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Abstract

In-hospital mortality prediction is significant for evaluating a patient’s

severity of illness ahead of the time. The outcome of the evaluation can

help physicians to identify which patient is at risk and needs immediate

care, it can further increase the efficiency of use of medical resources.

In this study, I proposed a method that is similar with the one in

our Electronic Health Records (EHRs) research at the CBL Lab and

utilized the hyperbolic embedding of ICD-9 medical ontology for the

prediction model. The results outperformed the benchmark prediction

model and demonstrated that the hyperbolic embedding on ICD-9 is

more effective than other graph embedding methods.
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Chapter 1

Introduction

The Intensive Care Unit (ICU) is a place with a high staff to patient ratio that

admits people who are severely ill. According to RL et al. [17], the purpose of

such a high ratio is for monitoring patients continuously to detect deterioration

and correct it if possible before it becomes fatal. Hence, the usage of resources in

ICU is expensive and considerable. Predicting patients’ in-hospital morality can

give valuable information for evaluating the severity of illness. Furthermore, the

prediction can help figure out which patient needs immediate attention.

Traditional prediction models are scoring systems [21, 20, 13, 12, 2]. Depends

on the system, scores are calculated with variables which are selected by physi-

cians and researchers. Recent models are usually machine learning based [10, 5,

7]. Machine learning approaches demonstrated great effectiveness with improved

prediction performance. These prediction models extract information from pa-

tients’ Electronic Health Records (EHRs) as inputs. EHRs contain important

medical features including the diagnosis codes. It’s common that current machine

learning based approaches utilize only numerical and categorical data, while it’s

rare that prediction models exploit textual or diagnostic data. I make use of on-

tological medical concepts that existed on the EHRs to explore and evaluate their

effectiveness.

Medical ontology is a model that defines and represents concepts and relations

of a certain domain. I mainly focused on the ICD-9 medical ontology. ICD-9 is the

9th revision of the International Statistical Classification of Diseases and Related

Health Problems. In a nutshell, the ICD-9 represents diagnoses and their hierar-
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chical relationships. One of the reason that I focus on ICD-9 medical ontology is I

conduct the experiments on the MIMIC-III data set [11], which takes ICD-9 as the

ontology for coding the diagnoses. MIMIC-III is a large data set of information of

patients in ICU. Data includes significant signs, notes, observations, code, etc.

The way the diagnoses are used is by representing them in a certain form, and

this is what we call representation learning methods. In general, an appropriate

data representation brings its related model good performance [3]. Although there

are countless methods to represent diagnostic data, using embedding algorithms

is more reasonable. The ICD-9 medical ontology is large and each diagnostic code

in it can be considered as a distinct feature, so using traditional encoding methods

such as ordinal encoding and one hot encoding may cause the final transformed

data have too many dimensions. When it comes to embedding method, for textual

data, Euclidean space is the common geometry to be used, however, for medical

ontology which has explicit hierarchies, through literature reviews, hyperbolic em-

bedding method [15] is a better fit as it can represent the relationships with lower

dimensions.

Inspired by the method [9] which add embeddings of note or entities into the

benchmark model, I propose a method to exploit the diagnostic information in

the EHRs of ICU patients. To evaluate the embedding method I choose, I further

compare the performance of the method with different graph embedding methods.

The result demonstrates better AUROC (The Area Under Receiver Operating

Characteristic Curve) than benchmark with only vital signs, and it supports the

claim the hyperbolic embedding on medical ontology is more effective.
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Chapter 2

Related Work

2.1 In-hospital Mortality Prediction

The characteristics of the ICU make it a data rich place. Early studies on mortal-

ity prediction conducted scoring system development approach by either experts’

knowledge driven or data driven. For example, the earliest system APACHE [21]

was built based on rules from physicians. Later systems such as the SAPS [13],

the SAPS [12], the APS-III [22], and the OASIS [2] are data driven approaches.

