
   
 

   

 

 

USING THE AVL ALGORITHM TO EVALUATE THE BUS 

FACTOR OF RESEARCH SOFTWARE PROJECTS  

 

 

 

 

 

 

by 

Ellie Kobak 

 

 

 

A THESIS 

Presented to the Department of Computer and Information Science  

in partial fulfillment of the requirements for the degree of  

Bachelor of Science 

 

September 2022 

 

 



   
 

 

 

2 

THESIS ABSTRACT 

Ellie Kobak 

Bachelor of Science 

Department of Computer and Information Sciences 

August 2022 

Title: USING THE AVL ALGORITHM TO EVALUATE THE BUS FACTOR RESEARCH 

SOFTWARE PROJECTS  

 

This paper evaluates the accuracy of AVL Bus Factor (BF) estimations using commits through 

comparing the results to lines of code changes (LOCC) and the cosine difference of lines of 

code. In order to compare the BF values, the AVL BF algorithm for all three metrics was run on 

five open-sourced high performance computing projects. Three of the projects were then 

evaluated over a five-year span to determine any trends of BF across projects. The results across 

all five projects showed different values for the BF when using LOCC and cosine difference, 

with LOCC typically having a higher BF than commits and cosine difference. When comparing 

the three metrics on a year-to-year basis, the commits BF value was typically higher than the 

other two metrics. The implications of the commits having a higher BF estimation can lead to 

false sense of stability within projects, leading to the potential of more issues arising.  

 

  



   
 

 

 

3 

ACKNOWLEDMENTS 

 I would like to express my deepest thanks to Professor Boyana Norris for all her support 

and help throughout the entire thesis process. The project would not have been possible without 

her continuous guidance these past two years. I would also like to thank Professor Stephen 

Fickas for his assistance and advice. Additionally, I would like to acknowledge the help from the 

entire IDEAS group and the HPCL for their help and contribution to parts of this project. Lastly, 

I would like to thank all the faculty and my family and friends who have given their support 

throughout the process of this project.  

  



   
 

 

 

4 

TABLE OF CONTENTS 

THESIS ABSTRACT ..................................................................................................................... 2 

ACKNOWLEDMENTS ................................................................................................................. 3 

INTRODUCTION .......................................................................................................................... 5 

PROPOSED ARGUMENT ............................................................................................................ 7 

RESEARCH QUESTION ............................................................................................................... 8 

EXISTING LITERATURE ............................................................................................................ 8 

METHODOLOGY ....................................................................................................................... 10 

PART 1: DATA COLLECTION......................................................................................................... 10 

PART 2: ALGORITHMS.................................................................................................................. 11 

PART 3: METRICS USED .............................................................................................................. 15 

PART 4: EVALUATING RESULTS .................................................................................................... 17 

RESULTS ..................................................................................................................................... 17 

CONCLUSIONS........................................................................................................................... 22 

FUTURE RESEARCH ................................................................................................................. 23 

APPENDIX ................................................................................................................................... 24 

Appendix A: Hypre Bus Factor and Max Developer Table .................................................. 24 

Appendix B: Lammps Bus Factor and Max Developer Table .............................................. 24 

Appendix C: NWChem Bus Factor and Max Developer Table ............................................ 25 

REFERENCES ............................................................................................................................. 26 

 

  

 

  



   
 

 

 

5 

INTRODUCTION 

The successful creation of large research software packages depends on effective 

collaboration among many developers with different backgrounds.  Every developer works 

individually on their own computers and then uses version control software that enables every 

change to be tracked and saved enabling all developers on the project access to the most recent 

version of the project. Version control is such an essential part of the software engineering team 

development process that it used throughout computer science classrooms all the way too many 

tech companies creating their own niche version control software. The most commonly version 

control software used worldwide is called GitHub.  

