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Camera placement is essential in the world of scientific visualization. Different camera 

placements expose different information about the data. Viewpoint quality (VQ) metrics are one 

method of evaluating the quality of camera placement in visualizations. VQ metrics also have the 

potential to direct the automation of camera selection in scientific visualization, an important 

issue as the computational capacity to produce data is far outpacing the capacity to save data to 

storage. Previous research has used VQ metrics to successfully predict camera placements that 

match user preferences in images generated by a popular visualization technique, called 

isosurfacing. With this study, we extend the previous research and investigate the efficacy of VQ 

metrics in predicting user preferred camera placements for images created using another popular 

visualization method, known as volume rendering.  

This study involves two main components: (1) gathering user preferences of camera 

placements and (2) a performance analysis of how accurately VQ metrics were able to predict 

user preferences. We found that the top performing VQ metric was able to correctly predict user 

preferences of volume rendered images up to 66% of the time. This result supports previous 

findings about the efficacy of VQ metrics in predicting user preferred images generated using  
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isosurfaces. Together, these findings provide further evidence that VQ metrics are a promising 

approach for guiding the automation of selecting camera placements for scientific visualization 

methods.   
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Introduction 

Camera Placement 

Scientific visualization provides necessary tools to a wide range of scientific domains. 

Camera placement is a critical element of scientific visualization. Deciding where to place the 

camera in a 3D visualization can dramatically impact the visible information within an image. 

Different camera positions can expose or hide different elements of the visible data. Thus, it is 

important that camera positions are selected in a way that ensures necessary information is clear 

and comprehensible to the viewer. There are two main approaches for selecting a camera 

position in a visualization. Visualization software typically display scenes from a default camera 

position. Then, users modify the data by inputting their own camera positioning or using their 

mouse to drag data around the X, Y, and Z axes. Alternatively, and much less frequently, the 

camera position can be set using automation. One way to perform an automatic approach relies 

on the utilization of metrics or preset measurements that guide the selection of a camera position 

without the need for human interaction.  

Automation 

Many domain scientists rely on computational simulations to avoid the high costs 

associated with running real experiments. In many cases, large scientific simulations require a 

level of computational power that can only be obtained by running on supercomputers.  

Supercomputers have the power to quickly generate enormous amounts of data. The rate at 

which computers can produce data has started to outpace the rate at which data can be saved to 

memory. This problem is referred to as the I/O (input/output) gap [1].  
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Traditionally, simulations are run in a post-hoc setting. Post-hoc processing is when data 

is first saved to storage, then afterwards read in by visualization software. However, with the 

increasing I/O gap, this process is becoming less practical. In situ processing in an alternative 

method that allows data to be processed as it is generated, thus reducing the I/O costs of a 

visualization. In situ processing typically occurs with no human in the loop, meaning completely 

independent from human intervention [1]. As a result, automating the processes in scientific 

visualization is increasingly relevant. Specific to this work, the goal of automating camera 

selection is to find camera placements that produce useful images while allowing visualizations 

to run in an in situ setting. 

Research on automated approaches of selecting camera positions aim to discover 

methods of effectively setting acceptable camera positions that generate good images. Some 

notable research studies have examined viewpoint quality (VQ) metrics as a method of setting 

camera positions. VQ metrics are designed to evaluate the quality of a visualization’s camera 

placement based on metric-specific formulas. Viewpoints with higher VQ metric values are in 

theory “better” than camera views with lower metric values [2]. One research study in particular, 

Marsaglia et al. [2], investigated user preferences in correlation with new and existing VQ 

metrics. This novel method of evaluating user-preferred viewpoints guided research on 

automating camera placement selection towards a solution that analyzes what domain users 

consider a “good” viewpoint of the visualization. Marsaglia et al. [2] found that existing VQ 

metrics are not significantly effective in predicting what camera positions users prefer. However, 

Marsaglia et al. [2] contributed their own entropy-based metrics that were significantly better 

predictors of user preferences, making a correct prediction 68% of the time.  
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Consideration of User Preference 

Research that considers how user preferences can be used to guide automated selection of 

camera placement has not been widely investigated. For instance, Marsaglia et al. [2] only 

considered images generated through isosurfacing. While isosurface representations of data are 

commonly used in the scientific visualization community, it is not the only technique for 

displaying data. Volume rendering is another popular method of scientific visualization. While 

few published research studies have investigated automating camera placements for volume 

rendered imagery, even fewer have considered how user preferences relate to camera positions in 

volume rendered images. This research aims to fill that gap by extending the work of Marsaglia 

et al. [2] to explore whether existing VQ metrics can effectively predict user preferred camera 

placements in volume rendered images. 
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Background  

What Makes a Good Image? 

