
ACCELERATING SPARSE MATRICIZED TENSOR TIMES KHATRI RAO PRODUCT

ON MASSIVELY PARALLEL ARCHITECTURES

by

ANDY NGUYEN

DR. JEE CHOI, ADVISOR

A THESIS

Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Science

in the Department of Computer Science
in the College of Arts and Sciences of

University of Oregon

EUGENE, OREGON

2023

ABSTRACT

Tensor decomposition is a popular data analysis technique that extracts latent informa-

tion from multi-dimensional data. High performance implementations of tensor decompo-

sition face a number of challenges, such as efficiently storing sparse tensor data, achieving

optimally load-balanced parallelism, and addressing the resource limitations of GPU accel-

erators. This thesis presents Blocked Linearized CoOrdinates (BLCO), a novel sparse tensor

format built to accelerate tensor-related computations on massively parallel GPU architec-

tures. In contrast to prior approaches, BLCO enables efficient out-of-memory computation

of tensor algorithms using a unified implementation operating on only a single in-memory

tensor copy. Our linearization and adaptive blocking strategies not only meet the resource

constraints of target GPU devices but also accelerate data indexing, eliminate control-flow

and memory-access irregularities, and reduce kernel launch overhead, all while maintaining

a high compression rate. To address the substantial synchronization costs on GPUs, we

introduce an opportunistic conflict resolution algorithm, in which threads collaborate to dis-

cover and resolve conflicting updates on-the-fly, at successive levels of the memory hierarchy.

Overall, our tensor decomposition framework delivers superior in-memory performance com-

pared to prior state-of-the-art GPU implementations, and it is the only framework currently

capable of processing large scale, out-of-memory tensors. On the latest Intel and NVIDIA

GPUs, BLCO achieves 2.12x - 2.6x geometric mean speedup over the prior state-of-the-art

(Mixed-Mode Compressed Sparse Fiber) and demonstrates consistent performance across a

gamut of reprsentative real-world tensor data.

ii

CONTENTS

ABSTRACT . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER 1 Introduction . 1

CHAPTER 2 Background . 5

2.1 Notation . 5

2.2 CPD . 6

2.3 Matricized Tensor Times Khatri-Rao Product 8

CHAPTER 3 Sparse Tensor Formats for GPUs . 10

3.1 List-based Sparse Tensor Formats . 10

3.2 Tree-based Sparse Tensor Formats . 11

CHAPTER 4 The BLCO Format . 14

4.1 Tensor Linearization . 14

4.2 Adaptive Blocking . 17

CHAPTER 5 BLCO-Based Sparse MTTKRP . 20

5.1 Hierarchical Conflict Resolution . 20

5.1.1 Processing Phase . 21

5.1.2 Computing Phase . 22

5.2 Register-based Conflict Resolution . 22

5.3 Adaptation Heuristic . 23

iii

CHAPTER 6 Experiments . 24

6.1 Evaluation Setup . 24

6.1.1 Test Platform . 24

6.1.2 Data Sets . 25

6.1.3 Configurations . 25

6.2 Comparison Against TD Frameworks . 26

6.3 Comparison Against State of the Art . 28

6.4 Memory Traffic Analysis . 28

6.4.1 In-Memory Tensors . 28

6.4.2 Out-of-Memory Tensors . 30

6.5 Format Construction . 31

CHAPTER 7 Related Work . 33

CHAPTER 8 Conclusion . 35

References . 36

iv

LIST OF TABLES

6.1 Hardware and software setup. 25
6.2 The sparse tensor data sets used for evaluation, ordered by the number of

non-zero elements. 26
6.3 Comparison of the memory related metrics between BLCO and MM-CSF for

MTTKRP on the A100 GPU. 29

v

LIST OF FIGURES

1.1 The MTTKRP execution time of MM-CSF across all modes on the A100
GPU, normalized by the lowest execution time (denoted by the blue line) for
each data set. The decomposition rank is 32. For NELL-2, modes 1 and 3
take 2–3× longer to execute than mode 2, while for Uber and Enron, one
mode takes more than 9× longer to execute. For DARPA, mode 1 and mode
2 take 5× and 12× longer, respectively, than mode 3. Note that the number
of FLOPs computed is identical across modes for each data set. 3

2.1 Rank-R CPD of a third-order tensor. The factor matrix A(1) consists of
vectors a(1)1 , a(1)2 , · · · , a(1)R . 7

2.2 Mode-1 MTTKRP operation for a third-order sparse tensor. For each non-
zero element with index (i1, i2, i3), rows i2 and i3 from factor matrices A(2)

and A(3) are fetched (1) and their Hadamard product (element-wise product)
is calculated (2). The result is scaled by the non-zero element’s value (3), and
then accumulated to matrix row i1 from matrix M (4), which is later used to
calculate A(1). 9

3.1 Comparison between COO (3.1a) and F-COO (3.1b) sparse tensor formats..
In F-COO, the target mode index (i1) is replaced by bf (bit flag) that goes
from 1 to 0 when the index changes. The sf (start flag) stores a bit for
each non-zero group, where 1 indicates that a new target index has been
encountered by the group. 11

3.2 CSF (3.2a) and MM-CSF (3.2b) representations for the sparse tensor from
Figure 3.1a. Unlike CSF, where every sub-tree has the same mode orientation,
MM-CSF identifies fibers with the highest number of non-zero elements, and
then constructs sub-trees with different mode orientations. 12

4.1 An example of the BLCO format for the sparse tensor in Figure 3.1a, where the
bits of linearized indices are color-coded to indicate different modes. First,
BLCO linearizes the tensor (4.1a) based on a recursive partitioning of the
multi-dimensional space [21]. Next, it aggregates non-zero elements into
blocks (4.1b) according to accelerators’ resource constraints, namely on-device
memory, length of encoding line, and native support for bit manipulation. For
simplicity, we assume that the maximum length of the encoding line is 32 (25)
and each block has no more than 6 non-zero elements. Note that BLCO re-
encodes the linearized index (l) to allow the use of bitwise mask/shift (which
are efficiently supported on GPUs) for de-linearization instead of bit-level
gather/scatter. 15

vi

5.1 Steps (1) – (7) illustrates mode-1 MTTKRP with hierarchical conflict res-
olution for the BLCO tensor from Figure 4.1b. For register-based conflict
resolution, step (6) is the last one, where the results are written directly,
bypassing the local accumulation in step (5), to the factor matrix in global
memory using atomic updates, as opposed to writing to temporary factor ma-
trix copies. In all conflict resolution mechanisms, steps (1) – (4) are common
and writing the updates happens at segment boundaries. 21

6.1 Comparison of BLCO-based MTTKRP against popular GPU frameworks on
the data sets that fit in GPU memory. Each bar represents the speedup
obtained against MM-CSF for computing MTTKRP on all modes. The right-
most group of bars show the geometric mean speedup. 27

6.2 The per-mode speedup of BLCO-based MTTKRP against MM-CSF across
every tensor mode for the data sets that fit in GPU memory. 27

6.3 The memory throughput of BLCO-based MTTKRP (with and without host-
device data exchange) for out-of-memory tensors across every mode on the
A100 GPU. 30

6.4 Comparison of the BLCO construction/generation cost against popular GPU
formats as well as the CPU-based ALTO format on the data sets that fit in
GPU memory. 31

6.5 Breakdown of the BLCO construction cost for the data sets that fit in GPU
memory. Compared to ALTO, BLCO requires additional blocking and re-
encoding to enable efficient execution on GPUs. 31

vii

CHAPTER 1

INTRODUCTION

A tensor is a higher order generalization of a matrix, and it provides a natural abstrac-

tion for complex and multi-dimensional data in the real world. Tensors appears in a wide

discipline of fields, including data mining [1], [2], social network analytics [3], [4], cyberse-

curity [5], [6], healthcare [7], [8], language learning [9], textual analysis [10], product review

analysis [11], and more. As an example, image and image metadata from the image hosting

site Flickr1 can be captured and stored in tuples of user-image-tag-date, which corresponds

to a 4D tensor with each dimension representing a separate metadata category. In the real

world, such tensors tend to be large and sparse, with irregular shape and non-uniform dis-

tribution of data. Compressed storage formats and highly parallel algorithms are important

to performing efficient tensor operations on a wide variety of tensors.

Tensor decomposition is a data analysis technique used to extract salient information

from tensor data. Canonical Polydiac Decomposition (CPD), the decomposition of interest

in this thesis, breaks down the original tensor into a low-rank approximation, which facilitates

further analysis. A typical implementation of CPD consists of various matrix operations from

a linear algebra library alongside a high performance implementation of Matricized Tensor

Times Khatri-Rao Product (MTTKRP), which dominates the execution time of CPD [12].

A number of frameworks have been developed over the years to perform CPD, including

SPLATT [12], ParTi! [13], and GenTen [14]; each one introduces a novel approach to optimize

MTTKRP and CPD.
1http://www.flickr.com

1

A number of works accelerate the MTTKRP computation on GPUs [13]–[17]. The mas-

sively parallel execution and high bandwidth capabilities of GPUs makes them a suitable

target architecture for optimizing tensor computations. However, a sparse implementation

of MTTKRP runs into several performance concerns, namely:

• Irregular memory access: sparse tensors have wide ranges of sparsity patterns and

consequently memory access paterns, complicating cache usage

• Low arithmetic intensity of MTTKRP: the heavy emphasis on memory traffic creates

latency and bandwidth issues, hindering full device utilization

• Workload imbalance: the data layout of a sparse tensor can lead to severe parallel

performance degradation

• Synchronization overhead: the expensive cost of atomic operations dominates execution

time, especially on massively parallel accelerators

• Limited on-device memory: out-of-memory (OOM) tensors cannot fit entirely in on-

device memory and thus cannot be naïvely operated on

To address these concerns, prior studies primarily focus on designing sparse tensor for-

mats that either compress the tensor to minimize its memory footprint and/or group data-

dependent non-zero elements together to reduce atomic operations. However, these strategies

result in formats that are mode-specific, where non-zero elements are organized and accessed

according to a specific dimension. Mode-specific formats typically require keeping multiple

tensor copies [15], [16], [18] or creating excessive mapping and scheduling information (i.e.

mode-specific flags or arrays) about groups of data-dependent non-zero elements for every

mode [15], [17], [18], both of which can significantly increase the overall memory footprint.

Additionally, the mode-specific nature makes out-of-memory tensors, which can have billions

of non-zero elements, difficult to process due to limited on-device memory. Current GPU

frameworks for MTTKRP and CPD are constrained to sparse tensors that can fit in only

the limited device memory (i.e. in-memory) and do not support OOM tensors.

