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Abstract

This thesis examines the capabilities of Large Language Model (LLM) -enabled

chatbot applications for translating programming languages. With the software indus-

try facing challenges, including an aging COBOL infrastructure and widespread memory

safety vulnerabilities resulting from the use of archaic programming languages, effective

code migration strategies have become essential. We evaluate nine commercial chatbot

applications from leading AI companies (Anthropic, Google, MetaAI, OpenAI, and xAI)

in their ability to translate a complex OCaml project to Python, TypeScript, Rust, and

C++. Our methodology employs a two-dimensional framework that examines prompt-

ing strategies (direct versus assisted) and translation approaches (functionalist versus

linguistic), resulting in four distinct types of translation. Through analysis of 72 di-

rect translations and seven assisted translations, we assess both the functionality and

paradigmatic consistency. Results demonstrate that assisted translations achieve 75%

success rate for functionalist approaches across target languages, while direct translations

show highly variable performance (0-56% success rate) with consistent failures in Rust

and C++. Linguistic translations using assisted approaches successfully demonstrated

paradigm reorganization, while direct linguistic translations largely mirrored their func-

tionalist counterparts. Our findings indicate that while LLM-enabled chatbots are not yet

viable for fully automated code translation due to inconsistent success rates and system-

atic errors, they serve as effective tools when assisting human developers, particularly for

complex projects that require paradigm shifts or the careful preservation of functionality.
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Chapter 1

Introduction

This thesis investigates the viability of using Large Language Model (LLM) -

enabled chatbot applications for translating programming languages across two key di-

mensions: prompting strategy (direct versus assisted) and translation approach (func-

tionalist versus linguistic). The functionalist approach prioritizes the exact replication of

program functionality, while the linguistic approach emphasizes code structure and the

use of paradigms in the target language. These dimensions yield four distinct translation

types, each requiring specific methodologies for data collection and analysis.

Our research methodology centers on translating a complex OCaml program into

four target programming languages: Python, TypeScript, Rust, and C++. We utilize

nine different commercial chatbot applications, representing the current state of the art,

including models from Anthropic, Google, MetaAI, OpenAI, and xAI. The source pro-

gram’s complexity provides a realistic baseline for our investigation.

The primary goal of this thesis is to assess whether LLM-enabled chatbot appli-

cations are viable for translating programming languages, comparing the effectiveness of

assisted versus direct approaches and functionalist versus linguistic translation strategies.

This investigation contributes to the growing body of research on artificial intelligence

(AI) -assisted software development while addressing practical concerns about code mi-

gration in the software industry.

We organize this thesis as follows: Chapter 2 provides background on programming
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language translation approaches and current solutions; Chapter 3 details our methodol-

ogy including source program and chatbot selection, target programming languages, and

translation procedures; Chapter 4 presents the analysis of translation results; and Chap-

ter 5 offers conclusions about the viability of different translation approaches and future

research directions.
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Chapter 2

Background

This chapter provides the context necessary to understand the current state of

programming language translation and the role of LLM-enabled chatbot applications in

addressing this challenge. We begin by examining the motivation behind programming

language translation, including the issues of aging infrastructure and memory safety vul-

nerabilities that drive the need for systematic code migration. Next, we explore different

approaches to programming language translation, drawing parallels with natural language

translation theory to establish the functionalist and linguistic paradigms that structure

our investigation. We then survey current solutions ranging from manual translation

to AI-powered tools, with particular focus on the emergence of LLM-enabled chatbot

applications as potential translation assistants or direct translators. Finally, we present

our approach, which combines two prompting strategies (direct and assisted) with two

translation approaches (functionalist and linguistic) to create a framework for evaluating

chatbot translation capabilities. This background establishes the theoretical and practical

foundations for our methodology.

2.1 Motivation

Programming languages have served as fundamental tools for Computer Sci-

ence, dating back to the earliest days of physical computing [1]. These are written

languages that both humans and computers can understand. Programming languages
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are used to compose text documents known as programs. A computer can interpret a

program into a set of instructions. The computer can then execute these interpreted in-

structions on its hardware. The underlying theory behind programming languages has a

helpful feature. If a given language can be represented by a specific abstract framework,

you can use this language to solve the same set of problems as any other language that

can be represented within the same framework. Many programming languages aim to

compute any computable function; computer scientists can represent any of them using

the same specific framework and classify them as Turing complete [2]. This idea means

developers can write any program composed with a Turing complete programming lan-

guage in any other Turing complete programming language. We limit our investigation

to Turing complete languages.

Newer programming languages reflect the hard lessons learned and the experience

gained from dealing with the issues of older languages. The ability to write the same

program in any Turing complete programming language means that the functional abili-

ties of some older programming languages are just as strong as those languages created

more recently. The power of older programming languages has led to their continued use

up to the present day. One such example is COBOL, a programming language created

in 1959 for business computing purposes. COBOL is known for being extremely verbose

and complex to structure into coherent programs. Currently, around 40% of banks in the

world use COBOL as their core technology [3]. The main issue with this is the lack of new

developers entering the field with knowledge of COBOL. As experienced programmers

retire, there is not a readily available supply of young developers who can take their place

without extensive training specific to COBOL. One solution could be to train new hires

in COBOL; however, a more realistic solution is to switch to a programming language

with an established community of users.

A much larger issue exists in terms of memory safety, as memory issues are

ubiquitous in programs written in many older programming languages. In programming

languages that require explicit resource management, such as COBOL and the C

language, developers are responsible for managing computer resources within the program
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using the language’s corresponding syntax. This syntax can be complex and relies on

fallible humans to write perfect code. Bugs in managing many computer resources can

be detected early in testing, but memory errors are especially challenging to find because

there may be no indication that they exist, or they may only occur in specific instances

during the execution of a program. The Microsoft Security Response Center stated in

2019 that, on average, 70% of the security vulnerabilities they fix are due to memory

errors [4], and this statistic had held for more than a decade prior.

Additionally, in 2024, the White House released a report detailing the benefits

of using memory-safe languages and encouraged companies to develop roadmaps for

migrating their code to those languages [5]. Memory-safe languages are a category of

programming languages that do not rely on syntax as their primary means of managing

memory resources. Some of these languages automatically clean up after the program

during execution, while others use static checks of the program text during compilation

to ensure that the program does not contain memory errors before it even runs. Code

migration is the process of translating the code of a given program from one programming

language to another. The solution to these memory safety issues, as outlined in the White

House’s report, is to migrate and therefore translate code into memory-safe languages.

To summarize, the computer science industry faces numerous challenges, including

an aging COBOL infrastructure and memory safety concerns in some older languages,

all of which share a common solution: migrating to a different programming language to

build our systems and applications. These problems provide an opportunity to investi-

gate the capabilities of specific programming language translation strategies. The code

translation process, enabled by current commercial tools, is what we examine here.

2.2 Programming Language Translation Approaches

Given the task of translating code to a different programming language, the im-

mediate thought may be to find parallels between translating programming languages

and translating natural languages. Natural languages are human languages, intended
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primarily to be spoken, written, and interpreted by humans. Humans have been trans-

lating between natural languages for over 5 millennia [6], and there are many ideas we

can apply to translating programming languages from the theory surrounding the natural

language translation process. Two such ideas hold that written language has function

and shape. The function of writing is to convey meanings, feelings, and ideas through

words, as well as the actions that others may take as a result. The kinds of words used

and their format are what provide a piece of writing its shape, such as the words and for-

mats used to write a formal letter versus a Haiku. To use a functionalist approach to

translating natural languages, you must translate based on the function of the resulting

writing alone [7]. To employ a linguistic approach to translating natural languages,

you must translate primarily based on the types of words and formats used in the source

and target texts, with a secondary emphasis on ensuring that the functionality of both

is the same. For this research, we limit our use of natural language translation concepts

to the functionalist and linguistic approaches to translation.