In scientific visualization, “good” images depend on the type, context, and intended use 

of a data set. Typically, a user will input their desired camera placement that renders a preferred 

image. Human direction allows for special considerations, such as what the data captures and 

what situation the data represents. While it is agreed upon by visualization researchers that no 

single camera placement can consistently and unanimously produce the most optimal viewpoint, 

humans generally agree that certain types of viewpoints are better than others [3]. Healey et al. 

[4] describes the goal of a desirable image as being able to support visual analysis, exploration, 

and discovery of novel insights. They further state that images should be generated in a way such 

that they are memorable, salient, and draw attention to areas of interest in the data [4]. 

 

Figure 1: Example of image rendered using different camera viewpoints [5]. This figure 

demonstrates how some images are better representations of a tea kettle than others. Certain 

camera viewpoints omit important features of the image, such as the handle or the spout. 
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How to Find Good Images?  

Polonsky et al. [5] aimed to answer this question by establishing a methodology which 

consists of defining view descriptors. Later research refers to view descriptors as viewpoint 

quality (VQ) metrics, which is the term used for the remainder of this paper. Essentially, each 

VQ metric assigns a score to a particular view, which can then be used as a comparator against 

the scores of other, different views of that same data set. Polonsky et al. [5] attempted to quantify 

good views by basing their VQ metrics on the following principles: (1) measure of geometric 

complexity, (2) inherent view-dependent features, and (3) assigning value to non-primitive 

elements of the model. By evaluating images from different vantage points under formulas 

derived from these three principles, images can be compared with one another based on how they 

scored on different VQ metrics. In terms of findings, Polonsky et al. [5] found that no one VQ 

metric they considered in their study can perfectly evaluate image “goodness.”  

Several other researchers have also investigated the efficacy of VQ metrics in relation to 

automatic camera selection, specifically with a focus on entropy based VQ metrics [5, 6, 7]. 

Takahashi’s [7] investigations found that viewpoint entropy can serve as a useful tool for naïve 

users to automate good viewpoints in the case of volume rendered images. Marsaglia et al. [2] 

also tackles entropy-based VQ metrics and additionally looks at the performance of certain VQ 

metrics in combination with other existing metrics. Their work supports the notion that entropy-

based VQ metrics are good predictors of what camera placements generate good images.  

Marsaglia et al. [2] explored how user preferences can be used to guide the selection of 

good images. In combining existing and newly discovered VQ metrics with data on user 

preferred images, VQ metrics that most closely align with images that users deem optimal can be 

determined. This is a recent area of automated camera placement research that has motivated and 
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directed the focus of my work. However, Marsaglia et al. [2] solely focused on the use of VQ 

metrics in respect to images produced by isosurfacing. As isosurfaces are only one of several 

different methods for rendering images, we believe their study is missing some perspective on 

other applications of visualization. Our work contrasts with Marsaglia et al. [2] as we aim to 

extend their work and consider how VQ metrics can be used to predict good images for volume 

rendered images.  

Viewpoint Quality Metrics  

VQ metrics are one of the leading methods for guiding automatic selection of camera 

placements in scientific visualization. This section describes the specific VQ metrics relevant to 

this work. Other existing metrics have been excluded because they are not suitable for the scope 

of this study. In particular, Marsaglia et al. [2] constructed their analysis of these metrics such 

that their results could be applied in situ. This work applies similar constraints for comparison 

purposes.  

Number of Visible Triangles 

This metric originates from Plemenos [8] and was further developed by Plemenos and 

Benayada [9]. In computer graphics, triangles are used to draw images by approximating areas of 

information, like color. This metric scores images containing a higher number of visible 

triangles, thus a higher quantity of visible information, with higher scores.  

