
MEASUREMENT AND MONITORING FRAMEWORK FOR THE

EVOLVING INTERNET

by

NOLAN RUDOLPH

DISSERTATION ABSTRACT

Nolan Rudolph

Bachelor of Science

Department of Computer and Information Sciences

June 2020

Title: Measurement and Monitoring Framework for the Evolving Internet

Granted the annual trends in increasing internet usage, the demand for scalable
and high-performance networks continues to rise. Furthermore, as networks have
evolved in new and profound ways, the tools and practices used to measure them
have not always kept pace with their evolution. In light of both these events,
this paper aims to provide a deeper insight on the measurement and monitoring
frameworks for the evolving Internet and the design they should endow. We
begin by producing a light-weight and scalable network flow to packet synthesizer
designed to be a telemetry system for new measurement frameworks. Next, we
examine the Extended Berkely Packet Filter and its applicability to active and
passive network measurements by designing an Express Data Path flow collector.
Lastly, we present MicroMon, a multi-dimensional monitoring framework for
geo-distributed applications using heterogeneous hardware and receive 10-50%
throughput gains when applied to third party software.

ii

CURRICULUM VITAE

NAME OF AUTHOR: Nolan Rudolph

UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR, USA

DEGREES AWARDED:

Bachelor of Science, Computer and Information Sciences, 2020, University of
Oregon

Secondary Academic Discipline, Mathematics, 2020, University of Oregon

AREAS OF SPECIAL INTEREST:

Network Measurements
Software Engineering

PROFESSIONAL EXPERIENCE:

Researcher, Oregon Networking Research Group, Winter 2019 - Summer 2020
Research for Vice President for Research and Innovation Fellowship, University

of Oregon’s Undergraduate Research Opportunities Program, Summer
2019

Computer Science and Mathematics Tutor, University of Oregon, Winter 2018
- Fall 2020

GRANTS, AWARDS AND HONORS:

VPRI Fellowship, University of Oregon, 2019

PUBLICATIONS:

iii

Durairajan, R., & Kannan, S. (2020). A Monitoring Framework for Tackling
Distributed Heterogeneity. Usenix HotStorage

(2020). New Capabilities for Self-Driving Networks. University of Oregon
Scholars’ Bank

(2019). Trace Driven Traffic Generator for Self-Driving Networks. University
of Oregon Scholars’ Bank

iv

ACKNOWLEDGEMENTS

First and foremost, I want to thank my mentor, Ramakrishnan Durairajan, for
helping me through the entirety of my research and being a significant part of
my preparation for the working world. Ramakrishnan has helped me through
the highs and lows of all projects, and has taught me a tremendous amount of
knowledge regarding his specialized field of study, computer networking. Lastly,
I’d be remiss if not to thank the University of Oregon for the teachings they have
provided me. From basic Python programming to the intricacies of operating
systems, they have presented me with the knowledge required to indulge in the
work seen in this thesis as well as future occupational projects.

v

vi

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 2

II. BACKGROUND AND MOTIVATION 4

Netflow to Packet Synthesizer 4

Network Packet Background 4

Program Optimization 4

Harnessing eBPF for Network Measurement 5

eBPF Overview . 6

Passive Flow Collector 9

Micro-Metric Network Monitor for Distributed Heterogeneity . . . 9

Programmable Switches and Network Telemetry 10

Growing Resource Heterogeneity and Application Requirements 10

Lack of Multi-dimensional Monitoring 11

III. MEASUREMENT TECHNIQUES 12

FlowSynth . 12

Implementation . 12

Evaluation . 14

eBPFlow . 16

Benefits . 16

Implementation . 17

User Space . 17

vii

Chapter Page

Kernel Space . 17

Challenges . 18

Evaluation . 18

Configuration . 18

Results . 18

IV. MONITORING FRAMEWORK 20

Implementation of MicroMon 20

Micrometrics Selection 20

Micrometrics Collection & Dissemination 21

Scalable Inference Logic 23

Experimental Evaluation 23

Impact of Heterogeneous Storage 24

Network Latency and Page Cache 25

V. CONCLUSION . 27

Summary of Results . 27

FlowSynth . 27

eBPFlow . 27

MicroMon . 27

Lessons Learned . 28

FlowSynth . 28

eBPFlow . 28

MicroMon . 28

Future Work . 29

viii

Chapter Page

FlowSynth . 29

eBPFlow . 29

MicroMon . 29

REFERENCES CITED . 30

ix

LIST OF FIGURES

Figure Page

1. Diagram showing primary locations where eBPF programs
can be executed (XDP and tc), as well as how a user-space
control program (via bcc) interacts with eBPF programs
and in-kernel data storage (BPF maps). 7

2. Netflow to Packet Synthesizer’s performance in PPS, run
on Intel Xeon D-1548 2.0 GHz core, MLNX X-3 10 Gb/s NIC. . . . 15

3. TCPReplay to Packet Synthesizer’s performance in PPS,
run on Intel Xeon D-1548 2.0 GHz core, MLNX X-3 10
Gb/s NIC. 16

4. Maximum sustainable packet rate (Mpps) by eBPFlow for
an increasing number of CPU cores. 19

5. High-level MicroMon Design. Figure shows the
integration of our HW and SW micro-metrics collection
and dissemination in MicroMon. 22

6. Storage Hardware Impact. Results for YCSB
workloads varying the number of threads and the storage
hardware across replicas. 24

7. Network and Storage Latency Impact. Results show
the combined considering network and storage latency for
YCSB workload A with 16-threads. 25

x

1

CHAPTER I
INTRODUCTION

As the usage of Internet-able devices continues to increase each successive
year ICT Statistics of 2001-2018 (2019); Internet Growth Statistics 1995 to 2019
(2020); The Rise of Social Media (2020), so does the demand for secure, scalable,
and high-performance networks. With this requirement remaining pertinent for
today’s networks, researchers perpetually strive to create new and improved
networking systems that will accommodate for the inflation of Internet-able users
and the demands of new technology. To evaluate the performance of their services,
researchers use passive and active measurements to do so. Passive measurements
include methods such as packet tracing and flow collection to gain insight into
protocol behavior, to engineer traffic flows, and to detect network intruders.
Active (probe-based) measurements are used to provoke certain behaviors out
of network protocols, devices, and applications in order to infer or directly assess
end-to-end performance metrics, forwarding paths, configurations, and many other
characteristics, e.g., Crovella and Krishnamurthy (2006); Jacobson (1997); Paxson,
Mahdavi, Adams, and Mathis (1998); Pelsser, Cittadini, Vissicchio, and Bush
(2013); Sundaresan, Deng, Feng, Lee, and Dhamdhere (2017). In many instances,
these services are deployed over a variety of geographically-distributed data centers
with heterogeneous storage, WAN resources, and other non-unanimous variables.

As networking services have continued to grow stronger in terms of throughput
and number of capabilities, so has the demand for new and improved telemetry
systems with the bandwidth and capacity necessary to allow the proprietor an
effective test of their system’s efficiency and accuracy. Current telemetry systems
lack the ability to accurately capture the entirety of a system’s benchmark and
leaves researchers skeptical of the results they receive. Considering the deployment
of services with configurations that differ geographically and mechanically, though
the heterogeneity can be beneficial (e.g. providing DPDK with a compatible NIC),
there is a fundamental disconnect between the requirements of geo-distributed
applications using heterogeneous resources and today’s coarse-grained monitoring
frameworks.

To accommodate for the necessary requirements of improved passive and active
measurement tools, a number of approaches have been taken. In an attempt to
reduce interrupt load and overheads of kernel-/user-mode context switches, the use
of zero-copy buffering has been exploited by PF RING and Netmap Ntop’s PF RING
ZC (Zero Copy) (n.d.); Rizzo (2012). In a more extreme approach, such as the likes
of DPDK Data Plane Development Kit (n.d.), frameworks utilize kernel-bypass in
which a unique kernel-level driver allows the packet direct access to the user-mode
program, avoiding the packet processing pipeline in the OS kernel. Although
these frameworks satisfy the requirements prompted by the new innovations in

2

networking services, these frameworks often incur unexpected overhead due to the
re-injection of packets into kernel space for sending. Furthermore, these services
require special hardware features which limit the number of potential use cases
they can be deployed in.

We consider these challenges prompted by the improved efforts of networks,
namely the lack of passive/active measurement tools and compatibility of
heterogeneous resources with current coarse-grained monitoring frameworks, and
posit solutions in the form of two projects, respectively: eBPFlow and MicroMon.
eBPFlow utilizes the services of Extended Berkeley Packet Filter (eBPF) which
offers a way to advance the practice of network measurement by defining a
virtual machine instruction set solely for packet filtration. Entailed by eBPF’s
components is the eXpress Data Path (XDP), a driver-space program that
runs within the kernel and integrates cooperatively with the regular networking
stack making it much more compatible with a variety of hardware than its
counterparts. Due to its low level involvement with the system, which operates
entirely within packet-space, no socket buffer is required which emphasizes the
importance of using XDP as a passive measurement tool. Regarding an updated
heterogeneous resource monitoring framework, we present MicroMon, a monitoring
framework that efficiently collects, disseminates, and processes the combined
impact of storage and WAN heterogeneity – i.e., heterogeneous hardware and
software resources – for improving the performance of third party software such as
Apache Cassandra Apache Cassandra (n.d.). To overcome the problem of coarse-
grained monitoring, MicroMon introduces micrometrics, which is a set of fine-
grained hardware and software metrics required to study the combined impact of
heterogeneous resources on application performance.

In this paper, we describe the intricacies of eBPFlow and MicroMon, identifying
their implementations as well as providing an in-depth evaluation of their services
within a controlled setting. We also develop an intermediate telemetry tool,
FlowSynth, designed to synthesize network flows into packets for the testing of
our proposed solutions. We observe that eBPFlow is able to achieve a maximum
packet capture rate of 20 Mpps while monitoring approximately 800K concurrent
flows per second, using only 5 cores. We make sure to emphasize the importance of
scalability and conduct elaborate tests to ensure this trait is inherited by eBPFlow.
Lastly, we show 10-50% throughput gains in our usage of MicroMon versus the
default services provided by Apache Cassandra.

3

CHAPTER II
BACKGROUND AND MOTIVATION

Netflow to Packet Synthesizer
Network Packet Background. Before coding, we required knowledge

on the architecture of network packets as we had no prior experience in network
programming. Luckily, Ross’s Computer Networking textbook Kurose (2017)
was all we needed to get our project underway. In this text, Ross speaks of
the OSI model of networking, a seven layer depiction of how a packet can be
constructed and transmitted along different mediums and then deconstructed at
alternate endpoints in order to efficiently transfer data. Fortunately, Ross talks in
depth about the application, transport, network, and link layers which perfectly
coincided with the intentions of our project.

1. Link Layer: Once a packet is put on a medium (e.g. fiber optic cables), the
link layer is comprised of switches which utilize data frames from packets to
forward data to the correct location.