2

Uber DARPA Enron NELL−2
1 2 3 4 1 2 3 1 2 3 4 1 2 3

0

2

4

6

8

10

12

Tensor

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Figure 1.1: The MTTKRP execution time of MM-CSF across all modes on the A100 GPU,
normalized by the lowest execution time (denoted by the blue line) for each data set. The
decomposition rank is 32. For NELL-2, modes 1 and 3 take 2–3× longer to execute than
mode 2, while for Uber and Enron, one mode takes more than 9× longer to execute. For
DARPA, mode 1 and mode 2 take 5× and 12× longer, respectively, than mode 3. Note that
the number of FLOPs computed is identical across modes for each data set.

Furthermore, mode-specific sparse tensor formats can result in inconsistent compression

and performance along different modes of operation. For example, Figure 1.1 illustrates

the impact of mode-specific compression on the performance on MTTKRP on each mode,

measured using the prior state-of-the-art format mixed-mode compressed sparse fiber (MM-

CSF) [17]. The results demonstrate that depending on the data set, the execution time may

vary by an order of magnitude across modes when the compression favors one particular mode

over the others. This issue is compounded with the tree-like nature of data structures based

on compressed sparse fiber [12]: different tree traversal algorithms are required depending

on the mode, leading to poor scalability and portability.

In summary, current state-of-the-art approaches to accelerating MTTKRP on GPUs rely

on mode-specific formats to reduce data movement via compression and to decrease the

number of atomic operations by reordering non-zero elements. However, these strategies

result in (i) drastic performance degradation along different modes of tensor operation, (ii)

significant memory overhead required to keep extra tensor copies or mapping flags/arrays,

3

(iii) complex algorithms and code implementations to handle different modes, and (iv) limited

support for processing real-world tensor datasets on memory-constrained accelerators.

Given these concerns, we propose a novel mode-agnostic framework for large-scale sparse

tensor decomposition on GPUs. The rest of this thesis is as follows. We first provide a

mathematical overview of relevant tensor arithmetic (Chapter 2). Then we analyze prior

state-of-the-art sparse tensor formats and parallel MTTKRP algorithms to pinpoint the key

performance bottlenecks and limitations (Chapter 3). We introduce the Blocked Linearized

CoOrdinate (BLCO) sparse tensor format, discussing index linearization and adaptive block-

ing techniques used to accelerate MTTKRP with a unified tensor representation (Chapter 4).

We present a massively parallel MTTKRP algorithm that eliminates irregularities in control-

flow and memory-access and uses various levels of the memory hierarchy (Chapter 5). Then

we demonstrate substantial performance improvement compared to prior state-of-the-art

approaches, achieving 2.12x-2.6x speedup on a wide range of real-world tensors on Intel

and NVIDIA GPU architectures and novel support for out-of-memory tensors (Chapter 6).

We end with related works in the sparse tensor decomposition field (Chapter 7) and offer

concluding remarks (Chapter 8).

4

CHAPTER 2

BACKGROUND

In this chapter, we provide a brief overview of tensors, tensor decomposition, and relevant

computations. For more detailed information about tensor decomposition, we refer the reader

to the work by Kolda and Bader [19], [20].

2.1 Notation

Tensors are higher-order generalizations of matrices. An N -dimensional tensor is referred

to as an mode-N tensor or as having N modes. The following notations are used henceforth:

1. Scalars are denoted by lower case letters (e. g., a).

2. Vectors are denoted by bold lower case letters (e. g., a).

3. Matrices are denoted by bold capital letters (e. g., A). A I1 × I2 matrix A can be

denoted as A ∈ RI1×I2 .

4. Higher-order tensors are denoted by bold Euler script letters (e. g., X). A mode-N

tensor X with dimensions I1 × I2 × · · · × IN can be denoted as X ∈ RI1×I2×···×IN .

5. Matricization is the process of reordering the elements of a tensor into a matrix. Mode-

n matricization of a tensor X , denoted as X(n), is a In× În matrix, where În =
∏

i 6=n In.

6. Fibers are the analogue of matrix rows/columns for higher-order tensors. A mode-n

fiber of a tensor X is any vector formed by fixing all indices of X , except the nth index

5

(e.g., a matrix column is defined by fixing the second index, and is therefore a mode-1

fiber).

7. Slices are sub-tensors that are formed by fixing one particular index. For example, we

can form a time slice (i.e., mode-N -1 subtensor) by fixing the time index to a specific

value (e.g., 0 for the first time slice) for a mode-N tensor. That is, a slice is a mode-

(N -1) tensor that can be formed by fixing the time mode index to 10 for a mode-N

tensor. This is also known as a time slice.

8. The Hadamard product, or the element-wise product between two matrices, is denoted

by ~.

9. The Kronecker product between two matrices A ∈ RI×J and B ∈ RK×L produces the

matrix C ∈ RIJ×KL, where

C =



a1,1B a1,2B · · · a1,JB

a2,1B a2,2B · · · a2,JB
...

...

aI,1B aI,2B · · · aI,JB


and is denoted A ⊗ B.

10. The Khatri-Rao product, or the column-wise Kronecker product between two matrices,

is denoted by �. The Khatri-Rao product between two matrices A∈ RI1×K and B∈

RI2×K yields the matrix C∈ RI1I2×K

2.2 CPD

The Canonical Polyadic Decomposition (CPD) is a widely used tensor factorization model

in data analysis. CPD approximates an N -order tensor X by the sum of R outer products

of N appropriately sized vectors, for some preselected R (c.f. Figure 2.1). Each of the

6

N vectors in a given outer product corresponds to a particular tensor mode. The outer

products are called the rank-1 tensors of the decomposition and the quantity R is called

the decomposition rank. By arranging the R vectors corresponding to a particular mode

as the columns of a matrix, we obtain the factor matrix associated with that mode. The

decomposition of X can then be written in terms of its factor matrices. For example, if

X ∈ RI×J×K is a third-order tensor, the CPD of X may be written in terms of three factor

matrices A(1) ∈ RI×R, A(2) ∈ RJ×R, and A(3) ∈ RK×R.

≈ + + ⃨⃨⃨⃨ +
a(1)1

a(2)1

a(3)1

a(1)2

a(2)2

a(3)2

a(1)R

a(2)R

a(3)R

I

J

K

Figure 2.1: Rank-R CPD of a third-order tensor. The factor matrix A(1) consists of vectors
a(1)1 , a(1)2 , · · · , a(1)R .

The CANDECOMP/PARAFAC Alternating Least Squares (CP-ALS) algorithm is a pop-

ular iterative method for calculating the CPD. During each CP-ALS iteration, we update

one factor matrix corresponding to a given tensor mode by solving a linear least squares

problem, while fixing the remaining factor matrices; this is done exactly once for each factor

matrix per iteration. For example, to perform the update for the first factor matrix A, we

fix the remaining matrices B and C and solve for A in the least squares problem:

min
A

∥∥∥X(1) −A (C�B)T
∥∥∥2
F

(2.1)

The least squares problem is minimized by

Â = X(1) (C�B)
(
CTC~BTB

)† (2.2)

where † indicates a pseudoinverse. We repeat this twice more for B and C to conclude one

7

iteration. Iterations are repeated until a convergence criteria is met, such as a fixed number

of iterations or until the approximation ceases to improve beyond some error threshold.

The CP-ALS algorithm for an N -order tensor is detailed in Algorithm 1. Line 4 shows the

MTTKRP computations.

Algorithm 1 The CP-ALS algorithm.

Input: An N -order sparse tensor X ∈ RI1×I2×···×IN , randomly initialized dense factor ma-
trices A(1) ∈ RI1×R, A(2) ∈ RI2×R, · · · , A(N) ∈ RIN×R.

Output: Updated factor matrices that approximate X .
1: repeat
2: for n = 1, . . . , N do
3: V ← A(1)TA(1) ∗ · · · ∗ A(n−1)TA(n−1) ∗

A(n+1)TA(n+1) ∗ · · · ∗ A(N)TA(N)

4: M ← X(n)(A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1))
5: A(n) ← M V† . † denotes the pseudo-inverse
6: end for
7: until fit ceases to improve or maximum # of iterations reached
8: return A(1), · · · , A(N)

2.3 Matricized Tensor Times Khatri-Rao Product

In Equation 2.2, the intermediate calculation M = X(1) (C�B) is referred to as the

Matricized Tensor Times Khatri-Rao Product, or as simply MTTKRP. It consists of a ma-

trix multiplication between the target tensor’s matricization with a Khatri-Rao product of

the two factor matrices. For sparse tensors (or any tensor with large mode lengths), ex-

plicitly calculating the Khatri-Rao product is prohibitively expensive, in terms of both time

and memory. In practice, all state-of-the-art tensor formats [12], [15]–[17], [20], [21] instead

calculate the rows of the Khatri-Rao product matrix on-the-fly, constructing the correspond-

ing row for each tensor non-zero element only as needed (c.f. Figure 2.2). This creates a

number of performance optimization challenges (discussed in Chapter 1); on modern sys-

tems, the most expensive operation of CP-ALS, as well as many other tensor algorithms, is

MTTKRP [12].

8

 X(1)

B

M

○ ○

C

○

1) Load row j from B
and

row k from C

3) Scale result
by

non-zero value
4) Accumulate

to row i in M

C⊙B

2) Calculate
corresponding row

in (C⊙B) via
Hadamard product

(i, j, k)

Figure 2.2: Mode-1 MTTKRP operation for a third-order sparse tensor. For each non-zero
element with index (i1, i2, i3), rows i2 and i3 from factor matrices A(2) and A(3) are fetched
(1) and their Hadamard product (element-wise product) is calculated (2). The result is
scaled by the non-zero element’s value (3), and then accumulated to matrix row i1 from
matrix M (4), which is later used to calculate A(1).

9

CHAPTER 3

SPARSE TENSOR FORMATS FOR GPUS

The state-of-the-art tensor formats for massively parallel GPUs use list-based [14], [15],

[18] or tree-based [16], [17] data structures to store high-dimensional sparse data in a mode-

specific form. In this section, we provide an overview of the Flagged CoOrdinate (F-COO)

and Mixed-Mode Compressed Sparse Fiber (MM-CSF) formats, which are representative of

the two main format categories for GPU architectures, respectively. In contrast to sparse

linear algebra, higher-order tensor algorithms typically perform tensor operations on every

mode orientation. Using MTTKRP as a case study, we illustrate the challenges in optimizing

and efficiently executing sparse tensor operations on GPUs.

