
	
	
 
 
 

 

CONFIGURATION OF MODULAR SCAFFOLDS FOR 

CRANIOMAXILLOFACIAL REGENERATION:  

A COMPUTATIONAL APPROACH 

 
 
 
 
 
 
 
 

by 

ISABELLA HARKER 

 
 
 
 
 
 
 
 
 
 

A THESIS 

 
Presented to the Department of Computer Science  

and the Robert D. Clark Honors College  
in partial fulfillment of the requirements for the degree of  

Bachelor of Science 
 



	
	

2	

May 2025 

An Abstract of the Thesis of 

Isabella Harker for the degree of Bachelor of Science 
in the Department of Computer Science to be taken May 2025 

 
 

Title:  Configuration of Modular Scaffolds for Craniomaxillofacial Regeneration: A 
Computational Approach  

 
 

Approved:  Robert Guldberg, Ph.D            
Primary Thesis Advisor 

 

Craniomaxillofacial trauma is an important focus in bone regeneration research due to its 

relative complexity and importance compared to the larger bones in the body, and due to the high 

rates of incidence in both military and civilian personnel in battlefield scenarios. This thesis 

builds off previous work in 3D bio-printing and the development of a modular scaffolding 

system for craniomaxillofacial regeneration and presents a computational shape fitting model for 

use with these technologies in a clinical setting. Presented is an evolutionary model which 

initializes then optimizes a shape fit configuration for a given shape. Testing on simple shapes, a 

rat skull, and a human mandible sample demonstrates that the model can generate an accurate, 

stable shape fit configuration in <2 seconds with >95% connectivity for a variety of shapes with 

differing sizes and complexities and can be adapted to fit any desired physical block size for the 

shape fit configuration. This model demonstrates proof of concept for the automated 

configuration of our modular scaffolding system, which is an important step in future clinical 

application of this technology.  
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Introduction 

Over the past 2 decades, the incidence of craniomaxillofacial trauma on battlefields has 

increased substantially, and currently contributes to 40% of casualties (Neubauer et al., 2022).  

For one example, during Operation Iraqi Freedom between May and September 2005, 61% of all 

surviving patients acquired head and neck wounds, which constitutes an alarmingly high 

incidence rate (Lopez & Arnholt, 2007). Additionally, data from facial fractures in Afghanistan 

suggested that the most common injuries were mandibular, followed by maxillary/zygomatic 

fractures (Brennan, 2006). Collectively, these bones constitute the major bones of the face. 

Trauma to this region can be life threatening as well as life altering by disfiguring facial features 

and impacting the ability of a patient to breathe, eat and drink, ultimately impacting patients’ 

quality of life. 

It has been demonstrated that access to in-theater treatments and protocols contributes to 

higher survival and successful recovery rates of soldiers (Brennan, 2006). Therefore, 

technologies that can be deployed for in-theater craniomaxillofacial regenerative procedures in 

frontline hospitals and forward surgical teams, deployed to care for personnel injured in conflict, 

are likely to see significant positive impact (Valdiri et al., 2015). However, the current standard 

of care is limited by accessible technologies and often sees limited regenerative strategies in 

areas without access to such systems. Therefore, it is of interest to patient care to develop easily 

deployable and customizable regenerative solutions for craniomaxillofacial regeneration.  

While there has been significant advance in the field of three-dimensional (3D) 

bioprinting for bone regeneration, there is a disconnect between the success of this technology in 

an experimental setting and use in a clinical environment. Modular scaffolding, as opposed to 

creating custom implants for every patient, are one way to bridge the gap from bench to bedside 
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by increasing ease-of-use and access to regenerative technologies. However, optimization of 

modular components for complex craniofacial trauma is a relatively unexplored field and 

requires development of new approaches from both an engineering and clinical perspective. We 

recently developed a method to 3D-print prefabricated bone regenerative materials in cubes that 

can be assembled into complex geometries in 3D (Subbiah et al., 2020). Our current technical 

limitation is creating a model for shape fitting and configuration planning for patient specific 

craniomaxillofacial defects with complex geometries. 

The objective of this project is to create a computational model to optimize the 

configuration of the modular 3D scaffolding system designed by our collaborators at Oregon 

Health and Science University (OHSU), as described in Subbiah, et al., 2020. This is a crucial 

contribution to the overall goal of developing a pipeline to start from a CT-scan of a craniofacial 

defect and construct an accurate, custom scaffold from prefabricated components in order to aid 

healing and recovery for patients. Ultimately, completion of this work will help to move this 

project forward towards translation into a clinical setting with the ability to be deployed in 

situations such as battlefield wound care.  

Background 

Craniomaxillofacial surgery and reconstruction faces unique challenges due to the 

mechanical requirements of the bones and high level of patient-specific variation in form 

compared to other bones in the body. At this point in time, majority reconstruction of 

craniofacial bone tissue following a traumatic event relies on either transplant of bone from a 

distant site such as the tibia, or reconstruction using bone grafting materials and biologic 

therapies which have minimal form or structure and are stabilized with hand bent metal meshes. 

