
AN UNSUPERVISED BASED APPROACH TO DETECTING ANOMALIES

IN HAZARD MONITORING NETWORKS.

by

JOHN HOOFT TOOMEY

A THESIS

Presented to the Department of Computer Sciences
in partial fulfillment of the requirements for the degree of

Bachelor of Science

June 2024



THESIS ABSTRACT

John Hooft Toomey

Bachelor of Science

Department of Computer Sciences

June 2024

Title: An Unsupervised Based Approach to Detecting Anomalies in Hazard
Monitoring Networks.

Our society relies heavily on various critical infrastructures (e.g., hazard

monitoring networks in the state of Oregon) dedicated to monitoring natural

hazards (e.g., wildfires). The hazard monitoring networks comprise sensors

and cameras interconnected by wide-area backbones, where failures can result

in significant societal and economic loss. Consequently, monitoring of state of

health of hazard monitoring networks is paramount.

While Machine Learning (ML) stands as one of the most groundbreaking

advancements in Computer Science, its application to detecting and predicting

anomalies in hazard monitoring networks is fraught with challenges. For one,

each data transfer within hazard monitoring networks represents a distinct

relationship, the creation of labeled training datasets for each connection is not

feasible. Second, in the absence of labeled data, developing ML models to detect

anomalies is impractical.

The main objective of this work is to enhance the robustness of hazard

monitoring networks by addressing existing limitations in ML-driven anomaly

detection. To this end, we propose the Anomaly Detection Tool (ADT)
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framework which uses weakly supervised learning techniques (such as heuristics

and lightweight ML algorithms) to capture distinct relationships, culminating

in weak labels. These weak labels can then be mapped to one stronger label,

thus creating a dataset containing labeled anomalies which can be used to notify

network operators of potential network failures. Our research stands to benefit

the reliability and security for Critical Infrastructures.

Note: The source code of the ADT framework is openly available to the

community at: https://github.com/johnhooft/Anomaly-Detection-Tool
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CHAPTER I

INTRODUCTION

Critical infrastructure (CI) networks (communication networks for emergency

and public services) are increasingly relied upon to maintain the health, safety,

security, and economic well being of citizens and governments. The increased

trust in these networks to operate in critical scenarios means that we must

maintain a certain level of confidence in these networks to operate as expected.

To achieve this, the common solution is to devise a system to monitor, detect,

and report anomalies in the network performance data. In the past this system

has mainly been overseen by human operators, who monitor the ‘State of Health”

of a CI network, and flag anomalies they encounter. Employing human operators

to continually monitor network performance data for anomalies is inefficient, it

requires significant time and resources and after exposure to multiple anomaly

events, operators are prone to fatigue. Thus, the development of an automated

solution such as a decision support framework to help network operators identify

anomalies in their CI is highly beneficial.

Real time hazard monitoring networks are an increasingly relevant subdomain

of CI, and multiple research projects have been created to further the development

of these CI hazard networks. For example, the University of Oregon and University

of Washington collectively operate the Pacific Northwest Seismic Network (PNSN),

to monitor earthquake and volcanic activity across the Pacific Northwest. The

Northwestern University lead SAGE project is developing a CI network to help

understand the impacts of global urbanization, natural disasters, such as flooding

and wildfires, and climate change on natural ecosystems and city infrastructure.

Finally, the Oregon Hazards Lab (OHAZ), a University of Oregon, a state affiliated
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research laboratory, has developed a hazard monitoring network consisting of

network devices such as radios, routers, and cell modems, to transmit data

generated by sensors and cameras that detect potential wildfires and earthquakes.

In all these examples, it is crucial to ensure the CI hazard monitoring network is

operable during a natural hazard event. Currently there is no standard method

to achieve this, and that is why it’s prudent to develop a decision support

framework to help assist network operators in monitoring these CI networks for

data anomalies.