3.1 List-based Sparse Tensor Formats

The simplest form of this category is the coordinate (COO) format [14], [20], which keeps

N+1 lists for an N -order tensor. N lists are for the indices, and one list is for the non-zero

values. While COO is a mode-agnostic format, it suffers from substantial synchronization

overhead due to update conflicts across threads. For example, Figure 2.2 depicts the mode-1

MTTKRP operation, where every thread that is processing non-zero elements with mode-1

index of i1 (red and black circles) accumulates its partial result to row i1 of matrix M (step

(4)). This results in chains of read-after-write (RAW) data hazards, which require expensive

locks or atomic operations to resolve; on massively parallel GPUs, this can quickly become

a severe performance bottleneck because of the large number of concurrent threads and the

high-latency memory system.

10

i1 i2 i3 v
1 1 1 1.0
1 1 2 2.0
1 3 3 3.0
2 1 2 4.0
2 1 3 5.0
3 1 2 6.0
3 4 4 7.0
4 2 1 8.0
4 2 2 9.0
4 3 3 10.0
4 3 4 11.0
4 4 4 12.0

(a) COO.

bf i2 i3 v

sf=1

1 1 1 1.0
1 1 2 2.0
0 3 3 3.0
1 1 2 4.0

sf=1

0 1 3 5.0
1 1 2 6.0
0 4 4 7.0
1 2 1 8.0

sf=0

1 2 2 9.0
1 3 3 10.0
1 3 4 11.0
0 4 4 12.0

(b) F-COO for mode-1 MTTKRP.

Figure 3.1: Comparison between COO (3.1a) and F-COO (3.1b) sparse tensor formats.. In
F-COO, the target mode index (i1) is replaced by bf (bit flag) that goes from 1 to 0 when
the index changes. The sf (start flag) stores a bit for each non-zero group, where 1 indicates
that a new target index has been encountered by the group.

To address this issue, the F-COO [15] sparse tensor format uses a sorted mode-specific

form to group non-zero elements with the same i1 index together (same i1 for mode-1 MT-

TKRP, same i2 for mode-2 MTTKRP, etc.) This allows for the local accumulation of partial

results using segmented scan [22], [23] and global accumulation using atomic operations

when group boundaries are crossed (at the thread-block and grid levels, respectively). Ad-

ditionally, F-COO keeps extra mapping/scheduling information (flags) for synchronization

to delineate the end of a non-zero group. As a result, the F-COO format needs to keep N

tensor copies in the GPU memory for an N -order tensor; while F-COO reduces the number

of global atomic operations, it has high memory usage due to extra data. Figure 3.1 shows

an example sparse tensor in the COO (3.1a) and F-COO (3.1b) representations.

3.2 Tree-based Sparse Tensor Formats

The original CSF format [12], [24] extends traditional compressed matrix formats, such

as the compressed sparse row (CSR) format, by storing a tensor as a collection of index sub-

trees with mode-specific ordering. Figure 3.2a shows the CSF representation with a mode

11

ordering of 1-2-3, where 1 is the root mode and 3 is the leaf mode, for the sparse tensor

from Figure 3.1a. Given a CSF representation with a mode ordering of 1-2-3, where 1 is

the root mode and 3 is the leaf mode, the root node of each sub-tree represents the factor

matrix row that will be updated during mode-1 MTTKRP, and the leaf nodes represent

the non-zero elements that contribute to that update. For example, the sub-tree on the top

right in Figure 3.2a represents the two non-zero elements with indices (2,1,2) and (2,1,3) that

contribute to calculating row 2 of the mode-1 factor matrix (i.e., matrix M from Figure 2.2).

Since the two non-zero elements share the same mode-1 and mode-2 indices, CSF encodes

these elements using 4 index nodes instead of 6, thereby compressing the indexing metadata.

Mode-1

Mode-2

Mode-3

 1

1

 1 2

 3

 3

1

 2 3

2

1

 2 4

3

4

 1 2 3 4 4

4

2 3 4

(a) CSF tree for mode-1. (b) MM-CSF trees.

Figure 3.2: CSF (3.2a) and MM-CSF (3.2b) representations for the sparse tensor from
Figure 3.1a. Unlike CSF, where every sub-tree has the same mode orientation, MM-CSF
identifies fibers with the highest number of non-zero elements, and then constructs sub-trees
with different mode orientations.

In order to calculate MTTKRP for all modes, two strategies can be used. One requires

multiple CSF copies with different root modes, which increases the memory footprint by a

factor of N , where N is the number of modes. Alternatively, the index sub-trees can be

traversed both bottom-up and top-down, meeting at the tree level with the target mode for

MTTKRP. While the second approach allows computing MTTKRP for all modes with one

copy of the CSF format, it requires expensive synchronization to avoid update conflicts as

well as separate tree traversal implementations. Moreover, regardless of the strategy used,

12

CSF suffers from workload imbalance due to the variable size of each sub-tree.

Balanced CSF (B-CSF) [16] improves on CSF by creating sub-trees that are more work-

load balanced for GPUs, but still requires N copies of the tensor. The state-of-the-art

MM-CSF [17] improves upon B-CSF by using a single copy of the tensor. This is achieved

by analyzing fiber density (i.e., number of non-zero elements in a fiber) and creating sub-

trees with fibers that are as dense as possible. However, the root of these sub-trees can

come from any mode; hence, different traversal methods and parallel algorithms are required

to perform MTTKRP on different modes, leading to drastic performance variations across

different modes as shown in Figure 1.1. Furthermore, the complexity of the tree-based struc-

ture requires different implementations for each tensor order (i.e., number of modes) and

it also restricts MM-CSF to tensors that can fit in the limited GPU memory. As a result,

the current MM-CSF implementation only supports 3- and 4-dimensional tensors and can-

not handle out-of-memory (OOM) tensors. Figure 3.2b shows an example of the MM-CSF

format for the tensor from Figure 3.1a.

13

CHAPTER 4

THE BLCO FORMAT

To address the limitations of prior GPU-based formats, we propose the Blocked Linearized

CoOrdinate (BLCO) format, a new sparse tensor representation devised for massively par-

allel architectures. BLCO linearizes and aggregates non-zero elements into coarse-grained

blocks that meet the resource constraints of target GPUs to (i) minimize data movement, (ii)

accelerate indexing, (iii) enable a unified tensor representation and algorithmic implementa-

tion, and (iv) support out-of-memory tensor computation. Figure 4.1 depicts an example of

the BLCO format for the sparse tensor in Figure 3.1a. Generating a BLCO tensor consists

of two stages: tensor linearization (Section 4.1) and adaptive blocking (Section 4.2).

4.1 Tensor Linearization

The BLCO format leverages index linearization [21], [25] to map multi-dimensional space

onto one-dimensional linear space, such that a point in N-D space, represented by N coor-

dinates, can be mapped to a point on an encoding line, represented by a single index. The

length of the encoding line determines the number of bits required to represent the linearized

indices. During computation (e.g. MTTKRP), the linear indices are de-linearized to recover

the original coordinates. Fast de-linearization is important for high-performance execution

of tensor algorithms using linearized formats.

To efficiently encode multi-dimensional spaces with irregular shape (which typically arise

in higher-order sparse data) in a mode-agnostic way, prior state-of-the-art linear format

ALTO [21] recursively partitions the multi-dimensional space and traverses this space lin-

14

l v
0 (000000)2 1.0
4 (000100)2 2.0
5 (000101)2 4.0
10 (001010)2 8.0
12 (001100)2 6.0
15 (001111)2 9.0
33 (100001)2 5.0
48 (110000)2 3.0
57 (111001)2 10.0
61 (111101)2 11.0
62 (111110)2 7.0
63 (111111)2 12.0

(a) Initial linearization.

b l v

0

0 (00000)2 1.0
16 (10000)2 2.0
17 (10001)2 4.0
6 (00110)2 8.0
18 (10010)2 6.0
23 (10111)2 9.0

1

1 (00001)2 5.0
8 (01000)2 3.0
11 (01011)2 10.0
27 (11011)2 11.0
30 (11110)2 7.0
31 (11111)2 12.0

(b) BLCO tensor.

Figure 4.1: An example of the BLCO format for the sparse tensor in Figure 3.1a, where
the bits of linearized indices are color-coded to indicate different modes. First, BLCO lin-
earizes the tensor (4.1a) based on a recursive partitioning of the multi-dimensional space [21].
Next, it aggregates non-zero elements into blocks (4.1b) according to accelerators’ resource
constraints, namely on-device memory, length of encoding line, and native support for bit
manipulation. For simplicity, we assume that the maximum length of the encoding line is 32
(25) and each block has no more than 6 non-zero elements. Note that BLCO re-encodes the
linearized index (l) to allow the use of bitwise mask/shift (which are efficiently supported on
GPUs) for de-linearization instead of bit-level gather/scatter.

15

early using a compact space-filling curve. When the multi-dimensional space is regular, i.e.,

all modes have the same length, the resulting space-filling curve resembles Morton-Z order-

ing [26]. This linearization of non-zero elements has shown to outperforms state-of-the-art

tree-, list-, and block-based formats [21] on CPU-based platforms, and therefore, we adopt

its ordering for BLCO.

Such a mode-agnostic linearized encoding results in an interleaving of bits from different

mode indices, as shown in Figure 4.1a. To quickly process indices encoded in this manner,

efficient support for bit-level scatter and gather operations are needed. However, GPUs lack

native support for advanced bit manipulation, and emulating these instructions can be pro-

hibitive,1 leading to inefficient tensor processing operations. To address this issue, the BLCO

format arranges the non-zero elements using ALTO ordering, but re-encodes the linearized

indices to allow the use of bitwise shift and mask (AND) instructions, which are natively

supported on accelerators, to de-linearize the indices. As illustrated in Figure 4.1b, BLCO

achieves this goal by rearranging the encoding bits of linearized indices (l) into contiguous

mode sets that can be quickly extracted on GPUs during tensor computations. This re-

encoding resembles the index concatenation encoding of the LCO format [25], instead with

bitwise shift and mask used for de-linearization in place of arithmetic division and modulo.

The additional bitwise operations introduce additional overhead, especially for smaller ten-

sors that do not require block indices at all (that is, they have no metadata bits). However,

since MTTKRP is generally a memory-bounded algorithm [27], the computational overhead

is minimal and serves to increase arithmetic intensity instead, alleviating global memory

pressure overall.
1For a third-order tensor, we estimate that a naïve emulation would require 276 bitwise operations to

de-linearize each non-zero element.