Both of these techniques are difficult to deploy in frontline surgical settings, so treatment is 
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limited despite the high prevalence of facial trauma in warzones for both military and civilian 

personnel (Neubauer et al., 2022).  

In recent years, 3D printing has emerged as a transformative technology for the 

fabrication of enhanced scaffolds for regenerative surgeries (Bertassoni, 2022; Willson & Atala, 

2022). 3D printing offers the ability to create custom, defect-matching scaffolds designed to 

improve host tissue ingrowth and regeneration. However, widespread deployment of 3D bio-

printers (3D printers which have been modified to print biologically compatible material) 

remains distant. In warzones, the need for specialized equipment and personnel to operate 3D 

bio-printers makes the technology presently incompatible. Given the rates of craniofacial trauma 

and the typical severity of the injuries, incorporation of a new technology which avoids the need 

for on-site 3D bio-printers would likely see significant impact on healing and surgery success 

rates for patients.  

There are a number of 3D bioprinting methods which have been shown to accelerate 

healing in in-vitro models, drawing on research in cell growth and substances (S. S. Lee et al., 

2023; Subbiah et al., 2023; Thrivikraman et al., 2019). Researchers have had success using 3D 

bioprinting for dermal wounds on mice, as well as filling osteochronal defects in a theoretical 

model (Murphy et al., 2020; Willson & Atala, 2022). 3D bio-printing has also been researched as 

a replacement for metal grafts in bone defect surgeries due to the ability to use materials such 

beta-tricalcium phosphate (β-TCP) which has similar composition and mechanical properties to 

bone and allows a high degree of control over the exterior and interior structure of the print, 

known as a scaffold. Research into optimized scaffold designs and pore structures has shown the 

ability to achieve high anatomic fidelity in scaffolds while still maintaining control over interior 

pore structures and improving healing outcomes in both in vitro and in vivo models (Ho et al., 
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2022; Pilipchuk et al., 2016; Zopf et al., 2014). This research shows that 3D printing applications 

to bone reconstruction has the potential to improve healing outcomes for some of the most 

complicated injuries, including soft-tissue craniofacial reconstruction (Zopf et al., 2014). 

However, the translation to clinical use has proven difficult due to the scale, cost, and high 

degree of automation and sterilization required for in situ printing (Willson & Atala, 2022). 

As an alternate approach, a joint team from the OHSU and the Phil and Penny Knight 

Campus for Accelerating Scientific Impact at the University of Oregon, has developed a new 

scaffold assembly system that uses prefabricated β-TCP scaffolds in the form of rigid, hollow, 

and stackable microcage modules, resembling LEGO® blocks (Subbiah et al., 2020). These 

scaffolds have been shown to enhance host tissue invasion and vascularization, as well as closely 

mimic the compressive strength of mandibular bone (Subbiah et al., 2020). These modular, 

prefabricated scaffolds retain the benefits of on-demand 3D printing, such as bio-compatible 

material and custom geometry, without the need for on-site equipment. The proposed modular 

scaffolds are intuitive, scalable, and capable of being sterilized and pre-packaged for 

deployment. 

Some of the biggest challenges facing 3D bioprinting are the scale of the print job, cost, 

and availability (Willson & Atala, 2022). Our 3D printed cube system would circumvent these 

issues and provide a scalable, accessible system for building custom implantable constructs. 

Additionally, the cubes can be sterilized and prepacked in varying size conformations which can 

be assembled during surgery to best fit the patients’ needs. A similar modular scaffolding 

strategy has been employed in other systems including with biological materials and titanium (S. 

S. Lee et al., 2023). However, none of these systems have yet made the leap to automated design 

of scaffold configuration, therefore, creating a system capable of determining optimal 
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configuration and alignment for a defect will be instrumental for future research in this 

technology. Additionally, automation of the scaffold configuration process helps in translation 

by lowering the technical expertise required to utilize the technology. The purpose of using 

scaffolds and modular systems is to improve healing and surgical outcomes for patients as well 

as simplify the custom implant workflow for surgeons. While assembly will still be a factor, we 

aim to minimize complexity to the greatest degree possible.  

From a computational perspective, this project involves questions from fields such as 

geometry, computer graphics, and image processing, and previous work in building LEGO® 

configurations. Beginning with the latter, using oriented blocks to build a particular shape is a 

problem that has ultimately defined the LEGO® company, since construction of complex objects 

from simple blocks is the premise of their enterprise. Over the years, researchers have studied 

this problem by creating algorithms such as those outlined in Finding an Optimal LEGO® Brick 

Layout of Voxelized 3D Object Using a Genetic Algorithm (S. Lee et al., 2015). 