Previous attempts have been made to deploy systems that help increase the

decision-making capabilities of the network operators, but due to their reliance

on heuristic methods (discussed further in detail in Chapter 2), they lack the

ability to detect non statistical anomalies. To address this limitation, previous

researchers have used Machine Learning (ML) as a solution to detecting more

subtle patterns within network performance data. While ML offers significant

potential for anomaly detection in hazard monitoring networks, it faces major

challenges. The unique relationships in each data transfer make it impractical to

create labeled training datasets, and without labeled data, developing ML models

using traditional supervised learning techniques is not possible.

Our solution to this problem is to employ the use of multiple lightweight

unsupervised ML algorithms in combination with heuristic techniques to develop

a novel decision support framework to help network operators to detect anomalies

in time series data without the need for labeled training datasets. The proposed

Anomaly Detection Tool (ADT) framework utilizes a two-pass technique aimed

at increasing the accuracy of the weak labels produced by the framework. The

unsupervised learning based approach of this framework addresses the limitations
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that traditional supervised learning techniques have in network applications.

While the methods used in this work are found to more reliable identify varying

types of anomalies, the accuracy of the framework is still highly dependent on

the quality and noise of the data. Furthermore, the labels produced by the six

lightweight ML models and processed under the naive assumption that they all

performed equally. Ideally, the decision of each ML model would be weighted

depending on its performance which would lead to more accurate results. The

ADT framework provides a strong starting point upon which future work could

be conducted, such as weighting the decisions made by each model, supporting

anomaly detection in multi-variate data sets, and integrating an end-to-end version

of this framework to run on top of real time hazard monitoring networks. Our

research stands to greatly benefit both the protection of hazard monitoring

networks and the evolution of ML applications, offering increased reliability and

security for hazard CI’s.
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CHAPTER II

BACKGROUND AND MOTIVATION

2.1 Overview

This project was driven by the acknowledged importance of real-time hazard

monitoring CIs, the challenges they encounter that could jeopardize their

functionality, and the possible repercussions if a hazard monitoring CI becomes

inoperative during a natural hazard event. An increasing number of federally

funded projects are focused on developing real-time hazard monitoring networks.

Notable examples include ShakeAlert, an earthquake early warning system Given

et al. (2018); ALERTWildfire, a wildfire monitoring network K. Smith et

al. (2016); the Ocean Observatories Initiative (OOI), which conducts oceanic

observations L. M. Smith et al. (2018); and SAGE, an NSF Midscale Research

Infrastructure project A Software-Defined Sensor Network (n.d.), among others.

With the growing efforts to develop these networks, it is equally crucial to advance

and enhance the tools that maintain network operations and safeguard them from

potential issues. This research aims to develop a decision support framework to

assist network operators in anomaly detection, thereby improving the resiliency of

hazard monitoring networks.

2.2 Data Sets Used

In collaboration with OHAZ, we leveraged their state of health monitoring

system for their hazard monitoring network to evaluate the deficiencies in existing

standard methods of network monitoring and anomaly detection. OHAZ’s hazard

monitoring network comprises 34 cameras and 220 seismic stations across the state
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of Oregon Hamers (2023), interconnected by network devices that transmit data

back to OHAZ for processing. OHAZ monitors the state of health of the network

by frequently querying performance data from their network devices, which include

but are not limited to routers, radios, cell modems, switches, solar controllers, and

the sensors and cameras themselves. This performance data consists of metrics

such as round-trip times, receiving and transmission rates, and signal strength,

which can be used to identify and diagnose potential problems in the network. To

evaluate the model’s performance across diverse data types, we employed a range

of datasets that varied in timespans, sample sizes, and sampling rates. Time

spans ranged from a couple of days to over a year, and sampling rates ranged from

intervals of every five minutes to every thirty minutes. This approach ensured

that our model was robust and effective across multiple types of datasets, rather

than being tailored to a single dataset type.

The initial state of health monitoring system OHAZ utilized was the open-

source software Nagios, which runs periodic checks on critical network device

performance parameters and notifies network operators when a performance

parameter has reached critical levels Nagios Open Source (2024). While Nagios

works fine to query and log network device performance data, its ability to provide

decision support through anomaly detection falls short of what is needed by

network operators. To understand why anomaly detection is challenging it is

important to understand the two main classifications of anomalies.

