominant watersheds. As such, it makes sense that moving down a river 

decreases the centroid (i.e. increases the rain-dominance) while increasing the 

catchment area. In terms of the figure, another way to say this is that sites on each river 

are ordered from downstream to upstream from left to right. 

 Because a site’s downstream location is inversely proportional to its snow-

dominance, the trend between flood-risk and downstream location is inversely 

proportional to the trend between flood-risk and snow-dominance. As such, the 

Willamette and Columbia Rivers share a negative trend between flood-risk and 

downstream location. This means that the further downstream a site is along the 

Willamette or Columbia Rivers, the lower its increase in flood-risk. The Snake river, in 
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contrast, has a positive trend between flood-risk and location. The further downstream 

and site is along the Snake River, the higher its increase in flood-risk.  

 
Figure 7: 20-yr flood-risk for the Willamette, Snake and Columbia given a 30-yr time 
window 

The snow-dominance (centroid) vs. flood-risk (flood ratio) for a 20-year flood from 30-
year time windows is shown for each point along the Willamette, Snake and Columbia 
rivers. The point size represents the streamflow location’s relative size (annual 
streamflow) and the color represents the spread (standard deviation) between the 40 

projections. 

Figure 7 shows 20-year flood-risk given a 30-year time window. The figure 

shows similar (but messier) trends to those in figure 6. The main differences between 

flood-risk trends for 10- and 20-year floods are (1) the magnitudes of the flood ratios 

and (2) the rate at which flood-risk changes dependent on a site’s snow-dominance or 

size. Again, the Willamette and Columbia have similar behavior. However, only the 

large downstream sites have similar flood-risk magnitudes as the 10-year flood. As the 

sites decrease in size and move upstream, the flood-risk magnitudes rocket to higher 
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levels than seen in the 10-year flood figure. Along the Snake, all sites show a much 

higher flood-risk magnitude. Barring the few large sites, the downward trend is much 

steeper, showing flood-risk decreasing quickly as sites retreat upstream. 

 
Figure 8: 30-yr flood-risk for the Willamette, Snake and Columbia given a 50-yr time 
window 

The snow-dominance (centroid) vs. flood-risk (flood ratio) for a 30-year flood from 50-

year time windows is shown for each point along the Willamette, Snake and Columbia 
rivers. The point size represents the streamflow location’s relative size (annual 
streamflow) and the color represents the spread (standard deviation) between the 40 
projections. 

Figure 8 shows 30-year flood-risk calculated from a 50-year time window (past: 

1950-1999, future: 2050-2099). The results show considerably lower flood-ratio 

magnitudes for each site and compressed trends between flood-risk, snow-dominance 

and streamflow location size. The results for the Columbia River show very similar 

increases in flood-risk and trends as the 10-year flood plots in figure 6. The Columbia 

River in all figures has shown the least response to changing return periods and time 
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ranges. The Willamette and Snake, however, show a great decrease in flood-ratio 

magnitudes compared to Figures 6 and 7. Most sites along the Willamette which laid 

above a 1.4 ratio in both the 10- and 20-year flood figures now lay entirely between 1.2 

and 1.4. The sites along the Snake River all have similar flood-risk magnitudes 

hovering around 1.3 and show little upward or downward trend between flood-risk and 

snow-dominance or streamflow location size.  

The coloring in figures 6, 7 and 8 show varied spread between the model results 

for different streamflow locations. Model results for the Columbia and Willamette 

Rivers have little spread with most standard deviations between projections ranging 

from 0.1 to 0.4. The Snake River has more spread with most location standard 

deviations between projections ranging from 0.3 to 0.6.  The downstream sites of the 

Columbia and Willamette are consistent in having very low spread and therefore high 

model confidence. The scenario with the most spread and least model confidence for 

each river is the 20-year flood given a 30-year time window.  

4.3. Evaluation of flood-risk across the Columbia River Basin 

Figure 9 shows results of an evaluation of flood-risk across the entire CRB. 