Other similarities between optimizing LEGO® configurations and generating scaffold 

configurations arise in examining the biomechanical properties that the proposed system must 

imitate. These include self-supporting assemblies and stable layouts, as well as determining if a 

particular configuration can hold up to force in various directions. Researchers have developed 

methods to generate and test layout designs as well as to provide assembly instructions (Testuz et 

al. (2013), Kim et al. (2014)). Additionally, research by Waßmann and Weicker (2012) proposed 

a method for judging the stability of a generated sculpture. Our approach will build upon 

foundational literature in model design and testing and will be adapted to our clinical scenario of 

complex craniomaxillofacial regeneration. 
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Beyond shape fit optimization, computational and graphic design constraints must be 

addressed for computationally demanding workflows. There are a variety of analysis methods 

used in computer graphics to address stability and friction for model simulation (Smith et al., 

2012; Umetani et al., 2012). Layout optimization theory can also be applied to design problems 

such as 3D fabrication (Prévost et al., 2013; Stava et al., 2012) and furniture design (Umetani et 

al., 2012). The main difference in methodology and use lies in the discrete nature of tiling 

configurations such as LEGO® or our modular scaffolding system where orientations, sizes, and 

locations of blocks are allowed far less flexibility in contrast to a field like furniture design.  

Optimized shape fitting and tiling intersects with other fields such as differential 

geometry and computer graphics. Handling voxelization and data structures for representations 

of 3D objects is one of the defining problems in computer modeling and graphics over the last 

few decades. The theory of ray tracing and rasterization algorithms is deeply studied and can 

provide insight into our problem of configuration. The premise of this work will be to apply 

previously developed shape fitting algorithms to our specific use case to achieve the desired 

surgical planning required by the end users, here defined as surgeons.  

Overall, this project combines the existing literature on theoretical computational shape 

modeling with new advances in biomechanical and regenerative technologies. Therefore, our aim 

is to merge and adapt previous research to the specific use context of craniomaxillofacial 

regeneration and create a new computational model that will help to improve patient care.  

Methods 

Evaluation Metrics 

Shape fit configuration refers to the arrangement of blocks used to build a structure. 

Shape fit configurations will be evaluated on three primary metrics: (1) number of blocks used, 
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(2) the overall connectivity or fill score of the configuration and (3) distribution of block shape 

and size. All three of these metrics relate directly to the clinical application of this technology 

because a successful configuration must be both structurally sound and easy to assemble on-site, 

with a bonus if a smaller distribution of blocks sizes is required.  

The metrics concerning the blocks, both number and dimensions, are a proxy for ease of 

assembly. To this end, we will be prioritizing larger blocks and configurations which use the 

smallest number of overall blocks. Our estimate of a reasonable number of blocks for a shape fit 

configuration is 50, which is the numerical benchmark used for evaluating shape fit 

configurations in testing. The connectivity or fill score relates to the graph representation of the 

shape fit configuration, where edges represent a connection between two blocks. This percentage 

score represents the percentage of blocks which are connected each other in the final structure, 

where a score of 100% means complete connection. In general, maximizing this score is one of 

the primary goals of the model to consistently generate stable configurations.  

The future work of this project will involve evaluating the shape fit configurations using 

finite-element modeling and biomechanical simulation to determine how closely they match the 

properties found in native bone. While this is not an immediate concern as the biomechanical 

properties of the blocks themselves are not fully actualized, it is a significant component of the 

project given the eventual clinical applications.  

Further discussion with clinicians will allow for translational evaluation of the utility of 

the proposed system. While it is likely that certain evaluation criteria cannot be entirely 

determined before testing, especially the biomechanical criteria and ease-of-use for the end user, 

those concerns lie out of scope for this research project.  
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Model Development 

The computer model is an evolutionary algorithm which follows conceptually from 

previous research by Lee et al. (2015) and Luo, et al. (2015).  Once a CT-scan or comparable 

shape has been pre-processed to provide a binary representation of the structure, it can be scaled 

and run through the generative algorithm to create a shape fit configuration.  

During the building process, the model operates in a bottom-up manner, where each layer 

is built on top of the previous layer with the goal of optimizing connectivity of the whole 

structure from the beginning. This allows for efficient backtracking as well as the ability to 

pinpoint the weaker layer connections throughout the process. The layers which do not meet 

connectivity requirements can then be re-evaluated to determine whether the model can be 

improved at those points. 

Preliminary Testing 

Following initial model development, we will test the shape fit configuration for 

accuracy, biomechanical stability, and optimization ability using a set of preliminary artificially 

constructed data alongside experimental data, which consists of several deidentified craniofacial 

CT-scan samples. These tests will allow us to revise the models as necessary so that they meet 

the defined criteria and produce an optimized shape fit configuration for a wide range of inputs.  

The test data set consists of two simple shapes, a torus and a cube, along with a 

simplified rat skull segment from a CT-scan. These tests demonstrate the ability of the model to 

compute shape fit configurations for non-rectangular geometries and shapes with holes or other 

non-regular features. Since the eventual goal is to use this system to improve patient care for 

craniomaxillofacial defects, which are often irregular in shape, this is a crucial step in algorithm 

design and ensuring the robustness of the model. 



	
	

14	

Experimental Testing 

To validate the proposed shape fitting algorithm, we will utilize the patient CT-scans to 

generate a defect shape (volume) which can be used to confine and test the model. CT-scans will 

be analyzed for the defect region in a slice-by-slice format to reconstruct the defect region in a 

3D volume. We will then generate a cube configuration for the volume using the generated shape 

fitting models. This is an important pre-clinical validation step for our model.  