2. Network Layer: Similar to the Link Layer, the Network Layer utilizes a
particular Internet protocol specified by the packet to guide the data to the
appropriate location.

3. Transport Layer: Here, the method of transportation specified by the packet
is used to forward the data in a particular way, be it maintaining a continuous
connection between two endpoints or one-way communications.

4. Application Layer: Lastly, this is where the packet finishes deconstructing
and presents the payload, or important data of the packet, to the requesting
user.

These layers are referred to as layer 1, layer 2, layer 3, and layer 7, respectively.
Therefore, we knew we had to translate flow level data into packets which were
comprised of these four different layers.

Program Optimization. Continuing this idea of overall optimization,
we looked to generic programming textbooks for guidance. One in particular
caught our attention, O’Hallaron’s Computer Systems textbook, which brought
me great insight into a programmer’s perspective of code optimization. In this
text we learned numerous development techniques that help decrease the number
of cycles a computer has to make to run code:

1. Eliminating Loop Inefficiencies: Direct Memory Accessing (DMA) costs
computers a considerable amount of processing power and time. Therefore,
if there is any way to remove memory references (e.g. using a temporary
local variable), then that should be implemented

4

2. Reducing Procedure Calls: Not only do function calls utilize DMA, but they
also run through a set of instructions that can cost many cycles. It is wise
to remove gratuitous function calls from repetitive procedures

3. Loop Unrolling: This can be utilized to accomplish multiple iterations in a
single iteration inside a loop, removing the need to continuously reference
and write to the same memory addresses

4. Program Parallelism: Enhancing parallelism in ones program allows a new
process to begin before the last one finishes. This way, no locks will be
encountered in critical sections of code.

We would keep all of these strategies in mind throughout the entirety of writing
our program.

Harnessing eBPF for Network Measurement
A packet filter is a kernel agent that provides a way to select desired packets

from an incoming stream of network traffic and to discard unwanted packets.
Packet filters were initially designed to aid in development and debugging of
network applications by exposing network traffic to a user-level program for packet
trace analysis and/or network protocol handling Mogul, Rashid, and Accetta
(1987). Mogul et al. claim that packet filters originated with the Xerox Alto
computer Thacker, MacCreight, and Lampson (1979) in 1976, and that the first
UNIX implementation of a packet filter was in 1980 Mogul et al. (1987). Key
concerns in this early work were (1) efficiency of the in-kernel packet selection
process and (2) limiting the interrupt load and the overhead of kernel/user-mode
boundary crossings. To address (1), the Mogul et al. designed a stack-based
language for selecting packets based on a fixed offset Mogul et al. (1987). Similarly,
Braden describes an instruction set for a packet filtering program that relied, in
turn on a promiscuous network tap (i.e., at the time, the SunOS Network Interface
Tap Hess, Safford, and Pooch (1992)) for receiving all network traffic from the
interface Braden (1988). Additional techniques such as interrupt batching were
explored in Mogul (1990) to reduce context switches and improve packet capture
performance.

In 1993, McCanne et al. identified several performance bottlenecks with prior
efforts and described the Berkeley Packet Filter (BPF), which introduced a new
filtering language and RISC-like virtual machine model for the filter processing
and a new packet buffering subsystem McCanne and Jacobson (1993). BPF
significantly improved performance over prior work and has been a de facto
standard for quite some time. For example, the well-known libpcap and tcpdump

use BPF-based filtering and attach to a network tap/interface to capture and
analyze the network traffic tcpdump and libpcap (n.d.). Since then, a number of
works have proposed improvements on BPF, e.g., Begel, McCanne, and Graham
(1999); Ioannidis, Anagnostakis, Ioannidis, and Keromytis (2002); Wu, Xie, and

5

Wang (2008, 2011). In 2013, the Extended BPF (eBPF) was proposed, with
a new virtual machine model, a vastly expanded instruction set, new kernel
hooks, and other new facilities such as persistent in-kernel data structures eBPF
- extended Berkeley Packet Filter (n.d.). More broadly, the programmability
enabled by eBPF resembles other efforts in on-device computation and software-
defined networking, e.g. Bosshart et al. (2014a); Feamster, Rexford, and Zegura
(2013); Kohler, Morris, Chen, Jannotti, and Kaashoek (2000); Tennenhouse,
Smith, Sincoskie, Wetherall, and Minden (1997) and programmable network
measurement, e.g. Jeyakumar, Alizadeh, Geng, Kim, and Mazières (2014);
Sommers and Barford (2007); Ziviani, Cardozo, and Gomes (2012).

A number of complementary approaches have been taken for reducing interrupt
load and overheads of kernel-/user-mode context switches. For example, coalescing
interrupts and “batching” packet arrivals can effectively reduce system load Mogul
(1990), although it has some negative side-effects for some types of network
measurements Prasad, Jain, and Dovrolis (2004). Another successful approach to
limiting overheads of packet capture and filtering is zero-copy buffering, meaning
that packets that pass a given filter and which are destined to a user-mode
application are copied directly into a user-space buffer from the device driver. A
system that exemplifies this approach is PF RING Cardigliano, Deri, Gasparakis,
and Fusco (2011); Fusco and Deri (2010); Ntop’s PF RING ZC (Zero Copy)
(n.d.). A more extreme approach is kernel-bypass, in which a special kernel-
level driver passes packets directly to a user-mode program, avoiding the packet
processing pipeline in the OS kernel and overheads of its generality. The U-Net
system Von Eicken, Basu, Buch, and Vogels (1995) was an early implementation of
this idea, and has many similarities to the Exokernel approach developed around
that same time Engler, Kaashoek, and O’Toole Jr (1995); Ganger et al. (2002)
as well as the more recent Arrakis operating system Peter et al. (2016). The
more recent Netmap Rizzo (2012) and DPDK Data Plane Development Kit (n.d.)
systems take this approach. As noted above, the eXpress Data Path (XDP)
component of eBPF has been described as an in-kernel competitor with DPDK
in terms of high-throughput packet performance BPF and XDP Reference Guide
(n.d.); Høiland-Jørgensen et al. (2018); Karlsson and Töpel (2018).

eBPF Overview. The Extended Berkeley Packet Filter (eBPF) is based
on the earlier Berkeley Packet Filter, which was designed as a simple virtual
machine instruction set specifically for packet filtering McCanne and Jacobson
(1993). The earlier BPF is now being referred to as “classic” BPF to distinguish
it from its modern successor BPF and XDP Reference Guide (n.d.); Schulist,
Borkmann, and Starovoitov (n.d.). eBPF first appeared in the Linux 3.18 kernel,
which was released in December 2014 The BPF system call API, version 14 (n.d.);
Linux kernel commit (n.d.). Development of Linux kernel eBPF facilities has
continued at a steady pace; a history of versions and main features added is

6

maintained by the BPF compiler collection (bcc) project BPF Features by Linux
Kernel Version (n.d.).

eBPF expands greatly on the notion of an in-kernel virtual machine instruction
set. In particular, the VM instruction set has been broadened and generalized for
a variety of tasks (i.e., not just packet filtering). eBPF programs are compiled
to bytecode using the llvm compiler (with -march=bpf). Upon loading into
the kernel, programs are verified to ensure that they (1) cannot have invalid
memory references and (2) all code paths terminate. Termination is verified by
disallowing loops and by evaluating the control flow graph. Program sizes are
also limited; in the initial versions of eBPF, programs were restricted to 4096
instructions, but in recent kernels that limit has been raised to 1 million. There
are also restrictions on which kernel helper functions can be used, depending
on the eBPF program type BPF and XDP Reference Guide (n.d.); A thorough
introduction to eBPF (n.d.). The instruction set resembles that of modern
processors, which facilitates just-in-time compilation to the host architecture
which is done by default. Currently classic BPF programs e.g., from tcpdump

are transparently translated to eBPF programs and JIT-compiled, resulting in
performance improvements for traditional packet filtering applications BPF and
XDP Reference Guide (n.d.).

Ingress path

Userspace controller program (python)

Process

OS

TCP/IP stack

 Traffic control
eBPF

program

 XDP Device driver
eBPF

program

Network device

eBPF maps

Egress path

Figure 1. Diagram showing primary locations where eBPF programs can be
executed (XDP and tc), as well as how a user-space control program (via bcc)
interacts with eBPF programs and in-kernel data storage (BPF maps).

eBPF programs are invoked in response to different kernel events. The eBPF
program type restricts the range of kernel hooks where a program can be installed.
For active and passive network measurement, the two most relevant program

7

types are eXpress Data Path (XDP) Høiland-Jørgensen et al. (2018); XDP-Project
(n.d.) and Linux’s tc (traffic control) layer Borkmann (2016); BPF and XDP
Reference Guide (n.d.); Linux cls bpf (n.d.). The XDP program type can only be
invoked upon packet ingress; the program is invoked in the device driver before
any parsing or host processing (device drivers that support this capability are
documented by the bcc project BPF Features by Linux Kernel Version (n.d.)).
tc eBPF programs, on the other hand, can be involved either on packet ingress
or egress. Clearly this limitation has an impact on the design of eBPF-based
active measurement tools. The main differences compared with XDP are that a
tc program is invoked within the networking stack and operates on a parsed packet
(Linux sk buff) BPF and XDP Reference Guide (n.d.) whereas XDP programs
operate on raw packet contents. For XDP eBPF programs there are facilities for
offloading the program to the NIC itself (although Netronome is the only vendor
that currently supports this BPF and XDP Reference Guide (n.d.)). Figure 1
shows the general architecture of where XDP and tc eBPF programs reside in the
kernel.

For each of the XDP and tc program types, eBPF helper functions facilitate
modification of packet contents, recomputing checksums, etc. Helper functions
also exist for debug tracing, timestamps, random number generation, and more.
The range of helpers that can be used by different program types varies BPF
Features by Linux Kernel Version (n.d.), but are fairly similar for XDP and tc

programs. These helper function calls are translated into direct kernel function
calls upon JIT compilation.

Since eBPF programs are invoked only in response to packet arrivals (on ingress
for XDP or ingress/egress for tc), there are additional facilities for persistent data
storage and access within the kernel: BFP maps. There are a few different types
of maps available, including hashmaps, longest prefix match tries, LRU maps, and
arrays. In-kernel maps can be accessed from programs running in user mode and
maps can be pinned so that they remain resident in the kernel even if the associated
eBPF program(s) are not running. Moreover, there are per-cpu variants of some
of these data structures, including per-cpu arrays and hashmaps which enable
lock-free access to a data structure. Although helpers exist for using spinlocks
and atomic addition, spinlocks in particular cannot be held while any other helper
function is called, which precludes common synchronization patterns.

There are both generic maps, where the types of keys and values can be
user-defined, and more specialized maps. One kind of specialized map is useful
for code structuring: the program map (BPF MAP TYPE PROG ARRAY). Program
maps contain other eBPF programs, and can be invoked through a special helper
function along with the map name and a key. If the key is not in the map, control
flow continues in the current program. Otherwise, a longjmp is performed to
the new program. Program maps enable some modularization of code designed to
handle different protocols, IP versions, etc. BPF and XDP Reference Guide (n.d.).