These scoring systems have metrics for variables they included and calculate a

final score based on each score of each variable. The scoring systems have a com-

mon limitation that they are biased that they cannot be applied universally and

still be precise on an individual at the same time. [1]

Studies had changed directions away from building models, however, With the

development and the increasing popularity of machine learning recently. Many

successful machine learning based prediction models have been developed today.

For instances, Johnson et al. [10] did several approaches by using Logistic Regres-

sion, Support Vector Machine (SVM), and Random Forest. Brand et al. [5] devel-

oped their Convolutional Neural Network (CNN) based model that was inspired

by Suresh et al. [18]. The benchmark [7] I used compared machine learning based

models: Logistic Regression and Long Short-Term Memory (LSTM), with tradi-

tional scoring systems: SAPS, APS-III, OASIS, and SAPS-II. Although machine

learning algorithms often have considerable performance on in-hospital mortality

predication, they have a common limitation that only vital signs are used in the
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2.2 Hyperbolic Representation and ICD-9

models. Hence, I leverage the diagnostic codes of ICD-9 to discover whether it

can improve the performance of the predication model.

(a) Hierarchical Relationships of a Subtree
in ICD-9

(b) 2-D Hyperbolic Embedding of the Sub-
tree

Figure 2.1 Hierarchical Structure and Visualization of the 2-D embedding of a
Subtree of ICD-9

2.2 Hyperbolic Representation and ICD-9

According to Choi et al. [6], proper representation learning has advanced appli-

cations in health care analytic. Jin et al. [9] provides a great example that by

outperforming the benchmark on standard LSTM model with either embedding
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2.2 Hyperbolic Representation and ICD-9

of note or embedding of entities added to the dense layer. It’s clear that represen-

tation learning has advanced the deep learning usage in the medical domain.

Based on the results of Nickel and Kiela [15], the representation of hierarchies

in Euclidean space can results the data into much higher dimensions than the

representation in hyperbolic space. The quality of hyperbolic embedding in lower

dimensions has been further proved by Sa et al. [16].

As I mentioned before, the major reason for using hyperbolic embedding is

because ICD-9 ontology as an explicit hierarchical structure. Here is an example

of a subtree of code 140-239 in ICD-9, also see Figure 2.1a.

140-239 Neoplasms:

• 140-149 Malignant Neoplasm Of Lip, Oral Cavity, And Pharynx

• 150-159 Malignant Neoplasm Of Digestive Organs And Peritoneum

• ...

• 235-238 Neoplasms Of Uncertain Behavior

– 235 Neoplasm of uncertain behavior of digestive and respiratory systems

– 236 Neoplasm of uncertain behavior of genitourinary organs

– 237 Neoplasm of uncertain behavior of endocrine glands and nervous

system

∗ 2370 Neoplasm of uncertain behavior of pituitary gland and cran-

iopharyngeal duct

∗ ...

∗ 2377 Neurofibromatosis

· 23770 Neurofibromatosis, unspecified

· 23771 Neurofibromatosis, type 1 [von recklinghausen’s disease]

· ...

∗ ...

– 238 Neoplasm of uncertain behavior of other and unspecified sites and

tissues
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2.3 MIMIC-III

• 239-239 Neoplasms Of Unspecified Nature

There is no doubt that this medical ontology is in a hierarchical structure. To

show that hyperbolic embedding does represent this structure clearly, I trained a

2-D hyperbolic embedding and plot its visualization, see Figure 2.1b. The root

node represent the ontology itself. The node ’140-239’ is only a little away from the

root since coded 140-239 are also very abstract. Nodes ’236-238’, ’237’, and ’238’

are almost on the same level and they are at the middle of the radius. It makes

sense because these codes are at the middle of the hierarchical structure. The

position of these three nodes may be confusing because from the example above,

’237’ seems have to be lower than ’236-238’, however, because the hyperbolic

embedding not only learn the relationship between ’237’ and ’236-238’, but also

consider the relationships between ’237’ and all the other parent or child nodes,

it’s acceptable that node ’237’ is a little bit closer to ’140-239’ than ’236-238’.