The project is saved on GitHub and referred to as repository or repo, which is accessible 

by every developer who has permissions to work on the project. The central repository is 

comprised of every file of code, document, or any other computer file needed for the project. 

Every developer can access the repo through any web browser or on their own computer, 

referred to as their local machine or working locally.  

In order to prevent multiple people from making simultaneous changes on the same file, 

Git has a timeline tracker of changes called a branch. Figure 1 below depicts an example timeline 

of using version control. The central repo is often called the Main branch and is normally not 

directly accessible to developer changes.  Instead, the developer clones, meaning they download 

a copy of the repo on their local machine. After they clone the project, the developer creates a 

new branch, where changes are made locally. The new branch is most commonly called a 

“feature” branch and is identical to the main branch when created. The difference between the 

feature and the main branch is that all the developer changes are only saved locally to the feature 

branch. Individual project changes are saved through “commits”. For each commit, Git saves a 



   
 

 

 

6 

commit message written by the developer detailing the change, a timestamp, and a diff, which is 

all the information of every line of code changed since the last commit. A commit is only a local 

change. Therefore, when the developer wants everyone else on the project to view and have 

access to their updated code, they issue a pull request to merge their changes. A pull request 

details every commit and change between the feature branch and the main branch. Pull requests 

enable other developers to review each other’s work and ensure correct functionality. Once the 

pull request is approved, the feature branch can be combined with a merge to the main branch, 

updating the central repository.   

 

 
Figure 1: Image of Version Control Timeline 

 

Not only is version control useful for allowing collaboration between developers, but the 

software is also an incredibly useful tool for project management. GitHub’s tracking of every 

change in the project allows project stakeholders to closely monitor project development. 

Although Git is designed to assist the development in a team environment, the use of version 

control does not guarantee the success of a team. Every project will have setbacks and problems. 

Developers may employ several undesirable development practices, such as making too many 



   
 

 

 

7 

feature branches without merging, writing bad commit messages, or having badly designed 

commits, and in addition to poor software writing.  

One method attempting to preemptively solve software development problems is through 

estimating the Bus Factor (BF or Truck Factor) for a project. The BF is the number of key 

developers who would need to be hit by a bus or leave the project, to send the project into such 

disarray, that the project would no longer be able to continue (Coplien and Harrison 2004). 

Natural language processing, which combines artificial intelligence, computer science, and 

linguistics, there have been attempts to analyze the Git data to calculate the BF and help prevent 

project issues. For example, if a project has a BF of five, meaning they absolutely require five 

developers in order to complete the project, and one developer goes on vacation midway through 

the project, the project will have to discontinue. However, if the manager knew the BF was five, 

they could have assigned a sixth or seventh developer to the project from the start. This situation 

is very common in the software development from too few developers being assigned to the 

project from the start or from developers leaving mid-project for any number of reasons. 

Therefore, if we can determine the most accurate BF for any given software project based on 

previous version control data, software developers and managers alike can use the BF to create 

more balanced project teams and help decrease future issues.  

PROPOSED ARGUMENT 

The proposed argument of this experiment is to determine if the AVL algorithm can more 

accurately determine the BF for a project based on the commits, lines of code, and the cosine of 

lines of code. The end goal of this experiment is to use the BF as a tool to reduce potential 

problems in software development. 



   
 

 

 

8 

RESEARCH QUESTION 

There are two research questions that will be addressed.  

1.  Does the AVL algorithm more accurately determine the BF when comparing 

commits? 

2. How does the accuracy of the BF differ when comparing number of commits, number 

of changed lines of code, and the cosine difference of the change of lines of code? 