8

Low-level eBPF programming can be difficult, largely due to the complex API
and safety requirements. There are a number of projects to create simplified
front-ends for the “raw” eBPF C-based API, including bpftrace, perf, ply,
and bcc Gregg (n.d.). In our work, we use the bcc (BPF Compiler Collection)
tools, which enable creation of a user-space control program in Python (or
Lua, Go, Rust and other languages). bcc has interfaces for compiling and
installing eBPF programs (including XDP and tc programs, in conjunction with
pyroute2 pyroute2 netlink library (n.d.)), interacting with in-kernel BPF maps,
and collecting kernel debug information.

Because of the opportunities afforded by safe, in-kernel packet processing,
a number of networking projects leverage eBPF facilities, including flow
processing in Open vSwitches Tu (2016), IOVisor project IO Visor Project
(n.d.); Matteo Bertrone (2016), network virtualization Ahmed, Alizai, and Syed
(2018), creation of high-performance P4-based programmable switches p4 on
the edge (n.d.), network monitoring frameworks Recap: High-performance Linux
Monitoring with eBPF (n.d.); Using eBPF for network traffic analysis (2018),
high-performance routing Toonk (2020), techniques for DDoS defense Bertin
(2017), networking stack extensibility Bonaventure (2019); Tran and Bonaventure
(2019), and routing flexibility Wirtgen (2019); Xhonneux and Bonaventure (2018);
Xhonneux, Duchene, and Bonaventure (2018). An excellent compilation of eBPF
resources and projects that use eBPF is available on github A curated list of
awesome projects related to eBPF (n.d.). These projects motivate and mandate
a critical rethinking of network measurement tools and practices in the light of
benefits offered by eBPF.

Passive Flow Collector. We designed a capability to capture network
flows in a cost-effective and scalable manner is the second use case we explore.
State-of-the-art approaches either employ dedicated hardware solutions—that are
rigid in terms of functionality as well as cost-prohibitive—or deploy an open-source
tool to capture network flows that cannot keep up with the traffic at line rate (i.e.
limited scalability). On the contrary, an eBPF-based flow collector is poised to
turn a commodity Linux device to passively capture network flow with reasonable
performance. Furthermore, we posit that such a solution is more flexible and
cost-effective compared to hardware solutions.

Micro-Metric Network Monitor for Distributed Heterogeneity
With increasing data processing, analytics, and storage demands, geo-

distributed applications are becoming a lifeline of modern enterprises and content
providers, spanning across several geo-tropical DCs. These applications range
from compute-intensive streaming (e.g., Apache Spark, Hadoop) and batch
processing applications to I/O-intensive data serving applications such as NoSQL
Cassandra Apache Cassandra (n.d.), Google Spanner Corbett et al. (2013),

9

Amazon’s Dynamo that must support millions of operations with microsecond-
level latency. In addition, these geo-distributed applications have varying levels
of consistency, availability, security, and partition tolerance requirements. For
example, compared to streaming applications, data serving applications such
as Spanner demand higher availability and stronger consistency; hence data
placement and replica selection becomes a key aspect of the application design.

For example, Cassandra allows the end-user request to land on any quorum-
based replica node. For data partitioning and request routing across replicas,
Cassandra (and other similar applications) use consistent hashing DeCandia et
al. (2007). Each node gets assigned to some key range and acts as a coordinator
node responsible for replication. The coordinator is responsible for replication of
data on different nodes and replicating to other n − 1 replica nodes. For replica
selection and request routing, Cassandra uses snitch Snitch (n.d.) in each of its
nodes, which informs about the network topology, workload, historical latency
conditions, and the detection of failing or slow nodes. Snitch allows Cassandra to
distribute replicas according to the replication strategy by grouping machines into
datacenters and racks. In this work, we use Cassandra as an example application
(specifically, in our evaluations) to demonstrate that it has diverse requirements
and that it is unaware of resource heterogeneity.

Programmable Switches and Network Telemetry. Monitoring
the state of the network—also known as network telemetry—has been well-
studied by the community for decades. Telemetry information is collected at
different granularities (e.g., packets, flows, samples of flows, etc. In-band Network
Telemetry (INT) (n.d.); Linux SNMP Counter (n.d.)) by installing network taps
at key locations—along with switches—in the network. Recently, programmable
switches Bosshart et al. (2014b) are slowly replacing the traditional setup; this
is primarily due to their increased flexibility and functionality. The collected
telemetry is sent either out-of-band (directly) or in-band (via dataplane packets to
a “telemetry sink”) to a remote inference engine or a controller and further actions
are taken In-band Network Telemetry (INT) (n.d.); Li, Miao, Kim, and Yu (2016);
Yu, Jose, and Miao (2013). Unlike traditional network telemetry, programmable
switches enable collection and dissemination of processed telemetry reports that
are succinct (e.g., reporting heavy hitters vs. sending raw packets or counters to
the collector) and that captures the state of the network effectively.

Our research is motivated by the need to close the semantic gap between (a) the
growing requirements of geo-distributed applications and the heterogeneity of the
DC resources on which they are deployed as well as (b) the paucity of monitoring
frameworks to capture fine-grained telemetry information at multiple dimensions
(i.e., at the heterogeneous resource level and at the end-to-end application level).

Growing Resource Heterogeneity and Application Requirements.
While applications are scaling across DCs that are geographically distributed,
the hardware resources of DC systems are also becoming more and more

10

heterogeneous Legtchenko et al. (2017); Mars and Tang (2013). For example,
take the case of storage heterogeneity: though DCs are moving towards an era
of fast SSDs and nonvolatile memory (NVMe), traditional low cost-but-slower
alternatives such as HDDs continue to be a vital part of a storage tier, thereby
increasing storage heterogeneity across datacenters Mars and Tang (2013).

In addition, the heterogeneity of resources impacts application management,
request routing, data placement, replica selection, and has a direct impact
on applications’ performance and requirements. For example, Cassandra is
highly network-intensive as well as storage-intensive. Unfortunately, such an
application must quickly decide on which replica to route to and what request
to perform during data placement or fetching. Unfortunately, today’s geo-
distributed applications (1) are unaware of resource heterogeneity (e.g. storage
SSD vs. hard disk), (2) network dynamism (e.g., routing delays, link outages, and
path failures) Popescu, Zilberman, and Moore (2017), and (3) fine-grained host-
level hardware metrics (e.g., the storage hardware’s program-erase (P/E) cycles,
temperature, I/O traffic), or software bottlenecks (e.g., application page cache
state, storage I/O queue, TCP queue occupancy, segmentation Qdisc queue).These
fine-grained metrics will be referred to as micrometrics.

Lack of Multi-dimensional Monitoring. The problem is complicated
further by the lack of multi-dimensional resource monitoring frameworks. For
example, deploying Cassandra in a WAN is fraught with challenges including
WAN heterogeneity, path failures, unplanned outages, and performance and
topological changes. Prior efforts attempt to address these challenges—in
isolation—by creating topology awareness Jain et al. (2013), latency and
bandwidth awareness Jonathan, Chandra, and Weissman (2018), network-level
multi-dimensional resource monitoring and aggregation Dolberg, Francois, and
Engel (2012), and snitching mechanisms Snitch (n.d.). While the above-
mentioned efforts are as compelling as ever, they are mostly one-dimensional.
Other multi-dimensional work such as Grandl, Ananthanarayanan, Kandula,
Rao, and Akella (2014) deal with CPU and bandwidth heterogeneity for long-
running stream processing systems and is not designed in the context of geo-
distributed applications in general. In addition, these approaches are an ill-fit
for latency-sensitive applications. Moreover, these approaches are mostly focused
on application-level resource adaptability and a lack of high-resolution resource
monitoring does not have a significant impact on performance.

On the network front, while the programmable switches and network telemetry
efforts provide the needed micrometrics (e.g., path that a packet takes, number of
unique flows per second, heavy hitters), they are network specific, and we require
concerted effort between the programmable switches and host OSes.

11

CHAPTER III
MEASUREMENT TECHNIQUES

In this section, we explain two measurement techniques for active and passive
network measurement. We begin by describing the in-depth implementation of
the netflow to packet synthesizer, which we’ve termed FlowSynth, regarding how
values are stored and sent across physical links and explain the respective results.
We follow this section with the description of eBPFlow, a passive network flow
collector based off of the Extended Berkeley Packet Filter, and the evaluation of
its abilities.
FlowSynth

In this section, we describe the design and evaluation of FlowSynth, a kernel-
based program we designed as a telemetry system for future network measurement
tools.

Implementation. We were fortunate enough to acquire a dataset of
280 million recorded flows at the University of Oregon to use for our own testing
purposes. Among these reported flows they contained the following categories
delimited by commas:

1. Start Timestamp in Epoch Format

2. End Timestamp in Epoch Format

3. Source IP Address

4. End IP Address

5. Source Port Number

6. Destination Port Number (or a float type.code if ICMP/IGMP)

7. IP Protocol Number

8. Type of Service

9. Transmission Control Protocol Flags (default 0 if not TCP)

10. Number of Packets

11. Number of Bytes

12. Router Ingress Port

13. Router Egress Port

14. Source ASN

12

15. Destination ASN

Upon dissection of this data, we found that the top four protocols associated
with the IP protocol field were ICMP, IGMP, TCP, and UDP. Since including
all 255 protocols would be a tedious and not so prosperous task for our research,
we decided to implement only these four protocols for our future flow to packet
synthesizer.

We now approach the phase where our prior readings and programming
methods take effect. we began by constructing simple packets with layer 1 being
an Ethernet frame, layer 2 an IP header, layer 3 the UDP header, and a gibberish
payload for layer 7. The netinet repository Netinet Repository (n.d.) from the
FreeBSD C library provided me with all the headers we required, equipped
with compact structures used as layer headers. Sockets GNU C Library (n.d.),
provided by the GNU C Library, allowed me to reliably transfer packets onto
the transmission queue of our NIC for packet sending. After tinkering with our
program for some time, we found that data could be reliably transferred over the
localhost interface using our prototype.

Unfortunately, the localhost interface is a very simplistic feedback loop
interface which is an unreliable means of testing a program’s efficiency and
viability. Therefore, we decided to transfer our tests to CloudLabs Duplyakin
et al. (2019), a cloud provisioning platform that grants you access to a multitude
of nodes for network testing. After pulling our repository onto the client node and
issuing a TCPdump on a linked interface using our server node, we found that
if the source and destination MAC addresses were specified alongside a network
interface, our software could reliably transfer packets from client to server.

With our prototype finished, it wasn’t too difficult to implement the rest of
the protocols since all we had to do was replace the UDP header with a desired
header, and configure it according to the flow entry in the dataset. Once we had
implemented ICMP, IGMP, and TCP, we were ready to move onto time related
issues.