We can map functionalist and linguistic natural language translation approaches to

the process of translating programming languages. The translation approaches also pro-

vide goals for the program translation process. The functionalist approach to translating

programming languages focuses on function. The function of a program can be specified

as clearly as necessary to include any expected effects, and excluding other unspecified

effects. This specification can then be used as a template to create the same functionality

in the translation as was prescribed for the original. The linguistic approach to trans-

lating programming languages focuses on the shape of the program, with a secondary

emphasis on functionality. The consistent use of keywords, expressions, statements, and

other language elements within the same paradigm provides the shape of the program.

These paradigms are a kind of format and way of structuring the code, similar to how

many genres of poetry prescribe a strict layout. As a secondary measure, we do not con-

sider the functionality of the linguistic translations. While functionality is the primary

focus of the functionalist translation approach, the priority is consistent paradigm use in

the linguistic translation approach.
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The qualities of natural languages fundamentally differ from those of programming

languages in ways that make translating the latter much simpler. When translating

natural languages, there are no absolute meanings, so a functionalist translation can only

ever be an approximation. The meaning of a piece of natural language writing to the

reader depends on many factors. Programming languages, however, are designed to be

unambiguous, meaning each part of a program has an explicit meaning. The semantics

of the language prescribe exactly how the computer should interpret a given program.

Translating based on functionality can be achieved simply by replicating functionality in

the target language using the corresponding syntax, which mirrors the semantics of the

source. This feature of programming languages extends to the paradigms, as each has

its own set of syntax elements that exist to facilitate writing programs in one or more

paradigms that the language supports.

Given some source natural language, it is impossible to tell if you can translate it

into any given target language. A helpful constraint on programming language transla-

tion is to only use Turing complete languages. If both source and target programming

languages are Turing complete, you can use either to write the same programs. Therefore,

we know that you can translate any program written in a given source language into any

program in a given target language. These two characteristics, explicit meanings and

complete translatability, make programming language translation much simpler. Trans-

lating programming languages remains a complex task, and various solutions are being

utilized and explored to aid in the process.

2.3 Current Solutions

There are many current and proposed solutions to the problem of programming

language translation. The current solutions utilize manual translation, transpilers, code

editor augmentation, and AI. You can split the AI solutions between direct use of LLMs

and use of LLM-enabled applications. Manual translations require a human with in-depth

knowledge of both source and target languages to make a best effort at translation. The
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results of this vary based on the experience of the human translator, and there are no

guarantees. Most current solutions incorporate some element of technology into the

translation process and extend it with human support.

Two technology-based solutions to program translation are transpilers and aug-

mented code editors. Transpilers are applications that attempt to translate between

source and target programming languages based solely on interoperability. The goal is

therefore to get the translated program to work in an environment that only supports the

target language. This goal is less ambitious than a functionalist approach, as it entails a

best effort at replicating functionality, with an emphasis on simply being able to execute

the translated program. This transpiled code can be challenging to modify, as the tran-

spiler provides no assistance after producing the translation. Developers must manually

debug the transpiled program, and the same problems arise as in manual translation [8].

Tools such as augmented code editors with various extensions, plugins, and in-

tegrations, including the Copilot tool from Microsoft and the Cursor text editor, work

natively with program files to provide integrated software development support, including

for translating programs. Both of these approaches include a human element in the trans-

lation process to address shortcomings in the technologies. These shortcomings are more

severe than the uncertainty that comes from including a human in the process. Current

research focuses on leveraging recent advancements in AI to produce fully automated

translations.

The recent advancements in the field of AI have led to the attempted integra-

tion of LLMs and the applications they enable into the code translation process. The

work directly dealing with LLMs is only available to those groups who have both direct

access to the models and can manipulate and run them locally. These research groups

include both private companies, such as Meta, and public institutions, like UC Berkeley.

These research projects treat the LLM as a step in the translation process, such as with

Berkeley’s LLMLIFT [9] tool, which utilizes an LLM to produce a translation and an

accompanying proof, to ensure program correctness. You can then check the proof us-

ing automated theorem provers. Initial projects in companies like Meta, which developed
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their own models, leveraged their privileged access to fine-tune the training of their LLMs

and customize the processing to obtain better translations. These companies have since

branched into integrating other tools or translating to better-understood intermediate

representations [10]. The current applications of these LLMs outside of research projects

include serving as the main driver for many code editor augmentations and tools, as well

as in numerous commercial chatbot applications.

In recent years, due to advancements in LLM technologies, the capabilities and

sheer number of commercial chatbot applications have exploded. Chatbot applications

have an interesting relationship with programs. Programs are text documents written

in programming languages. Chatbot applications take in text in the form of a prompt,

do some work on it, and produce a corresponding text output. For this thesis, we limit

our understanding of chatbot applications to this simplified format, treating the process-

ing portion as a black box. This understanding of chatbot applications and programs

leads us to the idea of using the text of a program as input, along with a prompt to

translate the code into a target language. Past research has also provided evidence that

chatbot applications may be a viable option for translating code [11], but there is room

to investigate more specific criteria for chatbot application code translation.

You can use chatbot applications to translate programming languages in either an

assistance capacity or directly. If you use a chatbot application for assistance, it serves

as an additional tool available to a human developer performing manual translation.

A developer using a chatbot application directly provides the chatbot some code in a

source programming language and additional context in the form of a prompt to translate

the source program into some given target programming language. If a chatbot is used

directly for translation and the resulting program in the target programming language

performs as expected, this is akin to an automated translation. If the direct use of the

chatbot application results in some code that requires restructuring or debugging by a

human, this aligns with the findings of other research on the results of direct chatbot

programming language translations [12]. Current research does not compare the direct

approach and the assisted approach in investigations into the viability of translating
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programming languages using chatbot applications, nor does it build upon the approaches

of natural language translation.

2.4 Our Approach

We investigate here the viability of using LLM-enabled chatbot applications in

code translations on two dimensions: chatbot prompting strategy and translation ap-

proach. The chatbot prompting strategy can be either direct, simply prompting the

chatbot with an instruction to translate some given code, or in an assistance capacity,

with some limits on the prompt content. You can categorize translation approaches

into two main types: functionalist and linguistic. The functionalist approach prioritizes

recreating the original program’s functionality in the target language. The linguistic

approach treats functionality as secondary, instead focusing on achieving the desired

structure of the translated program, ensuring that the code adheres to the target lan-

guage’s paradigms. These dimensions enable the production of four types of translations:

assisted functionalist, assisted linguistic, direct functionalist, and direct linguistic. Each

of these four translation types must have its own methodology for prompting strategy,

data gathering, and analysis procedures.

Direct and assisted prompting strategies form two distinct categories. A direct

prompting strategy includes the entire source program code in the prompt itself, along

with any additional context needed for the chatbot to understand what it is supposed to

do with the given code. This additional context may be an instruction to translate the

source program in a specific way or to a particular target language, or it may be extra

prompts to produce a complete translation. An assisted prompting strategy restricts the

types of prompts users can make, specifically disallowing requests for direct translation

of any portion of the original program. The chosen prompting strategy then creates the

method of data collection.

The method used for collecting data is dependent on its format, which in turn

depends on the prompting strategy. The data produced through direct prompts may
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include code that requires reformatting for the program to run or extra response text.

The final program should exclude this extra generated text. The raw data from direct

prompting consists of the set of all prompts and responses. You can combine the code

from the responses into a resultant program translation in the target language. The

processed data from direct prompting consists of the code from the raw data, possibly

with some light restructuring to eliminate duplicate code. The data produced through

an assisted prompting strategy includes the constrained prompts and responses, as well

as the final translated program. Researchers should collect a representative subset of

the prompts and responses along with the final assisted translations. Having a record of

prompts, responses, and accumulated translations then structures the analysis.