EXISTING LITERATURE 

Attempting to estimate the Bus Factor is not new. Several others have tried to assess the 

Bus Factor of various projects using Git repositories. In 2011, Filippo Ricca et al. examined the 

difficulty of assessing BF using initial Truck Factor algorithms developed by Zazworka et al. in 

which each developer who had at least one commit was considered part of the project when 

determining the BF. In addition, the BF was examined using seemingly arbitrary percentages as 

thresholds to determine the importance of each developer, to which the authors acknowledge 

they could not trust the thresholds for they came from “a non-reliable source of information (a 

blog post)” (Ricca, Torchiano and Marchetto June 2011). The BF compared the approaches of 

Zazworka who used student projects as a preliminary BF algorithm with the methods used by 

blogger Siddharta Govindaray. Although they found similar results for smaller projects, Ricca et 

al. concludes the article admitting the methods tested do not account for large commits by one-

person, similar changes in several files, or developers with multiple accounts, on top of several 

other limitations.  

 Further research attempts to improve the BF with degree of ownership and developer 

knowledge evaluations for files. Cosentino et al. used four methods to determine the degree of 

knowledge, last change of file takes all ownership, nonconsecutive changes (weighted and non-



   
 

 

 

9 

weighted) and multiple changes considered equally (Cosentino, Cabot and Izquierdo March 

2015). The degree of ownership helped determine the thresholds used for determining an 

essential developer when determining the BF. This paper simply developed a tool to calculate the 

BF but was implemented on a few private repositories. With this, there is no evaluation on larger 

open-source projects or discussion of the accuracy of their BF determinations.  

 Later research uses multiple algorithms to determine BF and then compares the results. 

Ferreira et al. use the AVL, RIG, and CST algorithms to compare the BF for the same open-

source project. The RIG algorithm uses a blame-based approach where the blame is the 

developer who last modified a file. This algorithm found moderately successful results (Ferreira 

and Valente 2017). In the CST algorithm, the BF is determined by comparing the primary 

developer and a secondary developer. The algorithm determines the BF by the minimum number 

of primary developers. 

In the third approach, the AVL algorithm relies on the degree of authorship (DOA), 

where a developer is considered the author if they committed more than 75% of the commits in a 

file. The algorithm runs on all the files in the project, incrementing the BF when an author is 

removed from each file. When 50% of the files from the project are removed the algorithm 

terminates. Using the AVL algorithm found the highest accuracy of results in determining the BF 

(Ferreira and Valente 2017). 

 Although Ferreira et al.’s study found success in determining the BF, the algorithms 

relied on number of commits or the developer who had the last commit in determining key 

developers for a project. These methods do not account for different coding styles of many small 

commits or few large commits. Due to the high degree of success of the AVL algorithm in 

determining BF, this study will use the AVL approach. Instead of running the algorithm’s DoA 



   
 

 

 

10 

on the number of commits, this study will examine the DoA through the number of lines changed 

and on the degree of functionality of each line of code within a file. Therefore, we will have a 

more comprehensive understanding of the influence of each developer’s work in a project and 

hopefully determine a more accurate BF.  

METHODOLOGY 

I attempted to find a better method to estimate the BF through examining previous work 

on computing the BF and combining it with existing computations done in the University of 

Oregon’s High Performance Computing Lab (HPCL) for determining the lines of code, and the 

cosine difference of code changes. The Bus Factors were computed using Python3 within a 

Jupyter Notebook.1 

Part 1: Data Collection 

The data used in this project are from six open-sourced high performance computing 

projects. These projects have been inputted into a SQL database and have been organized and 

parsed for easier use for the IDEAs group in the HPCL. The database had the existing code 

enabling Git analysis. The projects are the following: 

Project Name Year Released Total 

Contributors2 

Description 

Spack3 2014 1067 A package manager to run on 

multiplatform devices 

 
1 Link to Notebook:  

https://colab.research.google.com/gist/ekobak17/09a75f465a734a59626f6c400f5fcc3b/bf_compu

tation.ipynb 
2 On github 
3 https://github.com/spack/spack 



   
 

 

 

11 

Ginkgo4 2017 22 A high-performance computing linear 

algebra library. 

NWChem5 1994 53 Chemistry computations for high-

performance computing. 