The question became: How could we read flows from a dataset and send packets
that replicated the flow over a set duration of time? We began by implementing
this concept of having our program’s run-time correlate with the time from the
dataset. We did this by creating a method which reads the first entry from the
dataset, grabs the start time of the packet, and subtracts it from every subsequent
flow in the dataset. This way, all flow times have been neutralized to program
time, which makes it much simpler to decide when to read a new flow; My program
should only read a new flow if the start time is before or equal to our program’s
current time.

Now that our program knows when to read flows, it must know when to send
from the flow as well. We achieved this goal by taking the net time the flow was
recorded for and dividing that value by the net amount of packets the flow had,
(endTime - startTime) / packets ; This was stored in a variable. We decided to

13

create a specific structure that would encompass details about the flow for low
overhead sending. Therefore, we decided that when each flow is read, it would
then be stored as custom packet structure named grand packet with the following
attributes:

1. char *buffer - Used for storing the contents of the actual packet itself

2. unsigned int packets left - Tracks how many packets are left in the entry

3. float d time - Holds the calculated delta time between packet transmission,
calculated using the method shown above

4. double cur time - Tracks the current time state of the packet for scheduling

5. length - Holds the total length of the packet for socket transmission

6. struct grand packet *last - Used for network scheduling and points to
previous packet

7. struct grand packet *next - Used for network scheduling and points to next
packet

Now, we can use the program’s time in contrast with the flow’s cur time to
determine if another packet should be sent. If the flow should be sent at some
program run-time, then a packet is sent using the flow’s buffer and add the
flow’s d time to its cur time, 1 is subtracted from packets left, and then program
continues to monitor the flow. Once the flow’s packets left reaches 0, the memory
addresses that held the flow’s structure are freed.

Lastly, we must now consider that the dataset will have many flows whose
start time will fall within the program’s current time – We found a max of half a
million flows that fell victim from this particular dataset! Therefore, we needed
some sort of scheduler that would check each applicable flow and see if it was time
for that flow to send, do nothing, or free its own memory. We resolved this issue by
applying a Round-Robin (RR) algorithm to network scheduling, where each flow
would be designated a small amount of time, where the RR would then continue
onto the next flow in the circle. Therefore, when each new flow is implemented to
the RR circle, we set the first flow’s *last to point to the new flow, and the last
flow’s *next to point to the new flow as well. This way, we have a linked list of
flows that the RR can easily traverse and send from when required.

Evaluation. My flow to packet generator software never fell behind
when generating packets for the University of Oregon dataset we supplied it
with. Therefore, we decided to test the limits of our program to get a range
of benchmarks for potential usages.

We began by creating test flows for our software using a lightweight flow
generating script. This script was utilized by automated testing, a bash shell

14

Figure 2. Netflow to Packet Synthesizer’s performance in PPS, run on Intel
Xeon D-1548 2.0 GHz core, MLNX X-3 10 Gb/s NIC.

script we created which creates flows with byte rates up to link-rate (generally 10
Gb/s for most NICs). The performance of our flow to packet generator, called
UONetflowC, are shown below.

Here, we can see that our program tends to decline in accuracy around 900
kpps. Granted the number of packet options our program accommodates for, how
it runs entirely in kernel space, and that we use a single core to transmit all packets,
these results are rather impressive. In fact, our results 2 compete fairly well with
some of the leading kernel space packet synthesizers 3, such as TCPReplay Pcap
Editing and Replaying Utilities (n.d.).

We witness that TCPReplay’s max PPS is around 950 kpps, and on a single
core, 825 kpps. Therefore, our program takes the win on a single core, however
without multi-threading capabilities, it falls short in a multiple core comparison.

We ran another test to see what sort of bit rates our flow to packet generator
could achieve. All packets must abide by an MTU of 1500, therefore a realistic
max packet size that wouldn’t be dropped by the kernel is approximately 1300
bits. With this method, we was able to achieve line-rate BPS on our node’s 10
Gb/s NIC.

Summary. As the main purpose of this synthesizer was to act as a
telemetry system for future Self-DN capability research and production, it satisfies
this requirement by being able to achieve link-rate transmission. Although
outperformed by kernel bypass packet generators such as pktgen and DPDK Data
Plane Development Kit (n.d.); Turull, Sjödin, and Olsson (2016), the simplistic
flow creation mechanism entailed by our repository allows an accurate replication
of very specific user-defined flows, enabling intricate testing of network related

15

Figure 3. TCPReplay to Packet Synthesizer’s performance in PPS, run on Intel
Xeon D-1548 2.0 GHz core, MLNX X-3 10 Gb/s NIC.

software. In fact, this project was heavily utilized for the first half of eBPFlow
until stress testing was required.

eBPFlow
In this section, we describe the design and evaluation of eBPFlow, an XDP-

based program we designed to test the efficiency and accuracy of passive eBPF
flow collection.

Benefits. We motivate the design of eBPFlow by outlining the benefits of
XDP-based programs over state-of-the-art software and hardware flow collectors.

First, XDP provides an in-kernel system for packet processing by providing
access to the raw packet memory space, making it optimal for flow recording. If
flow recording is performed along with packet forwarding (i.e., packets are not
just dropped after being recorded), competing frameworks such as DPDK incur
overhead as a result of bypassing kernel space due to the required re-injection of
packets into kernel space for sending. XDP, however, does not change the native
path of packet processing but instead acts as an intermediate recording mechanism
that resides between the NIC and kernel space. Furthermore, since XDP provides
access to the raw packet memory space, the recording is done before any memory
allocation required by the network stack, obviating the need for packet parsing or
a socket buffer.

Second, XDP is integrated cooperatively with the regular networking stack,
making it much more adaptable and compatible with a wide variety of hardware.
Other services such as DPDK and Netmap limit their potential users due to their
strict hardware dependencies Data Plane Development Kit (n.d.); Rizzo (2012),

16

although incompatible Netmap NICs can still use emulation at a cost of decreased
performance. This is key in enhancing the generality of eBPFlow.

Third, XDP can be dynamically reprogrammed without any interruption to
packet processing, allowing features and policies to be easily added or removed.
This dynamic nature of swapping driver-space programs is unprecedented in
current flow collecting services and makes the flow collection via eBPFlow more
responsive to changing needs. On the contrary, hardware- and router-based flow
collectors are rigid and can be cost-prohibitive.

Finally, XDP incurs lower CPU usage compared to other software-oriented
flow collecting services due to the minimized number of cores allocated to packet
processing. This hinges on the fact that the XDP program resides in driver
space and records packet attributes before any memory allocation required by
the networking stack. Lower CPU usage equates to better overall computational
performance and power-saving.

Implementation. Motivated by these benefits, we implement
eBPFlow—an XDP-based program spanning across user and kernel space.

User Space. The user space of eBPFlow is a Python script that imports
the BPF Compiler Collection (BCC) library, exposing BPF Python objects that
compatibly operate with the native BCC library. The script loads and compiles
our program (i.e., eBPFlow), installs it in XDP, and establishes maps that allow
information to be shared between the user and driver space modules. In particular,
per-CPU maps are created to store flows, allowing multiple cores to operate
atomically on identically hashed flow records. The keys used to the BPF maps to
store flows are a custom custom structure that includes static flow-level attributes
such as source/destination IPs and ports. Naturally, the value corresponding to
a given flow key holds the number of bytes and packets received, timestamps,
etc. A user-level argument provided to this script is the aggregation time; once
a flow has sat idle (i.e., received no further packets) for a duration that exceeds
the aggregation time, the flow becomes cached by moving to another per-CPU
hashmap and deleting the entry in the actively used flow accumulation hashmap.
In this sense, the Python script acts as a garbage collector for expired flows to
optimize storage and lookup efficiency. The userspace Python program, upon
copying flows from kernel BPF maps to user space, merges the per-CPU records
to form a single coherent accounting of a given flow.

Kernel Space. Complementary to the user space script, eBPFlow, written
in C and using eBPF helper functions, is mounted on the XDP kernel hook. Like
other XDP programs, all non-mapped memory accessed or manipulated must be
found within the space of an incoming packet. In the XDP code, we parse the
various layers of the packet, extract and construct a key for the BPF map, and
use that to update a flow record. Care is taken to minimize the number of map
operations in order to scale well with high packet rates

17

Challenges. In the design and implementation of eBPFlow, we tackled
two key challenges: (a) the limitations of implementing code within the driver
space, and (b) storage limitations with BPF maps. While the first limitation
comes with the territory of coding within the kernel and within the constraints of
the BPF safety checker, it is worth mentioning. For example, and as noted earlier,
no loops may be used within the program, although #pragma unroll can unroll
definite loops within the BPF C code as a workaround. With eBPFlow, this issue
arises particularly in unrolling VLAN headers. The second limitation regarding
maximum size of BPF maps is imposes an artificial ceiling on the number of flows
that can be captured within a single map, as we discuss later in this section.

Evaluation. In this section we describe our experiments to evaluate the
performance of eBPFlow.

Configuration. We design our experiment in the CloudLab infrastructure
Duplyakin et al. (2019), where two nodes are connected by an Ethernet link. Both
nodes reside within the Utah cluster and have 2.4 GHz 10-core Intel E5-2640v4
processors with 64 GB ECC memory, and two Dual-port Mellanox ConnectX4
25 Gb/s NICs. We denote one node as the flow collector, running eBPFlow.
The other node uses pktgen Turull et al. (2016), a high-speed packet generation
tool, to emit packets to stress the flow collector. We created a pktgen script to
cause each core to emit 60 million 60 byte UDP packets at a rate of 1 Mpps
(1 Million packets per second). Moreover, this script also randomly generated
destination IPv4 addresses from a /24 prefix, as well as randomizing the source
port. The randomization of addresses and ports results in 25K flows/sec emitted
from pktgen. Lastly, we utilized a range of number of cores on the host running
pktgen to provide offered loads from 1 Mpps up to 20 Mpps (just over 10 Gb/s,
at maximum).

Results. We evaluated the performance of eBPFlow on two criteria:
performance and accuracy. In particular, our main metric was the maximum
offered packet rate that could be sustained with zero or negligible packet loss (i.e.,
less than 0.0001% loss) at the flow collector. By simply comparing the number of
packets emitted from pktgen with the number of packets received by eBPFlow, we
could assess whether a given packet rate could be sustained. In our experiments,
we varied the number of CPU cores available on the host running eBPFlow as we
also vary the offered packet rate from the pktgen host.

Figure 9 shows results of the number of CPU cores required (x axis) to sustain a
packet rate (y axis, in Mpps). We observe in the plot that a single core can handle
approximately 3.66 Mpps, and that this rate scales well with additional cores. The
maximum rate we considered in our experiments, 20 Mpps, was achieved with 5
cores. Note that the number of flows/sec generated remains constant for these
experiments, at 25K flows/sec.