2.3 Types of Anomalies Considered

The two main types of anomalies are global (point) anomalies and contextual

anomalies. A global anomaly refers to one or several individual cases that are
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deviant with respect to the rest of the data. A contextual anomaly appears normal

at first, but is deviant when an explicitly selected context is taken into account

Foorthuis (2021).

Figure 1. Plot of Round-Trip Time (RTT) data containing Point and Contextual
anomalies.

Figure 1 above contains a labeled example of a point anomaly and contextual

anomaly. The point anomaly on April 10th lies far above the average of the data,

thus making it an obvious outlier. While on April 16th, the contextual anomaly is

represented by an upward shift in the pattern of the data. The points marked as

contextual anomalies are not necessarily outside of the statistical average of the

data around it, but the change in the data’s distribution and the increase in the

average distance between data points caused by the shift in the expected pattern

results in a contextual anomaly. More specifically, a global anomaly is determined

by comparing the statistical value of a given data point to the statistical average

of the rest of the data set. Whereas contextual anomalies are determined by

considering both the statistical value of the data point and the spatial context

that the point sits in in relation to the data points around it.
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With global and contextual anomalies in mind, we can analyze the alerting

services of Nagios to understand its shortcomings in detecting contextual

anomalies and thus providing useful decision support for network operators. The

Nagios monitoring system utilizes operator-determined threshold values to decide

when to send alerts, notifying the operator if a data point is above or below the

specified minimum or maximum threshold. This is problematic both because the

threshold value is purely heuristic and not determined by any sort of analytic

technique, and because threshold detection does not effectively detect contextual

anomalies. The nature of contextual anomalies means that they can lie within the

statistical average of the data and fall under the potential threshold value.

2.4 Prior Efforts and their Limitations

Prior efforts have sought to develop techniques to address anomaly detection

limitations in current systems like Nagios. Some of these efforts have focused on

applying ML techniques to detect anomalies in a network. However, as detailed

in Lavinia, Durairajan, Rejaie and Willinger (2020), there is a significant lack

of data, particularly labeled data, or a scalable method for labeling data. This

deficiency renders traditional supervised ML approaches impractical for network

applications.

In conventional supervised ML, a model is trained and evaluated on a set

of labeled data, enabling it to learn the patterns between the data features and

the corresponding labels Goodfellow, Bengio and Courville (2016). However, in

a hazard monitoring network like the one utilized by OHAZ, which comprises

various types of connections (radio, cellular, or satellite), each connection has its

own unique characteristics. For example, a transfer rate or round-trip time that
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is normal for one device connection might be abnormal for another. To apply ML

models to every connection in a network, a labeled dataset must be created for each

connection. This requirement is highly impractical for a network such as OHAZ’s,

which contains numerous connections, making the generation of labeled datasets

for each connection extremely time-consuming. Therefore, to effectively apply

ML techniques to networks, an alternative approach must be considered. Instead

of using supervised learning methods, unsupervised approaches can be employed.

Unsupervised ML methods allow models to learn with no human-labeled data.

This approach circumvents the issue of generating labeled datasets, allowing for

models to be created for multiple unique connections.
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CHAPTER III

DESIGN AND IMPLEMENTATION

3.1 Overview of Anomaly Detection Tool Framework

With contextual and global anomaly detection in mind and motivated by

the above-mentioned importance of anomaly detection in CI hazard monitoring

networks, we designed the Anomaly Detection Tool (ADT) Framework. While

conventional supervised learning models require significant labeling efforts, the

proposed ADT framework allows for the training of models without pre-labeled

data. Additionally, to enhance accessibility and improve the effectiveness of the

proposed framework as a decision support tool, ADT includes a user-friendly web

browser dashboard, enabling network operators to apply data science and ML

techniques to their network data without needing prior experience. As detailed in

Figure 2, the ADT Dashboard interacts with the ADT framework through API

calls.