Modeling 

In a 3D shape fit configuration, all blocks are of height 1 unit with varying length and 

width, with the smallest block having dimensions 1x1x1 (height x width x length) up to a 

maximum size of 1x5x5. The units are defined by the user so that 1 unit is equivalent to the 

desired physical size of a 1x1x1 block. This was done to simplify the problem computationally 

and avoid floating point errors during computation by using integer scaling for the virtual blocks. 

It also allows for a range of physical block dimensions to be tested by physically scaling the 

initial shape differently.  

The shape fit configuration is represented by a directed graph during generation and 

optimization, with individual blocks as vertices and block connections as directed edges from a 

lower layer to a higher layer. Figure 1 shows this breakdown on a two-dimensional (2D) 

example, with blocks of height 1 unit and length up to 4 units. The graph representation was 

chosen because it provides straightforward support for the analytical tools used in optimization, 

specifically and primarily a depth-first search algorithm. The model takes advantage of the graph 

structure both to optimize inter-layer connectivity and to ensure the final shape fit configuration 

forms a connected whole.   
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Figure 1. (A) A sample 2D square for allocation. (B) A shape configuration for the grid (layers are 

horizontal, connections between blocks are vertical overlaps). (C) The shape configuration 

represented as a directed graph with nodes representing blocks and edges representing block 

connections.  

For a given shape problem, the pre-processing step results in a 3D binary array, with a 

value of 1 indicating a filled space and a value of 0 indicating empty space. Once the shape has 

been formatted correctly, the shape is scaled based on the initial resolution so that the unit size of 

the array matches the desired block dimensions, returning a new, smaller 3D binary array 

representing the scaled shape. This step is necessary because CT-scan resolution, typically 

<1mm, does not match the projected block size of 4-10mm. Once the image has been scaled to a 

proper resolution, the configuration algorithm operates on the resulting array.  

The shape fit configuration is built from the bottom layer up, which allows each 

individual layer to be optimized before the next is considered. For each layer, an initial block 

cover is generated using a greedy random selection method by selecting a fill voxel randomly, 

fitting the largest block by area to that voxel, then repeating until the entire layer is filled. The 

term greedy refers to the fact that it will choose the optimal choice for a certain time step, i.e. the 

largest block, regardless of whether this block choice is optimal for the final configuration. This 

improves initial connectivity compared to a procedural allocation because boundaries between 

blocks are randomized so the number of connections between blocks is increased instead of two 

blocks in consecutive layers only have a single edge to the block directly above or below them. 
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Following the initial random fill step, the model follows an evolutionary process which 

chooses one block to split into 1x1 blocks and one block to merge with its neighbors at each step, 

shown in Figure 2. The block split step allows the model to try different configurations and 

orientations of blocks to improve the connectivity, while the merge step eliminates the smallest 

blocks from the configuration. This evolution is run for a maximum of n=30 generations or until 

an optimal allocation is found. The loop limit exists to avoid the model getting stuck in an 

infinite loop in the case that the shape is unsolvable for any reason.  

 

 
Figure 2. Steps of the evolutionary model for generating level k. 

The final step after the evolutionary process is eliminating as many 1x1x1 blocks as 

possible by merging them with their neighbors. This step is done for two reasons. First, it 

improves connectivity because 1x1x1 blocks cannot contribute to overall connection as well as 

larger blocks because their only connections are vertical, and connectivity is overall a horizontal 

measurement. Second, it decreases the overall number of blocks that are used in the 
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configuration by reversing any uncorrected splitting and accounting for 1x1 blocks which may 

have been missed by the optimization step.  

From an abstract standpoint, if every two layers have complete connection, then the 

whole shape must also be completely connected. Although this is not always achievable 

depending on the shape, it is still the case that coming as close as possible to optimal 

configuration for every consecutive pair of layers will ensure stability across the final structure.  

We rate a configuration based largely on the connectivity or fill score, which is the 

percentage of blocks in the final configuration which belong to the major connected subgraph. In 

certain cases, not every block is connected to the rest of the configuration. This can be due to the 

arrangement of blocks or the initial structure of the shape itself, as particularly narrow segments 

or thin features can inhibit block placement. We do not require every configuration to consist of 

only one connected structure, but rather take as the final configuration the largest connected 

shape within the configuration by volume. The current benchmark for connectivity is a score of 

>95%, which indicates that 95% of the initial shape is represented by the shape fit configuration. 

However, this benchmark may be subject to change in the future.  

The connectivity score combined with the number of blocks allows for analysis of the 

shape itself as well as the model performance and gives some insight on whether the physical 

block size is appropriate for the initial shape.  

Preliminary Results 

 Initial tests were run on a 3x3x3 cube and an 3x8x8 torus, shown in Figure 3. The cube 

was chosen as the simplest relevant testing case to expose any bugs in the model, and the torus 

was chosen to test some initial edge cases like holes and less structured corners.  
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Figure 3. (A) The 3x3x3 test cube. (B) The 3x8x8 test torus. 