16

4.2 Adaptive Blocking

To map a tensor X ∈ RI1×I2×···×IN into a linearized form, an encoding line of length

I1 × · · · × IN is required. As the number of modes and their lengths increase, the encoding

line and the range of linear index values can significantly expand. Hence, large-scale tensors

may require more than 64 bits to encode a linear index. Since GPUs do not provide native

support for large integer (more than 64 bits) operations, a custom implementation2 of large

integer arithmetic is needed, which are typically not as efficient as native instructions. In

addition, many tensors only require a slightly higher bit resolution (only a few additional

bits) than 64 bits, so using large integers for linearized indices may lead to wasted memory

for indices.

Most importantly, the state-of-the-art libraries for sparse MTTKRP require the entire

tensor to be in the limited GPU memory before computation can begin, as a consequence

of their compressed and/or mode-specific tensor formats. In particular, it is challenging to

stream the data in small chunks that can be partially processed using tree- (e.g., B-CSF [16]

and MM-CSF [17]) and block-based (e.g., HiCOO [28]) formats, where the granularity of

tensor chunks (e.g., sub-trees and HiCOO blocks) are difficult to control. List-based for-

mats (e.g., GenTen [14] and F-COO [15]) are more amenable to streaming but will require

additional information for synchronization across these data chunks.

To address these issues, we propose adaptive blocking to aggregate non-zero elements

into coarse-grained blocks by partitioning the tensor into smaller sub-tensors. Blocking the

tensor to exploit density structures and to compress the data has been previously explored by

the HiCOO [28] format. However, such a compression comes at the cost of severe workload

imbalance across blocks, due to the irregular spatial distributions of sparse data [21], [29], and

it requires expensive tuning to find the best block size. In contrast, the proposed blocking

technique aims to meet the requirements of memory-constrained GPUs, while at the same

time generate the largest possible blocks that can efficiently utilize these throughput-oriented
2https://github.com/curtisseizert/CUDA-uint128

17

accelerators with massive parallelism.

To that end, our BLCO format first uses the uppermost bits from every mode of linearized

indices that exceeds the target integer size to form the initial blocks, which allows the sub-

spaces spanned by these blocks to naturally adapt to the underlying tensor space. For

example, if a tensor requires 72 bits for linearized indices and the size of target integers is 64

bits, a total of 8 (72− 64) uppermost bits across all the modes are stripped from the linear

indices and used as a key to group the non-zero elements into blocks; then, these bits are

stored as metadata along with each block (b), as depicted in Figure 4.1b. This strategy does

not require expensive tuning to create the blocks, and compared to using longer encoding

lines, it reduces the memory footprint and leverages more efficient native integer (64-bit)

instructions. Next, BLCO further splits the initial blocks, if needed, based on the available

on-device memory to ensure that each block has no more than the maximum number of

non-zero elements that can fit in the target device.

While the resulting BLCO format may still suffer from variance in the number of non-

zero elements across blocks, it exposes the fine-grained parallelism within a block, due to its

linearized list-based form. Specifically, it allows workload to be partitioned at the granularity

of a non-zero element rather than a compressed block. Hence, a GPU hardware scheduler

can automatically hide the execution and memory-access latency as well as balance the

workload across threads, as long as there are enough non-zero elements to be processed

in the GPU memory. In addition, our massively parallel MTTKRP algorithm (Section 5),

with opportunistic conflict resolution, allows BLCO blocks to be processed independently.

Therefore, once the GPU has processed a block, it will fetch the next available block to

automatically occupy any available GPU resources. These properties enable our BLCO

format and MTTKRP algorithm to seamlessly handle OOM tensors, in contrast to prior

work, while maintaining high GPU occupancy throughout computation.

Our implementation uses device queues (SYCL queues or CUDA streams) to launch

BLCO blocks, allowing the computation of active blocks to be done asynchronously with the

18

transmission of pending blocks. Each device queue has reserved memory, corresponding to

the number of non-zero elements that can be processed at one time, which is reused across

BLCO blocks assigned to the same queue. In our experiments, we use up to 8 device queues

and set the maximum number of non-zero elements per block to 227 to fill the GPU; these

parameters allow for enough concurrency and further tuning them has negligible performance

impact.

Hypersparse tensors may generate several BLCO blocks that can fit in the same memory

reservation of a single device queue. Launching these blocks across multiple queues can po-

tentially incur kernel launch overhead on some GPU architectures. To address this, we batch

all BLCO blocks that can be processed by one device queue into a GPU kernel and explicitly

store block mappings and element offsets at the work-group (thread block) boundaries. This

additional batching information is calculated during format construction and thus creates

minimal overhead during tensor computations.

19

CHAPTER 5

BLCO-BASED SPARSE MTTKRP

On massively parallel systems such as GPUs, atomic updates to global memory can be

expensive because of the sheer number of concurrently executing threads that could conflict

and the long data access latency. Therefore, prior studies focused on reducing the number of

necessary atomic operations by explicitly exposing parallelism [16], [17], storing the data in

a mode-specific form [15]–[18] to accumulate partial results locally, and/or keeping auxiliary

mode-specific mapping/scheduling information [14], [15], [18]. However, these strategies lead

to drastic performance variation across modes, substantial memory overhead for extra tensor

copies, and/or complex algorithms and implementations (c.f. Section 3). Here, we describe a

novel massively parallel MTTKRP algorithm that eliminates control-flow and memory-access

irregularities while resolving update conflicts (RAW hazards) using an opportunistic on-the-

fly update mechanism, which reduces atomic operations without requiring extra tensor copies

or mode-specific information.

5.1 Hierarchical Conflict Resolution

Figure 5.1 illustrates our massively parallel algorithm for mode-1 MTTKRP kernel on the

third-order sparse tensor from Figure 3.1a. Note that the non-zero elements are linearized

and grouped according to the BLCO format (Figure 4.1b). For simplicity, we assume a

work-group (thread-block) size of 12 and tile size of 6 work-items (threads) in the figure.

To eliminate control-flow and memory-access irregularities, the proposed algorithm has

two phases: processing and computing. In the processing phase, steps (1) – (3), each thread is

20

101110
111001

(1) Threads fetch & de-
linearize non-zero elements1 1 2 4 3 4 2 1 4 4 3 4

1 1 1 2 1 2 1 3 3 3 4 4
mode-1
mode-2

1 2 2 1 2 2 3 3 3 4 4 4mode-3
(2) Thread partitioning

1 1 2 3 4 4 2 1 4 4 4 3 (3) Reordering & generation
of segmented scan flags

rank-w
ise ops.

Local memory

(4) MTTKRP calculation

Global memory

(6) Global updates

mode-1Flags

(5) Local accumulation

(7) Global reduction

BLCO
tensor

Figure 5.1: Steps (1) – (7) illustrates mode-1 MTTKRP with hierarchical conflict resolution
for the BLCO tensor from Figure 4.1b. For register-based conflict resolution, step (6) is
the last one, where the results are written directly, bypassing the local accumulation in step
(5), to the factor matrix in global memory using atomic updates, as opposed to writing to
temporary factor matrix copies. In all conflict resolution mechanisms, steps (1) – (4) are
common and writing the updates happens at segment boundaries.

assigned to a non-zero element and threads collaborate to perform on-the-fly de-linearization

and reordering of non-zero elements as well as generation of segmented scan flags. In the

computing phase, steps (4) – (7), threads are reassigned to perform the rank-wise MTTKRP

computations and merge conflicting updates at the register, local memory, and global mem-

ory levels. In each phase, the threads and their global memory accesses are coalesced.

5.1.1 Processing Phase

In step (1), a group of threads (work-group or thread-block) is assigned to a certain

number of non-zero elements and they first collaborate so that each thread loads a linearized

non-zero element (i.e., a linear index and its corresponding value) from the global memory in

a coalesced manner. Each thread then proceeds to de-linearize the linear index and recover

the multi-dimensional coordinates, where each coordinate can be calculated independently

to expose more instruction-level parallelism. In step (2), the threads are partitioned into

21

multiple tiles, where a tile size is no more than the sub-group (warp) size. Next, in step

(3), the threads within a tile collaborate to reorder the non-zero elements into groups (seg-

ments) according to their target mode indices (mode-1 in the example) and then generate

segmented scan flags, where 1 indicates the start of a new segment. To minimize thread

divergence and data access latency, we implement the reordering of non-zero elements via

parallel histogram and prefix sum, using sub-group (warp-level) data exchange primitives

(e.g., shuffle operations), and broadcast/store the segmented scan flags across threads in

a low-latency register. After each thread completes the on-the-fly processing phase, the

non-zero elements are stored, according to their new order, in local memory for later access.

5.1.2 Computing Phase

Once the data has been processed, we reassign the threads to calculate the rank-wise MT-

TKRP computations in step (4), where each thread is responsible for one or more elements

along the decomposition rank (i.e., threads process the same non-zero element and perform

rank-wise operations in parallel). The algorithm iterates over the non-zero elements using

the segmented scan flags, so that each thread accumulates its partial results to a register as

long as the target mode index remains the same. At the end of each segment, i.e., when the

index changes, each thread writes the accumulated result to the stash (a software-controlled

cache) in local memory (shown as “step (5)” in the figure). In step (6), when all the non-zero

elements have been processed, the results are copied from the stash (local memory) to one

of the multiple copies of the factor matrix in global memory. By using multiple copies of

the factor matrix, we can minimize the probability of conflict when multiple thread blocks

are copying their results back to global memory at the same time. Finally, in step (7), the

multiple factor matrix copies are merged in global memory to produce the final result.

5.2 Register-based Conflict Resolution

Our register-based conflict resolution is a subset of the hierarchical algorithm, discussed

above. It bypasses the local memory entirely and writes the accumulated result in registers

22

to global memory, without the need for a final global reduction. Specifically, after each

thread calculates and accumulates the result in its register and reaches a segment boundary,

it bypasses step (5) and completes execution at step (6) after writing the updates to the final

factor matrix, as opposed to one of its copies, using atomic operations.

5.3 Adaptation Heuristic

The proposed synchronization mechanisms use different number of atomic operations to

perform MTTKRP. Register-based conflict resolution requires more atomic operations, as

updates at each segment boundary need atomic add operations to the factor matrix in global

memory. Hierarchical conflict resolution uses fewer atomic operations, as updates at each

segment boundary are copied first to the local-memory stash, and then atomic operations are

used only at the end of the work-group (thread-block) execution to write the accumulated

result in the stash to the factor matrix in global memory. Furthermore, multiple copies of

the factor matrix can be used to reduce the probability of an update conflict, at the cost of

a final global reduction.