The analysis separates translations by approach: functionalist or linguistic. Func-

tionalist program translations can be measured by their ability to perform the functions

of the original program. Linguistic translations are more nuanced, and analyzing them

requires relative measures. We can compare linguistic translations to their functionalist

counterparts to identify consistent differences in the use of paradigms. We can also an-

alyze the consistency of paradigm use within individual programs and mark adherence

as either uniform or variable. We then collect and analyze this data to determine the

validity of the corresponding program translation type.

Altogether, we prescribe each kind of program translation its own unique per-

mutation of prompting strategy, data collection, and analysis steps. These steps inform

the validity of the corresponding translation type. The translation itself represents the

real-world ability to create a program, given a specific tool set and goals for the trans-

lation, either based on functionality or structure. This framework contributes to the

current research by expanding the initial investigations into the capabilities of commer-

cial chatbot applications in translating programming languages, specifically in the areas

of paradigmatic code and prompting strategy.
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Chapter 3

Methodology

This chapter outlines the systematic approach we developed to investigate the

capabilities of LLM-enabled chatbot applications in translating programming languages.

The structure of our methodology is centered around four key components that enable a

comprehensive evaluation of program translation viability. First, we describe our source

program selection, an OCaml networking project that serves as a representative example

of a complex software project. Second, we present our selection of five commercial chatbot

applications from leading AI companies, chosen to represent the current state of the art.

Third, we justify our choice of four target languages (Python, TypeScript, Rust, and

C++) based on paradigm compatibility. Finally, we outline our four distinct translation

types: assisted functionalist, assisted linguistic, direct functionalist, and direct linguistic.

Each translation kind has its own prompting strategy, data collection procedure, and

analysis procedure. This multidimensional approach enables us to evaluate not only

whether chatbots can translate code between languages, but also between programming

paradigms.

3.1 Source Program

The source program serves as the base from which we translate using the four com-

binations of prompting strategy and translation approach. The choice of source program

fundamentally constrains the conclusions we can make about translation methods using
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chatbot applications. If we deem the translation a success or failure, we can generalize

the findings from these results only to the extent that the source program itself gener-

alizes. Given the goal of having our source program represent the vast array of possible

programs, we chose a subset of files from the code repository for a networking project,

created by Dr. Chris Misa at the University of Oregon. The files comprise a program

that exhibits a subset of the original project’s functionality. The programming language

used to create the source program is OCaml, which is popular for academic projects and

in the financial industry [13]. The program consists of components that build network

telemetry query functions, along with a set of those query functions and a method for

running them on a sample dataset. The sample data enables the simple testing of query

functions in both the source program and the translation attempts, providing insight

into the program’s provided functionality. The code uses closures as stages in a complex

data processing pipeline to track information about network packet headers. The imple-

mentation itself can be summarized as complex, requiring the use of many programming

language constructs. The program employs a predominantly functional paradigm, incor-

porating some imperative constructs, such as mutable variables. The file itself contains

numerous comments, ranging from brief explanations of functions to the author’s notes

on attempting to understand the code, as well as suggestions on how a function should be

modified in the future. The natural disorganization that occurred during the program’s

development, reorganization, and exploration adds to its realism. The complexity of the

source OCaml program and its realistic project allow us to draw conclusions about the ca-

pabilities of chatbot applications to translate programs between programming languages

for general projects.

3.2 Selected Chatbots

We must select a representative sample of chatbot applications to understand

their collective capabilities in the domain of programming language translation. Many

companies now offer a wide variety of LLM-enabled chatbot applications, so we selected
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a subset of each that represents the state of the art. There exist two classes of LLM,

labeled by the industry as reasoning and non-reasoning. Most companies offer a choice

of model between the classes to enable their chatbot application. We treat each class

of LLM-enabled chatbot application equally, with no assumptions about their abilities.

A third class of LLM, hybrid models, chooses between the reasoning and non-reasoning

classes based on the user prompt. The companies that offer LLM-enabled chatbots do

not all offer the same combination of classes and absolute number of models.

We selected five AI companies to survey. For each of the companies, we chose

two models, if available, to enable the chatbot applications. The models were selected

based on the recency of their release, with the goal of using a non-reasoning and a rea-

soning model from each company. When this exact configuration was not available, we

substituted a hybrid model for either the reasoning model alone or both the reasoning

model and the non-reasoning model. This replacement occurred in two instances. An-

thropic only offers hybrid and non-reasoning models, so we use the hybrid model as a

substitute for a reasoning model. MetaAI only provides a single hybrid model, which

we use in place of the reasoning model, while we do not consider a non-reasoning model

from their company. The actual LLMs chosen for each company to enable their chatbot

applications are listed in Table 3.1 below. To translate programming languages using a

chatbot application, each of the chosen models from each company can be used either in

an assistance capacity or can be prompted directly for a translation. When translating

between Turing complete programming languages, the ability to replicate the function of

the source program is guaranteed. However, the shape of the translated program may

differ depending on the kinds of paradigms each language supports.

Company Reasoning Non-reasoning

Anthropic Claude 3.7 Sonnet Claude 3.5 Haiku
Google Gemini 2.0 Flash Gemini 2.5 Pro
MetaAI Llama 4 N/A
OpenAI ChatGPT 4o ChatGPT o4-mini
xAI Grok 3 Grok 3 (with Think)

Table 3.1: Chosen LLMs to enable chatbots from each company
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3.3 Selected Languages

The set of languages we investigate has an outsize impact on the kinds of conclu-

sions we can draw based on translation results from a chatbot application. The source

program in a translation will have a shape, determined by the set of paradigms used

to write its code. These paradigms will come from the set of paradigms supported by

the programming language used to compose the source program. Not all programming

languages support the same set of paradigms. If the supported paradigms do not overlap

between the source and target programming languages, this may affect the viability of a

purely functionalist translation. We choose the target languages we investigate based on

two constraints: they must support writing programs in the paradigms that the source

language also supports, and programmers must use them for general programming. The

second constraint maximizes the generalizability of the results when using a given pro-

gramming language as the target for translation. Table 3.2 represents a comparison of

prospective programming languages we considered for this project. Note that OO is the

object-oriented paradigm. The table emphasizes the paradigms of OCaml and shows

which other programming languages support overlapping paradigms. The table also lists

any other paradigms that are supported by each considered programming language. We

disqualified Haskell because it is not in general use, and C due to a lack of overlapping

paradigm support with OCaml. We chose Python, TypeScript, Rust, and C++ as our

target languages for translation.

Our target programming languages also have some interesting implementation

differences, which could affect the resulting program created during a translation. We

note the differences in our chosen programming languages before data is collected, so they

can help inform the analysis of the translations. The most notable differences lie in the

categories of execution model, type system, and resource management. The execution

model is either interpreted or compiled. Errors in interpreted languages are found one at

a time at runtime as the executing program encounters them. Compiled languages utilize

a compiler that performs static checks to ensure the program adheres to the language’s
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Language Functional Imperative OO Other
OCaml x x x

Python x x x declarative
TypeScript x x x event-driven, declarative
Haskell x
Rust x x x generic, declarative
C x
C++ x x x generic

Table 3.2: Programming Language Paradigms

Note: OO is Object-Oriented; an x signifies the programming language supports the
corresponding paradigm

specifications and type system.

The type system for programming languages can be weak, medium, or strong.

Weak type systems permit type coercion, the implicit casting of one type to another,

which can lead to errors. Strong type systems disallow type coercion, but provide explicit

mechanisms to cast types into other related types in a limited capacity. Medium-strength

type systems fall somewhere in between, such as TypeScript, which performs static checks

on the program but allows some bad practices that may still create situations where type

coercion is possible.