Projected Area 

This metric also originates from Plemenos and Benayada [9]. Projected area measures the 

total area of visible polygons that make up an image. Similar to the Number of Visible Triangles 

metric, Projected Area favors images with a greater quantity of visible information.  
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Plemenos and Benayada (PB) 

This metric is a combination of Number of Visible Triangles and Projected Area metrics.  

Visibility Ratio 

This metric, also from Plemenos and Benayada [9], measures the visibility ratio of an 

image. The visibility ratio is defined as the visible surface area divided by the total surface area 

of a visualization. 

Viewpoint Entropy 

This metric was first utilized for selecting camera viewpoints by Vasquez et al. [6]. This 

metric considers projected area of data and the number of visible faces to evaluate the entropy at 

a given viewpoint. 

Viewpoint Kullback-Leibler Distance (VKL) 

This metric was developed by Sbert et al. [10]. VKL measures the Kullback-Leibler 

distance between the normalized distribution of projected area and the real area visible from a 

given viewpoint [2]. 

Maximum Depth 

This metric was created by Stoev and Strasser [11], but first applied to viewpoint 

exploration by Secord et al. [12]. This metric measures the maximum depth of the model at a 

specific viewpoint. With a greater depth, it is possible that more information will be visible to the 

user.  

 

The following metrics were created by Marsaglia et al. [1, 2]. These metrics utilize 

Shannon Entropy, which calculates the average amount of information in some entity [13]. 
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Higher levels of entropy reflect a higher quantity and variety of information. Marsaglia only 

considers visible data in these metrics, that is the area of an image that is not occupied by empty 

or background space.  

Data Entropy 

This metric calculates the entropy of visible field data from a specific viewpoint. 

Depth Entropy 

This metric calculates “the entropy of the distances from the camera to the visible field of 

data” at a specific viewpoint [2]. 

Shading Entropy 

This metric calculates the entropy of the visible shading coefficients. This metric 

uniquely considers how the light and shading of a visualization might affect the quality of an 

image from certain camera placements. 

DDS 

This metric combines the previous three metrics: data entropy, depth entropy, and 

shading entropy. Marsaglia et al. [1, 2] found this combined metric to be the most accurate in 

predicting user preferences, with a 68% success rate. Marsaglia’s three entropy-based metrics 

were combined by adding the raw scores of each individual metric to get one score. In this study, 

DDS will be used as a single metric. 

Isosurfacing and Volume Rendering 

The distinction between isosurfacing and volume rendering is very relevant to this work. 

Isosurfacing is a visualization operation that generates images of three-dimensional data using 
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“surfaces.” An isosurface represents a single value within the data set. Everywhere the data set 

contains data equivalent to the isovalue, the data is included in the rendered image. Setting 

multiple isovalues creates multiple isosurfaces, which generates a visualization made up of 

layers at varying field values. An example of an image rendered using isosurfaces can be seen 

below in Figure 2.  

 
Figure 2: An example of isosurfacing. This image depicts the hurricane data set rendered using 

isovalues of 10 and 90 [18]. These parameters result in an image that contains a blue layer 

representing field data of value 10 on top of a red layer that represents field data of value 90.  

 

Volume rendering is another operation widely used in scientific visualization. Instead of 

using isovalues to define what information should be included in an image, volume rendering 

uses a specification called a transfer function to determine what values of field data should be 

included. Volume rendered images also consider an additional component of opacity, which is 

contained in a visualization’s transfer function. This is helpful for images that have useful or 

salient data that is obstructed or contained within exterior data. 
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Transfer functions describe the level of opacity and color a volume rendering should have 

at different field data values. Figure 3 demonstrates a visualization of Mantle where a fully 

opaque transfer function is applied and another where a specific transfer function is applied. The 

figure shows that when the transfer function is applied, most of the field data in the middle of the 

block becomes nearly transparent, making the blue, red, and yellow protrusions visible.  

 

   
Figure 3: An example of the Mantle data set with a fully opaque transfer function (left) and the 

transfer function used in this study (right). 
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My Study 

The design of this study matches Nicole Marsaglia’s [2] work on investigating an 

entropy-based approach for identifying user-preferred camera positions in scientific 

visualizations rendered using isosurfacing. With the goal of extending Marsaglia’s study to 

explore how VQ metrics can be used to predict user preferences in volume rendered images, the 

data collection, methods, and evaluation procedures discussed below closely follow those 

outlined in their study. 