We propose a simple heuristic for selecting the best conflict resolution mechanism based

on the characteristics of target modes and GPU devices. In modern GPUs [30], [31], the

execution units (EUs) are aggregated into subslices or streaming multi-processors (SMs).

Multiple subslices are grouped into a GPU slice or a graphics processing cluster (GPC).

Our heuristic selects the hierarchical conflict resolution, when the target mode length is

less than the number of subslices (SMs). At this mode length, the contention from atomic

operations to global memory is severe, and using a local-memory stash and factor matrix

copies (one copy for each slice or GPC) alleviates this contention. For all other cases, we use

the register-based conflict resolution.

23

CHAPTER 6

EXPERIMENTS

We evaluate the proposed sparse MTTKRP and BLCO format1 using a representative

set of in-memory and out-of-memory tensors with different characteristics. We compare our

performance to the state-of-the-art sparse tensor frameworks for massively parallel GPUs,

namely, MM-CSF [17], GenTen [14], and F-COO [15]. While the other frameworks only

support tensors that can fit in the device memory, BLCO can process both in- and out-of-

memory tensors and delivers superior performance across all in-memory tensors.

6.1 Evaluation Setup

6.1.1 Test Platform

We conduct the experiments on the latest Intel discrete GPU with a single-tile (denoted

Intel Device1) and two NVIDIA GPUs from the most recent micro-architecture generations:

A100 (Ampere) and V100 (Volta). For the format generation, we use a dual-socket AMD

Epyc 7662 CPU system and employ 128 threads. Our prototype is implemented in Data

Parallel C++ (DPC++) [32] as well as CUDA [33]. Since the current sparse tensor frame-

works lack portability across GPU architectures, we ported the state-of-the-art MM-CSF to

DPC++ using the Intel DPC++ Compatibility Tool [34]. Due to confidentiality require-

ments, Table 6.1 summarizes the publicly available specifications of the target hardware and

software environment.
1Available at https://github.com/jeewhanchoi/blocked-linearized-coordinate

24

Table 6.1: Hardware and software setup.

CPU GPU
Model AMD NVIDIA NVIDIA

EPYC 7662 A100 V100
µ-arch Zen 2 Ampere Volta
Frequency 3.3 GHz 1.41 GHz 1.38 GHz
Cores 64 (×2 sockets) 108 (SM1) 80 (SM)

6912 (CC2) 5120 (CC)
Caches 2MB L1, 15MB L1D, 10MB L1D,

32MB L2, 40MB L2 6MB L2
256MB L3

DRAM 256 GB 40 GB 32 GB
(Bandwidth) (1555 GB/s) (900 GB/s)
Interconnect PCI-e Gen 4 NVLink 3.0 NVLink 2.0
OS/Driver RHEL Driver Driver
(version) (8.3) (470.42.01) (440.33.01)
Compiler gcc 9.3.0 nvcc 11.4 nvcc 11.0
1 Streaming Multiprocessor 2 CUDA Cores

6.1.2 Data Sets

We consider 14 real-world tensor data sets from the FROSTT [35] and HaTen2 [36] open-

source repositories that cover a wide range of tensor properties and sparsity structures—

number of modes, mode lengths, number of non-zero elements, and density. Table 6.2 lists

the sparse tensor data sets used for evaluation, ordered by increasing number of non-zero

elements (NNZs). The large-scale tensors with billions of non-zero elements (namely, Ama-

zon, Patents, and Reddit) are considered out-of-memory as they fail to execute on current

tensor decomposition frameworks, which need to keep the entire tensor and factor matrices

in device memory, producing memory allocation errors on target GPUs.

6.1.3 Configurations

The experiments use a decomposition rank of 32 for MTTKRP, as per prior work [17].

Using double-precision values and 64-bit integers, we report the performance as an average

over 25 iterations. We tune each sparse tensor framework to the best of our abilities. For

the state-of-the-art MM-CSF, we exhaustively tune the number of warps per fiber and the

thread-block size and report the best execution time. While BLCO can benefit from tuning,

25

Table 6.2: The sparse tensor data sets used for evaluation, ordered by the number of non-zero
elements.

Tensor Dimensions NNZs Density
NIPS 2.5K × 2.9K × 14K × 17 3.1M 1.8× 10−06

Uber 183× 24× 1.1K × 1.7K 3.3M 3.8× 10−04

Chicago 6.2K × 24× 77× 32 5.3M 1.5× 10−02

Vast-2015 165.4K × 11.4K × 2 26M 7.8× 10−07

DARPA 22.5K × 22.5K × 23.8M 28.4M 2.4× 10−09

Enron 6K × 5.7K × 244.3K × 1.2K 54.2M 5.5× 10−09

NELL-2 12.1K × 9.2K × 28.8K 76.9M 2.4× 10−05

FB-M 23.3M × 23.3M × 166 99.6M 1.1× 10−09

Flickr 319.7K × 28.2M × 1.6M × 731 112.9M 1.1× 10−14

Delicious 532.9K × 17.3M × 2.5M × 1.4K 140.1M 4.3× 10−15

NELL-1 2.9M × 2.1M × 25.5M 143.6M 9.1× 10−13

Amazon 4.8M × 1.8M × 1.8M 1.7B 1.1× 10−10

Patents 46× 239.2K × 239.2K 3.6B 1.4× 10−03

Reddit 8.2M × 177K × 8.1M 4.7B 4.0× 10−10

we use our adaptation heuristic (Section 5.3) and set the thread-coarsening factor (NNZs per

thread) for the hierarchical conflict resolution mechanism (Section 5.1) to 4 and 2 on Intel

and NVIDIA GPUs, respectively.

6.2 Comparison Against TD Frameworks

We first compare our BLCO-based MTTKRP against the other popular sparse tensor

decomposition frameworks. Figure 6.1 shows the MTTKRP execution time for all modes,

across the GPU frameworks, normalized by the execution time of the state-of-the-art MM-

CSF. The results demonstrate that BLCO consistently outperforms all other frameworks,

achieving a geometric mean speedup between 2.12× and 2.6× over MM-CSF across the dif-

ferent GPU devices. For the other CUDA frameworks, GenTen has comparable performance

to MM-CSF, outperforming MM-CSF on six out of 11 data sets, whereas F-COO has lower

performance on average compared to MM-CSF, especially on the V100 GPU. The missing

data points for F-COO is due to its limited support for higher-order tensors (i.e., 3-D only)

and "segfault" errors.

Our performance analysis indicates that the performance of MM-CSF (as well as Gen-

26

2.
25

1.
00

2.
12

0.
16

0.
73 1.
00

2.
60

0.
42 0.

78 1.
00

NIPS Uber Chicago Vast−2015 DARPA Enron NELL−2 FB−M Flickr Delicious NELL−1 GEOMEAN

Intel D
evice1

V
100

A
100

0.0625
0.125

0.25
0.5

1
2
4
8

16

0.0625
0.125

0.25
0.5

1
2
4
8

16

0.0625
0.125

0.25
0.5

1
2
4
8

16

Tensor

Sp
ee

du
p

BLCO F−COO GenTen MM−CSF

Figure 6.1: Comparison of BLCO-based MTTKRP against popular GPU frameworks on
the data sets that fit in GPU memory. Each bar represents the speedup obtained against
MM-CSF for computing MTTKRP on all modes. The right-most group of bars show the
geometric mean speedup.

NIPS Uber Chicago Vast−2015 DARPA Enron NELL−2 FB−M Flickr Delicious NELL−1

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 1 2 3 1 2 3 4 1 2 3 1 2 3 1 2 3 4 1 2 3 4 1 2 3
0.25

0.5

1

2

4

8

16

32

Tensor

Sp
ee

du
p

Intel Device1 V100 A100

Figure 6.2: The per-mode speedup of BLCO-based MTTKRP against MM-CSF across every
tensor mode for the data sets that fit in GPU memory.

27

Ten) can substantially decrease with higher synchronization cost, which leads to lower av-

erage performance than BLCO on the GPU devices with more expensive synchronization.

Since MM-CSF reorders non-zero elements to increase tensor compression, its performance

is sensitive to the number of non-zero elements per fiber. On large-scale data sets with low

fiber density, such as DARPA, Enron, and FB-M, MM-CSF has lower compression, leading

to significant performance degradation compared to BLCO.

6.3 Comparison Against State of the Art

For a comprehensive evaluation against the state-of-the-art MM-CSF, Figure 6.2 demon-

strates the speedup achieved by our BLCO-based MTTKRP for every mode of the tensors

that can fit in the device memory of target GPUs. The results demonstrate that our BLCO

format achieves better or comparable performance to MM-CSF for every mode (up to 33.35×

speedup) across all data sets, except Uber and NIPS. These data sets are not only small,

but they also have exceptionally short modes, allowing the data to fit in cache; thus, the

higher compression achieved by MM-CSF, due to its mode-specific nature (c.f. Table 6.3),

translates to better performance. Yet, such a mode-specific compression leads to substantial

performance variations across different modes, as shown in Figure 1.1, and as a result, BLCO

still outperforms MM-CSF for all-mode MTTKRP (c.f. Figure 6.1).

6.4 Memory Traffic Analysis

Since sparse tensor decomposition is a memory-bound workload, its performance is largely

limited by the data volume and the effective memory throughput. Hence, we provide detailed

analysis of these memory metrics across both in- and out-of-memory tensors.

6.4.1 In-Memory Tensors

Table 6.3 details the memory metrics of BLCO-based MTTKRP compared to MM-CSF

on the A100 GPU. The metrics are collected using the Nsight Compute profiler [37]. The

28

memory analysis shows that MM-CSF achieves higher compression than BLCO thanks to

its tree-like data structure, and the total volume of data fetched from memory (as shown in

column “Vol”) is lower in most cases. However, due to the irregular memory access and expen-

sive synchronization associated with traversing a tree-like tensor representation, MM-CSF

under-utilizes the memory system compared to BLCO and has lower memory throughput

(as shown in column “TP”). In addition, both the memory volume and throughput of MM-

CSF vary significantly across modes because of its mode-specific traversal and processing

of tensors, which leads to substantial performance variations (c.f. Figure 1.1). In con-

trast, while BLCO requires more data volume because of its mode-agnostic form, it achieves

higher memory throughput by eliminating memory-access irregularities, exploiting data lo-

cality, and merging conflicting updates across threads in low-latency registers and memories.