Resource management in programming languages can be either automatic, as in

garbage-collected languages, or explicit, which requires the developer to write it into

the program explicitly. Explicit resource management always requires some syntax that

must be written into a program in the exact correct way to avoid all resource man-

agement errors, especially memory errors. Programming language type systems vary in

their approach to resource management. Some languages incorporate built-in checks that

automatically verify proper resource handling, while others rely on developers to man-

ually follow resource management conventions without compiler assistance. Table 3.3

summarizes some of these interesting programming language characteristics.

The language of the source program, OCaml, is a compiled language with a strong

type system and automatic resource management. Python is an interpreted language with

a weak type system and automatic resource management. TypeScript is a compiled lan-
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guage with a medium-strength type system and automatic resource management. Both

Rust and C++ are compiled languages with strong type systems and explicit resource

management. C++ leaves resource management completely up to the developer, whereas

the Rust compiler ensures proper resource use with static checks during program com-

pilation. Overall, these languages represent a wide variety of supported paradigms and

built-in features, enabling us to draw the broadest range of conclusions from our trans-

lation results.

Language Execution Model Type System Strength Resource Management

OCaml compiled strong automatic
Python interpreted weak automatic
TypeScript compiled medium automatic
Rust compiled strong explicit
C++ compiled strong explicit

Table 3.3: Programming Language Characteristics

3.4 Translations

We are investigating the capabilities of current commercially available LLM-enabled

chatbot applications to translate code using two prompting strategies: direct and as-

sisted, each employing a functionalist or linguistic translation approach. The inter-

section between each dimension is a translation type: assisted-functionalist, assisted-

linguistic, direct-functionalist, and direct-linguistic. Each translation kind requires a

custom methodology. Each methodology contains the actual prompting strategy, data

collection, and analysis procedures.

Functionalist translations emphasize functionality over all else. The functionality

of the translated program should be identical to that of the source program. For this

thesis, the source program is the same for all translation attempts. You may find an

in-depth analysis of the source program in Section 3.1. The prescribed functionality of

the source program can be vague or strict. Our criteria are as follows:
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• The source program can be compiled and run.

• The source program contains 15 query functions.

• The source program prints a representation of an internal data structure when they

are not consumed in the query functions, then prints ‘Done’; otherwise, it only

prints ‘Done’.

Linguistic translations emphasize the shape of the program and see the replication

of functionality between the program and translation as a secondary goal. The shape of

a program is based on its paradigm use, which is reflected in its formatting and syntax,

particularly in the use of keywords. The use of paradigms within a single program can be

variable or uniform. Uniform paradigm use means that the same mixture of paradigms

is consistently applied throughout a program; multiple paradigms are allowed, but they

must be applied uniformly across the code. Variable paradigm use means the program

does not adhere to a uniform mixture of paradigms throughout the code. We can compare

the use of paradigms in corresponding functionalist and linguistic translations, according

to the chatbot and prompting strategy used to create the translations, to identify any

systematic differences between the two populations.

3.4.1 Prompting Strategies

Assisted Assisted translation prompting strategies are dictated by the needs of

the human translator in the moment, so they cannot be specific. The assisted translation

process is essentially a manual translation process with the help of a chatbot. Thus, it is

difficult to maintain any single strategy. Instead, we choose to provide general limitations

on the kinds of prompts that a translator may submit to the chatbots. These limits are

as follows:

• No additional chatbots or models are allowed outside those in Table 3.1.

• No additional AI tools are allowed, such as Microsoft Copilot.

• Code is limited to small pieces written in the target language.
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The assisted translation prompting strategy adheres to the limitations outlined

above and focuses on helping the human translator achieve the desired program, given

the chosen translation approach. The process of assisted functionalist translation is lim-

ited to understanding the minimal, highest-level functionality of the code line by line.

Each piece in the translation utilizes features of the target language that are as seman-

tically equivalent to those of the original language as possible. Therefore, the prompts

provided to the chatbot should focus on replicating functionality from OCaml in the

target language.

The process of assisted-linguistic translation involves understanding the minimal,

highest-level functionality of the code line by line, as well as the paradigms used in the

original program. Each piece of the translation reflects a possible reorganization into

another paradigm and aims to produce a best effort at replicating the original program’s

functionality. In this case, the prompts given to the chatbots should focus on implement-

ing a specific paradigm for the program translation. The assisted translation approach

utilizes the chatbot as a tool to help a human translator with questions they may have

in the moment.

Direct The direct prompting strategy is dictated by simplicity. To be viable

for direct use in programming language translations, producing either a functionalist or

linguistic program translation with a given chatbot should be as simple as asking for one.

For this reason, we use minimalist prompts and focus on mapping the ideas behind each

translation approach to the base prompt. The base prompt is the first prompt given

to a chatbot in a single series of prompts and responses. If the chatbot does not provide

an entire translation, additional prompts are used to direct the chatbot to give the rest

of the translation. This procedure describes how we enable the chatbot to produce a

program translation directly.

Given the goal of a functional or linguistic translation when using a chatbot to

translate a program directly, we must explicitly communicate this through our prompts.

To produce a direct functionalist translation, we must embed the functionalist viewpoint

itself in a declarative prompt. We approximate the ideas of a functionalist translation
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by prompting the chatbots with a minimalist instruction to translate the code from the

original to the target language. To produce a direct linguistic translation, we must again

embed the viewpoint in a declarative prompt. We approximate this by prompting the

chatbots with a minimalist instruction to translate the program from the original to the

target language, with the added context that only the natural paradigms and idioms of

the target language should be used in the translation. This added context should provide

a target for the translated program’s paradigm, hopefully making the chatbot produce a

more linguistically accurate translation. We then give the prompt, along with the code

to translate, to the chatbot through its web interface.

For either translation approach, there may exist superior prompting strategies;

we simplify here. This simplification is due to our criteria for direct translation viability

being akin to automation. In an automated translation, a simple command can be given

to produce a translation. If extra instruction is provided in the prompt, the translated

program should reflect special attention paid to the aspects of the program translation

mentioned in the prompt. The prompting strategies then inform the data collection and

analysis procedures.

3.4.2 Code Translation Procedures

This section outlines the procedures for collecting translated code into program

files, resulting from either assisted or direct prompting strategies. Gathering the code

into a program is simple for assisted translations, as they are already in files as part of

the translation process. Gathering the code resulting from a direct translation can be

more complex.

Assisted The assisted translations, functional and linguistic, are collected within

the code repository for this project1 as they are written. Some example prompts and

responses are also collected. The program collection process for assisted translations is

simply creating a set of files to write the translation, and then updating those as the

translations progress. These files can then be used for dynamic and static analyses.

1Project code repository: https://github.com/lukemarshall2222/undergrad-research.git
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Direct For direct translations, any translated code produced by the chatbot is

gathered into the corresponding file type for the given target language with minimal

interference, such as deleting redundant code. If portions of a translation are provided

more than once, the most recent version is kept. Non-code extraneous response text is not

included in the program files. If the chatbot response prescribes a specific file structure,

this will be used to organize the given translated code. The entire chat of prompts and

responses for each translation is included in the repository for this project, in the same

directory as its corresponding assembled translation. The direct translations can then

undergo the same dynamic and static analyses as the assisted translations.

3.4.3 Result Analysis

Once the translated programs are created and accumulated, we begin the analysis.

The analysis in this case involves gathering data on the program translations. The data

collection is categorized according to the translation approach. A functionalist trans-

lation should create programs whose function aligns with the specifications in Section

3.4. The linguistic approach should create programs that pay special attention to the

use of paradigms. This can be demonstrated through either producing a program that

shows a large paradigmatic difference or contains a more uniform use of a given set of

paradigms compared to its functionalist translation counterpart. The functionalist trans-

lations enable us to judge the linguistic translations based on their relative paradigm

use.