Figures for the three scenarios, [10, 20]-year floods given a 30-year time window and a 

30-year flood given a 50-year time window, are shown in figure 9 below. Each point in 

the figures represents one of the streamflow locations shown in the study area (shown in 

figure 3). Adding the remaining streamflow locations outside the Columbia, Snake and 

Willamette Rivers reveals wide spread between projections (shown with cyan) for small 

outlying sites. These small streamflow locations are predominantly in mountainous, 

upstream locations with hydrologic behavior too small-scale to accurately simulate, 
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even with the relatively high resolution in regional models. The streamflow locations 

with significant flows, however, whose flooding would pose the most risk, have 

relatively little spread amongst their projections.  
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Figure 9: Flood-risk across the Columbia River Basin 

10-year flood-risk (top), 20-year flood-risk (center), and 30-year flood-risk (bottom) are 
shown for all 300+ sites across the CRB. Point size represents streamflow location size 
and color represents the spread amongst the projections. 
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The figure shows increased flood-risk (a flood-risk ratio above one) for all sites 

across the basin. While there is no significant overall change in flood-risk between 10- 

and 20-year floods (figure 9 top and middle), the 50-year window (figure 8 bottom) is 

shown to compress the flood-risk values and trends. Performing a statistical frequency 

analysis over the 50-year window diminishes the influence of outlying maximums as 

shown in 4.1. This may imply there is too much decadal variability within the 50-year 

windows for most sites. If streamflow is already changing within 50 years, using a 50-

year time window is skewing the flood-values for the past and future towards each 

other, making it a poor snapshot of the past and future.  
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5. Conclusions 

This thesis sought to estimate future flood-risk in the CRB under climate change 

by using an ensemble of hydrologic simulations. An understanding of changes in flood-

risk is imperative for risk mitigation and infrastructural planning, especially as extreme 

weather becomes more prevalent in a warming world. While flooding in the CRB has 

been studied using hydrologic models before, an ensemble of projections has never 

been used for flood-risk estimation in the basin. Methodological choices during model 

set-up influence how the model projects streamflow. This study uses an existing 

ensemble of projections produced by a sequence of model runs with permutations of 

modeling decisions to accomplish this analysis (Chegwidden et al. 2018). By taking an 

average of these many future projections, we lessen the uncertainly introduced by 

human-made decisions and focus on the features shared between the ensemble 

members. 

Our analyses show increased flood-risk for all sites in the CRB. This result is in 

accordance with previous studies which analyzed single model projections (Tovher et 

al. 2014 & Salathé et al. 2013). Our results emphasize how hydroclimate variables, 

particularly extremes like flooding, are intrinsically region and watershed dependent. 

The location of a site, which river it is located along and how far downstream it is, 

determines the magnitude of the flood-risk increase. The figures detailing flood-risk for 

all sites show no clear trend between flood-risk, snow-dominance and streamflow 

location size. Isolating the Columbia, Snake and Willamette Rivers, however, shows 

clear trends. Sites along the Columbia and Willamette Rivers are estimated to have a 

higher increase in flood-risk the further downstream the site is located. Sites along the 
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Snake, however, are estimated to have a lower increase in flood-risk the further 

downstream the site is located. 

The results of this study suggest that future changes in the Earth’s climate will 

have an effect on flood-risk in the CRB. The results also emphasize the regionality of 

these hydrological effects. While a warming climate has been generally shown to bring 

an increase in precipitation, an increase in soil saturation, and a decrease in snowfall 

and resultant snowpack and melt, the summative effect that these changes have on 

streamflow location varies depending on the specific physics of the site’s watershed. 

Further analyses on the timing of flooding across the basin and an introduction of 

statistical methods to extrapolate to larger flooding scenarios, like the 100-year flood, 

are needed to fully understand the risks attributed to future flooding under 

anthropogenic climate change. 
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