The most excellent point of this visualization is that all the leaves (e.g. codes

23770-23779) are on the edge of the circle, which means they are at the bottom

of the hierarchy.

2.3 MIMIC-III

I conduct the experiment on the MIMIC-III data set [11]. MIMIC-III (Medical

Information Mart for Intensive Care III) is a large database comprising about

60000 de-identified admitted ICU patients’ data, including demographics, vital

signs, physician notes, etc. The benchmark I use also conduct their approaches

on this data.
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Chapter 3

Methods

3.1 Poincaré Embedding

To be specific, the hyperbolic embedding I use is the Poincaré embedding proposed

by Nickel and Kiela [15]. In hyperbolic space of the Poincaré, the distance between

two data points is defined as:

d(u, v) = arcCosh

(
1 + 2

||u− v||2

(1− ||u||2)(1− ||v||)2)

)
(3.1)

Because the Poincaré ball model has a Riemannian manifold structure, similar to

what our CBL research conduct, I follow Nickel and Kiela’s work to minimize the

loss:

L =
∑

(u,v)∈S

log
exp−d(u,v)∑

v′∈N(u) exp−d(u,v′)
(3.2)

by using the RSGD [8] method.

3.2 Mortality Benchmark

I used the benchmark [7] for the extrinsic experiment for evaluating the perfor-

mance of the embeddings. This benchmark has achieved considerable performance

in in-hospital mortality prediction and it has been widely used as a baseline in

literature, for example, Jin et al. [9] implemented and compared their methods

with models in this benchmark as baselines. I used the standard model (LSTM)
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3.3 Utilizing Diagnoses on EHRs

for the experiments. The model is a long short-term memory neural network that

takes structured data. The benchmark input cohort consists of 17 features (e.g.,

Diastolic blood pressure, Glascow coma scale) that are usually considered as im-

portant factors in medical fields. Each subject (patients in MIMIC-III are referred

to subject) has a series of signals along time stamps. For each time series, the

experiment discretizes the signals every 2 hours in a 48 hours window.

Figure 3.1 Framework

3.3 Utilizing Diagnoses on EHRs

I followed the data processing pipeline provided by the benchmark, to extract all

the diagnosis codes from the MIMIC-III data set. All the codes are then mapped

to their corresponding embeddings. Since ICU patients always have more than

one diagnosis, I took the average of all the diagnoses to generate a single input

vector. According to Figure 3.1, the generated vector would be concatenated to

the structured input that contains the 17 signals. Eventually, the new input were

fed into the standard LSTM model.
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3.3 Utilizing Diagnoses on EHRs

3.3.1 Implementation

The implementation follows the steps outlined in Figure 3.1 with one more step

beforehand, embed the ICD-9 medical ontology using Poincaré model.

• First, I wrote a script to build a search tree based on the ICD-9 ontology

with abstract codes at higher level and detailed nodes at lower level.

• I then constructed an edge list with tuples comprising the relationships be-

tween a node with all the other nodes in its branch.

• I implemented the Poincaré model using PyTorch.

• I compared my own implementation with the Poincaré model of an existing

python package, Gensim, and chose to use Gensim to generate the embed-

ding.

• By following the benchmark data processing pipeline, training and validation

sets of time stamp based ICU stays have been generated.

• Map diagnostic codes to each subject (patient) in the data set.

• Map diagnostic codes of each individuals to the corresponding embedding,

since all the subjects have more than one diagnosis code, I form an array of

embeddings, take the average of all the embeddings in the array to generate

a single vector.

• Finally, I concatenated the corresponding vector to the normalized vital signs

for every ICU stay and train the benchmark LSTM model.

Note that the reason I used Gensim package is that the comparison turns

out my own implementation is not as good as the public package, there are many

possible reasons, for example, the choice of hyper-parameters. Although eventually

I used the Gensim package for the experiment, I had a better understanding of

this creative representation method.
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Chapter 4

Evaluation

In this chapter, I evaluate the method, the Poincaré embedding, and other graph

embeddings by checking if embeddings can improve the performance of the bench-

mark and if Poincaré embedding can outperform other embedding methods.