Figure 2. ADT Dashboard Framework Interaction Model

Unlike previous approaches that heavily rely on statistical analysis and

basic machine learning models, this framework employs a two-pass technique
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incorporating six lightweight unsupervised machine learning algorithms. The

initial pass utilizes K-Nearest Neighbors (KNN) and Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) for preliminary anomaly

classification, which aids in estimating a contamination value DBSCAN (n.d.);

KNeighborsClassifier (n.d.). This value is then used in the second pass

for more precise anomaly classification, which includes the additional models:

Isolation Forest, One-Class SVM, Local Outlier Factor (LOF), and Elliptical

Envelope EllipticEnvelope (n.d.); IsolationForest (n.d.); LocalOutlierFactor (n.d.);

OneClassSVM (n.d.). This multi-algorithm, multi-pass strategy is designed to

enhance the robustness and accuracy of both contextual and global anomaly

detection in varied and complex network connections. Overall, this work offers

a potentially superior approach by reducing the dependency on labeled data,

enhancing user accessibility, and employing a comprehensive, two-pass algorithmic

strategy that promises significant improvements in anomaly detection compared

to current systems like Nagios.

3.2 Initial Design Efforts

The preliminary approach to implementing the ADT framework consisted

of applying basic statistical analysis techniques in conjunction with simple

ML models to detect anomalies in network performance data. Inspired by

previous research tackling a similar problem detailed in "Denoising Internet Delay

Measurements using Weak Supervision" Muthukumar and Durairajan (2019), we

used the K-means and K-Nearest-Neighbors (KNN) algorithms along with a mean

plus standard deviation technique to flag potential anomalies. The K-Means

clustering algorithm attempts to cluster the data into similar groups; then data
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points can be classified as anomalous or not depending on how far away they are

from their cluster centroid. The K-Means clustering algorithm was implemented

with the Tslearn TimeSeriesKMeans library tslearn.clustering.TimeSeriesKMeans

— tslearn 0.6.3 documentation (n.d.), where after fitting the model to the data,

it can be transformed to a cluster-distance space. The cluster-distance space

allows for the distance from a given data point to its parent cluster to be

extracted. From this, we were able to collect all the distances from every data

point to its parent cluster, and data points that had a distance greater than

a standard deviation above the mean were marked as anomalies. While this

approach to determining anomalies with a K-Means algorithm is potentially

viable, its performance was less than ideal due to the nature of time series

data. The tslearn Time Series K-Means algorithm uses Dynamic Time Warping

(DTW) in an attempt to cluster time series subsequences that are similar in

shape and temporal pattern tslearn.clustering.TimeSeriesKMeans — tslearn 0.6.3

documentation (n.d.). While this approach can be effective in certain cases, the

paper "Clustering of Time Series Subsequences is Meaningless" raises concerns

about the meaningfulness of clustering subsequences in time series data due to

issues such as noise, high dimensionality, and the lack of a meaningful distance

metric Keogh and Lin (2005). Because of this, we opted not to use the K-Means

algorithm in the ADT Framework. The KNN approach we utilized was also

centered around classifying the data points based on their spatial context relative

to the data points around it, specifically what was the average distance from a

given point to its K closest neighboring data points. Since the KNN algorithm

was utilized in the final version of the framework, it is detailed in the framework

architecture section below. Finally, the statistical approach was also deemed too
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heuristic and unable to detect contextual anomalies, thus was also omitted from

the framework.

3.3 Anomaly Detection Tool Framework Architecture

The ADT framework is designed by utilizing six lightweight ML algorithms, in

combination with a 2-pass technique to produce a weakly labeled dataset.

Figure 3. Anomaly Detection Tool Framework Architecture

Figure 3 above details a higher-level architecture model for the final version of

the ADT framework. The user has the option of formatting their data into CSV

(Timestamp, Value) format, or if their data has been queried from the Nagios

RRD database, it can be left in its native XML format. This framework centers

around the concept of a two-pass technique, where the data is run through the

first pass containing the K-Nearest Neighbors (KNN) and Density-Based Spatial
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Clustering of Applications with Noise (DBSCAN) algorithms. The first pass

defines a contamination value, which is an estimate of the percentage of data

points in the dataset that are deemed anomalous by the two algorithms. This

contamination value is utilized by the algorithms in the second pass to help

produce more accurate anomaly classification.