Thereby, BLCO fetches/writes more data from/to higher levels of the memory hierarchy in

a coalesced way, leading to improved performance by up to an order of magnitude compared

to MM-CSF.

Table 6.3: Comparison of the memory related metrics between BLCO and MM-CSF for
MTTKRP on the A100 GPU.

Data Set Format n Vol1 TP2 Data Set Format n Vol1 TP2

Uber

BLCO

1 2.78 3.60

Enron

BLCO

1 44.82 4.11
2 2.75 3.61 2 46.23 4.62
3 2.75 3.53 3 47.88 4.92
4 2.73 2.77 4 47.22 4.70

MM-CSF

1 1.68 1.68

MM-CSF

1 41.39 0.31
2 1.33 2.03 2 62.83 3.16
3 1.33 1.93 3 37.15 2.29
4 2.12 0.32 4 37.05 3.01

Vast-2015

BLCO
1 16.91 3.92

NELL-1

BLCO
1 107.5 2.44

2 16.73 3.77 2 104.5 2.32
3 13.92 2.90 3 110.7 2.39

MM-CSF
1 9.19 1.19

MM-CSF
1 123.1 2.21

2 8.36 1.57 2 118.5 2.19
3 8.36 1.45 3 122.1 0.86

1 Memory volume in GB, measured by l1tex__t_bytes.sum in Nsight Compute
[37]

2 Memory throughput in TB/s, calculated by (Vol / total execution time)

29

Amazon Patents Reddit
1 2 3 1 2 3 1 2 3

0

1

2

3

4

5

Tensor

Th
ro

ug
hp

ut
 (T

B
/s

)

BLCO BLCO (No data exchange)

Figure 6.3: The memory throughput of BLCO-based MTTKRP (with and without host-
device data exchange) for out-of-memory tensors across every mode on the A100 GPU.

6.4.2 Out-of-Memory Tensors

Figure 6.3 demonstrates the memory throughput of BLCO-based MTTKRP for out-of-

memory tensors (Amazon, Patents, and Reddit) on the A100 GPU. Since no other GPU

framework supports these tensors, a direct comparison is not possible; instead, we report the

overall throughput as well as the throughput without host-device data exchange (in-memory

throughput) of our BLCO-based MTTKRP, as measured using the Nsight Systems profiler

[38]. The overall throughput is measured based on the total execution time (both MTTKRP

computations and host-device data transfers), while the in-memory throughput only includes

MTTKRP computations. Without the overhead of host-device communication resulting

from the limited GPU memory, the in-memory throughput is on par with the performance

observed for the tensors that can fit in the GPU (c.f. Table 6.3). However, the overall

throughput is lower due to the limited bandwidth of the host-device interconnect compared

to the device memory bandwidth. While BLCO achieves perfect overlap between host-device

transfers and MTTKRP computations, the communication overhead still dominates the

execution time, leading to lower overall throughput (57%–75% of the memory bandwidth).

This result demonstrates that our framework handles out-of-memory tensors as efficiently as

in-memory tensors, but the overall performance for out-of-memory tensors is limited by the

bandwidth of the host-device interconnect.

30

6.5 Format Construction

NIPS Uber Chicago Vast−2015 DARPA Enron NELL−2 FB−M Flickr Delicious NELL−1

0.03125
0.0625

0.125
0.25

0.5
1
2
4
8

16

Tensor

Ti
m

e
(s

)

BLCO ALTO GenTen MM−CSF

Figure 6.4: Comparison of the BLCO construction/generation cost against popular GPU
formats as well as the CPU-based ALTO format on the data sets that fit in GPU memory.

0%

25%

50%

75%

100%

NIPS Uber Chicago Vast−2015 DARPA Enron NELL−2 FB−M Flickr Delicious NELL−1
Tensor

Setup Initial Linearization Sorting BLCO Re−encoding BLCO Blocking

Figure 6.5: Breakdown of the BLCO construction cost for the data sets that fit in GPU
memory. Compared to ALTO, BLCO requires additional blocking and re-encoding to enable
efficient execution on GPUs.

Figure 6.4 shows the generation time of the GPU sparse formats, namely, BLCO, GenTen,

and MM-CSF, as well as the CPU-based ALTO format. Furthermore, Figure 6.5 details the

run-time distribution across the different format generation stages of BLCO. The tensor

formats are generated from raw data, in the COO representation, on the host CPU listed

in Table 6.1. By adopting a mode-agnostic linearized form rather than a multi-dimensional

representation, BLCO significantly decreases the format generation cost, which is typically

dominated by sorting and clustering non-zero elements. Additionally, BLCO does not require

extra mode-specific mapping or scheduling information for reducing synchronization. As a

31

result, BLCO is several times (up to 13.6×) cheaper to generate than the state-of-the-

art MM-CSF format. On the A100 GPU, BLCO needs approximately 12 full (all-mode)

MTTKRP iterations on average to amortize its format generation time, while the other GPU

formats require up to an order of magnitude more iterations to amortize their construction

cost.

Compared to ALTO, BLCO enables efficient execution of tensor operations on massively

parallel architectures by (i) re-encoding linearized indices for fast decoding on GPUs, and

(ii) blocking the tensor into smaller chunks that fit in limited device memory and require at

most 64 bits for indices. However, these additional stages typically consume less than 25%

of the overall format construction cost, as shown in Figure 6.5.

32

CHAPTER 7

RELATED WORK

Optimizing sparse tensor decomposition and MTTKRP operations has been the subject

of several prior studies, which propose various sparse tensor formats along with parallel

algorithms to process and analyze the multi-modal data on CPU- and GPU-based hardware

architectures. List-based formats, such as F-COO [15], GenTen [14], and TB-COO [18],

explicitly store the multi-dimensional coordinates of each non-zero element. To reduce atomic

operations, these formats keep multiple mode-specific copies of the tensor and/or extra

scheduling information, which substantially increases their memory footprint. Tree-based

formats, including CSF [12], [24], B-CSF [16], and MM-CSF [17], extend the compressed

sparse row (CSR) matrix format to higher-order tensors. While these mode-specific formats

can compress the sparse data, they have load imbalance issues and significant performance

variation across various modes of execution.

Block-based formats (e.g., HiCOO [28]) cluster non-zero elements to compress the sparse

tensor and to exploit data locality. However, as the number of tensor modes and sparsity

increase, the majority of HiCOO blocks consist of a few non-zero elements, leading to more

memory usage than COO [21], [28]. In addition, the irregular spatial distributions of sparse

data result in severe load imbalance and synchronization issues across HiCOO blocks [21],

[28], and as a result, it has no GPU implementation [13]. In contrast, BLCO addresses

these limitations by generating coarse-grained blocks that fit in the GPU memory, while

efficiently utilizing the GPU resources by encoding the non-zero elements within each block

in a fine-grained linearized form, amenable to caching and parallel execution.

33

CPU-based tensor linearization approaches, such as the LCO [25] and ALTO [21] formats,

compress the tensor by mapping the multi-dimensional coordinates of a non-zero element

into a single index. In particular, ALTO enables high-performance tensor operations by

(i) leveraging the efficient bit-level scatter/gather instructions and large integers on CPUs,

and (ii)using adaptive atomic- and reduction-based conflict resolution algorithms, tailored

for architectures with coarse-grained cores/threads. However, massively parallel GPUs lack

native support for the bit manipulation instructions and large integer arithmetic that are

needed for efficient processing of prior linearized formats. Additionally, GPUs suffer from

limited device memory and require sophisticated conflict resolution, due to their massive

fine-grained parallelism and substantial synchronization overhead. BLCO directly addresses

these issues to allow efficient execution of large-scale tensors on accelerators.

Segmented scan and reduction [22], [23] have been used to reduce the synchronization

cost of sparse workloads [15], [18], [39]–[41] on parallel architectures. Prior studies apply

these primitives to mode-specific formats with delineated and/or sorted groups of non-zero

elements according to the target mode. In contrast, we devise an opportunistic algorithm

that leverages the mode-agnostic BLCO format to reduce synchronization by discovering

conflicts and performing segmented scan on-the-fly and without needing sorted non-zero

elements or keeping extra scheduling information. In addition, our novel conflict resolution

algorithm eliminates control-flow and memory-access irregularities by specializing threads to

perform different operations at each execution phase.

The TACO compiler [42] automatically generates various sparse matrix and tensor alge-

bra kernels, including sparse MTTKRP. However, prior work showed that hand-optimized

implementations of CSF-based formats (namely, B-CSF) still outperform the auto-generated

TACO code on GPU architectures, even with extensive auto-scheduling and optimization [43].

A wealth of work perform MTTKRP on distributed-memory platforms using MPI [44]–

[48], or the MapReduce [49], [50] framework. Other studies [51]–[53] explore format selection

based on machine learning models to efficiently leverage existing sparse formats.

34

CHAPTER 8

CONCLUSION

Tensors and tensor decomposition are growing increasingly popular in the advent of big

data. Efficient and scalable implementations of tensor algorithms are paramount in address-

ing the varying sizes of real world tensors. To enable high-performance sparse tensor decom-

position on massively parallel GPU architectures, this work proposes the BLCO format. In

contrast to prior approaches, which have been restricted to in-memory tensors, BLCO al-

lows efficient processing of both in-memory and out-of-memory tensors. By discovering and

merging conflicting updates on-the-fly, without any mode-specific information or ordering

of non-zero elements, our BLCO-based MTTKRP demonstrated substantial speedup (up to

33.35×) over the state-of-the-art MM-CSF. We leave for future work the consideration of

other tensor decomposition algorithms such as CP-APR and the Tucker decomposition, and

support for even larger tensors through a distributed or heterogeneous GPU implementa-

tion.

35

References

[1] T. G. Kolda and J. Sun, “Scalable tensor decompositions for multi-aspect data mining,”
in 2008 Eighth IEEE International Conference on Data Mining, 2008, pp. 363–372. doi:
10.1109/ICDM.2008.89.

[2] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors for data mining and
data fusion: Models, applications, and scalable algorithms,” vol. 8, no. 2, Oct. 2016,
issn: 2157-6904. doi: 10.1145/2915921. [Online]. Available: https://doi.org/10.
1145/2915921.

[3] A. Rettinger, H. Wermser, Y. Huang, and V. Tresp, “Context-aware tensor decompo-
sition for relation prediction in social networks,” Social Network Analysis and Mining,
vol. 2, no. 4, pp. 373–385, 2012. doi: 10.1007/s13278-012-0069-5. [Online]. Avail-
able: https://doi.org/10.1007/s13278-012-0069-5.