Functionalist Results for functionalist translations are produced from attempts

to run the code. For direct translations, we attempt to run the code up to ten times.

If an attempt causes a simple error (<15 minutes to fix), it is corrected, and another

attempt is made. Otherwise, the error is labeled as complex, and the analysis for that

translation is ended. We also end the analysis after ten attempts to run the code have

been made. The results of this analysis procedure are presented in Appendices A.1-4.

For each attempt, the reasons for any errors are recorded along with the fixes if they are

simple errors. We also track the number of query functions from the source program that
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are translated and the percentage of these functions that function correctly.

For assisted translations, attempts are continually made to run the code through-

out the translation process to produce a fully functioning program in the target language,

although this is not always successful. This analysis must be conducted for each chatbot

and model used to produce a translation. We only created one assisted translation per

target programming language, but they are analyzed using the same methodology. This

produces a table of results, including the number of functions provided, the number of

functions that worked, and the success rate of the provided functions, as in Tables 4.1-2.

Linguistic Results for the linguistic translations are produced from observations

about paradigm use in corresponding functionalist and linguistic translations. Each pro-

gramming language we use supports multiple paradigms. The paradigm use can be noted

by the shape of the program, which is defined mainly by the keywords and other syntax

used to write the program, as well as formatting in some cases. The syntax used to

recognize specific paradigms in the translated programs is mainly specific to the target

language.

The syntax that serves as indicators that a given paradigm is being used in each of

the target programming languages are listed in Tables 3.4-8. If the syntax corresponding

to a given paradigm is seen in a translation, this paradigm is noted in the results. If

the paradigms are used consistently throughout the program, this is recorded as uniform

paradigm use, even if a mixture of multiple paradigms is used. If the paradigms are limited

to specific portions of the program, this is recorded as variable paradigm use. We record

the paradigms used in a translation and the uniformity of their distribution for both

functionalist and linguistic translations of a given chatbot and target language. We may

make conclusions about the difference a linguistic prompt makes in actual paradigm use

compared to the corresponding direct functionalist translations. This analysis procedure

can also be applied to comparing translations resulting from the assisted translation

strategy.
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OO Functional Imperative

class let ref
method fun :=

→ !
| > if/then/else

Table 3.4: OCaml Paradigm Syntax

OO Functional Imperative Declarative

class def for comprehensions
self lambda while generator expressions

map, filter, reduce if/elif/else

Table 3.5: Python Paradigm Syntax

OO Functional Imperative Generic

class ⇒ for <T>
this function while
dot operator map/filter/reduce if/else

forEach switch
const

Table 3.6: TypeScript Paradigm Syntax

OO Functional Imperative Generic

struct fn for <T>
enum Fn/FnMut/FnOnce while type
impl map/filter/fold/reduce if/else <‘a>
trait collect mut
self iter
dyn match/case
where Option<T>

Result<T>

Table 3.7: Rust Paradigm Syntax

OO Functional Imperative Generic

class auto for template
struct function pointers while typename
this lambdas switch
new if/else
delete

Table 3.8: C++ Paradigm Syntax
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Chapter 4

Result Analysis

After the translation procedures are complete, translated programs exist for each

chosen chatbot, chosen programming language, translation approach, and prompting

strategy. Each of these programs must be analyzed according to its corresponding analysis

procedure. In this section, we walk through the analysis of each kind of translation:

assisted-functionalist, assisted-linguistic, direct-functionalist, and direct-linguistic. We

also note some surprising results that we encountered during the analysis.

4.1 Functionalist Translations

Functionalist program translations are created with the goal of recreating the

functionality of the source program with a target programming language. These trans-

lations can be made either with an assisted or direct prompting strategy. The assisted

prompting strategy involves prompting chatbots with questions that focus on recreating

the functionality of the source program in the target programming language. The direct

prompting strategy involves a simple direct prompt to translate the given program from

OCaml to a chosen target language. Once they are created, they may be tested against

the specified functionality of the source program.
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4.1.1 Assisted

Using the assisted prompting strategy and functionalist translation approach, we

create a translated program for each of the chosen target languages. We then note the

number of query functions provided and how many of them we are able to use to recreate

the original functionality from the source program. Table 4.1 presents a summary of the

results, including the success rate achieved with the provided query functions.

OCaml Python TypeScript Rust C++

Programs translated N/A 1 1 1 1
Functions provided 15 15 15 15 15
Functions working 15 15 15 15 0
Success rate N/A 100% 100% 100% 0%

Table 4.1: Translation Results by Programming Language

4.1.2 Direct

Using the direct prompting strategy and functionalist translation approach, we

create a translated program for each of the chosen target languages and each of the cho-

sen chatbots. We then note the number of query functions provided and how many of

them we are able to use to recreate the original functionality from the source program.

Table 4.2 contains a summary of the results. The table expresses a key limitation of

the direct translation approach we use. Because the code is generated through a non-

standardized web interface, some query functions may be lost during the production or

organization of the translated program code. We define the success rate as the percentage

of provided query functions that successfully recreate the original functionality. A more

detailed stepwise summary of the attempts made to execute the program translations can

be found in Appendix A.
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OCaml Python TypeScript Rust C++

Programs translated N/A 9 9 9 9
Functions provided 15 110 116 103 122
Average functions provided N/A 12 12 11 13
Working functions 15 52 65 0 0
Success rate N/A 47% 56% 0% 0%

Table 4.2: Translation Results by Programming Language

4.2 Linguistic Translations

Linguistic program translations are created to translate the code not only to an-

other programming language, but also possibly to another set of paradigms. The trans-

lation could also reorganize the code to express the same paradigms, albeit with varying

uniformity. Functionality is a secondary consideration in this translation approach, so we

only measure the use of paradigms. In analyzing each translated program, we note the

paradigms employed in both functionalist and linguistic translations. These paradigms

are primarily recognized by the syntax used, as demonstrated in Tables 3.4-8. We also

note the distribution of paradigm use throughout the program. If any of the paradigms

used in the program are isolated to discrete sections of the code, this is variable paradigm

use; otherwise, it is uniform paradigm use. The complete analysis is recorded in Appendix

B.1-4. This analysis enables the comparison of functionalist and linguistic translations,

as well as the relative measure of paradigm use in linguistic translations.

The procedures for analyzing assisted and direct linguistic translation results are

the same. The measures can only be completed when both a functionalist and a lin-

guistic translation are available for a given prompting strategy and chosen programming

language. Due to time constraints, we were unable to create a linguistic C++ translation;

therefore, this aspect is excluded from the discussion, except to highlight the limitations

of the assisted translation methodology. This method of analysis is a limited relative

measure, hoping to inform on the viability of using chatbots for linguistic program trans-

lations.
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4.3 Notable Results

When using new tools, it is normal to encounter a few bugs. In the case of

LLM-enabled chatbots, these bugs may manifest as pure logical decision-making bugs

or hallucinations. On the purely logical decision-making side, we noticed some peculiar

function names in certain translations, primarily related to a specific aspect of the source

OCaml file. In the OCaml programming language, you can define infix operators easily.

Most other programming languages, including those we use as target languages here, allow

at most operator overloading, and otherwise do not include defining infix operators in

their functionality. Almost every chatbot-direct translation, functionalist and linguistic,

replaced the custom operator from the original OCaml with a function that replicated

its behavior. The Gemini chatbot, enabled by their 2.0-Flash model, took the task of

translation very literally and translated the original custom operator, denoted @=>,

to a function named at equals greater than. Hallucinations can also be an issue.

For a week during the direct prompting procedure, the OpenAI chatbots would only

produce the local weather report when prompted to translate the source program. The

non-reasoning Grok 3 model also used the Chinese word for “New York” randomly in a

function call. For a program translation to be useful, it must be readable and function

correctly. Pure logical decisions and hallucinations, such as those we observed in our

small investigation, reduce the utility of translated programs and diminish the viability

of chatbot translations.