In additional experiments, we evaluated the effect of increasing the number
of flows generated from pktgen beyond the baseline 25K flows/sec that we used

18

1 2 3 4 5
Number of Cores

0

5

10

15

20

25

M
pp

s

Figure 4. Maximum sustainable packet rate (Mpps) by eBPFlow for an
increasing number of CPU cores.

in the experiments for Figure 9. Specifically, we increased the size of the prefix
used for generating random destination addresses while holding the offered packet
rate at 20 Mpps with 60B packets. For 5 cores, eBPFlow could sustain 100K
flows/sec, with 6 cores 200K flows/sec, with 8 cores 400K flows/sec, and with 10
cores 800K flows/sec. At the 800K flows/sec mark, we encountered a limitation
with the maximum size of eBPF maps.

19

CHAPTER IV
MONITORING FRAMEWORK

Implementation of MicroMon. In what follows, we describe the design
of MicroMon. We first describe the basic set of micro-metrics, then briefly discuss
the techniques to capture such micro-metrics, followed by ways to reduce collection
and dissemination overheads. We then discuss our proposal for scalable inference.

Micrometrics Selection. A key technical challenge towards the design of
MicroMon lies in identifying and selecting the key software- and hardware-based
micrometrics to collect from all the resources (e.g., network, storage).

Mapping Micrometrics to Resource Sensitivity. One problem is that the
choice of micrometrics could substantially vary across applications, applications
perceived performance-metrics, and DC/cloud deployments. For example, latency
sensitive microservices, and geo-distributed key-value stores like Cassandra and
memcached Ousterhout, Fried, Behrens, Belay, and Balakrishnan (2019) are highly
latency sensitive and are directly dependent on I/O latency with short request
times compared to previously studied geo-analytics such as Apache Spark that
use compute-intensive and throughput sensitive queues. we observe that one
way to scope the problem of micrometrics selection is by mapping applications
to hardware and software resource sensitivity.

Storage H/W and S/W Micrometrics. To scope the solution in our current
design of MicroMon, we focus on I/O-intensive Cassandra in this paper. Without
loss of generality, these metrics are applicable to several large classes of I/O-
intensive applications.
Interplay between hardware micrometrics. Most DCs monitor and collect
system (and storage) health and performance metrics. For storage, this includes
straightforward metrics such as latency and bandwidth as well as device-level
SMART counters such as Raw Read Error Rate (read error rate), Program Fail
Count (write error count), device block wear, and temperature. Note that these
metrics are used by prior studies in isolation towards data placement and load
imbalance Narayanan et al. (2016a). We posit the importance of considering
the interplay between such hardware micrometrics, network performance, and
application’s data access patterns. For example, in NoSQL store replica selection
and request routing, a node with low network latency but high program error (PE)
count can still be used as a reliable read replica as long as read error rates and
temperature do not increase. Unfortunately, current one-dimensional monitoring
systems simply quarantine the entire physical node with high PE, routing requests
to nodes with higher network latency Narayanan et al. (2016a).
Interplay between Software micrometrics. Storage software micrometrics
such as per-node page cache and outstanding block I/O requests could play
a crucial role towards request routing and replica selection. For example, in

20

Cassandra’s LSM design, the software storage is maintained as String Sorted
Tables (SST tables) composed of several files, with each file storing a range of
key-value pairs. As we will discuss in our evaluation, accessing data from a replica
with hard-drives but significantly large page cache state can significantly boost
throughput and lower latency compared to accessing data from a SSD replica
without pagecache. However, current monitoring and replica selection mechanisms
clearly lack such semantic awareness.

Network H/W and S/W micrometrics. While several metrics are available via
Simple Network Management Protocol (SNMP) including sensor information (e.g.,
temperature, fan status, etc.), collections of hardware and software micrometrics
from the network and joint decision with host-specific micrometrics are critical
to the success of our work. To this end, we identify several network hardware-
specific micrometrics including status of relevant links, SFP status (if available);
resource information (e.g., CPU load, memory usage) via SNMP get, up/down
status of devices/port, queue and buffer utilization, and link-specific information
including Q-drops, SNR; among others. For example, prior effort utilized the
signal quality information (i.e., Q-drop) to predict future outages in large optical
backbones Ghobadi and Mahajan (2016). Indeed, we propose to leverage these
micrometrics and expose them to applications.

Similar to the hardware micrometrics, recent innovations in programmable
data planes support seamless extraction of software micrometrics from the network
including port violation, QoS statistics including drops per queue, packets per
Differentiated Services Code Point (DSCP), packet errors and discards, and
aggregated network states including heavy hitters, flow arrival rate, etc. to further
enhance the performance of applications.

MicroMon Components We develop MicroMon, a replacement of Cassandra’s
Snitch mechanism for fine-grained micrometrics collection and multi-dimensional
resource monitoring as shown in Figure 5. As discussed earlier in § II, in
Cassandra, each node gets assigned to some key range and act as a coordinator
as well as replica for other set of keys. Hence, in each node, a user-level
component—MicroMon-engine—integrated with Cassandra, is responsible for
collecting micrometrics from its own node as well as replicas. In addition to
the user-level component, MicroMon also contains an OS-level driver (MicroMon-
driver) to monitor hardware micrometrics (e.g., SMART counters Narayanan et al.
(2016b) such as high P/E warnings, NIC packet drops) and software micrometrics
(e.g., application’s page cache state, storage and network I/O queue delays, TCP
queue occupancy). Further, our choice of extending snitch as opposed to designing
a new tool is mainly because of Snitch’s wide usage and to avoid polluting replicas
with new monitoring tools.

Micrometrics Collection & Dissemination. We next focus
on designing techniques to reduce micrometrics collection and dissemination

21

Enterprise network
(location B)

Internet

Inference &
Decision Support

Collector
Network

Controller

Enterprise network
(location A)

Storage stack
micrometrics at DC
Page cache (SW)
File system (SW)
Block device driver (SW)
Hard disk (HW)

Networking stack
micrometrics at DC
----- Transport -----
Flags (syn, ack, etc.)
Window size
Goodput
Bytes transmitted/received
Round-trip time
----- Application -----
Throughput

Networking stack
micrometrics at switches
----- Ingress/Egress -----
Port
Packet count
Byte count
Drop count
Utilization
----- Buffer -----
Avg. queue length
Queue drop count
Congestion status

Collected
micrometrics

Control messages

Telemetry report

Server

Figure 5. High-level MicroMon Design. Figure shows the integration of our
HW and SW micro-metrics collection and dissemination in MicroMon.

overheads, since collection and dissemination happens at both hosts and the
network.

Host-level collection with Anomaly Reports. One issue complicates the
collection of micrometrics at the host level. Specifically, the number of
micrometrics increases with the number of hardware resources and software
subsystems used by an application. For example, even a single SSD’s SMART
counters contain close to 32 counters that can impact performance Narayanan et al.
(2016b). This, coupled with software micrometrics, could significantly impact the
resolution at which this information is collected and disseminated, micrometrics
in data plane at high resolution could impact impacting the performance of
applications. To address the issue, we propose anomaly reports, where for all
possible host-level micrometrics, the host OS only reports anomalies. Such reports
require no further processing at the inference and decision engine (explained
below). We argue that host OSes can already identify software and hardware
anomalies, given a better holistic view of the system. For example, monitoring
anomalies such as high page cache misses, network queue latency or high SSD
P/E count can be done at the host, only reporting anomalies rather than
processing them. Further, we propose to extend the MicroMon-driver to report
such anomalies. MicroMon-driver periodically collects the required software and
hardware micrometrics and composes a monitoring packet with anomalies.

Co-designing Network-level Dissemination with Host OSes. We leverage the
innovations in programmable switches and co-design two mechanisms (with host
OSes) to extend network telemetry to support heterogeneous resource monitoring.
our first mechanism (a) generates monitoring packets using MicroMon-driver

22

with anomalies identified at hosts as payload and (b) uses in-band network
telemetry (INT), subsequently, to add network micrometrics (identified in § ??)
to those monitoring packets and disseminate them via sink nodes to the decision
engine. In a general INT model, data packets contain headers which in turn
contain instructions for the traffic sources (e.g., applications, end-host networking
stacks) about what state to collect and write into the packets as it transits
the network. However, given the limitations of INT packet metadata sizes and
INT instruction fields (16-bits) , and the possibility of hundreds of micrometrics,
we leverage anomaly reports and using techniques such as run-length encoding
and memoization for the ones collected at the network. Telemetry reports can
be generated at switches based on pre-established anomalies, opening up the
possibility of reporting only aggregated network events and naturally overcoming
the micrometrics collection and dissemination. For geo-distributed deployments
as shown in Figure 5, we plan to leverage INT over any encapsulation (e.g., over
TCP/UDP, depending on the application) to collect and disseminate micrometrics.

our second mechanism is very similar to the first one, except the usage of
INT in the dissemination step above. Specifically, programmable switches also
support out-of-band reporting of telemetry reports directly to the decision engine.
This is to overcome the difficulties in strategic placement of INT sink nodes in
an enterprise WAN. In light of this, we support out-of-band telemetry reports
containing aggregated network and host micrometrics to be reported directly to
decision engine.

Scalable Inference Logic. Next, we discuss our preliminary scoring-
based inference in Cassandra and then discuss our ongoing work on building a
generalized inference logic.
Scoring-based Inference. The current snitching mechanism in Cassandra uses a
scoring mechanism that sorts the endpoints by their latency with an adaptive
replica failure detector. The coordinator node initially sorts the replicas based
on their network proximity and then uses response latency to update the score
frequently. Instead, in MicroMon, We modify the scoring mechanism to consider
different software and hardware storage and network micro-metrics in addition to
straight forward network latency and bandwidth. My current prototypic scoring
mechanism (as evaluated), assigns equal weights to all software and hardware
micro-metrics and higher weights to network latency and bandwidth.

Experimental Evaluation. To understand the performance benefits
and implication of our proposed MicroMon, we next compare the performance
of MicroMon with the vanilla dynamic snitching mechanism in Cassandra, under
different deployments, by varying multidimensional micrometrics such as storage
heterogeneity (SSD vs. HDD), application threads, network latencies across
replicas, and the page cache.
Benchmark. We run the industry standard and widely-used YCSB Cooper,
Silberstein, Tam, Ramakrishnan, and Sears (2010) benchmark with Cassandra.

23

Figure 6. Storage Hardware Impact. Results for YCSB workloads varying
the number of threads and the storage hardware across replicas.

Due to space restrictions, we study three key-value access patterns from the YCSB
cloud suite: (1) Workload A (a write-heavy workload with 50/50 read-write ratio),
Workload B with 95% read, and Workload C (a read-only workload). We show the
run phase of YCSB for 95th percentile latency and throughput for 500K operations
with a runtime of around 30 minutes.
Experimental Setup. We design our experiments in the CloudLab
infrastructure with three physical nodes located within the Utah and Utah-APT
clusters. For the SSD replica located in the Utah cluster, we use a system with
a 2.0GHz, 8-core Intel Xeon D-1548 processor and 64 GB ECC memory. For
the other two replicas residing in the Utah-APT cluster, their systems entail a
2.1GHz, 8-core Intel Xeon E5-2450 processor with 16 GB RDIMM memory. The
keys are mapped across these three Cassandra nodes, where each node acts as a
coordinator for a range of keys with other nodes acting as a replica. Two out of
three Cassandra nodes use a hard-disk drive with 1-2 ms random-access latency
and 5-15 MB/s random access bandwidth compared to the SSD node with 10-30
us latency and 300 MB/s bandwidth. The average network latency between nodes
solely within Utah-APT is around 0.25-0.35 ms latency, and between nodes from
Utah-APT and Utah is around 0.35-0.45ms latency. In all our experiments, We
compare MicroMon against the default dynamic snitching mechanism that mainly
considers network latency.