The block distribution for both shapes trends towards longer and skinnier blocks instead 

of square blocks, but importantly the count of 1x1x1 blocks is limited as desired due to the final 

model merge step. On the torus, the model was able to generate completely connected 

configurations in 0.12 ± 0.07 seconds across 100 trials, and the generation for the cube was 

equally fast. Figure 4 (below) shows the distribution of blocks for configurations of the torus 

across 100 trials. Longer, skinnier blocks are more common than the square blocks, and the 

1x1x1 blocks are not majorly dominating the block distribution. The model’s preference for less 

square blocks is consistent across trials, as experimental data also demonstrates.  

 
Figure 4. (A) Histogram showing distribution of block dimensions across 100 generated 

configurations for the 3x8x8 torus. (B) Table containing data for the histogram. 

Prior to the experimental test on human mandibular data, we also tested the workflow and 

model on a CT-scan of a rat skull. The rat skull was chosen both because it originated from CT-
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scan data and because it is a cranial bone scan, so it can act as a good proxy for the intended use 

case. For this trial, only the 4mm block size was considered because the larger blocks were 

unable to accurately represent the rat skull segment due to its small initial size. The 4mm blocks, 

while still somewhat large, were able to capture the important details of the shape. The most 

significant metric of the complexity configuration is the block count, especially considering 

potential clinical applications. Using the 4mm blocks, the shape fit configurations for the rat 

skull used 12.44 ± 0.62 blocks, which is well below our set threshold of 50 blocks.  

 
Figure 5. (A) 3D image of selected segment of rat skull. Initial scale was 78 (B) Average Z-

projection of rat skull segment. The grey oval indicates to-be-filled space to make the object 

completely solid. (C) One slice of the rat skull scan following processing, including filling in the 

holes to align the scan with our expectation of solid shapes. (D) The same slice of the rat skull 

with the block configuration shown using 4mm blocks.  

Despite the increased complexity of the rat skull shape compared to the two test objects, 

the cube and the torus, the model was able to generate well-connected shape fit configurations. 

The model finished in 0.17 ± 0.01 seconds across 100 randomized trials and the generated 

configurations had an average connectivity score of 95.7% ± 4.90%. Note that due to the low 

resolution of the block size for this particular test, a connectivity score of 95% indicates that only 
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one block was disconnected from the final configuration, rather than a symptom of a larger error 

in the model.   

Overall, the preliminary results show that the model’s ability to generate a well-

connected configuration within a reasonable timeframe on both trivial (cube, torus) and non-

trivial (rat skull) shapes.  

Experimental Results 

 We obtained de-identified human cranial CT-data for experimental testing (J Wallner & J 

Egger, 2018; Wallner et al., 2018). From the initial scans, we segmented the mandible using the 

Mimics software suite then processed the resulting image using the workflow that was 

previously established with the rat CT-scan, as shown in Figure 6. In addition to testing the 

model on the full mandible, we created and tested a mandibular segment consisting of a 45mm 

sagittal cut of the ramus on the right side of the mandible to determine whether there was a 

significant difference in performance between the two scenarios. We experimented with three 

potential block sizes (4mm, 7mm, 10mm) with the goal of generating a shape which mimics the 

original bone structure as closely as possible while requiring a reasonable number of blocks to 

assemble, which is our benchmark of <50 blocks.  

The tests with the full mandible show that the 4mm blocks are far too small, with the 

configurations requiring 251 ± 36 blocks for building across 100 trials. The shape fit 

configurations with the 7mm blocks required 93 ± 16 blocks, which is still higher than our 

benchmark but shows significant improvement over the 4mm blocks. The largest block size that 

we tested, 10mm, was able to just meet the benchmark on average, requiring 50 ± 7 blocks for 

the shape fit configurations. The tests with the mandibular segment, on the other hand, showed 

much more realistic block counts for all the block sizes, with the 4mm configurations requiring 
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78 ± 19 blocks and both the 7mm and 10mm block configurations falling below the 50-block 

threshold, at 28 ± 7 blocks and 18 ± 3 blocks respectively.  

 
Figure 6. (A) 3D view of the mandible from the initial CT scan. (B) An average z-projection view 

of the mandible, top-down. (C) One slice of the mandible following the pre-processing step and 

scaled to 4mm/pixel. (D) The same z-slice of the shape with the model output overlaid.   

 The model saw an overall drop in performance with the mandible tests compared to the 

previous examples. For the 7mm blocks, the time to build the configuration increased, likely due 

to both its size and complex shape, to 1.60 ± 0.06 seconds across 100 trials. Additionally, several 

of the configurations scored <70% on connectivity, suggesting that the model only connected 

one half of the mandible and was not able to unify the two sides.  
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Figure 7. (A) Average fill % of the model across 100 trial runs for the whole mandible and the 

45mm sagittal cut of the right ramus. Displayed is mean and range of the data. Both images were 

scaled to 7mm/pixel, which was the size of the simulated final blocks.  