3.3.1 First Pass

The KNN algorithm in the first pass utilizes the Scikit-learn KNeighborsClassifier

implementation and has a hyperparameter K, which represents the number

of nearest neighbors it will consider when fitting the model to the data

KNeighborsClassifier (n.d.). A K value of 3 would mean that for each data point,

it would identify its 3 nearest neighboring data points. Since this framework is

designed to be able to quickly generate models for network connections, we must

pick a technique to set the hyperparameters for each model that doesn’t require

human intervention. Thus, the hyperparameter K is defined by using a common

heuristic technique of taking the square root of the total number of data points and

rounding down to the nearest integer. The approach to classify anomalies using

the KNN algorithm is as follows. Once the K hyperparameter is defined, the KNN

algorithm is fitted to the dataset. From that, for every data point in the dataset

we calculate the average distance from that point to its K closest neighbors. With

this, we calculate the median and the standard deviation of the average distance

data and data points are classified as anomalous if their average distance was a

standard deviation above the median. We chose to use the median instead of the

mean as it’s less affected by statistical outliers. Each data point classified as an

anomaly by the KNN algorithm is kept track of in an array.
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The DBSCAN algorithm in the first pass uses Scikit-learn DBSCAN

implementation and has a hyperparameter “eps”. According to the Scikit-learn

documentation, the eps value is “the maximum distance between two samples for

one to be considered in the neighborhood of the other” and is the most important

DBSCAN parameter to choose depending on the dataset DBSCAN (n.d.). To

pick this value we utilized a technique outlined in the paper “A Density-Based

Algorithm for Discovering Clusters in Large Spatial Databases with Noise” Ester,

Kriegel, Sander and Xu (1996). This approach uses the previously described KNN

algorithm to calculate the average distance of a point to its nearest neighbors, and

then these K-distances are plotted in ascending order. The aim is to determine

the “knee”, which corresponds to the optimal eps parameter. The knee (or elbow)

is defined as the visible point in a graph where a curve visibly bends, particularly

from a low slope to a high slope or vice versa. Figure 4 below shows an example

of KNN distances sorted in ascending order and the vertical line indicates where

the “knee” is.

3.3.2 Second Pass

The second pass of the ADT framework consists of 4 separate lightweight ML

algorithms. All four of these algorithms, Isolation Forest, Elliptical Envelope,

Local Outlier Factor, and One Class Support Vector Machine, are unsupervised

ML algorithms designed to detect anomalies and are using the implementation

from the Scikit-learn python library EllipticEnvelope (n.d.); IsolationForest

(n.d.); LocalOutlierFactor (n.d.); OneClassSVM (n.d.). Elliptical Envelope uses

covariance estimation on Gaussian distribution data and tries to make an elliptical

cluster that fits most of the data; data points lying outside of the elliptical cluster
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Figure 4. K-distance graph representation of how eps value is determined based
on knee location.

are considered anomalous EllipticEnvelope (n.d.). Isolation Forest is similar to

Random Forest and uses a form of decision tree to classify the anomalies in

a dataset IsolationForest (n.d.). The Local Outlier Factor algorithm computes

the local density deviation of a given data point with respect to its neighbors

and samples with substantially lower density than their neighbors are classified

as anomalies LocalOutlierFactor (n.d.). Finally, the One Class Support Vector

Machine is another outlier and anomaly detection algorithm that unlike traditional

Support Vector Machines, exclusively trains on data points from a single class

OneClassSVM (n.d.). Each of these algorithms require the contamination

hyperparameter to accurately fit to the data, and thus are organized into the

second pass. Once the contamination hyperparameter has been passed to the

second pass, the algorithms are fitted to the data and make predictions on what
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data points they consider anomalous by labeling each point with a –1 for an

anomaly, or 1 for a non-anomaly. The anomaly predictions of each model are

stored in their own separate array similarly to the method described in the first

pass. These anomaly index arrays are used to build a label matrix which is part

of the output of the ADT framework

3.4 ADT Framework Results

After the data is run through both the first and second pass, we then sum each

prediction from all six of the models to generate a weak labeled data set. To create

this weak labeled data set we iterate through each of the six predications for every

data point and count how many of them predicted the point to be an anomaly. This

information is stored in a pandas DataFrame, where each row represents a data

sample, and the columns names are as follows; timestamp, value, anomaly_value.