4.4 Discussion

Our investigative methodology yielded interesting results, both in terms of actual

determinations on the viability of programming language translation using LLM-enabled

chatbot applications and in highlighting their limitations. The results of the assisted-

functionalist translation methodology, which utilized a chatbot to help translate code

with the primary goal of replicating the source program’s functionality, showed promise,

as we achieved our goal with a 75% success rate across the four chosen target languages.
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We were able to replicate this success rate in the assisted-linguistic translations. Our

translated programs exhibited remarkable differences in format and paradigm use when

different paradigms from those in the source program were selected for translation. This

differs significantly from the results produced in the direct linguistic translations, which

mostly mirror their functionalist counterparts. The repository that holds the original

project, including the subset we used as our source program for translations, is a private

repository. At one point in the translation process, the chatbot enabled by Google Gemini

2.5 Pro generated a link to the original project as an example of something similar

to the code I provided. This is a significant problem, as it highlights our inability to

determine what training material these models are allowed access to. Finally, the most

considerable point against direct chatbot translations remains the inconsistent success of

the translations simply in compiling, let alone executing and reproducing the specified

functionality of the source program. This means direct chatbot translations as a whole

are not yet viable for program translation.

Within the direct functionalist results, noticeable differences exist in the abilities

of chatbot applications to translate between two groups of programming languages. If

the chatbots achieve any success in translating the source program into Python and

TypeScript, those programs are likely to be mostly complete and functioning. If not,

the translations likely do not even function at all. All of the C++ and Rust direct

functional translations were unsuccessful in replicating the functionality of the source

program. The line between Python and TypeScript denotes the distinction between

interpreted and compiled languages, with TypeScript also incorporating a type system.

Crossing this line did not appear to affect the chatbot translation performance. The line

crossing from TypeScript to Rust and C++ represents the distinction between languages

that implement automatic resource management and languages with explicit resource

management. This appears to be the increase in language complexity that causes the

chatbot the most trouble. However, it is unclear whether the reason is actually the

complexity of explicit resource management.

As noted in Section 4.3, fundamental issues hinder direct chatbot translations.

28



These issues include hallucinations, as random generated content cannot be allowed in

code. Network problems, which hindered my ability to produce program translations, are

also crucial in determining viability, as the system must be both available and reliable to

be viable. Our results demonstrate the viability of assisted translations given some room

for human fallibility, along with the impracticality of direct chatbot translations.
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Chapter 5

Conclusion

5.1 Summary

This thesis examines the viability of LLM-enabled chatbot applications in trans-

lating programming languages, exploring both direct and assisted translation approaches

from functionalist and linguistic perspectives. The research addresses the growing need

for code migration in the software industry, driven by issues such as aging COBOL infras-

tructure and memory safety concerns in older programming languages. Using a complex

OCaml academic networking project as the source program, we evaluate translations to

Python, TypeScript, Rust, and C++ using nine different commercial chatbot applica-

tions. Our methodology creates four distinct translation types: assisted functionalist,

assisted linguistic, direct functionalist, and direct linguistic. Results demonstrate that

assisted translations achieve high success rates (75% for functionalist approaches), while

direct translations show inconsistent performance with success rates ranging from 0% to

56%. The findings indicate that while LLM-enabled chatbots are not yet viable for fully

automated code translation, they serve as effective tools when assisting human developers

in the translation process, particularly for academic computer science projects.
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5.2 Verdicts

Current research in the area of LLM-enabled programming language translations is

mainly limited to direct-functionalist translations. LLM-enabled applications have been

around long enough that it is time to examine how their limitations can be overcome with

the assistance of a human developer. This is akin to the assisted translation portion of

our investigation, specifically addressing how LLM-enabled applications assist a human

developer in accomplishing a standard task. We must also investigate the capabilities of

these applications on their own throughout their evolution, as in the direct translation

portions of our investigation, to track their progress. Finally, we must also realize that

programs can be translated not only between programming languages but also between

paradigms, and this may be necessary to integrate a translated program successfully into

an existing code base.

Overall, we can combine our findings with those of the broader field to draw some

conclusions about the viability of different translation processes for translating academic

computer science projects between popular academic languages. LLM-enabled chatbot-

assisted functionalist translations are a viable method of program translation. Since

human developers can manually translate programming languages, and adding a chatbot

does not diminish this ability, this result is unsurprising. The additional insight our

research provides is that translating in a linguistic approach also appears to be a viable

option. Assisted translations have their downsides, primarily due to the human developer,

as this process is significantly slower. This is exemplified by our inability to produce a

working C++ functionalist translation or an attempt at a linguistic translation, as we ran

out of time. The LLM-enabled direct chatbot translation process was not viable for either

functionalist or linguistic program translations. This bore out in the data, which showed

that the success rate, the highest with TypeScript at 56%, is not consistent enough for

any of the programming languages we investigated to be used on their own without the

help of a human developer to fix complex bugs in the resultant translated programs. This

is replicated in other research, some with more success than us in producing functioning

translations [14], but all of that shows the direct LLM-enabled translation process is
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not yet viable due to inconsistent success. Thus, the programming language translation

process is viable for either functionalist or linguistic program translations when an LLM-

enabled chatbot application assists a human, but not yet when the chatbot is directly

prompted for the translation.

5.3 Future Directions

Linguistics and translation theory have extensive historical catalogs that may be

helpful in future translation approaches. A baseline amount of knowledge about pro-

gramming languages is available through their documentation; however, chatbot assis-

tance provides the immediate feedback necessary for active learning while completing a

project. This could be a direction for education research, involving students in more chal-

lenging projects than they typically complete, either on a programming language basis or

a project difficulty basis, and utilizing chatbot assistance for faster-paced education. Re-

garding the continuation of this research, many more complex prompting strategies could

be investigated, such as how well chatbots can translate between specific paradigms for

the same language.

Future work must incorporate a realistic analysis strategy. We produced realistic

results by attempting to translate a subset of a real academic computer science project.

The current model of using simplistic benchmarks does not account for the complexity

of real programs and large codebases. The applications of this research reach into the

software development field, where developers are actively migrating their code to other

programming languages. Our research shows that these developers are better off using

chatbots for assistance in translating programming languages, rather than relying on

direct translations.
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Appendix A

Direct Functionalist Translation

Analysis Results

A.1 Python Translations

Company and

Model

Steps Functions

Supplied

Working

Functions

Anthropic

Claude 3.5

Haiku

• First attempt: Incorrect keyword argument in function call;

fixed the keyword

• Second attempt: Incorrect keyword in every constructor for

a class; renamed within the class definition to replace the

original keyword

• Third attempt: data representation mismatch for the main

data structure; complex error

• Complex error found after 22 minutes

9 0

Anthropic

Claude 3.7

Sonnet

• First through sixth attempts: Incorrectly used custom Tu-

ple data structure instead of built-in tuple in type hints;

replaced with tuple

• Seventh attempt: Function expects a location to write data,

instead given the print function; replaced with standard

location

• Eighth attempt: The five given functions work as expected

5 5
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Company and

Model

Steps Functions

Supplied

Working

Functions

Google Gemini

2.0 Flash

• First attempt: Incorrect type hinting syntax; deleted the

type hinting

• Second attempt: Incorrect name used in function body to

access one of its parameters; replaced name in function

body in all these cases (18 total)