The model was more successful on the segmented portion of the mandible, which is both 

smaller and significantly more rectangular than the complete mandible. Across 100 trials, the 

model was able to generate a configuration with over 90% connectivity score in all 100 cases, 

with 98 out of 100 surpassing 95% total connectivity. Figure 7 shows the average and range of 

connectivity scores for both the whole mandible and mandibular segment. Although both shapes 

have comparable performance on average, the model occasionally has a worse performance on 

the mandible, which is the significantly more complicated shape between the two.   

In both cases, the final block structure is very similar to the original shape. Figure 8 

shows a 3D rendering of both the complete mandible with 7mm blocks and the mandibular 

segment with 10mm blocks. Both of these 3D models were built directly from the model output. 

In both cases, the overall shape of the block structure is a good approximation to the original 

shape despite the block size limiting the details. Together, the stack representation provides build 
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instructions for the shape fit configuration while the 3D model provides a digital preview of the 

physical structure. 

 
Figure 8. (A) 3D render of the mandible constructed with 7mm blocks. (B) Z-slices 3-7 of the 

block instructions for building the 3D mandible structure. (C) 3D render of the sagittal cut of the 

ramus, constructed with 10mm blocks. (D) All Z-slices of the ramus segment showing blocks used 

to construct the 3D shape.  

 The model saw a significant drop in performance moving from the smaller ramus 

segment to the full mandible, both in connectivity and with the required number of blocks for the 

configuration. While it may be the case that a more advanced model could remedy the 

deficiencies in constructing a connected shape fit configuration, the block size issue is less easily 

overcome simply because of the physical constraints. A larger shape will require more blocks by 

nature, but continually increasing block size is not a universal solution because it will come 

alongside a decrease in fine detail of the final build.  

The experimental results demonstrate that the model can generate good shape fit 

configurations on clinically relevant data. The primary takeaway from these trials is that the 

cubic or rectangular blocks are much more limited for highly complex geometries such as the 

full mandible. This model is more relevant to less extreme bone defects, such as the ramus, and 

is less suited to applications of complete mandibular reconstruction. Another alternative to 

consider is the creation of larger, more anatomically correct structures, such as the body of the 
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mandible, which then have additive locations to customize the ends near the ramus with the 

smaller blocks.  

Discussion 

The goal for the computational aspects of this collaborative project is to create a 

clinically viable product using the modular scaffolding system. This current research takes a 

meaningful step towards that goal by introducing a computational model for automated LEGO 

model configuration, an important consideration with potential for introduction to the clinical 

offsetting for this technology which will ease implementation for the surgeons involved.  

The computational test results presented demonstrate the early theoretical success of the 

model in creating stable configurations on a variety of standard and clinical shapes while 

representing those configurations in a user-readable manner. These results show the proof of 

concept of the model to assist in clinical implementation for future studies. From the 

experimental data, we demonstrated the model’s ability to generate highly connected 

configurations for both a complete mandible and an artificial defect created by segmenting a 

portion of the mandible. However, reconstructing the entire mandible is a much more 

computationally demanding task compared to the smaller segment. Additionally, due to its 

complex geometry, accurately reconstructing the mandible required between 148 and 217 blocks 

across 100 trial configurations. This is far higher than the rough goal of 50 blocks for 

construction, and to align these two values would require the mandible to be viewed in even 

lower resolution. While this is possible, over-aggressive downsampling risks erasing crucial 

structural detail of the mandible and may inhibit proper reconstruction. Due to this constraint, it 

may be the case that this method of craniomaxillofacial reconstruction is more applicable to 

smaller defects, rather than complete zygomatic or mandibular reconstruction.     
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The biggest current limitation is the experimental application, both in terms of building 

configurations to fit human craniomaxillofacial defects and in terms of understanding how the 

computational stability of a shape fit configuration translates to physical robustness. Without this 

application and testing, there is a lack of information on the biomechanical aspect of the shape fit 

configurations such as expected stress forces and level of fill required for best healing outcomes 

for patients. Although these can be estimated from finite-element modeling programs and 

previous research into 3D-printed scaffolding, it remains a strong consideration. However, we 

are currently making efforts to acquire clinical images to further optimize the model and provide 

experimental testing and validation. 

There are three primary directions for future computational work on this project. The first 

is to extend the algorithm to consider blocks with varying heights, as these blocks could greatly 

impact both the number of blocks required to create a shape fit and the overall stability of the 

final result. Currently, the model assumes blocks of height 1 unit, but that is not necessarily the 

most effective set of blocks. There has also been discussion of fabricating blocks which are 

rounded on the top face, designed for the topmost layer of a configuration to reduce the number 

of sharp edges and corners. Including these additional blocks could improve the fit of the 

configuration to the original defect and improve bone growth.  

The second direction would be to obtain and analyze additional experimental data. This 

could inform currently arbitrary parameters such as the optimal unit size of the 1x1x1 block (i.e., 

4mm, 10mm, etc.) and the most common block shapes. Initial results indicate that longer, 

skinnier blocks, especially those with dimension 1x1xN, are the most frequently chosen blocks 

for building configurations, however, this may not necessarily be the case for the majority of 

craniomaxillofacial defects. It is also currently unknown whether the connected configurations 
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will hold up under mechanical stressors, and it is possible that block dimensions will affect the 

physical robustness of a configuration. Further work will seek to simulate mechanical loading in 

finite element analysis models in the Mimics software from the output shapes produced by the 

models presented here.  