Impact of Heterogeneous Storage. First, to understand the impact
of considering underlying storage hardware’s latency and bandwidth, we compare
the default dynamic-snitching mechanism in Cassandra against MicroMon. For
avoiding undue overheads of network latency, we maintain two replicas of
Cassandra at the same datacenter, with one replica using SSD and other replica
using hard-disk to serve YCSB requests. We maintain Cassandra’s in-memory
buffer (skiplist) size to the default 64MB and commit the log (using fsync) every
50ms (a parameter in Cassandra).

Figure 6 shows the throughput of YCSB workloads A, B, and C in the y-axis,
and the number of client threads issuing requests on the x-axis. The client issue
1KB requests totaling 500K operations. First, the dynamic snitch in Cassandra

24

Figure 7. Network and Storage Latency Impact. Results show the
combined considering network and storage latency for YCSB workload A with

16-threads.

is oblivious to storage latencies and only considers network latencies. Due to
the lack of network latencies, it sends even requests to both the SSD and HDD
replicas. In contrast, MicroMon also considers storage latency through the micro-
metric collection, redirecting a significant number of requests to SSD replica.
Workload A with 50% read and writes shows higher gains over workload B with
5% writes. Further, with increasing client threads (in the x-axis), the MicroMon
gains improve by exploiting SSDs higher paallelism, leading to 49% gains for
workload A. Finally, for read-only workload C combined with the YCSB’s uniform
distribution, the benefits are lower for our current evaluation scale. Also, note
that we only report the run-phase and not the warmup phase (cold access). The
results highlight the need for multi-dimension micrometrics, which includes storage
hardware monitoring.

Network Latency and Page Cache. To understand the combined
impact of storage and network heterogeneity, in Figure 7, we compare the Default
DynamicSnitch with our MicroMon based on synthesized latency toward the SSD
replica, whereas the HDD replica’s network latency (< 1ms) is unchanged. In the
x-axis, we gradually increase the network latency of SSD from 0ms and 25ms.
We include two types of comparisons with respect to the SSD node, one where
the cache remains as default and the other where the SSD replica has a lower
page cache footprint (MicroMon No Cache and Default DynamicSnitch No Cache)
simulated by frequently clearing the cache. For brevity, we only show YCSB’s
workload A (50% write and read) for 64 threads.

First, without any added network latency, the SSD replica in a remote cluster
provides a significant throughput (40% increase; see ”Default DynamicSnitch”
and ”MicroMon” bars in Figure 7) compared to the Utah-APT replicas. However,
when adding 5ms latency to the SSD replica’s network latency, the throughput
reduces when compared to the local HDD replica, but still maintaining a
considerable (10%) throughput increase. Next, regarding the page cache, for the

25

SSD replica with lower page-cache (see ”No Cache” bars), we notice that even
without network latency, MicroMon prioritizes the Utah-APT nodes a little more
than the default DynamicSnitch resulting in slightly higher average throughput
(37% increase; see ”Default DynamicSnitch No Cache” and ”MicroMon No Cache”
bars in Figure 7). In case of increase in network latencies, we observe a marginal
decrease in throughput gains. For example, while we observe a throughput
gain of 33% using MicroMon for 2ms network latency, the throughput gain
decreases to 24% in case of 25ms of latency. These results highlight the need
for multidimensional monitoring.

26

CHAPTER V
CONCLUSION

Summary of Results
FlowSynth. For this unique telemetry system, we successfully created

a flow to packet generator capable of reading from flow datasets and generating
realistic packets accordingly. The generator uses a system of adjusting recorded
flow time frames to that of the program’s time, and sending in a fashion that
perfectly replicates each flow. The flow to packet generator was able to reach
a single core, kernel space packets per second of 900 kpps, and link-rate BPS
through 1300 byte sized packets. This data shows that our software competes well
against state of the art kernel space packet generators such as TCPReplay. Upon
testing this software as a telemetry system for eBPFlow, I’ve been able to verify
its helpfulness in evaluating both the efficiency and accuracy of new capabilities
for Self-DNs.

eBPFlow. In this project we investigate the Extended Berkeley
Packet Filter (eBPF) as an implementation path for active and passive network
measurement. We describe the eBPF architecture, programming model, and APIs
in the network measurement context, focusing specifically on the BPF Compiler
Collection (bcc) as a more user-friendly API. We discuss how eBPF/bcc APIs
can be used for both passive and active measurement, and describe how current
limitations and safety requirements impose certain constraints on measurement
algorithms currently possible. We illustrate the potential for high-fidelity active
and passive network measurement with eBPF by developing a passive flow collector
called eBPFlow and evaluate it in a controlled setting. eBPFlow clearly scales well
to perform full flow capture at 10 Gb/s on 5 cores with 60 byte packets, and with no
special hardware acceleration or storage configuration. Upon further evaluation,
we find that eBPFlow is able to record approximately 800K network flows per
second, confined only by the space restriction of maximum sized eBPF maps.

MicroMon. In this project we present MicroMon, a multi-dimensional
monitoring and inference framework for geo-distributed applications using
heterogeneous hardware. Using micrometrics, a set of fine-grained hardware and
software metrics, we are able to study the combined impact of heterogeneous
WAN and storage resources on Cassandra’s performance. To reduce micrometrics
collection and dissemination overheads, we propose anomaly reports and concerted
effort between the programmable switches and host OSes to reduce the overhead
of collecting and disseminating thousands of micrometrics in WAN. My prototype
deployed in a geo-distributed Cassandra using heterogeneous storage and network
shows close to 49% performance gains.

27

Lessons Learned
FlowSynth. Although out-shined by packet generators such as Netmap

and DPDK, FlowSynth provides a unique packet synthesizing process by allowing
the user to define the specifications of their desired flows. This has allowed us to
test a multitude of edge cases entailed by eBPFlow and MicroMon by synthesizing
flows specific to a packet that evaluates edge case conditions. We learn that
a kernel-space packet generator, though versatile in that its compatibility with
systems ranges far and wide, is not the most optimal architecture for stress testing
telemetry systems.

eBPFlow. Overall, our experiences and the results of our experiments
described in this paper strongly suggest eBPF as a promising high-fidelity vehicle
for implementing passive and active measurement methods. There are, however,
some limitations that we have encountered. In particular, one needs to take care
in regards to the movement of data from kernel to userspace. There are facilities
for pushing data from kernel to userspace (perf buffers bcc Reference Guide (n.d.))
which cause callbacks in the control program (e.g., in Python), but data can also
be pulled through direct access to eBPF maps from a control program. While the
perf interface is simple, it relies on a fixed-size ring buffer that can be overwhelmed
if the data rate is too high. Direct map access does not suffer from that issue but
requires careful data management. Future APIs may allow event batching through
the perf interface, but that is not currently possible. Another challenge has to do
with debugging, which largely relies on printf-style tracing. Silent failures can
happen (particularly, in our experience, with XDP), which can be difficult to
identify, and memory safety checks can sometimes be difficult to understand and
fix. We do, however, expect debugging tools to improve as the eBPF subsystem
matures.

We find that passive measurement is the more obvious candidate for eBPF, and
besides packet and flow capture, it is possible to trace arbitrary kernel functions
related to the networking stack and arbitrary functions in user mode programs,
in addition to tracing events from well-defined tracepoints Gregg (2019). For
example, there are numerous short programs and even “one-liners” to track TCP
connection state, retransmits, socket activity, etc. BCC tools (n.d.); bpftrace (n.d.);
A curated list of awesome projects related to eBPF (n.d.); Gregg (2019); XDP-
Project (n.d.). While these tasks are already achievable with other tools, eBPF
offers a standard interface for doing such tracing efficiently, safely, and with broad
visibility.

MicroMon. Micrometric monitoring is a highly important concept that
has received very little attention since the introduction of heterogeneous networks.
Through our results, we have found that using micrometrics to influence which
nodes of a linked network should receive and deploy requests yields a considerable
throughput increase. Although our experiments are solely focused on Apache
Cassandra within this paper, our research and findings are applicable to the vast

28

majority of third party services which utilize load balancing on a multitude of
heterogeneous systems.

Future Work
FlowSynth. At the cost of versatility, we plan on improving the

throughput of FlowSynth by migrating its services to the framework of DPDK. As
exemplified by the 60+ Mpps achievable by MoonGen Emmerich (2014), a packet
generator based on the DPDK framework, we have high hopes for the future status
of FlowSynth as a future intermediate telemetry tool.

eBPFlow. We believe that eBPF holds a lot of promise for both active
and passive network measurement, and there are several directions we intend to
investigate in future work. In particular, we plan to revisit the efforts of Govindan
and Paxson to examine delays in ICMP packet generation at routers Govindan
and Paxson (2002) in an effort to better understand how to reduce or eliminate
noise in the hop-limited latency measurements. We also plan to collect a much
broader set of measurements to better understand wide-area queuing dynamics and
congestion. Moreover, we plan to examine alternative data organization for storing
flows beyond current eBPF-imposed limits. Finally, we plan to explore additional
ways in which eBPF may be used for active and passive network measurement,
including new ways to support measurement within eBPF.

MicroMon. Only capturing currently available hardware and software
micrometrics (for network and storage) is insufficient. This calls for consideration
of broader class of (multi-dimensional) resources (e.g., compute, memory,
network, storage). Further, identifying and innovating new microarchitecture-
level micrometrics that capture the impact of multi-dimensional resource usage
holistically is critical. For example, no micrometrics exists to capture the
hardware overheads in using the same PCI channels for a storage intensive and
network-intensive application. We believe a cross-stack fine-grained heterogeneous
monitoring of memory, storage, network, and compute requires microarchitecture-
level innovations in the hardware and new software micrometrics. We plan to
consider microarchitectural innovations for MicroMon as part of future work.
In addition, the decision of what micrometrics to use must be automated
without relying on administrators, application developers or network operators.
Finally, the current prototype of MicroMon assigns equal weights to all software
and hardware micrometrics. Unfortunately, this is not applicable for all the
applications. For example, micrometrics for bandwidth-sensitive applications
require higher weights for micrometrics collected from the WAN than those
collected from the end hosts. Profiling the weights micrometrics for diverse
applications atop heterogeneous resources is a complex problem. We intend to
consider this in MicroMon as part of future work.