• Third attempt: Incorrect use of a built-in data structure as

a key to a hash table when it cannot be hashed; complex

error

• Complex error found in 10 minutes

15 0

Google Gemini

2.5 Pro

• First attempt: The first function produced a different out-

put than expected. The code itself runs many sets of data

through a set of functions to replicate a realistic scenario;

simplified function calls allow for standard testing

• Second attempt: The 15 supplied functions work as ex-

pected

15 15

MetaAI Llama 4
• First attempt: Incorrectly used custom Tuple data struc-

ture instead of built-in tuple in type hints; replaced with

tuple

• Second attempt: Incorrect use of a built-in data structure

as a key to a hash table when it cannot be hashed; complex

error

• Complex error found in 7 minutes

11 0

OpenAi

ChatGPT 4o

• First attempt: The 13 supplied functions work as expected
13 13

Open-Ai

ChatGPT o4

mini

• First attempt: Incorrect use of an object instance instead

of the type hint; replaced with the type hint

• Second attempt: Four of the supplied functions work as ex-

pected, the other 11 incorrectly use built-in data structure

as a key to a hash table when it cannot be hashed; complex

error

15 4
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Company and

Model

Steps Functions

Supplied

Working

Functions

xAI Grok 3
• First attempt: Incorrect use of default parameters; deleted

the default

• Second attempt: Incorrect use of function application with

incomplete argument lists; complex error

• Complex error found in 23 minutes

15 15

xAI Grok 3

(with Think)

• First attempt: Incorrect use of default parameters; deleted

the default

12 0

Assisted N/A 15 15

35



A.2 TypeScript Translations

Company and

Model

Steps Functions

Supplied

Working

Functions

Anthropic

Claude 3.5

Haiku

• First attempt: Incorrect use of an operator in multiple in-

stances; removed the extra operators

• Second attempt: Incorrect use of a data structure instead

of one of its values; changed to return just the value instead

• Third attempt: The 15 supplied functions worked as ex-

pected

15 15

Anthropic

Claude 3.7

Sonnet

• First attempt: The five supplied functions do not work as

expected, output is not produced; complex error

• Complex error found in 21 minutes

5 0

Google Gemini

2.0 Flash

• First attempt: Incorrect use of an if statement; fixed the

usage

• Second attempt: Incorrect use of basic syntax and custom

data collections; complex error

• Complex error found in 12 minutes

15 0

Google Gemini

2.5 Pro

• First attempt: required library needs downloaded, the code

contains a comment on how to download the library, I fol-

lowed the directions; no changes made to the code itself

• Second attempt: Incorrect import syntax; replaced the syn-

tax

• Third attempt: The 15 functions worked as expected

15 15

MetaAI Llama 4
• First attempt: built in data structure used with Python

syntax; replaced with the correct syntax

• Second attempt: Incorrect use of data structure function-

ality; complex error

• Complex error found in 15 minutes

11 0
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Company and

Model

Steps Functions

Supplied

Working

Functions

OpenAi

ChatGPT 4o

• First attempt: Unknown complex error in one of the func-

tions; deleted the problem function

• Second attempt: 9/10 supplied functions produced the ex-

pected output, one function found to have a complex error

10 9

Open-Ai

ChatGPT o4

mini

• First attempt: argument list out of order in function call;

switched the order. Object used in place of a function;

replaced with the function

• The 15 supplied functions worked as expected

15 15

xAI Grok 3
• First attempt: Incorrect fields in custom objects in all 15

supplied functions; complex error

• Complex error found in 24 minutes

15 0

xAI Grok 3

(with Think)

• First attempt: Incomplete argument lists in function calls;

replaced the missing item

• Second attempt: 11/15 supplied functions produced the

expected output

15 11

Assisted N/A 15 15
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A.3 Rust Translations

Company and

Model

Steps Functions

Supplied

Working

Functions

Anthropic

Claude 3.5

Haiku

• First attempt: *

• Second attempt: 7 errors, 27 warnings. Unused variable

names and imports, unnecessary mutability annotations,

re-importing items; deleted extra names, imports, and an-

notations. Complex type mismatch. Fixed as many prob-

lems as I could locate, but requires another compilation to

track progress.

• Third attempt: 1 error, four warnings. Incorrect import of

unused items and complex type mismatch

• Fourth attempt: Chained mutability and memory manage-

ment errors revealed once a type annotation error was cor-

rected; complex error

• Complex error found in 41 minutes

10 0

Anthropic

Claude 3.7

Sonnet

• First attempt: *

• Second attempt: 59 errors, three warnings. Incorrect use

of variables out of scope. Possible complex errors using

unimplemented object functionality.

• Third attempt: 19 errors, 18 warnings. Incorrect mutabil-

ity annotations, breaking memory management constraints,

sharing values that should not be shared, and using unim-

plemented functionality on objects.

• Complex error found in 36 minutes

15 0

Google Gemini

2.0 Flash

• First attempt: *

• Second attempt: 2 errors. Incorrect delimiter usage, added

the delimiters.

• Third attempt: 11 warnings, 45 errors. Unused imports and

variables, incorrect naming conventions. Complex errors in

breaking memory management constraints, sharing values

that cannot be shared, and using references as values.

• Complex error found in 14 minutes

15 0
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Company and

Model

Steps Functions

Supplied

Working

Functions

Google Gemini

2.5 Pro

• First attempt: 34 errors, eight warnings. Complex errors

were found in breaking memory management constraints

and sharing values that cannot be shared.

• Complex error found in 5 minutes

10 0

MetaAI Llama 4
• First attempt: *

• Second attempt: 48 errors, 11 warnings. Complex errors

were found in breaking memory management constraints,

sharing values that cannot be shared, using illegal opera-

tions, and using unimplemented methods on objects.

• Complex error found in 8 minutes

9 0

OpenAi

ChatGPT 4o

• First attempt: 4 warnings. None of the required func-

tions were supplied, and no replacement of functionality

was given

• Complex error found in 2 minutes

0 0

Open-Ai

Chat-GPT o4

mini

• First attempt: *

• Second attempt: 1 error. Incorrect documentation com-

ment; deleted the comment.

• Third attempt: 16 errors, three warnings. Complex errors

were found in breaking memory management constraints,

sharing values that cannot be shared, and using unimple-

mented methods on objects

• Complex error found in 23 minutes

15 0

xAI Grok 3
• First attempt: *

• Second attempt: 93 errors, two warnings. Complex errors

were found in breaking memory management constraints,

sharing values that cannot be shared, using unimplemented

functionality on objects, and using the wrong kinds of ob-

jects.

• Complex error found in 4 minutes

14 0
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Company and

Model

Steps Functions

Supplied

Working

Functions

xAI Grok 3

(with Think)

• First attempt: *

• Second attempt: 12 errors, one warning. Complex errors

were found in breaking memory management constraints

and using the wrong kinds of objects.

• Complex error found in 11 minutes

15 0

Assisted N/A 15 15

* For attempting to execute the Rust code, I use the included Cargo build system.

For this to work, the program files must be in a directory that contains a Cargo. toml file

and a src subdirectory, or else an error will result. The Toml file includes the program’s

dependencies, and the src subdirectory contains all the actual code files and directories.

If the chatbot response prescribes a layout for its program files, this structure will be

followed for the first attempt, with corrections made to the layout if the build system

constraints are not met initially.
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A.4 C++ translations

Company and

Model

Steps Functions

Supplied

Working

Functions

Anthropic

Claude 3.5

Haiku

• First attempt: 20 errors, three warnings. An object used

throughout the file is never defined; complex error

• Complex error found in 5 minutes

10 0

Anthropic

Claude 3.7

Sonnet

• First attempt: 20 errors, 44 warnings. Importing items

from libraries that do not contain them, using the wrong

syntax for a given object assignment, or incorrect typing

syntax. Complex errors are the assignment syntax and in-

correct use of the class constructor

• Complex error found in 14 minutes

15 0

Google Gemini

2.0 Flash

• First attempt: 1 error. Unknown library imported; deleted

the import

• Second attempt: 20 errors, eight warnings. Importing items

from namespaces that do not contain them, using an unde-

fined object; complex error

• Complex error found in 7 minutes

15 0

Google Gemini

2.5 Pro

• First attempt: 21 errors. Using items with incorrect names-

paces, prescribed a set of files and a command to compile

them, but it does so incorrectly, such that each file may or

may not know if imported items are defined; complex error

• Complex error found in 11 minutes

15 0

MetaAI Llama 4
• First attempt: 1 error. Imports an uncommon library; com-

plex error.