Lammps6 2016 215 Simulator for large scale atomic and 

molecular massiveness. 

Petsc7 1994 207 A toolkit for parallel computing for 

partial differential equations. 

Hypre8 2004 42 A library of high-performance 

preconditions and solvers for parallel 

computing. 

 

 The last repo used to help develop and create the algorithms in this project was ideas-uo, 

which is a smaller repo that was used primarily for debugging and development.  

Part 2: Algorithms  

 In order to calculate the BF, I first had to do research into how to define the bus factor. 

Due to the definition stating “number of key developers who would need to be hit by a bus or 

incapacitated, to send the project into such disarray, that the project would no longer be able to 

continue” (Coplien and Harrison 2004). This definition has been numerically defined differently 

in multiple studies, where in some studies, the authors even stated the numbers used in the 

metrics to determine the BF are arbitrary. For this reason, when reviewing past work, I paid 

 
4 https://github.com/ginkgo-project/ginkgo 
5 https://github.com/nwchemgit/nwchem 
6 https://github.com/lammps/lammps 
7 https://github.com/petsc/petsc, https://petsc.org/release/ 
8 https://github.com/hypre-space/hypre 

https://github.com/petsc/petsc


   
 

 

 

12 

closer attention to the papers that had more reasonings behind how they chose and determined 

their metrics for determining the BF. 

At last, I came across Ferreira et al.’s paper. In their paper, the BF was determined in 

multiple parts. First, they determined the Degree of Authorship (DoA), which is how influential 

each author is to the file.  

 The DoA for a file is defined as an author who has made an impact of 75% or more. 

Ferreira et al. based their experiment off the number of commits and therefore named a 

developer author of the file if the developer had made at least 75% or more of the commits for 

the file. They got this algorithm from the Degree-of-Knowledge: Modeling a Developer’s 

Knowledge of Code by Fritz et al. where they accounted the DoA by who first created the file, 

subsequent changes, and accepting changes made by a different author (Fritz, et al. March 2014, 

18). The article had no information regarding how they calculated the DoA based on the three 

factors above, nor did they include the accuracy of calculating the DoA with their algorithm.  

Due to the high degree of unclarity based on if this algorithm worked, I decided the best 

way to determine the DoA was through my own metric. I modeled the algorithm off the 

description used in Ferreira et al. combined with the way the SQL data was stored. In addition, 

using a simpler algorithm to compute the DoA allows for more future scalability due to the use 

of table transformations (and dataframes which are easily mutable) instead of iterating over each 

row.  This DoA allows different metrics and could easily be adapted to include specific time 

frames, allowing more concise BF computations.  The pseudocode for determining the DoA is 

the following: 

 

function DoA (metric, file, authors) 

DoA = 0 

metric_count = {}  



   
 

 

 

13 

total_metric = 0 

for (all metric for file) 

if (metric by author in authors) 

metric_count {author: ++} // increase metric count  

   total_metric++ 

      max_author = max(metric_count) 

DoA = max_author / total_metric 

if (DoA >= .75) 

   return [file, author] 

return [file, NULL] 

 

 The actual code returns a Pandas dataframe consisting of the author’s name and the file 

path. The metric parameter can be substituted for the lines of code, number of commits and 

cosine difference of code, or any other metric that is determined numerically. If a file does not 

have a clear author, the degree of authorship is considered null, and the file is not included when 

computing the BF. A dataframe is used because Pandas allows accessible and easily read 

information, especially for large data sets.  

 After the DoA is calculated for each file in the project, all the files that have a DoA 

greater than 0.75 are used as part of the BF computation. All the authors associated with these 

files are also stored and used in the computation. The next step of computing the BF relies on the 

AVL Algorithm. 