29

REFERENCES CITED

Ahmed, Z., Alizai, M. H., & Syed, A. A. (2018). Inkev: In-kernel distributed
network virtualization for dcn. ACM SIGCOMM Computer Communication
Review , 46 (3), 4.

Apache Cassandra. (n.d.). (http://cassandra.apache.org/)

bcc Reference Guide. (n.d.). https://github.com/iovisor/bcc/blob/master/
docs/reference guide.md. (Accessed May 2020)

BCC tools. (n.d.). https://github.com/iovisor/bcc/tree/master/tools.
(Accessed May 2020)

Begel, A., McCanne, S., & Graham, S. L. (1999). Bpf exploiting global data-flow
optimization in a generalized packet filter architecture. In Proceedings of the
conference on applications, technologies, architectures, and protocols for
computer communication (pp. 123–134).

Bertin, G. (2017). XDP in practice: integrating XDP into our DDoS mitigation
pipeline. In Netdev conference.

Bonaventure, O. (2019). Making our networking stack truly extensible. In 2019
ieee 44th lcn symposium on emerging topics in networking (lcn symposium)
(pp. i–i).

Borkmann, D. (2016). On getting tc classifier fully programmable with cls bpf.

Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., . . .
others (2014a). P4: Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review , 44 (3), 87–95.

Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., . . .
Walker, D. (2014b, July). P4: Programming protocol-independent packet
processors. SIGCOMM Comput. Commun. Rev., 44 (3), 87–95. Retrieved
from https://doi.org/10.1145/2656877.2656890 doi:
10.1145/2656877.2656890

BPF and XDP Reference Guide. (n.d.).
http://docs.cilium.io/en/latest/bpf/. (Accessed May 2020)

BPF Features by Linux Kernel Version. (n.d.). https://github.com/iovisor/
bcc/blob/master/docs/kernel-versions.md. (Accessed May 2020)

30

http://cassandra.apache.org/
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md
https://github.com/iovisor/bcc/tree/master/tools
https://doi.org/10.1145/2656877.2656890
http://docs.cilium.io/en/latest/bpf/
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md

The BPF system call API, version 14. (n.d.).
https://lwn.net/Articles/612878/. (Accessed May 2020)

bpftrace. (n.d.). https://github.com/iovisor/bpftrace. (Accessed May
2020)

Braden, R. T. (1988). A pseudo-machine for packet monitoring and statistics.
ACM SIGCOMM Computer Communication Review , 18 (4), 200–209.

Cardigliano, A., Deri, L., Gasparakis, J., & Fusco, F. (2011). vpf ring: Towards
wire-speed network monitoring using virtual machines. In Proceedings of the
2011 acm sigcomm conference on internet measurement conference (pp.
533–548).

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. (2010).
Benchmarking Cloud Serving Systems with YCSB. In Proceedings of the 1st
acm symposium on cloud computing. Indianapolis, Indiana, USA.

Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J. J., . . .
Woodford, D. (2013, August). Spanner: Google’s globally distributed
database. ACM Trans. Comput. Syst., 31 (3). Retrieved from
https://doi.org/10.1145/2491245 doi: 10.1145/2491245

Crovella, M., & Krishnamurthy, B. (2006). Internet measurement:
infrastructure, traffic and applications. John Wiley & Sons, Inc.

A curated list of awesome projects related to eBPF. (n.d.).
https://github.com/zoidbergwill/awesome-ebpf. (Accessed May 2020)

Data Plane Development Kit. (n.d.). https://www.dpdk.org/. (Accessed May
2020)

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,
Pilchin, A., . . . Vogels, W. (2007). Dynamo: amazon’s highly available
key-value store. In Acm sigops operating systems review (Vol. 41, pp.
205–220).

Dolberg, L., Francois, J., & Engel, T. (2012). Efficient multidimensional
aggregation for large scale monitoring. In Presented as part of the 26th large
installation system administration conference (LISA 12) (pp. 163–180). San
Diego, CA: USENIX. Retrieved from https://www.usenix.org/

conference/lisa12/technical-sessions/presentation/dolberg

Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., . . . Mishra,
P. (2019, July). The design and operation of CloudLab. In Proceedings of the
USENIX annual technical conference (atc) (pp. 1–14). Retrieved from
https://www.flux.utah.edu/paper/duplyakin-atc19

31

https://lwn.net/Articles/612878/
https://github.com/iovisor/bpftrace
https://doi.org/10.1145/2491245
https://github.com/zoidbergwill/awesome-ebpf
https://www.dpdk.org/
https://www.usenix.org/conference/lisa12/technical-sessions/presentation/dolberg
https://www.usenix.org/conference/lisa12/technical-sessions/presentation/dolberg
https://www.flux.utah.edu/paper/duplyakin-atc19

ebpf - extended berkeley packet filter. (n.d.).
https://www.iovisor.org/technology/ebpf.

Emmerich, P. (2014). Moongen. https://github.com/emmericp/MoonGen.

Engler, D. R., Kaashoek, M. F., & O’Toole Jr, J. (1995). Exokernel: An
operating system architecture for application-level resource management.
ACM SIGOPS Operating Systems Review , 29 (5), 251–266.

Feamster, N., Rexford, J., & Zegura, E. (2013). The road to sdn. Queue,
11 (12), 20–40.

Fusco, F., & Deri, L. (2010). High speed network traffic analysis with
commodity multi-core systems. In Proceedings of the 10th acm sigcomm
conference on internet measurement (pp. 218–224).

Ganger, G. R., Engler, D. R., Kaashoek, M. F., Briceno, H. M., Hunt, R., &
Pinckney, T. (2002). Fast and flexible application-level networking on
exokernel systems. ACM Transactions on Computer Systems (TOCS), 20 (1),
49–83.

Ghobadi, M., & Mahajan, R. (2016). Optical layer failures in a large backbone.
In Proceedings of the 2016 internet measurement conference (pp. 461–467).

Gnu c library. (n.d.). https://github.com/torvalds/linux/blob/master/
include/linux/socket.h.

Govindan, R., & Paxson, V. (2002). Estimating router ICMP generation delays.
In Passive & active measurement (pam).

Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., & Akella, A. (2014,
August). Multi-resource packing for cluster schedulers. SIGCOMM Comput.
Commun. Rev., 44 (4), 455–466. Retrieved from
http://doi.acm.org/10.1145/2740070.2626334 doi:
10.1145/2740070.2626334

Gregg, B. (n.d.). Linux Extended BPF (eBPF) Tracing Tools.
http://www.brendangregg.com/ebpf.html. (Accessed May 2020)

Gregg, B. (2019). BPF Performance Tools. Addison-Wesley Professional.

Hess, D. K., Safford, D. R., & Pooch, U. W. (1992). A Unix network protocol
security study: Network Information Service.

32

https://www.iovisor.org/technology/ebpf
https://github.com/emmericp/MoonGen
https://github.com/torvalds/linux/blob/master/include/linux/socket.h
https://github.com/torvalds/linux/blob/master/include/linux/socket.h
http://doi.acm.org/10.1145/2740070.2626334
\ifx\scrollmode http://www.brendangregg.com/ebpf.html \scrollmode http://www.brendangregg.com/ebpf.html

Høiland-Jørgensen, T., Brouer, J. D., Borkmann, D., Fastabend, J., Herbert, T.,
Ahern, D., & Miller, D. (2018). The eXpress data path: fast programmable
packet processing in the operating system kernel. In Proceedings of the 14th
international conference on emerging networking experiments and
technologies (pp. 54–66).

Ict statistics of 2001-2018. (2019).
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx.

Internet growth statistics 1995 to 2019. (2020).
https://www.internetworldstats.com/emarketing.htm.

In-band Network Telemetry (INT). (n.d.).
(https://p4.org/assets/INT-current-spec.pdf)

Ioannidis, S., Anagnostakis, K. G., Ioannidis, J., & Keromytis, A. D. (2002).
xpf: packet filtering for low-cost network monitoring. In Workshop on high
performance switching and routing, merging optical and ip technologie (pp.
116–120).

Io visor project. (n.d.). https://www.iovisor.org.

Jacobson, V. (1997). Pathchar: A tool to infer characteristics of Internet paths.

Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., . . . others
(2013). B4: Experience with a globally-deployed software defined wan. In
Acm sigcomm computer communication review (Vol. 43, pp. 3–14).

Jeyakumar, V., Alizadeh, M., Geng, Y., Kim, C., & Mazières, D. (2014).
Millions of little minions: Using packets for low latency network
programming and visibility. ACM SIGCOMM Computer Communication
Review , 44 (4), 3–14.

Jonathan, A., Chandra, A., & Weissman, J. (2018). Rethinking adaptability in
wide-area stream processing systems. In Proceedings of the 10th usenix
conference on hot topics in cloud computing (pp. 2–2). Berkeley, CA, USA:
USENIX Association. Retrieved from
http://dl.acm.org/citation.cfm?id=3277180.3277182

Karlsson, M., & Töpel, B. (2018). The path to dpdk speeds for af xdp. In Linux
plumbers conference.

Kohler, E., Morris, R., Chen, B., Jannotti, J., & Kaashoek, M. F. (2000). The
click modular router. ACM Transactions on Computer Systems (TOCS),
18 (3), 263–297.

33

https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://www.internetworldstats.com/emarketing.htm
https://p4.org/assets/INT-current-spec.pdf
https://www.iovisor.org
http://dl.acm.org/citation.cfm?id=3277180.3277182

Kurose, J. (2017).

In Computer networking: A top-down approach.

Legtchenko, S., Williams, H., Razavi, K., Donnelly, A., Black, R., Douglas, A.,
. . . Rowstron, A. (2017, July). Understanding rack-scale disaggregated
storage. In 9th USENIX workshop on hot topics in storage and file systems
(hotstorage 17). Santa Clara, CA: USENIX Association. Retrieved from
https://www.usenix.org/conference/hotstorage17/program/

presentation/legtchenko

Li, Y., Miao, R., Kim, C., & Yu, M. (2016, March). Flowradar: A better netflow
for data centers. In 13th USENIX symposium on networked systems design
and implementation (NSDI 16) (pp. 311–324). Santa Clara, CA: USENIX
Association. Retrieved from https://www.usenix.org/conference/

nsdi16/technical-sessions/presentation/li-yuliang

Linux cls bpf. (n.d.). https://github.com/torvalds/linux/blob/master/
net/sched/cls bpf.c.

Linux kernel commit. (n.d.).
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/

linux.git/commit/?id=b4fc1a460f3017e958e6a8ea560ea0afd91bf6fe.
(Accessed May 2020)

Linux SNMP Counter. (n.d.). (https://www.kernel.org/doc/html/latest/
networking/snmp counter.html)

Mars, J., & Tang, L. (2013). Whare-map: Heterogeneity in ”homogeneous”
warehouse-scale computers. In Proceedings of the 40th annual international
symposium on computer architecture (pp. 619–630). New York, NY, USA:
ACM. Retrieved from http://doi.acm.org/10.1145/2485922.2485975

doi: 10.1145/2485922.2485975

Matteo Bertrone, M. V. B. (2016). Coupling the flexibility of OVN with the
efficienty of IOVisor. In Ovs conference.