The anomaly_value column represents the number of models that consider that

point to be anomalous. We recognize that our current method consists of a naive

majority vote technique to process the weak labels, presents a potential flaw. Not

every model in the framework is created equally and depending on the features of

a given data set, the models will have varying levels of accuracy. Ideally, the labels

produced by a given model would be weighted based on the model’s performance.

For example, if KNN was found to perform extremely well on a particular data set,

its labels would be weighted higher in comparison to the other less accurate models

in the framework. But due to the nature of unsupervised ML, there are no “gold”

labels which represent with 100 % accuracy what the label of a data point should

be. This means the traditional way of calculating a model’s accuracy by comparing

its results to a test data set is not possible. One potential solution, proposed in the
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future work section, involves determining a model’s accuracy by assessing the level

of agreement between its decisions and the results of other models. Subsequently,

the model’s labels would be weighted accordingly to enhance the overall accuracy

of the framework. This potential area for future work could help address some of

the limitations in the ADT’s results, which are discussed in the following section.

3.5 ADT Results Advantages and Limitations

The Anomaly Detection Tool (ADT) Framework offers significant advantages

in the realm of network anomaly detection by leveraging both statistical and

spatial analysis of data points. By examining the spatial context of each data point

relative to its neighbors, the framework can effectively identify anomalies that

might be missed by traditional methods. Additionally, the ADT framework’s use

of unsupervised learning allows for the application of machine learning techniques

without the need for labeled datasets, making it particularly useful in network

applications, where obtaining labeled data is challenging and impractical. This

capability enables network operators to deploy sophisticated anomaly detection

models rapidly and efficiently, thereby improving the security and reliability of

critical network infrastructure.

However, the ADT framework is not without its limitations. One notable

drawback is its susceptibility to noisy data, which can significantly decrease

the accuracy of the results. In environments where data quality is variable the

frameworks results tend to include more false positives or missed anomalies.

For example, Figure 5 is a plot of RTT values over the course of 3 days. The

dataset is relatively small in size and noisy in nature (contains no regular patterns).
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Figure 5. Anomaly Detection Results for a Small Noisy Round-Trip Time (RTT)
Dataset.

The frameworks results contain zero points unanimously agreed to be an anomaly.

Furthermore, areas in the data with large pattern shifts such as October 17th,

2023, at 12:00, would be inferred as a contextual anomaly to an observer but are

not marked as such by the framework. Due to the low quality of the dataset, the

framework is unable to provide confident anomaly detection results.

Moreover, the framework performs optimally with larger datasets that contain

clearer anomalies. The increased context provided by larger datasets allows the

models to make more accurate classifications, whereas smaller datasets with less

pronounced anomalies may not provide sufficient information for the models to

function effectively.

Figure 6. Anomaly Detection Results on a Large Time Scale RTT Dataset.
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For example, Figure 6 above is the ADT results on a much larger dataset

with less noise and more prominent anomalies. The frameworks results are

more confident (higher agreement between models), and the results contain a low

number of false positives or missed anomalies.

As demonstrated, the ADT framework’s efficacy is highly dependent on

the quality and size of the input data, which could limit its applicability in

certain contexts. These limitations highlight the need for ongoing refinement

and adaptation of the framework to ensure its reliability and accuracy across

diverse operational environments. We’ve detailed the results produces by the

ADT framework, but future work on developing unsupervised ML frameworks

for network performance anomaly detection could benefit from quantifying the

frameworks results in a manner where the accuracy and effectiveness can be better

reported.