Embedding Acc Pre-0 Pre-1 Re-0 Re-1 A.R A.P
Poincaré 0.8901 0.9153 0.6395 0.9620 0.4312 0.8769 0.5914
ComplEx 0.8883 0.9081 0.6520 0.9688 0.3739 0.8720 0.5662
Distmult 0.8892 0.9099 0.6525 0.9677 0.3876 0.8735 0.5777
TransE 0.8880 0.9054 0.6623 0.9720 0.3509 0.8731 0.5799
Rescal 0.8917 0.9129 0.6605 0.9670 0.4106 0.8702 0.5840
Harutyunyan et al. 0.8839 0.9047 0.6281 0.9677 0.3486 0.8607 0.5665

Table 4.1: Prediction Performance of My Method with Different Embeddings

4.1 Setup

This experiment is conducted on MIMIC-III data set [11], I adopted the bench-

mark data extraction pipeline [7] to generate 42276 ICU stays of 22789 unique

de-identified subjects whose age are greater than or equal to 18. The data set has

been split to 85% as training set, 15% as validation set. The Poincaré embedding

of the ICD-9 embedding was prepared beforehand, see section 3.3.1. Learning

rates are all 0.01 and batch sizes are all 32.
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4.2 Experiment

4.2 Experiment

I experimented with the Poincaré embedding and several state-of-the-art graph

embeddings, ComplEx [19], Distmult [23], TransE [4], and Rescal [14]. All the

embeddings have 10 dimensions. The performance of all the models are shown in

Table 4.1. In in-hospital mortality prediction, literature demonstrates the AUROC

(Area Under the Receiver Operating Characteristics Curve) is the major metric

for evaluation. Higher AUROC means better performance. Table 4.1 not only

includes the AUROC, but also other metrics for fair comparison.

For all the embeddings experimented, I adopted the same method I proposed,

concatenating the embedding to the input of the model. The performance of the

benchmark standard LSTM model is at the bottom in the table as a baseline, and

performances of other models are above. It’s clear that all the embeddings im-

proved the performance of the benchmark model, which indicates that my method

does help the model perform better. Furthermore, the model with Poincaré em-

bedding added achieved the best AUROC, which indicates among all these 10

dimensional embeddings, Poincaré embedding is the most effective one.

I did further experiments with Poincaré of 10 dimensions, 100 dimensions, and

300 dimensions. It was surprising that the performance of the Embedding got

worse as the dimensions grew. From Table 4.2, the performance of the 100-d

Poincaré embedding is slightly lower than it was in 10-d, however, the overall per-

formance of the model is still at the same level as the 10-d Poincaré embedding.

Unfortunately, after I concatenated the 300-d Poincaré into the input and trained

the model, the performance dramatically dropped. I first suspect that the reason

is overfitting, so I plotted all the training curves for visualization. According to

Figure 4.1a, Figure 4.1b, and Figure 4.1c, the model converges faster and over-

fits much more massively as the dimensions grew. For the 100-d Poincaré, the

AUROC started to drop after about 50 epochs but it’s fine since it has achieved

similar performance to the model with 10-d Poincaé embedding, but for the 300-d

Poincaré, the AUROC started to drop very early after about 30 epochs and it

never reaches an AUROC above 0.863. Many things in this experiment can cause

the overfitting, the number of diagnoses of each patients, the model’s architecture,

and the choice of hyper-parameters. Further experiments are needed to discover
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4.2 Experiment

Embedding Acc Pre-0 Pre-1 Re-0 Re-1 A.R A.P
Poincaré-10d 0.8901 0.9153 0.6395 0.9620 0.4312 0.8769 0.5914
Poincaré-100d 0.8904 0.9122 0.6531 0.9663 0.4060 0.8745 0.5745
Poincaré-300d 0.8808 0.9071 0.5956 0.9605 0.3715 0.8628 0.5468

Table 4.2: Prediction Performance of My Method with Different Dimensions of
Poincaré Embeddings

the reasons.