 The AVL Algorithm, which is named for the three inventors, Adelson, Velski & Landis, 

is a self-balancing binary search tree. An AVL tree must always have the height difference of the 

left and right sub trees no greater than 1, which is referred to the balance factor. An example of 

the self-balancing properties of an AVL tree with a root of 10 and a balance factor of 1 with a 

larger right subtree is followed. Let’s say 5 wishes to be inserted into the tree. The addition of 5 

increases the balance factor from 1 to 2. Due to the nature of the AVL tree needing to have a 

balance factor of one or less, the tree will undergo rotations, shifting the root to rebalance the 



   
 

 

 

14 

tree and maintain a legal balance factor. Let’s say 12 wishes to be inserted into the tree instead of 

5. Because 12 is greater than root, the 12 will go in the left subtree and will decrease the balance 

factor to 0 (assuming the left subtree is completely balanced at 0 before inserting 12). The AVL 

tree maintains the ability to rotate and self-balance when removing items from the tree as well. 

This ability to self-balance is crucial for the experiment.  

 The actual algorithm to compute the BF relies heavily on the AVL algorithm. The 

previously computed DoA, the author list, and metric are inputted into a function that calculates 

the BF.  In the function, an author is removed one at a time. After an author is removed, all the 

files of which they are key developers are removed from the file count and the BF is 

incremented. When the file count reaches 50% of the total project files with valid authors, the 

algorithm stops running and the BF is returned. The pseudo code for this function is below.  

 

function computeBF (num_files, authors): 

 insert all metrics into AVL tree 

 current_files = num_files 

 bus_factor = 0 

 while (current_files < (num_files // 2): 

  remove author from authors 

  if (author is author of file): 

   current_files -= files by author 

    remove metric from AVL tree 

   bus_factor += 1 

  

return bus_factor 

  

 In the actual code, the authors store the author and the numerical value of the 

associated metric in a dictionary. The use of the dictionary allows to keep track of which author 

is responsible for each file. When the metrics are inserted or removed from the AVL tree, they 

are done through the dictionary value of the author’s name. The AVL tree is useful for the 



   
 

 

 

15 

algorithm because it stores all the values from the authors in a balanced manner, making the 

runtime of each removal O (log n).    

 An additional modification I made to the algorithm was to always remove the author with 

the minimum number of files they have DoA for first. This is because most projects have a 

couple of authors (or in some cases one author) who contributed significantly more than anyone 

else. Therefore, if the algorithm runs with random author removal, and there is one author with 

almost half of the file ownership, whenever they are removed the algorithm will terminate 

shortly after. Because a higher BF count shows more stability in a project, I decided to always 

remove the authors in an increasing order which will guarantee the same BF for each project 

every time it is run and also give a more conservative BF estimation. 

 Additionally, the importance of comparing the three metrics in this experiment is due to 

using a new DoA method. Most previous papers have computed the BF using commit data. 

Because I am changing the Ferreira et al. algorithm it is important to compute the BF of the 

commits, even though it will not be the most accurate in order to have some method of 

comparison between this experiment and other past work (Ferreira and Valente 2017 and 

Cosentino, Cabot and Izquierdo March 2015). 

Part 3: Metrics Used  

 In Ferreira et al.’s study, they used the number of commits as the metric to evaluate the 

BF. Commits are not a great metric to use due to the vast coding styles. As illustrated in figure 1, 

with the two forks, a merge can consist of multiple different amounts of commits. One developer 

may write 100 lines of code per commit, and another may write 10. Commits can further differ 

with a developer committing after every change, and another member of the same team issuing 

one commit after finishing an entire file of work. Commits are an unreliable metric of work 



   
 

 

 

16 

through the examining the following file example. File A has five total commits and two authors. 

Author 1 wrote 120 lines of code and did one commit, Author 2 did four commits, one commit 

consisted of changing variable names, another commit adding a header, the third commit 

changing the format of spacing, and the fourth commit changing the variable names to the 

original name. Clearly Author 1 is the developer who did the most work on the file, but under 

Ferreira et al.’s method of measuring developer contribution, Author 2 would be assigned the 

key developer for file A. Thus, using commits is not a guaranteed measurement of developer 

knowledge for a project and to most accurately compute the BF.  