Data Corpus for Comparing Viewpoints 

	
This section details the data corpus used for evaluating viewpoint metrics. The data 

corpus is comprised of three elements: (1) a collection of volume rendered images to be used as 

comparators in the user survey, (2) the results of a user survey detailing user preferences, and (3) 

VQ metric scores for ten different images of each data set used in the study.  

Determining User Preferences 

	
This section describes the process of building the collection of volume rendered images 

used as the basis for the user survey. Subsequently, the user survey is used to generate data on 

preferences of various camera viewpoints. The images discussed in this section are also used 

later to inform the selection of parameters for image analysis. 

Data Sets 

	
The data sets used in this study were obtained from the collection of data sets used in 

Marsaglia’s initial work [2]. Marsaglia selected these data sets because they represent a diverse 
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assortment of images and domains, so the results of their study could possibly be applied to a 

greater realm of scientific data sets. Marsaglia utilized 10 large-scale scientific data sets gathered 

from the IEEE Visualization Conference’s Scientific Visualization Contest and the Exascale 

Computing Project from the United States’ Department of Energy. In this study, only nine of 

these data sets are evaluated. The one data set excluded from this research was determined to be 

unsuitable for volume rendering because the images captured from different camera positions 

were similar and lacked discernable qualities. The data sets used in the study are described 

below: 

• Asteroid: A data set of the impact of an asteroid hitting water [14].  

• Constit: A data set of the deformation response in polycrystalline materials [15].  

• ExaAm Truchas: A data set that examines micro-structures of Additive 
Manufacturing [16]. 

• Fluid Dynamics: A data set that models the flow of water through a cylindrical 
shape [17]. 

• Hurricane: A data set of Hurricane Isabel [18]. 

• Mantle: A data set that models the Earth’s mantle [19]. 

• Miranda: A data set of hydrodynamic turbulence [20]. 

• S3D-N2: A data set of combustion’s N2 field data [21]. 

• S3D-UVEL: A data set of combustion’s U Velocity field data [21]. 

 

A specific time slice of each data set described above was selected. These time slices 

were chosen because they were determined to sufficiently represent the simulation as a whole. 

 



	

20 
	

Rendering Images 

Images of each data set were created using volume rendering. For the purpose of this 

study, transfer functions were selected through a combination of trial-and-error testing and 

referring to the isovalues used to generate the images in Marsaglia et al. If the selection of 

transfer functions was implemented poorly, problems would have emerged during this process. 

The volume rendered images in this study are designed to resemble the isosurface images used in 

Marsaglia et al. and highlight comparable features of the data. Therefore, if the selected transfer 

functions did not adequately mirror Marsaglia’s isovalues, comparisons between the Marsaglia 

study and this work would not be applicable.  

The main goal of generating an image library was to create images that were aesthetic, 

comprehensible, and highlighted important elements of the data set. Different color schemes, 

lighting arrangements, and transfer functions were tested on each individual data set before 

deciding on what schema was selected. The final collection of volume rendered images used in 

our corpus is displayed in Figure 4. 
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Figure 4: The image collection for our corpus. A 3D visualization of each data set was generated 

using volume rendering and uniquely designed transfer functions. Then, using a Fibonacci Lattice 

pattern, images were taken of each data set from ten evenly spaced camera locations. 

Camera Placement 

For every data set, images were rendered from each of ten different camera positions. 

Camera positions were selected using a Fibonacci Lattice, which ensured the camera is placed at 

ten evenly spaced locations circling around the three-dimensional visualization, as shown in 

Figure 5. This method of camera placement was selected as it was the same procedure used in  
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Marsaglia et al. [2]. Additionally, using a Fibonacci Lattice ensured that images are rendered 

from unique and dissimilar vantage points, and that every data set is captured from comparable 

positions. 

 
Figure 5: A depiction of what a Fibonacci Lattice looks like [2].  

 

User Survey 

The next element included in the corpus of data is user preferences of camera viewpoints. 