3.6 Anomaly Detection Tool Dashboard

As mentioned earlier, this research was conducted both with the intent of

developing an improved decision support framework for detecting contextual and

global anomalies in time series data, but also to lower the barrier of entry for

network operators to apply data science and ML techniques to their network

monitoring. To address this, we developed a web browser-based software that

allows network operators to utilize the capabilities of the framework without

needing prior knowledge of how to train and tune ML models. By designing

an intuitive user interface, network operators can more effectively use the ADT

framework as an anomaly detection decision support tool for their CI hazard

monitoring network.

20



Figure 7. Anomaly Detection Tool Dashboard Menu.

The software utilizes Plotly’s Dash library, which is specially designed to

facilitate the building of web dashboards utilizing the Plotly graphing abilities

to display data. The web dashboard is comprised of a menu system to select

what type of model to run and on what data set. The user also has the option

of uploading their own data set, so long as it complies with the XML or CSV

format specified. Once the user has selected a model and data set, the ADT

Dashboard will make an API call to the framework and receive the anomaly

detection results. The user can then view and analyze the results through the

interactive plot generated with the help of the Plotly Library.

The plot displays where potential anomalies are located by marking the specific

points with an orange, red, or black circle. The color of the anomalous point is

dependent on the “confidence” score which is determined from the results the

framework produces. This confidence score is on a scale out of 100 and represents

what fraction of the labels for that point agreed that it was an anomaly. For

example, if six out of the six labels agreed it was an anomaly, the confidence score
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Figure 8. Anomaly Detection Tool Dashboard Results Plot.

would be 100. The confidence score is not a representation of the accuracy of

the model, only its agreement levels. Since the framework is designed to help

detect potential anomalies, and is not meant to classify if or what type of failure

is occurring in the network, we chose to represent the results of the framework

with a “confidence score” as that will best provide decision support for the network

operator to identify anomalies in their CI network.

These design choices were validated by conducting a presentation for the main

network operators at Oregon Hazards Lab. The presentation audience consisted of

two of the main network operators at OHAZ, along with the OHAZ director and

of course the author and research advisor of this Thesis paper. We briefed them

on the varying types of anomalies, the challenges of traditional ML applications to

networks, and our goals in developing this framework and accompanying software.

We conducted a live demonstration detailing the functionality of the software,

which provided us with useful feedback on what we did right and areas we can

improve on. Most notably, the network operators expressed that while the software

was useful for visualizing results, integration into existing systems was more ideal.

Fortunately, the framework was designed with that in mind, as the web software
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simply visualizes the results produced by an API call to the ADT framework.

This means that those API calls could be used to integrate the framework into

any system provided that the framework has access to the data, and the user

specifies the correct data path. The network operators also mentioned that they

are interested in extending this anomaly detection to include support for multi-

variate datasets, which would allow them to better validate anomalies and classify

the types of failures produced by a set of anomalies, this is discussed more in

future work.
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CHAPTER IV

SUMMARY AND FUTURE WORK

4.1 Summary

The Anomaly Detection Tool (ADT) Framework, combined with its web-based

software, offers a robust solution for improving the reliability of CI networks

such as the Oregon Hazards Lab’s hazard monitoring network. By leveraging

unsupervised ML techniques, the ADT Framework aims to be a decision support

tool for detecting both global and contextual anomalies in time series data without

requiring extensive labeled datasets. This approach addresses key limitations of

traditional supervised learning methods in network applications, particularly the

impracticality of generating labeled data for each unique connection in a large

network.

The framework’s two-pass technique, involving an initial pass with K-Nearest

Neighbors (KNN) and Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) to estimate a contamination value, followed by a second pass using

four additional lightweight algorithms (Isolation Forest, Elliptical Envelope, Local

Outlier Factor, and One Class Support Vector Machine), ensures a more accurate

classification of anomalies. The use of a simple majority vote technique to combine

the outputs of these algorithms results in a weakly labeled dataset that can be

easily interpreted by network operators through the web dashboard.

The accompanying web-based software enhances the usability of the ADT

Framework by providing an intuitive interface for network operators to apply

data science techniques and visualize anomaly detection results without needing

prior expertise in ML. This integration not only lowers the barrier to entry for
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utilizing advanced data analysis tools but also serves as a decision support tool

for operators by providing actionable insights to maintain confidence in the health

and performance of their critical infrastructure networks.