 Therefore, instead of using commits, in this experiment we used lines of code changes 

and the cosine difference of lines of code. Because each commit keeps track of every single line 

of code change, each file can be analyzed by how many lines each author contributed to the file. 

With the example of File A, using the lines of code to track author impact would make Author 1 

the key developer for the file. However, using lines of code is not the most accurate 

measurement because Git counts removing spaces as changes in lines of code. For example, in 

File B, there are three authors, Author 1 likes to write code with lots of comments and in a 

second commit, goes back and removes unnecessary comments and spaces. Although they wrote 

30 lines initially, after the second commit, the diff stated they had changed 50 lines of total code 

changes. Author 3 is an excellent programmer and writes very concise code and added 70 lines 

of code. Author 2 was then tasked in fixing the format to match company style and changed 

variable names and spacing, resulting in 30 lines of changes. Although Author 3 wrote the 

majority of the file’s functionality, the BF algorithm would evaluate all three authors of having 

similar contributions. However, through using the cosine of lines of code changes, Author 1 and 

Author 2’s changes will be viewed as less significant due to them changing characters in the 



   
 

 

 

17 

lines and not actually impacting the file. Therefore, cosine difference allows the most 

comprehensive understanding of how much contribution each author had based on the commit 

information. 

 These metrics are possible to use because of prior experiments in the IDEAS Lab 

evaluating the git data of open-sourced projects. The lines of code changed (LOCC) metric 

calculated through the commits detailing which lines have been added or subtracted. The cosine 

difference of the changes is calculated by a package that examines text differences through 

adding all the words in the changed lines to a word bank placing the added words in a column 

and deleted words in a row. The word differences then compare the columns and rows and 

assigns a numeric value of how much the line was changed. For this reason, a variable name 

change will classify as a very small change under the cosine metric but may be a larger change 

under LOCC. Using the cosine evaluation of lines of code changed allows a more detailed 

review of how each edit or author is changing the file over commits or LOCC. 

Part 4: Evaluating Results  

 After computing the BF for multiple projects, I was able to compare the results. In a 

Jupyter Notebook, I used Pandas to generate visual representations to make sense of the data and 

compare the differences in BF between each metric. I computed the BF using the commits to 

serve as a baseline of accuracy for using the AVL algorithm approach to compare the two new 

metrics. For Hypre, Lammps, and NWChem, I ran the BF calculations on 2017 to 2021 to see 

how the BF differs year to year.  

RESULTS 

The results from running the AVL Bus Factor algorithm for all five projects are listed in 

the table 1. 



   
 

 

 

18 

 

AVL Algorithm Bus Factor Data 

Project Title Metric Bus Factor 

Spack 

commits 75 

locc 109 

cos 64 

PETSc 

commits 68 

locc 95 

cos 68 

Hypre 

commits 33 

locc 39 

cos 32 

Lammps 

commits 72 

locc 116 

cos 116 

NWChem 

commits 46 

locc 62 

cos 57 

Table 1: AVL Algorithm Bus Factor Data 
 

In most projects, the cosine, commits, and LOCC computation methods resulted in 

different Bus Factors. Further, in most projects, LOCC resulted in a higher BF than the other two 

metrics. In order to get a deeper understanding of the BF, I considered three projects over a five-

year period to see how the BF changes. I chose the projects that had variations in sizes in order to 

compare a small, medium, and large project. I noticed that in most projects there were a small 

number of developers who had ownership of most files. Because the algorithm terminates after 

50% of the files have been removed, I included a table for each of three projects containing the 

side-by-side comparison of maximum developer contribution to the BF in the Appendix. In most 

cases, the AVL algorithm hits the termination criteria due to the max developer.  