Two user surveys were conducted to gather these user preferences. The first survey consisted of 

Scientific Visualization Students at the University of Oregon–a class comprised mainly of 

juniors, seniors, and graduate students in the University’s Computer Science program. The 

second survey consisted of professionals in the field of scientific visualization–the same group 

that was invited to participate in the user survey conducted by Marsaglia et al. [2]. 

To take part in the survey, participants were given access to a website where they could 

indicate their preferences for different image pairings. Each survey question was comprised of 

two images randomly selected from the image collection. For each survey question, the two 

images displayed belonged to the same data set but were captured from different camera 
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viewpoints. Participants of the survey were asked to select which image they felt best represents 

the simulation. If participants could not determine if one image is superior to another, they were 

given a third option that indicated the participant had no preference between the images. After 

making a preference selection, a new random pairing of images displayed on the page. This 

sequence of events repeated until the participant exited the survey. Participants did not have any 

prior knowledge of what real-world situation the visualization is illustrating, so they were not 

privy to what elements of a visualization may be more relevant or important than others. See 

Figure 6 for an example of the survey design. 

 
Figure 6: An example question from the user survey. Participants selected the image they 

preferred to represent the simulation. If participants did not have a strong preference for either 

image, they may select “Neutral.” Participants answered questions for as long as they wanted, then 

selected “Done” to exit the survey. 
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The first survey comprised of UO scientific visualization students received 610 

responses. The second survey comprised of scientific visualization professionals received 

another 1548 responses. This data constitutes the user preference data corpus for this study. 

Viewpoint Analysis 

This section describes the process of preparing and running the analysis for each data set. 

The analysis procedure utilized a high-performance computing, in situ visualization 

infrastructure called Ascent. The Ascent library contains implementations to calculate the eleven 

VQ metrics used in this study. When running an example for a particular VQ metric, Ascent 

reads in information about the data set time slice used, camera placements, and calculation 

parameters, and outputs a score for each of the 10 images rendered from different viewpoints. 

The VQ metric implementations in Ascent are designed to work on solid surfaces. This 

means that images generated using isosurfaces are preferable to volume rendered images, which 

typically contain masses of transparent data. In order to reuse the pipeline utilized in Marsaglia et 

al. [2], while also ensuring the scope of this research remains relevant to images generated 

through volume rendering, images were constructed by selecting approximate isovalues that 

mimic the attributes of the volume rendered images used in the user survey.  

Selecting Isovalues to Represent Volume Rendered Images 

The transfer functions created for each of the volume rendered images included in the 

user survey are used as a guideline for the selection of isovalues. Isovalues were selected at the 

approximate narrow range in the transfer function where the rendered image is nearly or fully 

opaque. While not explicitly evaluating volume rendered imagery, this method allows Ascent to 

read in isosurface image data that visually represents the volume rendered version of that image. 
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Figure 7 below demonstrates how a volume rendered image can be translated to an isosurface 

image, which is interpretable by Ascent. 

 

             
Figure 7: An example of a volume rendered image translated into isosurfaces to be used in the 

Ascent analysis. The image on the left was produced using volume rendering operations in VisIt. 

The image on the right was produced by Ascent, using the isovalues given as input. 

 
 

The isovalues were selected using a combination of transfer function values and trial and 

error of what images looked most representative of the volume rendered data set. This mapping 

process could have introduced problems if the isovalues selected were not sufficiently 

representative of the accompanied volume rendered image. However, through careful assessment 

and repetitive testing, satisfactory isovalues were chosen for analysis and issues related to this 

process were avoided.  

Evaluating Results 

The efficacy of each VQ metric used in this study was evaluated using comparator 

oracles. The oracles use VQ metric scores to predict what camera placement users prefer. This 

study utilizes single-metric oracles that only consider one VQ metric at a time when making 
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predictions. This contrasts with the Marsaglia study, which additionally considered multi-metric 

oracles. That said, the Marsaglia study found that a combination of three oracles (data entropy, 

depth entropy, shading entropy) was the most effective, and that combination is used here as a 

single metric with a corresponding oracle. Thus, eleven single-metric oracles are utilized in this 

study, one for each of the eleven VQ metrics described previously in the Background section. 

A single-metric oracle takes two scores for a given VQ metric as input, one score from 

camera position C1 and one score from camera position C2. If the score for C1 is greater than the 

score for C2, the oracle will select C1 as the winning viewpoint. For all metrics used in the 

study, a higher score represents a “better” image, so the oracle will always select the image 

producing the highest score. 