Consequently, the design of the experiment has met my expectation. The ex-

periment has evaluated my method extrinsically, the hyperbolic embedding of the

ICD-9 is outstanding as the benchmark model with itself added outperformed the

benchmark model with all the other graph embeddings added by higher AUROC.

Besides, all the other metrics listed in the Table 4.1 demonstrate that the overall

performance of the model with Poincaré embedding is also excellent. The results

proved the effectiveness of my method and it indirectly proved the importance of

the diagnostic codes.
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4.2 Experiment

(a) Poincaré 10-d (b) Poincaré 100-d

(c) Poincaré 300-d

Figure 4.1 The Training Curve of Poincaré Embedding of Different Dimensions
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Chapter 5

Future Work

5.1 Overfitting

As my results of the experiments illustrate, the performance of the Poincaré Em-

bedding was getting worse as the dimension grew. From the discussion in Chapter

4, there is no doubt the model with 300-dimension-Poincaré embedding is overfit-

ting. In my opinion, causes may be traced to:

• Sample size: there’s only about forty thousand samples in the data set.

with a 300-dimension-embedding, it may be easier for such a model with

this sample size to overfit.

• Curse of high dimensionality: since in the experiment, I concatenated the

embedding to the input vital signs, the 300 dimensional vector can be seen

as 300 more features. The large number of features can easily cause the

model overfit massively on the training set.

5.2 Lack of Information

Although the Poincaré embedding of the ICD-9 ontology brings noteworthy per-

formance, the embedding I learned is only based on the hierarchical relationships

without any descriptions of the diagnosis codes. Hence, I’m seeking for a way to

train an embedding with information of an ontology fully utilized.
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5.3 Method Improvement

5.3 Method Improvement

After I discussed the current result of the experiment with Dr.Dou, one thing he

pointed out is that my method is different from the method we proposed in our

CBL EHR research. The method we proposed is shown below:

Figure 5.1 Framework of the Method Proposed in the CBL EHR Research

The proposed method extracts latent diagnoses from the textual data in the

MIMIC-III data set (i.e. Discharge Note). This method has the potential to

outperform the benchmark with higher AUROCs. Since more diagnosis codes can

be extracted for each subject (patient), this method may have the potential to

further prevent the overfitting of the 300 dimensional Poincaré embedding.

15



Chapter 6

Conclusions

Conclusions should summarize the problem, the solution and its main innovative

features, outlining future work on the topic or application scenarios of the proposed

solution.

This study focus on the in-hospital mortality prediction, this task is valuable in

the medical domain as it can provide extra information for physicians to evaluate

the severity of illness of patients. Since there are already many studies constructed

considerable prediction models, I chose a benchmark LSTM model [7] to start

with. The data set the benchmark paper and I focused on is the MIMIC-III. This

coding ontology used by this data set is the ICD-9 medical ontology, therefore, I

trained several hyperbolic embeddings for preparing the experiment. The method

I proposed is to make use of the diagnostic codes in the MIMIC-III data set, so I

concatenate the trained embedding after the vital signs to generate a new input

for the LSTM model. The result of the experiment indicates that the method is

effective. I then compared the performance of the LSTM model with Poincaré

embedding with other state-of-art graph embeddings. The results showed that

the hyperbolic embedding performed better with only 10 dimensions. There were

many limitations and errors occurred in this study, the overfitting of the 300

dimensional Poincaré embedding is waiting to be solved, the current embeddings I

trained lack of information as only hierarchical structure is used, and the current

method is simple as no latent information was extracted from the data set.
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Appendix A

Training Curves of Other
Embeddings

Figure A.1 Training Curve of the Model with Dismult Embedding
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Figure A.2 Training Curve of the Model with Rescal Embedding
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Figure A.3 Training Curve of the Model with TransE Embedding
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Figure A.4 Training Curve of the Model with ComplEx Embedding
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