 



   
 

 

 

19 

 
Figure 2- Hypre Bus Factor graph over a five-year period calculated with three different methods, commits, 

LOCC, and cosine difference. 

 

Through a closer examination of the Hypre BF, the commits always has the highest BF. 

LOCC and cosine difference have more similar BF values, with the LOCC typically slightly 

higher. Apart from 2019, the maximum single developer contribution is also greater for commits 

over LOCC and the cosine difference. 



   
 

 

 

20 

 
Figure 3 Lammps Bus Factor graph over a five-year period calculated with three different methods, commits, 

LOCC, and cosine difference. 

 

Lammps follows a similar trend of highest BF for commits, then LOCC, and cosine 

difference has the lowest BF except for 2020 and 2021. Interestingly, in 2020 the BF was the 

same across all three metrics, even with the maximum developer value varying.  



   
 

 

 

21 

 
Figure 4 NWChem Bus Factor graph over a five-year period calculated with three different methods, commits, 

LOCC, and cosine difference. 

 

At first glance, it appears NWChem follows a similar pattern from Table 1 of not having 

a clear pattern from one metric predicting the BF. However, at a closer glance, there are many 

more similarities in the BF across each metric. One reason for the more similar BF is due to a 

much smaller sample of files being run in the algorithm. Additionally, the BF decreases after 

2019 even though there is no major change in overall contributions or max developer 

contributions (Appendix C). Although there is no insight on what is happening internally with 

the project development, the decreasing BF is slightly concerning due to two reasons. First, most 

of the project knowledge distributed across too few developers creating potential issues if one of 

them were to leave the project in the future. And second, the project stakeholders may develop a 

false sense of stability within the project and make structural changes leading to not enough 

recourses or people in the project in the future.  



   
 

 

 

22 

CONCLUSIONS 

 When evaluating the accuracy of the AVL BF algorithm across different metrics, there 

are a couple important factors to consider. First, the BF of commits is largely dependent on the 

developers coding style. As discussed earlier, two developers may contribute the same amount of 

work to a file, but one may do it in two commits, whereas the other might do it in ten. These 

coding style differences will result in a different degree of authorship per the AVL algorithm and 

potentially alter the BF. For this reason, when comparing the BF of the lines of code contributed 

to a file or the cosine difference of the lines of code will always reveal a more accurate BF than 

commits. I believe the higher degree of accuracy of the LOCC and cosine difference metric 

correlates to the two metrics having similar BF and value for the maximum contributions across 

different years and projects.   

 The second factor that needs to be considered when examining the BF results is that 

LOCC and the cosine difference are metrics that measure numerical data. The numerical values 

generated from code files do not reveal whether the code is functional or even used. Therefore, 

these metrics do not have any indication of quality of work, simply the quantity of work a 

developer contributed.   

 The Bus Factor is important for managers when deciding how much manpower is needed 

on a software project. For the project to have the most success, there needs to be at least the same 

number of developers as the BF. Projects with higher BF are more stable due to having less 

chances for more issues due to greater human resources in the project. The commit BF value 

almost always being higher than the other two metrics will give managers a false sense of 

security in the stability of a project. For this reason, in order to help reduce potential setbacks 



   
 

 

 

23 

and issues in software projects due to lack of people, it is important to calculate the BF not using 

commits. 

FUTURE RESEARCH 

 The cosine difference of text is one of many text comparison methods. Cosine difference 

is not designed to compare code. However, there are several other existing open-source packages 

available to more in depth string comparisons. Among these is the Levenshtein distance 

algorithm. This algorithm is used amongst computer science instructors to detect plagiarism. The 

Levenshtein distance algorithm calculates the number of edits it takes to transform a string into 

another (Mayank 2019). This algorithm is better than the cosine difference because it can detect 

higher amounts of similarity between code that goes undetected in LOCC.  I believe in order to 

find the most accurate BF measurement, more metrics used in classroom environments to detect 

plagiarism should be used when estimating the BF.  