[4] S. Fernandes, H. Fanaee-T, and J. Gama, “Evolving social networks analysis via ten-
sor decompositions: From global event detection towards local pattern discovery and
specification,” in Discovery Science, P. Kralj Novak, T. Šmuc, and S. Džeroski, Eds.,
Cham: Springer International Publishing, 2019, pp. 385–395, isbn: 978-3-030-33778-0.

[5] H. Fanaee-T and J. Gama, “Tensor-based anomaly detection: An interdisciplinary sur-
vey,” Knowl. Based Syst., vol. 98, pp. 130–147, 2016. doi: 10.1016/j.knosys.2016.
01.027. [Online]. Available: https://doi.org/10.1016/j.knosys.2016.01.027.

[6] D. Bruns-Smith, M. M. Baskaran, J. Ezick, T. Henretty, and R. Lethin, “Cyber secu-
rity through multidimensional data decompositions,” in 2016 Cybersecurity Symposium
(CYBERSEC), 2016, pp. 59–67. doi: 10.1109/CYBERSEC.2016.017.

[7] J. C. Ho, J. Ghosh, and J. Sun, “Marble: High-throughput phenotyping from electronic
health records via sparse nonnegative tensor factorization,” in Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’14, New York, New York, USA: Association for Computing Machinery,
2014, pp. 115–124, isbn: 9781450329569. doi: 10.1145/2623330.2623658. [Online].
Available: https://doi.org/10.1145/2623330.2623658.

[8] H. He, J. Henderson, and J. C. Ho, “Distributed tensor decomposition for large scale
health analytics,” in The World Wide Web Conference, ser. WWW ’19, San Fran-
cisco, CA, USA: Association for Computing Machinery, 2019, pp. 659–669, isbn:
9781450366748. doi: 10.1145/3308558.3313548. [Online]. Available: https://doi.
org/10.1145/3308558.3313548.

36

https://doi.org/10.1109/ICDM.2008.89
https://doi.org/10.1145/2915921
https://doi.org/10.1145/2915921
https://doi.org/10.1145/2915921
https://doi.org/10.1007/s13278-012-0069-5
https://doi.org/10.1007/s13278-012-0069-5
https://doi.org/10.1016/j.knosys.2016.01.027
https://doi.org/10.1016/j.knosys.2016.01.027
https://doi.org/10.1016/j.knosys.2016.01.027
https://doi.org/10.1109/CYBERSEC.2016.017
https://doi.org/10.1145/2623330.2623658
https://doi.org/10.1145/2623330.2623658
https://doi.org/10.1145/3308558.3313548
https://doi.org/10.1145/3308558.3313548
https://doi.org/10.1145/3308558.3313548

[9] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr., and T. M. Mitchell,
“Toward an architecture for never-ending language learning.,” in AAAI, vol. 5, 2010,
p. 3.

[10] B. W. Bader, M. W. Berry, and M. Browne, “Discussion tracking in enron email using
parafac,” in Survey of Text Mining II: Clustering, Classification, and Retrieval, M. W.
Berry and M. Castellanos, Eds. London: Springer London, 2008, pp. 147–163, isbn:
978-1-84800-046-9. doi: 10.1007/978-1-84800-046-9_8. [Online]. Available: https:
//doi.org/10.1007/978-1-84800-046-9_8.

[11] J. McAuley and J. Leskovec, “Hidden factors and hidden topics: Understanding rating
dimensions with review text,” in Proceedings of the 7th ACM conference on Recom-
mender systems, ACM, 2013, pp. 165–172.

[12] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “Splatt: Efficient and
parallel sparse tensor-matrix multiplication,” in 2015 IEEE International Parallel and
Distributed Processing Symposium, 2015, pp. 61–70. doi: 10.1109/IPDPS.2015.27.

[13] J. Li, Y. Ma, and R. Vuduc, ParTI! : A parallel tensor infrastructure for multicore
cpus and gpus, Last updated: Jan 2020, Oct. 2018. [Online]. Available: http://parti-
project.org.

[14] E. Phipps and T. G. Kolda, “Software for Sparse Tensor Decomposition on Emerging
Computing Architectures,” en, SIAM Journal on Scientific Computing, vol. 41, no. 3,
pp. C269–C290, Jan. 2019, arXiv: 1809.09175, issn: 1064-8275, 1095-7197. doi: 10.
1137/18M1210691. [Online]. Available: http://arxiv.org/abs/1809.09175 (visited
on 01/13/2021).

[15] B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi, “A Unified Optimization Ap-
proach for Sparse Tensor Operations on GPUs,” 2017 IEEE International Conference
on Cluster Computing (CLUSTER), pp. 47–57, Sep. 2017, arXiv: 1705.09905. doi:
10.1109/CLUSTER.2017.75. [Online]. Available: http://arxiv.org/abs/1705.09905
(visited on 01/13/2021).

[16] I. Nisa, J. Li, A. Sukumaran-Rajam, R. Vuduc, and P. Sadayappan, “Load-Balanced
Sparse MTTKRP on GPUs,” en, arXiv:1904.03329 [cs], Apr. 2019, arXiv: 1904.03329.
[Online]. Available: http://arxiv.org/abs/1904.03329 (visited on 01/13/2021).

[17] I. Nisa, J. Li, A. Sukumaran-Rajam, P. S. Rawat, S. Krishnamoorthy, and P. Sadayap-
pan, “An efficient mixed-mode representation of sparse tensors,” en, in Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, Denver Colorado: ACM, Nov. 2019, pp. 1–25, isbn: 978-1-4503-6229-0.
doi: 10.1145/3295500.3356216. [Online]. Available: https://dl.acm.org/doi/10.
1145/3295500.3356216 (visited on 01/13/2021).

[18] M. Dun, Y. Li, H. Yang, Q. Sun, Z. Luan, and D. Qian, “An optimized tensor comple-
tion library for multiple gpus,” in Proceedings of the ACM International Conference
on Supercomputing, ser. ICS ’21, Virtual Event, USA: Association for Computing Ma-
chinery, 2021, pp. 417–430, isbn: 9781450383356. doi: 10.1145/3447818.3460692.
[Online]. Available: https://doi.org/10.1145/3447818.3460692.

37

https://doi.org/10.1007/978-1-84800-046-9_8
https://doi.org/10.1007/978-1-84800-046-9_8
https://doi.org/10.1007/978-1-84800-046-9_8
https://doi.org/10.1109/IPDPS.2015.27
http://parti-project.org
http://parti-project.org
https://doi.org/10.1137/18M1210691
https://doi.org/10.1137/18M1210691
http://arxiv.org/abs/1809.09175
https://doi.org/10.1109/CLUSTER.2017.75
http://arxiv.org/abs/1705.09905
http://arxiv.org/abs/1904.03329
https://doi.org/10.1145/3295500.3356216
https://dl.acm.org/doi/10.1145/3295500.3356216
https://dl.acm.org/doi/10.1145/3295500.3356216
https://doi.org/10.1145/3447818.3460692
https://doi.org/10.1145/3447818.3460692

[19] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,” en, SIAM
Review, vol. 51, no. 3, pp. 455–500, Aug. 2009, issn: 0036-1445, 1095-7200. doi: 10.
1137/07070111X. [Online]. Available: http://epubs.siam.org/doi/10.1137/
07070111X (visited on 01/13/2021).

[20] B. W. Bader and T. G. Kolda, “Efficient matlab computations with sparse and factored
tensors,” SIAM Journal on Scientific Computing, vol. 30, no. 1, pp. 205–231, 2008. doi:
10.1137/060676489. [Online]. Available: https://doi.org/10.1137/060676489.

[21] A. E. Helal, J. Laukemann, F. Checconi, J. J. Tithi, T. Ranadive, F. Petrini, and J.
Choi, “Alto: Adaptive linearized storage of sparse tensors,” in Proceedings of the ACM
International Conference on Supercomputing, ser. ICS ’21, Virtual Event, USA: As-
sociation for Computing Machinery, 2021, pp. 404–416, isbn: 9781450383356. doi:
10 . 1145 / 3447818 . 3461703. [Online]. Available: https : / / doi . org / 10 . 1145 /
3447818.3461703.

[22] S. Sengupta, M. Harris, M. Garland, et al., “Efficient parallel scan algorithms for gpus,”
NVIDIA, Santa Clara, CA, Tech. Rep. NVR-2008-003, vol. 1, no. 1, pp. 1–17, 2008.

[23] S. Yan, G. Long, and Y. Zhang, “Streamscan: Fast scan algorithms for gpus without
global barrier synchronization,” in Proceedings of the 18th ACM SIGPLAN symposium
on Principles and practice of parallel programming, 2013, pp. 229–238.

[24] S. Smith and G. Karypis, “Tensor-matrix products with a compressed sparse tensor,”
en, in Proceedings of the 5th Workshop on Irregular Applications: Architectures and
Algorithms, Austin Texas: ACM, Nov. 2015, pp. 1–7, isbn: 978-1-4503-4001-4. doi:
10.1145/2833179.2833183. [Online]. Available: https://dl.acm.org/doi/10.
1145/2833179.2833183 (visited on 01/13/2021).

[25] A. P. Harrison and D. Joseph, “High Performance Rearrangement and Multiplica-
tion Routines for Sparse Tensor Arithmetic,” arXiv:1802.02619 [cs], Feb. 2018, arXiv:
1802.02619. [Online]. Available: http://arxiv.org/abs/1802.02619 (visited on
01/13/2021).

[26] G. M. Morton, “A computer oriented geodetic data base; and a new technique in file
sequencing,” IBM Ltd., 150 Laurier Ave., Ottawa, Ontario, Canada, Tech. Rep., 1966.
[Online]. Available: https://dominoweb.draco.res.ibm.com/reports/Morton1966.
pdf.

[27] J. Choi, X. Liu, S. Smith, and T. Simon, “Blocking Optimization Techniques for Sparse
Tensor Computation,” en, in 2018 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), Vancouver, BC: IEEE, May 2018, pp. 568–577, isbn:
978-1-5386-4368-6. doi: 10.1109/IPDPS.2018.00066. [Online]. Available: https:
//ieeexplore.ieee.org/document/8425210/ (visited on 01/31/2021).

[28] J. Li, J. Sun, and R. Vuduc, “Hicoo: Hierarchical storage of sparse tensors,” ser. SC ’18,
Dallas, Texas: IEEE Press, 2018. doi: 10.1109/SC.2018.00022. [Online]. Available:
https://doi.org/10.1109/SC.2018.00022.