 
Figure 8: A depiction of the logic used in a single-metric oracle [2]. Two different cameras, C1 

and C2, and the selected metric, M1, are given as input to the oracle. The oracle then compares the 

metric scores for each camera, makes a decision about which camera has a better viewpoint based 

on the metric provided, and outputs its decision. 

 

Oracles that perform the highest are the oracles that make the most accurate predictions. 

Our evaluation measures the number of times each oracle can correctly predict the user’s 

preference. If an oracle makes a correct prediction, it receives one point. If the oracle does not 

make a correct prediction, it receives zero points. At the end of our analysis, the oracle with the 

highest sum of points is determined to be the best oracle at predicting user preferences.  
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Results 

Viewpoint Quality Metric Findings 

This section discusses the efficacy of metric-based oracles in predicting user preferences 

of camera placements for various scientific visualization data sets. In this discussion, user 

preferences are partitioned into two groups: Student preferences and Professional preferences. 

The evaluation of each metric for both groups is detailed below in Tables 1 and 2. 

 
Student Data  Professional Data 

Metric Correct 
Predictions 

% (/498)  
 

Metric Correct 
Predictions 

% (/973) 

Data Entropy 278 55.8%  Data Entropy 572 58.8% 
DDS Entropy 313 62.9%  DDS Entropy 643 66.1% 

Viewpoint 
Entropy 

175 35.1%  Viewpoint 
Entropy 

375 38.5% 

Shading 
Entropy 

267 53.6%  Shading 
Entropy 

600 61.7% 

Depth Entropy 296 59.4%  Depth Entropy 605 62.1% 
Visibility Ratio 172 34.5%  Visibility 

Ratio 
377 38.7% 

Max Depth 310 62.2%  Max Depth 549 56.4% 
# of Visible 
Triangles 

182 36.5%  # of Visible 
Triangles 

398 40.1% 

Plemenos & 
Benayada 

200 40.2%  Plemenos & 
Benayada  

389 40.0% 

VKL Distance 178 35.7%  VKL Distance 368 37.8% 

Projected Area 203 40.8%  Projected Area 384 39.5% 

  
 
 

The data collected from the Student Group and the Professional Group resulted in 610 

and 1548 responses, respectively. However, some of the responses provided by participants 

indicated that they felt neutral about the two images presented to them. Responses that signified 

the participant did not have a strong preference of one image over the other were discarded in the 

Table 1: Correct predictions for 

each metric using Student data 

corpus. 

Table 2: Correct predictions for 

each metric using Professional 

data corpus. 
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evaluation of results. As such, the evaluation only considers the 498 Student responses and 973 

Professional responses where the participant indicated they did have a preference. 

The rate of correct oracle predictions was generally similar between the Student and 

Professional responses. The top scoring metric for both the Student survey and the Professional 

survey data corpus was DDS Entropy, with an accurate prediction rate of 62.9% and 66.1%, 

respectively. With the highest prediction rate of approximately 66%, DDS Entropy was the most 

accurate of the metrics considered in this study at predicting human preference for both surveyed 

groups. This suggests that DDS Entropy is the best VQ metric to use when predicting what users 

may believe to be good viewpoints in a data visualization.  

Several of the other VQ metrics evaluated in this study performed significantly worse 

than a random-selection oracle, which would make correct predictions 50% of the time. 

Viewpoint entropy made correct predictions only 35.1% and 38.5% of the time for Student and 

Professional preferences. Visibility ratio, VKL distance, and projected area also performed 

poorly in predicting both Student and Professional preferences. Such low accuracy rates indicate 

that these metrics would likely be inadequate in informing the selection of camera placements 

based on user preferences.  

Efficacy of Top Performing Metric 

This section explores the performance of DDS Entropy, the most accurate metric at 

predicting user preferences. Tables 3 and 4 detail the efficacy of DDS selections for different 

types of cameras. Each of the ten camera viewpoints used in every data set were classified as one 

of four types: POOR, FAIR, GOOD, and VERY GOOD. These categorizations were determined 

by the rate at which each individual camera was selected as the preferred camera in the user 

survey. Remember, the user survey asked participants to select their preferred image between 
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two images of the same data set captured from different camera viewpoints. For example, 

Camera #6 of the Mantle data set was selected by participants of the user survey 29 times out of 

the 30 times it was included in a question. This camera had a winning percentage of 96.7%. 