Overall, this model provides a starting point for developing shape fit configurations for 

craniomaxillofacial defects. We have shown that we can algorithmically generate stable, 

connected shape fit configurations for complex shapes which preserve >95% of the original 

shape with a variety of potential block dimensions.  
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Appendix A: Software Specification 

FileImport.py 

Dependencies: numpy, matplotlib.pyplot, PIL.Image, os, sys, subprocess 

Class ImageImport() 

import_zstack(self, folder, img_format, binary) -> np.ndarray 

scale(arr, iscale, dscale) -> np.ndarray 

convert_stack_to_cubes(arr) -> np.ndarray 

save_to_zstack_binary(array, outfolder) -> None 

save_to_zstack_color(array, outfolder) -> None 

save_to_zstack_borders(array, outfolder) -> None 

Class ObjImport(ImageImport) 

import_obj(self, file, vertex_spacing) -> np.ndarray 

import_stl(self, file, vertex_spacing) -> np.ndarray 

Graph.py 

Dependencies: numpy, logging 

Class Edge() 

 __str__(self) -> str 

Class Block() 

update_block_label_index() -> None 

info(self) -> str 

get_area() -> int 

find_edges(self, others) -> list[Edge] 
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merge(self, other) -> Block | None 

search(self) -> True 

Class Graph() 

add_block(self, block) -> None 

info(self) -> str 

create_edges(self) -> None 

recompute_edges(self, level) -> None 

as_array(self) -> np.ndarray 

as_subgraphs(self) -> np.ndarray 

as_colors(self) -> np.ndarray 

log(self, folder) -> None 

data(self, filename) -> None 

block_size_stats(self) -> str 

split(self, block_index, level) -> None 

is_legal(self, block) -> bool 

merge(self, block_index, level) -> bool 

search(self, block, subgraph_index, bottom, top) -> None 

find_subgraphs(self, bottom, top) -> int 

get_largest_subgraph(self) -> dict 

Configuration.py 

Dependencies: numpy, random, logging, Graph.Graph, Graph.Block, copy.deepcopy 

Class CubeConfiguration() 

merge(graph, block_index, level_index) -> None 
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select_random_square(input_array, level) -> (int, int, int) 

find_largest_block(input, x, y, z, max_block_width, max_block_length) -> Block 

construct_randomized_graph(input_array) -> Graph 

run_evolution(self, graph) -> None 

run_level_evolution(self, graph, level) -> int 

refill_level(self, g, z) -> None 

fill_level(self, input_array, g, z) -> None 

build_configuration(self, input_array) -> Graph 

 

  



	
	

30	

Bibliography 

Bertassoni, L. E. (2022). Bioprinting of complex multicellular organs with advanced 
functionality – recent progress and challenges ahead. Advanced Materials (Deerfield 
Beach, Fla.), 34(3), e2101321. https://doi.org/10.1002/adma.202101321 

Brennan, J. (2006). Experience of first deployed otolaryngology team in Operation Iraqi 
Freedom: The changing face of combat injuries. Otolaryngology--Head and Neck 
Surgery: Official Journal of American Academy of Otolaryngology-Head and Neck 
Surgery, 134(1), 100–105. https://doi.org/10.1016/j.otohns.2005.10.008 

Ho, N., Hollister, S., Agrawal, V., Flanagan, C., Lee, C., Wheeler, M., Wang, H., Ebramzadeh, 
E., & Sangiorgio, S. (2022). Evaluation of Topology Optimization Using 3D Printing for 
Bioresorbable Fusion Cages: A Biomechanical Study in A Porcine Model. Spine, Publish 
Ahead of Print. https://doi.org/10.1097/BRS.0000000000004491 

J Wallner & J Egger. (2018). Mandibular CT Dataset Collection [Dataset]. Figshare. 

Lee, S., Kim, J., Kim, J. W., & Moon, B.-R. (2015). Finding an Optimal LEGO® Brick Layout 
of Voxelized 3D Object Using a Genetic Algorithm. Proceedings of the 2015 Annual 
Conference on Genetic and Evolutionary Computation, 1215–1222. 
https://doi.org/10.1145/2739480.2754667 

Lee, S. S., Du, X., Smit, T., Bissacco, E. G., Seiler, D., de Wild, M., & Ferguson, S. J. (2023). 
3D-printed LEGO®-inspired titanium scaffolds for patient-specific regenerative 
medicine. Biomaterials Advances, 154, 213617. 
https://doi.org/10.1016/j.bioadv.2023.213617 

Lopez, M. A., & Arnholt, J. L. (2007). Safety of Definitive In-Theater Repair of Facial Fractures. 
Archives of Facial Plastic Surgery, 9(6), 400–405. 
https://doi.org/10.1001/archfaci.9.6.400 

Murphy, S. V., De Coppi, P., & Atala, A. (2020). Opportunities and challenges of translational 
3D bioprinting. Nature Biomedical Engineering, 4(4), 370–380. 
https://doi.org/10.1038/s41551-019-0471-7 