38

https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
http://epubs.siam.org/doi/10.1137/07070111X
http://epubs.siam.org/doi/10.1137/07070111X
https://doi.org/10.1137/060676489
https://doi.org/10.1137/060676489
https://doi.org/10.1145/3447818.3461703
https://doi.org/10.1145/3447818.3461703
https://doi.org/10.1145/3447818.3461703
https://doi.org/10.1145/2833179.2833183
https://dl.acm.org/doi/10.1145/2833179.2833183
https://dl.acm.org/doi/10.1145/2833179.2833183
http://arxiv.org/abs/1802.02619
https://dominoweb.draco.res.ibm.com/reports/Morton1966.pdf
https://dominoweb.draco.res.ibm.com/reports/Morton1966.pdf
https://doi.org/10.1109/IPDPS.2018.00066
https://ieeexplore.ieee.org/document/8425210/
https://ieeexplore.ieee.org/document/8425210/
https://doi.org/10.1109/SC.2018.00022
https://doi.org/10.1109/SC.2018.00022

[29] J. Li, B. Uçar, Ü. V. Çatalyürek, J. Sun, K. Barker, and R. Vuduc, “Efficient and
effective sparse tensor reordering,” in Proceedings of the ACM International Confer-
ence on Supercomputing, ser. ICS ’19, Phoenix, Arizona: Association for Computing
Machinery, 2019, pp. 227–237, isbn: 9781450360791. doi: 10.1145/3330345.3330366.
[Online]. Available: https://doi.org/10.1145/3330345.3330366.

[30] D. Blythe, “The xe gpu architecture,” in 2020 IEEE Hot Chips 32 Symposium (HCS),
IEEE Computer Society, 2020, pp. 1–27.

[31] “Nvidia a100 80gb pcie gpu,” Nvidia Corp., Tech. Rep., Jun. 2021.

[32] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, and X. Tian, Data
Parallel C++: Mastering DPC++ for Programming of Heterogeneous Systems using
C++ and SYCL. Springer Nature, 2021.

[33] D. B. Kirk, “Nvidia cuda software and gpu parallel computing architecture,” 2006.

[34] Intel DPC++ Compatibility Tool, https://software.intel.com/en- us/get-
started-with-intel-dpcpp-compatibility-tool, Online; accessed 14 May 2022,
2022.

[35] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis. “FROSTT:
The formidable repository of open sparse tensors and tools.” (2017), [Online]. Available:
http://frostt.io/.

[36] I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, “HaTen2: Billion-scale tensor
decompositions,” en, in 2015 IEEE 31st International Conference on Data Engineering,
Seoul, South Korea: IEEE, Apr. 2015, pp. 1047–1058, isbn: 978-1-4799-7964-6. doi:
10.1109/ICDE.2015.7113355. [Online]. Available: http://ieeexplore.ieee.org/
document/7113355/ (visited on 01/31/2021).

[37] Nsight compute command line interface, https : / / docs . nvidia . com / nsight -
compute/pdf/NsightComputeCli.pdf, Online; accessed 14 May 2022, 2022.

[38] Nsight systems user guide, https://docs.nvidia.com/nsight- systems/pdf/
UserGuide.pdf, Online; accessed 14 May 2022, 2022.

[39] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication on throughput-
oriented processors,” in Proceedings of the conference on high performance computing
networking, storage and analysis, 2009, pp. 1–11.

[40] Y. Zhang, J. Cohen, and J. D. Owens, “Fast tridiagonal solvers on the gpu,” in Pro-
ceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2010, pp. 127–136.

[41] S. Yan, C. Li, Y. Zhang, and H. Zhou, “Yaspmv: Yet another spmv framework on gpus,”
in Proceedings of the 19th ACM SIGPLAN symposium on Principles and practice of
parallel programming, 2014, pp. 107–118.

[42] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The Tensor Algebra
Compiler,” Proceedings of the ACM on Programming Languages, vol. 1, no. OOPSLA,
pp. 1–29, 2017.

39

https://doi.org/10.1145/3330345.3330366
https://doi.org/10.1145/3330345.3330366
https://software.intel.com/en-us/get-started-with-intel-dpcpp-compatibility-tool
https://software.intel.com/en-us/get-started-with-intel-dpcpp-compatibility-tool
http://frostt.io/
https://doi.org/10.1109/ICDE.2015.7113355
http://ieeexplore.ieee.org/document/7113355/
http://ieeexplore.ieee.org/document/7113355/
https://docs.nvidia.com/nsight-compute/pdf/NsightComputeCli.pdf
https://docs.nvidia.com/nsight-compute/pdf/NsightComputeCli.pdf
https://docs.nvidia.com/nsight-systems/pdf/UserGuide.pdf
https://docs.nvidia.com/nsight-systems/pdf/UserGuide.pdf

[43] R. Senanayake, C. Hong, Z. Wang, A. Wilson, S. Chou, S. Kamil, S. Amarasinghe, and
F. Kjolstad, “A Sparse Iteration Space Transformation Framework for Sparse Tensor
Algebra,” Proceedings of the ACM on Programming Languages, vol. 4, no. OOPSLA,
pp. 1–30, 2020.

[44] J. H. Choi and S. V. N. Vishwanathan, “DFacTo: Distributed Factorization of Tensors,”
en, arXiv:1406.4519 [stat], Jun. 2014, arXiv: 1406.4519. [Online]. Available: http:
//arxiv.org/abs/1406.4519 (visited on 01/31/2021).

[45] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions in distributed memory
systems,” en, in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, Austin Texas: ACM, Nov. 2015, pp. 1–
11, isbn: 978-1-4503-3723-6. doi: 10.1145/2807591.2807624. [Online]. Available:
https://dl.acm.org/doi/10.1145/2807591.2807624 (visited on 01/13/2021).

[46] E. Solomonik, D. Matthews, J. Hammond, and J. Demmel, “Cyclops tensor frame-
work: Reducing communication and eliminating load imbalance in massively parallel
contractions,” in 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing, IEEE, 2013, pp. 813–824.

[47] S. Smith and G. Karypis, “A medium-grained algorithm for sparse tensor factorization,”
in 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
2016, pp. 902–911. doi: 10.1109/IPDPS.2016.113.

[48] K. Shin and U. Kang, “Distributed methods for high-dimensional and large-scale tensor
factorization,” in 2014 IEEE International Conference on Data Mining, IEEE, 2014,
pp. 989–994.

[49] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “GigaTensor: Scaling tensor
analysis up by 100 times - algorithms and discoveries,” en, in Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining -
KDD ’12, Beijing, China: ACM Press, 2012, p. 316, isbn: 978-1-4503-1462-6. doi:
10.1145/2339530.2339583. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2339530.2339583 (visited on 01/31/2021).

[50] Z. Blanco, B. Liu, and M. M. Dehnavi, “CSTF: Large-Scale Sparse Tensor Factoriza-
tions on Distributed Platforms,” en, in Proceedings of the 47th International Conference
on Parallel Processing, Eugene OR USA: ACM, Aug. 2018, pp. 1–10, isbn: 978-1-4503-
6510-9. doi: 10.1145/3225058.3225133. [Online]. Available: https://dl.acm.org/
doi/10.1145/3225058.3225133 (visited on 01/31/2021).

[51] Y. Zhao, J. Li, C. Liao, and X. Shen, “Bridging the gap between deep learning and
sparse matrix format selection,” in Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’18, Vienna, Aus-
tria: Association for Computing Machinery, 2018, pp. 94–108, isbn: 9781450349826.
doi: 10.1145/3178487.3178495. [Online]. Available: https://doi.org/10.1145/
3178487.3178495.

40

http://arxiv.org/abs/1406.4519
http://arxiv.org/abs/1406.4519
https://doi.org/10.1145/2807591.2807624
https://dl.acm.org/doi/10.1145/2807591.2807624
https://doi.org/10.1109/IPDPS.2016.113
https://doi.org/10.1145/2339530.2339583
http://dl.acm.org/citation.cfm?doid=2339530.2339583
http://dl.acm.org/citation.cfm?doid=2339530.2339583
https://doi.org/10.1145/3225058.3225133
https://dl.acm.org/doi/10.1145/3225058.3225133
https://dl.acm.org/doi/10.1145/3225058.3225133
https://doi.org/10.1145/3178487.3178495
https://doi.org/10.1145/3178487.3178495
https://doi.org/10.1145/3178487.3178495

[52] Z. Xie, G. Tan, W. Liu, and N. Sun, “Ia-spgemm: An input-aware auto-tuning frame-
work for parallel sparse matrix-matrix multiplication,” in Proceedings of the ACM
International Conference on Supercomputing, ser. ICS ’19, Phoenix, Arizona: Asso-
ciation for Computing Machinery, 2019, pp. 94–105, isbn: 9781450360791. doi: 10.
1145/3330345.3330354. [Online]. Available: https://doi.org/10.1145/3330345.
3330354.

[53] Q. Sun, Y. Liu, M. Dun, H. Yang, Z. Luan, L. Gan, G. Yang, and D. Qian, “Sptfs:
Sparse tensor format selection for mttkrp via deep learning,” in Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’20, Atlanta, Georgia: IEEE Press, 2020, isbn: 9781728199986. [On-
line]. Available: https://dl.acm.org/doi/abs/10.5555/3433701.3433724.

41

https://doi.org/10.1145/3330345.3330354
https://doi.org/10.1145/3330345.3330354
https://doi.org/10.1145/3330345.3330354
https://doi.org/10.1145/3330345.3330354
https://dl.acm.org/doi/abs/10.5555/3433701.3433724

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Background
	Notation
	CPD
	Matricized Tensor Times Khatri-Rao Product

	Sparse Tensor Formats for GPUs
	List-based Sparse Tensor Formats
	Tree-based Sparse Tensor Formats

	The BLCO Format
	Tensor Linearization
	Adaptive Blocking

	BLCO-Based Sparse MTTKRP
	Hierarchical Conflict Resolution
	Processing Phase
	Computing Phase

	Register-based Conflict Resolution
	Adaptation Heuristic

	Experiments
	Evaluation Setup
	Test Platform
	Data Sets
	Configurations

	Comparison Against TD Frameworks
	Comparison Against State of the Art
	Memory Traffic Analysis
	In-Memory Tensors
	Out-of-Memory Tensors

	Format Construction

	Related Work
	Conclusion
	References