Alternatively, Camera #9 of the Mantle data set was selected only one out of 30 times, having a 

winning percentage of just over 3%. Each camera position classified as POOR had a winning 

rate of 0%-25%, FAIR had a winning rate of 25%-50%, GOOD had a winning rate of 50%-75%, 

and VERY GOOD had a winning rate of 75%-100%.  
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Figure 9: Mantle rendered from Camera #6 [19]. This camera was assigned as a VERY GOOD 

camera. 

  

 
Figure 10: Mantle rendered from Camera #9 [19]. This camera was assigned as a POOR camera. 

 

The DDS oracle made its own selections regarding what camera viewpoint it predicted 

would best fit users’ preferences, independent of the winning rate classification assigned to each 

camera. Then, these predictions were compared to users’ true preferences, and evaluated based 

on the type of camera. These findings are detailed in Table 3 and 4 below. 
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 POOR FAIR GOOD VERY GOOD SUM 

POOR 47% (11/23) 73% (53/72) 80% (194/242) 93% (90/100) 79.6% (348/437) 

FAIR 73% (53/72) 62% (25/40) 52% (96/182) 68% (45/66) 60.8% (219/360) 

GOOD 80% (194/242) 52% (96/182) 44% (56/127) 47% (53/111) 60.3% (399/662) 

VERY 
GOOD 

93% (90/100) 68% (45/66) 47% (53/111) 50% (5/10) 67.2% (193/287) 

Table 3: This table details the performance analysis of the top performing metric, DDS Entropy, 

on the Professional survey data corpus. A cross section entry of this table describes the winning 

percentage, i.e., the number of times the DDS oracle correctly predicted user preferences, based on 

the categorization of each type of camera match up. For instance, the (POOR, GOOD) rating of 

80% means that in pairings of one “poor” camera and one “good” camera, the oracle made correct 

predictions 80% of the time. The table cells are colored based on performance; camera pairings 

that were correctly predicted more than 70% of the time are colored green, pairings correctly 

predicted 60%-70% of the time are colored yellow, and pairings that were correctly predicted less 

than 60% of the time are colored orange.  

 
 POOR FAIR GOOD VERY GOOD SUM 

POOR 77% (7/9) 79% (38/48) 70% (54/77) 87% (61/70) 78.4% (160/204) 

FAIR 79% (38/48) 54% (32/59) 43% (39/89) 69% (36/52) 58.5% (145/248) 

GOOD 70% (54/77) 43% (39/89) 43% (16/37) 36% (18/49) 50.4% (127/252) 

VERY 
GOOD 

87% (61/70) 69% (36/52) 36% (18/49) 62% (5/8) 67.0% (120/179) 

 Table 4: This table details the performance analysis of the top performing metric, DDS Entropy, 

on the Student survey data corpus. This table follows the same coloring schema as Table 3 above. 

 

These findings demonstrate that DDS Entropy works best when predicting selections that 

consist of one POOR camera. The DDS oracle was most accurate when deciding between a 

POOR camera viewpoint and a VERY GOOD camera viewpoint, correctly predicting user 

preferences 87% of the time for Students and 93% of the time for Professionals. A higher 
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success rate between POOR and VERY GOOD camera views is expected, as it should be easier 

to differentiate between an image with high levels of visible information and detail versus 

images with very little. It is also relevant to highlight the high performance of the DDS oracle in 

making predictions between POOR and FAIR cameras, as well as POOR and GOOD cameras.  

Despite high performances in pairings where POOR cameras are involved, the DDS 

oracle is far less accurate when making selections between images that are a combination of 

FAIR, GOOD, and VERY GOOD. This may be a result of images being equally sufficient in 

representing the simulation that it becomes difficult to select a “best” image. These results do not 

suggest that DDS Entropy works reliably in all cases; however, there is an indication that the 

DDS metric is effective in uncovering images that are not good.   

Potential Influences on Results 

This section provides some explanation regarding aspects of this study that may have 

influenced the outcome of this evaluation.  