4.2 Future Work

While this research details a promising approach to the problem of applying

unsupervised ML techniques to networks for anomaly detection, there is still much

to do which presents opportunities for future work. The main areas we identified

that could potentially be explored in future work are, weighting weak labels based

on agreement, scaling this approach to work with multivariate data, and improving

the integration of the framework into real time systems for better evaluation and

testing.

As mentioned previously, the framework currently uses a naive majority vote

technique to process six weak labels for each data sample, which is flawed because

not all models in the framework have equal accuracy. Thus, developing a technique

to weigh the labels based on each model’s performance could improve accuracy.

Since unsupervised machine learning lacks "gold" labels for perfect accuracy,

traditional accuracy measurement isn’t possible. However, a possible workaround

is to weigh the labels based on the agreement among models. For example, if the

labels produced by KNN were generally found to be agreed upon by one or more

of the other models, then we could weigh its labels higher than a model where its

labels are hardly agreed upon. Determining the agreement levels between labels

to indirectly quantify a given model’s performance could potentially provide more

accurate anomaly detection and improved confidence in the framework’s results.
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When we presented this work to the network operators at OHAZ’s, one of

the pieces of feedback they gave us was the desire for the framework to handle

multivariate dataset. Currently the framework can only process single-variate

dataset, meaning it can only do one performance metric and a time in isolation.

A multivariate dataset would consist of a combination of performance metrics

(Round Trip Time, Transfer / Receive Rates, etc.) all on one time scale. This is a

notable area for future work, as the benefit of multivariate datasets are that you

could potentially validate the anomaly detection results of one variable against

the corresponding variables in the dataset. Given a multivariate dataset, common

failures could be classified depending on the values of performance metrics at the

time of failure. This would greatly increase the efficiency of network monitoring

in critical infrastructure as a model could be generated off these classifications

of common failures and help assist network operators in identifying failures and

preventing them from causing issues in the future.

Finally, integrating a decision support framework such as ADT into a real-

time hazard monitoring network could yield several significant benefits. Firstly, it

would allow for the generation of quantitative results on the number of anomalies

the framework successfully detects, providing concrete evidence of its effectiveness.

Secondly, deploying the framework in a real-time environment would offer valuable

insights into how it performs at scale, identifying potential challenges and areas

for optimization. Additionally, real-time integration would facilitate continuous

improvement of the framework through ongoing feedback and data collection,

enabling adaptive learning and refinement of the anomaly detection algorithms.

Furthermore, by operating within a live hazard monitoring network, the framework

could contribute to immediate operational improvements, enhancing the resilience
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and reliability of critical infrastructure systems. Overall, such integration would

be a crucial step towards validating and enhancing the practical applicability of

the ADT framework, paving the way for broader adoption and implementation in

various network monitoring contexts.

4.3 Lessons Learned

Developing the Anomaly Detection Framework detailed in this paper was my

first endeavor in a research project of this scale. Throughout the course of my work

on this problem, I encountered many unforeseen challenges. To find solutions, I

had to learn many new skills, think creatively, and push myself to apply my

knowledge to the problem at hand. My most important takeaways from this

research are as follows:

1. Initially, my understanding of the intricacies of machine learning (ML) was

limited. I spent significant time exploring various ML techniques, learning

their nuances, and understanding their applicability to different situations.

Ultimately, I gained insight into their strengths and limitations, enabling me

to choose the most suitable technique for the problem.

2. I gained valuable insights into the crucial role of data in ML model

development. I honed my skills in data analysis and preprocessing, ensuring

the data was optimally prepared for training ML models.

3. My research provided a deeper appreciation for the critical infrastructure

networks and their essential role in performance monitoring and anomaly

detection. Understanding the resilience of networks and their ability to

reliably transmit data, especially for natural hazard detection, became
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evident. Developing solutions to enhance network monitoring is crucial for

ensuring operational reliability.
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