Further, the projects examined in this experiment are all open-source research projects. 

Although some of the projects included contributor guidelines, the fact that anyone can 

contribute to the project allows many different coding styles which can have a greater influence 

on the BF. If possible, in a future project, I think open-sourced projects should be compared to 

similar size closed-source projects from companies that have stricter coding style protocols to 

see if there is insight on the impact of a regulated coding style on preventing errors.  

 

  



   
 

 

 

24 

APPENDIX 

Appendix A: Hypre Bus Factor and Max Developer Table 

Year 

Metric Bus factor 

Max 

Developer 

2017 commits 9 455 

locc 6 321 

cos 5 328 

2018 commits 7 60 

locc 3 11 

cos 2 6 

2019 commits 7 205 

locc 5 241 

cos 4 253 

2020 commits 9 135 

locc 4 24 

cos 5 18 

2021 commits 12 771 

locc 11 540 

cos 11 555 

 

Appendix B: Lammps Bus Factor and Max Developer Table 

Year 

Metric Bus factor 

Max 

Developer 

2017 commits 31 895 

locc 23 226 

cos 21 138 

2018 commits 35 1742 

locc 33 677 

cos 29 571 

2019 commits 42 1300 

locc 31 283 

cos 24 244 

2020 commits 38 1730 

locc 38 1105 

cos 38 958 

2021 commits 32 4519 

locc 33 1009 

cos 38 978 



   
 

 

 

25 

Appendix C: NWChem Bus Factor and Max Developer Table 

Year 

Metric Bus factor 

Max 

Developer 

2017 commits 12 134 

locc 12 98 

cos 12 99 

2018 commits 11 197 

locc 10 189 

cos 9 187 

2019 commits 13 4664 

locc 11 4551 

cos 10 4555 

2020 commits 11 163 

locc 11 160 

cos 9 155 

2021 commits 8 156 

locc 7 159 

cos 7 157 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

 

 

26 

REFERENCES 

 

Coplien, James, and Neil Harrison. 2004. Organizational Patterns of Agile Software 

Development. Prentice Hall PTR. 

Cosentino, Valerio, Jordi Cabot, and Javier Luis Canovas Izquierdo. March 2015. "Assessing the 

Bus Facor of Git Repositories." SANER. Montreal, Canada. 

Ferreira, Mívian Marques, and Marco Tulio Valente. 2017. "A Comparison of Three Algorithms 

for Computing Truck Factors." 2017 IEEE/ACM 25th International Conference on 

Program Comprehension (ICPC). Buenos Aires, Argentina. 

Fritz, Thomas, Gale C. Murphy, Emerson Murphy-Hill, Jingwen Ou, and Emily Hill. March 

2014. "Degree-of-Knowledge: Modeling a Developer’s Knowledge of Code." ACM 

Trans. Softw. Eng. Methodol. 23, 2, Article 14 42. 

Ricca, Filippo, Marco Torchiano, and Alessandro Marchetto. June 2011. "On the Difficulty of 

Computing the Truck Factor." Product-Focused Software Process Improvement - 12th 

International Conference. Torre Canne, Italy. 

 

 


	THESIS ABSTRACT
	ACKNOWLEDMENTS
	INTRODUCTION
	PROPOSED ARGUMENT
	RESEARCH QUESTION
	EXISTING LITERATURE
	METHODOLOGY
	Part 1: Data Collection
	Part 2: Algorithms
	Part 3: Metrics Used
	Part 4: Evaluating Results

	RESULTS
	CONCLUSIONS
	FUTURE RESEARCH
	APPENDIX
	Appendix A: Hypre Bus Factor and Max Developer Table
	Appendix B: Lammps Bus Factor and Max Developer Table
	Appendix C: NWChem Bus Factor and Max Developer Table

	REFERENCES