McCanne, S., & Jacobson, V. (1993). The BSD Packet Filter: A New
Architecture for User-level Packet Capture. In Proceedings of the usenix
winter.

Mogul, J. (1990). Efficient use of workstations for passive monitoring of local
area networks. ACM SIGCOMM Computer Communication Review , 20 (4),
253–263.

34

https://www.usenix.org/conference/hotstorage17/program/presentation/legtchenko
https://www.usenix.org/conference/hotstorage17/program/presentation/legtchenko
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://github.com/torvalds/linux/blob/master/net/sched/cls_bpf.c
https://github.com/torvalds/linux/blob/master/net/sched/cls_bpf.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b4fc1a460f3017e958e6a8ea560ea0afd91bf6fe
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b4fc1a460f3017e958e6a8ea560ea0afd91bf6fe
https://www.kernel.org/doc/html/latest/networking/snmp_counter.html
https://www.kernel.org/doc/html/latest/networking/snmp_counter.html
http://doi.acm.org/10.1145/2485922.2485975

Mogul, J., Rashid, R., & Accetta, M. (1987). The packet filter: an efficient
mechanism for user-level network code. ACM SIGOPS Operating Systems
Review , 21 (5), 39–51.

Narayanan, I., Wang, D., Jeon, M., Sharma, B., Caulfield, L., Sivasubramaniam,
A., . . . Vaid, K. (2016a). Ssd failures in datacenters: What? when? and
why? In Proceedings of the 9th acm international on systems and storage
conference (pp. 7:1–7:11). New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/2928275.2928278 doi:
10.1145/2928275.2928278

Narayanan, I., Wang, D., Jeon, M., Sharma, B., Caulfield, L., Sivasubramaniam,
A., . . . Vaid, K. (2016b). Ssd failures in datacenters: What? when? and
why? In Proceedings of the 9th acm international on systems and storage
conference. New York, NY, USA: Association for Computing Machinery.
Retrieved from https://doi.org/10.1145/2928275.2928278 doi:
10.1145/2928275.2928278

Netinet repository. (n.d.). https://github.com/afabbro/netinet.

Ntop’s pf ring zc (zero copy). (n.d.). https://www.ntop.org/products/
packet-capture/pf ring/pf ring-zc-zero-copy/. (Accessed May 2020)

Ousterhout, A., Fried, J., Behrens, J., Belay, A., & Balakrishnan, H. (2019,
February). Shenango: Achieving high CPU efficiency for latency-sensitive
datacenter workloads. In 16th USENIX symposium on networked systems
design and implementation (NSDI 19) (pp. 361–378). Boston, MA: USENIX
Association. Retrieved from
https://www.usenix.org/conference/nsdi19/presentation/ousterhout

p4 on the edge. (n.d.). https://schd.ws/hosted files/2016p4workshop/1d/

intel%20fastabend-p4%20on%20the%20edge.pdf.

Paxson, V., Mahdavi, J., Adams, A., & Mathis, M. (1998). An architecture for
large scale internet measurement. IEEE Communications Magazine, 36 (8),
48–54.

Pcap editing and replaying utilities. (n.d.). https://tcpreplay.appneta.com/,
date = 1998.

Pelsser, C., Cittadini, L., Vissicchio, S., & Bush, R. (2013). From Paris to
Tokyo: On the suitability of ping to measure latency. In Proceedings of the
2013 conference on internet measurement conference (pp. 427–432).

35

http://doi.acm.org/10.1145/2928275.2928278
https://doi.org/10.1145/2928275.2928278
https://github.com/afabbro/netinet
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://schd.ws/hosted_files/2016p4workshop/1d/intel%20fastabend-p4%20on%20the%20edge.pdf
https://schd.ws/hosted_files/2016p4workshop/1d/intel%20fastabend-p4%20on%20the%20edge.pdf
https://tcpreplay.appneta.com/

Peter, S., Li, J., Zhang, I., Ports, D. R., Woos, D., Krishnamurthy, A., . . .
Roscoe, T. (2016). Arrakis: The operating system is the control plane. ACM
Transactions on Computer Systems (TOCS), 33 (4), 11.

Popescu, D. A., Zilberman, N., & Moore, A. W. (2017). Characterizing the
impact of network latency on cloud-based applications’ performance.

Prasad, R., Jain, M., & Dovrolis, C. (2004). Effects of interrupt coalescence on
network measurements. In International workshop on passive and active
network measurement (pp. 247–256).

pyroute2 netlink library. (n.d.). https://docs.pyroute2.org. (Accessed May
2020)

Recap: High-performance Linux Monitoring with eBPF. (n.d.).
https://www.weave.works/blog/

recap-high-performance-linux-monitoring-with-ebpf/.

The rise of social media. (2020).
https://ourworldindata.org/rise-of-social-media.

Rizzo, L. (2012). Netmap: a novel framework for fast packet i/o. In 21st usenix
security symposium (usenix security 12) (pp. 101–112).

Schulist, J., Borkmann, D., & Starovoitov, A. (n.d.). Linux Socket Filtering aka
Berkeley Packet Filter (BPF).
https://www.kernel.org/doc/Documentation/networking/filter.txt.
(Accessed May 2020)

Snitch. (n.d.).
(http://cassandra.apache.org/doc/4.0/operating/snitch.html/)

Sommers, J., & Barford, P. (2007, October). An active measurement system for
shared environments. In Proceedings of acm sigcomm internet measurement
conference.

Sundaresan, S., Deng, X., Feng, Y., Lee, D., & Dhamdhere, A. (2017).
Challenges in inferring internet congestion using throughput measurements.
In Proceedings of the 2017 internet measurement conference (pp. 43–56).

tcpdump and libpcap. (n.d.). http://www.tcpdump.org/. (Accessed May 2020)

Tennenhouse, D. L., Smith, J. M., Sincoskie, W. D., Wetherall, D. J., & Minden,
G. J. (1997). A survey of active network research. IEEE communications
Magazine, 35 (1), 80–86.

36

https://docs.pyroute2.org
https://www.weave.works/blog/recap-high-performance-linux-monitoring-with-ebpf/
https://www.weave.works/blog/recap-high-performance-linux-monitoring-with-ebpf/
https://ourworldindata.org/rise-of-social-media
https://www.kernel.org/doc/Documentation/networking/filter.txt
http://cassandra.apache.org/doc/4.0/operating/snitch.html/
http://www.tcpdump.org/

Thacker, C. P., MacCreight, E., & Lampson, B. W. (1979). Alto: A personal
computer. Xerox, Palo Alto Research Center Palo Alto.

A thorough introduction to eBPF. (n.d.). https://lwn.net/Articles/740157/.
(Accessed May 2020)

Toonk, A. (2020, April). Building an XDP (eXpress Data Path) based BGP
peering router. https://medium.com/swlh/building-a-xdp-express-data

-path-based-peering-router-20db4995da66.

Tran, V.-H., & Bonaventure, O. (2019). Beyond socket options: making the
linux tcp stack truly extensible. In 2019 ifip networking conference (ifip
networking) (pp. 1–9).

Tu, W. C.-C. (2016). Offloading OVS Flow Processing using eBPF. In Ovs
conference.

Turull, D., Sjödin, P., & Olsson, R. (2016). Pktgen: Measuring performance on
high speed networks. Computer communications , 82 , 39–48.

Using eBPF for network traffic analysis. (2018).
https://www.ntop.org/wp-content/uploads/2018/10/Sabella.pdf.

Von Eicken, T., Basu, A., Buch, V., & Vogels, W. (1995). U-net: A user-level
network interface for parallel and distributed computing. ACM SIGOPS
Operating Systems Review , 29 (5), 40–53.

Wirtgen, T. (2019). Leveraging ebpf to improve the flexibility of routing
protocols: the case for border gateway protocol (bgp) (Master’s thesis, Ecole
polytechnique de Louvain, Université catholique de Louvain).
http://hdl.handle.net/2078.1/thesis:19606.

Wu, Z., Xie, M., & Wang, H. (2008). Swift: A fast dynamic packet filter. In
Nsdi (Vol. 8, pp. 279–292).

Wu, Z., Xie, M., & Wang, H. (2011). Design and implementation of a fast
dynamic packet filter. IEEE/ACM Transactions on Networking , 19 (5),
1405–1419.

XDP-Project. (n.d.). https://github.com/xdp-project. (Accessed May 2020)

Xhonneux, M., & Bonaventure, O. (2018). Flexible failure detection and fast
reroute using ebpf and srv6. In 2018 14th international conference on
network and service management (cnsm) (pp. 408–413).

37

https://lwn.net/Articles/740157/
https://medium.com/swlh/building-a-xdp-express-data-path-based-peering-router-20db4995da66
https://medium.com/swlh/building-a-xdp-express-data-path-based-peering-router-20db4995da66
https://www.ntop.org/wp-content/uploads/2018/10/Sabella.pdf
http://hdl.handle.net/2078.1/thesis:19606
https://github.com/xdp-project

Xhonneux, M., Duchene, F., & Bonaventure, O. (2018). Leveraging ebpf for
programmable network functions with ipv6 segment routing. In Proceedings
of the 14th international conference on emerging networking experiments and
technologies (pp. 67–72).

Yu, M., Jose, L., & Miao, R. (2013). Software defined traffic measurement with
opensketch. In Presented as part of the 10th USENIX symposium on
networked systems design and implementation (NSDI 13) (pp. 29–42).
Lombard, IL: USENIX. Retrieved from https://www.usenix.org/

conference/nsdi13/technical-sessions/presentation/yu

Ziviani, A., Cardozo, T. B., & Gomes, A. T. A. (2012). Rapid prototyping of
active measurement tools. Computer Networks , 56 (2), 870–883.

38

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu

	 Introduction
	 Background and Motivation
	Netflow to Packet Synthesizer
	Network Packet Background
	Program Optimization

	Harnessing eBPF for Network Measurement
	eBPF Overview
	Passive Flow Collector

	Micro-Metric Network Monitor for Distributed Heterogeneity
	Programmable Switches and Network Telemetry
	Growing Resource Heterogeneity and Application Requirements
	Lack of Multi-dimensional Monitoring

	 Measurement Techniques
	FlowSynth
	Implementation
	Evaluation

	eBPFlow
	Benefits
	Implementation
	User Space
	Kernel Space
	Challenges

	Evaluation
	Configuration
	Results

	 Monitoring Framework
	Implementation of MicroMon
	Micrometrics Selection
	Micrometrics Collection & Dissemination
	Scalable Inference Logic

	Experimental Evaluation
	Impact of Heterogeneous Storage
	Network Latency and Page Cache

	 Conclusion
	Summary of Results
	FlowSynth
	eBPFlow
	MicroMon

	Lessons Learned
	FlowSynth
	eBPFlow
	MicroMon

	Future Work
	FlowSynth
	eBPFlow
	MicroMon

	REFERENCES CITED