Neubauer, D. C., Camacho, M., O’Reilly, E. B., Brice, M., Gurney, J. M., & Martin, M. J. 
(2022). The new face of war: Craniofacial injuries from Operation Inherent Resolve. The 
Journal of Trauma and Acute Care Surgery, 93(2S Suppl 1), S49–S55. 
https://doi.org/10.1097/TA.0000000000003700 

Pilipchuk, S., Monje, A., Jiao, Y., Hao, J., Kruger, L., Flanagan, C., Hollister, S., & Giannobile, 
W. (2016). Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for 
Guidance of Oriented Collagenous Tissue Formation In Vivo. Advanced Healthcare 
Materials, 5. https://doi.org/10.1002/adhm.201500758 



	
	

31	

Prévost, R., Whiting, E., Lefebvre, S., & Sorkine-Hornung, O. (2013). Make it stand: Balancing 
shapes for 3D fabrication. ACM Transactions on Graphics, 32(4), 81:1-81:10. 
https://doi.org/10.1145/2461912.2461957 

Smith, B., Kaufman, D. M., Vouga, E., Tamstorf, R., & Grinspun, E. (2012). Reflections on 
simultaneous impact. ACM Transactions on Graphics, 31(4), 106:1-106:12. 
https://doi.org/10.1145/2185520.2185602 

Stava, O., Vanek, J., Benes, B., Carr, N., & Měch, R. (2012). Stress relief: Improving structural 
strength of 3D printable objects. ACM Transactions on Graphics, 31(4), 48:1-48:11. 
https://doi.org/10.1145/2185520.2185544 

Subbiah, R., Hipfinger, C., Tahayeri, A., Athirasala, A., Horsophonphong, S., Thrivikraman, G., 
França, C. M., Cunha, D. A., Mansoorifar, A., Zahariev, A., Jones, J. M., Coelho, P. G., 
Witek, L., Xie, H., Guldberg, R. E., & Bertassoni, L. E. (2020). 3D Printing of Microgel-
Loaded Modular Microcages as Instructive Scaffolds for Tissue Engineering. Advanced 
Materials (Deerfield Beach, Fla.), 32(36), e2001736. 
https://doi.org/10.1002/adma.202001736 

Subbiah, R., Lin, E. Y., Athirasala, A., Romanowicz, G. E., Lin, A. S. P., Califano, J. V., 
Guldberg, R. E., & Bertassoni, L. E. (2023). Engineering of an Osteoinductive and 
Growth Factor-Free Injectable Bone-Like Microgel for Bone Regeneration. Advanced 
Healthcare Materials, 12(11), 2200976. https://doi.org/10.1002/adhm.202200976 

Thrivikraman, G., Athirasala, A., Gordon, R., Zhang, L., Bergan, R., Keene, D. R., Jones, J. M., 
Xie, H., Chen, Z., Tao, J., Wingender, B., Gower, L., Ferracane, J. L., & Bertassoni, L. E. 
(2019). Rapid fabrication of vascularized and innervated cell-laden bone models with 
biomimetic intrafibrillar collagen mineralization. Nature Communications, 10(1), 3520. 
https://doi.org/10.1038/s41467-019-11455-8 

Umetani, N., Igarashi, T., & Mitra, N. J. (2012). Guided exploration of physically valid shapes 
for furniture design. ACM Transactions on Graphics, 31(4), 86:1-86:11. 
https://doi.org/10.1145/2185520.2185582 

Valdiri, L. A., Andrews-Arce, V. E., & Seery, J. M. (2015). Training Forward Surgical Teams 
for Deployment: The US Army Trauma Training Center. Critical Care Nurse, 35(2), 
e11–e17. https://doi.org/10.4037/ccn2015752 

Wallner, J., Hochegger, K., Chen, X., Mischak, I., Reinbacher, K., Pau, M., Zrnc, T., Schwenzer-
Zimmerer, K., Zemann, W., Schmalstieg, D., & Egger, J. (2018). Clinical evaluation of 
semi-automatic open-source algorithmic software segmentation of the mandibular bone: 
Practical feasibility and assessment of a new course of action. PLOS ONE, 13(5), 
e0196378. https://doi.org/10.1371/journal.pone.0196378 

Willson, K., & Atala, A. (2022). Medical 3D Printing: Tools and Techniques, Today and 
Tomorrow. Annual Review of Chemical and Biomolecular Engineering, 13, 481–499. 
https://doi.org/10.1146/annurev-chembioeng-092220-015404 



	
	

32	

Zopf, D., Mitsak, A., Flanagan, C., Wheeler, M., Green, G., & Hollister, S. (2014). Computer-
Aided Designed, 3-Dimensionally Printed Porous Tissue Bioscaffolds For Craniofacial 
Soft Tissue Reconstruction. Otolaryngology--Head and Neck Surgery : Official Journal 
of American Academy of Otolaryngology-Head and Neck Surgery, 149. 
https://doi.org/10.1177/0194599814552065 

 