Comparisons of the Student and Professional survey response data corpus demonstrate 

how user preferences can oftentimes vary. Ultimately, users are human, and humans do not 

regularly agree on things. Participants in the Professionals’ survey have more experience and 

expertise viewing and analyzing large, scientific data sets than the Students, so they may have 

unique insights that lead them to make different decisions about camera placements. Different 

users may also have differing preferences when it comes to image aesthetics, orientation, and 

level of detail.   

Additionally, the efficacy of a given VQ metric may be dependent on the particulars of 

the data sets used in this study. For instance, a data set that has more obvious and distinguishable 

features, like a clear orientation or focal point, may yield different results than data sets that are 
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more complex and disorienting. The tables below detail the correct prediction rate of DDS 

Entropy, the top performing metric, by data set for both the Student and Professional survey 

groups. 

 

Student Data  Professional Data 
Data Set Prediction 

Rate 
  Data Set Prediction 

Rate 
Asteroid 58.8%  Asteroid 72.6% 
Constit 70.5%  Constit 69.3% 

ExaAm 
Truchas 

75.0%  ExaAm 
Truchas 

66.1% 

Fluid 
Dynamics 

54.0%            Fluid 
Dynamics 

77.7% 

Hurricane 46.8%  Hurricane 34.8% 

Mantle 56.9%  Mantle 65.5% 
Miranda 67.1%  Miranda 67.5% 
S3D-N2 88.6%  S3D-N2 72.6% 
S3D-UVel 51.9%  S3D-UVel 68.7% 

 

 
    
 

The tables above demonstrate that the Student and Professional responses reflect 

conflicting preferences of camera placement for some of the data sets. DDS Entropy was able to 

predict Student preferences a shocking 88.6% of the time in respect to the S3D-N2 data set. 

Meanwhile, DDS Entropy predicted Professionals’ preferences a measly 34.8% of the time in 

respect to the Hurricane data set. Many factors may contribute to the incongruent prediction rates 

contained in Table 5 and Table 6, but DDS Entropy still proves to be at or above its overall 

prediction rate of 66% in Constit, ExaAm Truchas, Miranda, and S3D-N2 data sets for both 

survey groups.  

Table 5: DDS prediction rate by 

data set using Student data 

corpus. 

Table 6: DDS prediction rate by 

data set using Professional data 

corpus. 
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Conclusion and Future Work 

This research aimed to further explore the automation of selecting camera viewpoints for 

scientific visualizations based on user preferences. One of the primary goals of this study was to 

expand and further the research conducted by Marsaglia et al., which focused on the automation 

of camera placements in images rendered using isosurfacing. Marsaglia found that some VQ 

metrics did work in effectively predicting what images users prefer. In this study, we found that 

Marsaglia’s top performing metric, DDS Entropy, is also effective when used on images 

generated through volume rendering.  

This research found that in respect to volume rendered images, DDS Entropy is most 

effective when used to detect bad images. DDS Entropy was particularly useful when 

determining selections between image pairings of one good image and one distinctly bad image. 

Conducting exhaustive searches and analyses on a set of images to find what image best 

represents the simulation is costly and ineffective. However, using a tool like DDS Entropy to 

reject images that are discernably not good may be a quick and effective way to support the 

automation of camera viewpoint selection during in situ scientific visualizations.    

In this work, we observed that DDS Entropy was able to predict user preferences up to 

66% of the time. In consideration with Marsaglia’s findings of a successful prediction rate of 

68%, this discovery provides additional evidence that DDS Entropy is an effective metric in 

predicting camera placements that match user preferences. Furthermore, these findings provide 

encouraging support that DDS Entropy could possibly be applied to more scientific visualization 

methods in the future. 

This research advances our understanding of whether VQ metrics can be applied to 

various methods of rendering images in the field of scientific visualization. The findings of this 
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study suggest that certain VQ metrics do work as good indicators of user preference for both 

isosurface and volume rendered images. However, isosurfacing and volume rendering are just 

two approaches to image rendering. Future work on this topic may consider other image 

rendering methods. For instance, future work may include exploration into whether VQ metrics, 

such as DDS Entropy, are also effective in predicting the user preferred viewpoints in 

visualizations rendered using other popular methods like streamlines or domain clipping. 
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