• Complex error found in 3 minutes

12 0

OpenAi

ChatGPT 4o

• First attempt: 20 errors, nine warnings. Using objects that

it does not define, casting types incorrectly; all are complex

errors

• Complex error found in 4 minutes

12 0
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Company and

Model

Steps Functions

Supplied

Working

Functions

Open-Ai

ChatGPT o4

mini

• First attempt: 1 error. Imports an uncommon library; com-

plex error

• Complex error found in 3 minutes

15 0

xAI Grok 3
• First attempt: 20 errors, 12 warnings. Using objects it does

not define, using items with incorrect namespaces

• Complex error found in 3 minutes

15 0

xAI Grok 3

(with Think)

• First attempt: 20 errors, 13 warnings. Using objects that

it does not define, using incorrect syntax

• Complex error found in 5 minutes

13 0

Assisted N/A 15 0
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Appendix B

Direct Linguistic Translation

Analysis Results

Below is the analysis of the results for the linguistic direct translations.

B.1 Python Translations

Company and

Model

Results

Anthropic Claude

3.5 Haiku

• Functionalist translation: imperative, functional, minimal OO

• Program shape: variable

• Linguistic translation: imperative, functional, OO

• Program shape: variable

Anthropic Claude

3.7 Sonnet

• Functionalist translation: imperative, functional, OO

• Program shape: variable

• Linguistic translation: imperative, functional, OO

• Program shape: variable
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Company and

Model

Results

Google Gemini 2.0

Flash

• Functionalist translation: imperative, functional, OO

• Program shape: variable

• Linguistic translation: imperative, functional, OO

• Program shape: variable

Google Gemini 2.5

Pro

• Functionalist translation: imperative and OO

• Program shape: uniform

• Linguistic translation: imperative and OO

• Program shape: uniform

MetaAI Llama 4
• Functionalist translation: imperative, functional, OO

• Program shape: variable

• Linguistic translation: imperative, functional, OO

• Program shape: variable

OpenAi ChatGPT

4o

• Functionalist translation: imperative, functional, OO

• Program shape: variable

• Linguistic translation: imperative, functional, minimal OO

• Program shape: variable

Open-Ai ChatGPT

o4 mini

• Functionalist translation: imperative and functional

• Program shape: variable

• Linguistic translation: imperative, functional, OO

• Program shape: variable

xAI Grok 3
• Functionalist translation: imperative, functional, OO

• Program shape: variable

• Linguistic translation: imperative and functional

• Program shape: variable

xAI Grok 3 (with

Think)

• Functionalist translation: imperative, functional, OO

• Program shape: variable

• Linguistic translation: OO, imperative, functional

• Program shape: variable
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B.2 TypeScript Translations

Company and

Model

Results

Anthropic Claude

3.5 Haiku

• Functionalist translation: functional and imperative

• Program shape: uniform

• Linguistic translation: functional and imperative

• Program shape: uniform

Anthropic Claude

3.7 Sonnet

• Functionalist translation: functional and imperative

• Program shape: uniform

• Linguistic translation: functional and imperative

• Program shape: uniform

Google Gemini 2.0

Flash

• Functionalist translation: functional and imperative

• Program shape: uniform

• Linguistic translation: functional and imperative

• Program shape: uniform

Google Gemini 2.5

Pro

• Functionalist translation: functional and imperative

• Program shape: uniform

• Linguistic translation: functional and imperative

• Program shape: uniform

MetaAI Llama 4
• Functionalist translation: functional and imperative

• Program shape: uniform

• Linguistic translation: OO, imperative, and minimal functional

• Program shape: variable

OpenAi ChatGPT

4o

• Functionalist translation: functional and imperative

• Program shape: uniform

• Linguistic translation: N/A; did not receive a translation for this trial

• Program shape: N/A
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Company and

Model

Results

Open-Ai ChatGPT

o4 mini

• Functionalist translation: functional and imperative

• Program shape: uniform

• Linguistic translation: functional and imperative

• Program shape: uniform

xAI Grok 3
• Functionalist translation: functional and imperative

• Program shape: uniform

• Linguistic translation: functional and imperative

• Program shape: uniform

xAI Grok 3 (with

Think)

• Functionalist translation: imperative

• Program shape: uniform

• Linguistic translation: functional and imperative

• Program shape: uniform
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B.3 Rust Translations

Company and

Model

Results

Anthropic Claude

3.5 Haiku

• Functionalist translation: imperative and OO

• Program shape: variable

• Linguistic translation: imperative with minimal OO

• Program shape: variable

Anthropic Claude

3.7 Sonnet

• Functionalist translation: imperative and functional with minimal generic

• Program shape: variable

• Linguistic translation: imperative and functional with minimal OO

• Program shape: variable

Google Gemini 2.0

Flash

• Functionalist translation: imperative, OO, functional

• Program shape: variable

• Linguistic translation: imperative and functional with minimal OO

• Program shape: variable

Google Gemini 2.5

Pro

• Functionalist translation: OO, imperative, and functional

• Program shape: variable

• Linguistic translation: OO, imperative, and functional

• Program shape: variable

MetaAI Llama 4
• Functionalist translation: imperative and functional with minimal OO

• Program shape: variable

• Linguistic translation: imperative and functional with minimal OO and generic

• Program shape: variable

OpenAi ChatGPT

4o

• Functionalist translation: OO and imperative

• Program shape: variable

• Linguistic translation: OO and imperative

• Program shape: variable
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Company and

Model

Results

Open-Ai ChatGPT

o4 mini

• Functionalist translation: imperative and functional with minimal generic

• Program shape: variable

• Linguistic translation: OO, imperative, and functional

• Program shape: variable

xAI Grok 3
• Functionalist translation: imperative and functional

• Program shape: uniform

• Linguistic translation: imperative and functional

• Program shape: uniform

xAI Grok 3 (with

Think)

• Functionalist translation: imperative and functional with minimal OO and generic

• Program shape: variable

• Linguistic translation: imperative and functional

• Program shape: variable
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B.4 C++ Translations

Company and

Model

Results

Anthropic Claude

3.5 Haiku

• Functionalist translation: imperative in OO

• Program shape: uniform

• Linguistic translation: keywords are OO, shape has some OO but is mostly functional

• Program shape: variable

Anthropic Claude

3.7 Sonnet

• Functionalist translation: imperative and functional

• Program shape: uniform

• Linguistic translation: imperative and functional

• Program shape: uniform

Google Gemini 2.0

Flash

• Functionalist translation: imperative with minimal OO use

• Program shape: variable

• Linguistic translation: imperative, generic, and OO

• Program shape: variable

Google Gemini 2.5

Pro

• Functionalist translation: OO in imperative and OO in functional

• Program shape: variable

• Linguistic translation: keywords and shape are mixed imperative in OO

• Program shape: uniform

MetaAI Llama 4
• Functionalist translation: OO in imperative

• Program shape: uniform

• Linguistic translation: OO in imperative, functional

• Program shape: variable

OpenAi ChatGPT

4o

• Functionalist translation: imperative and functional

• Program shape: variable

• Linguistic translation: OO with minimal imperative

• Program shape: variable

49



Company and

Model

Results

Open-Ai ChatGPT

o4 mini

• Functionalist translation: imperative and functional

• Program shape: variable

• Linguistic translation: imperative and functional

• Program shape: variable

xAI Grok 3
• Functionalist translation: imperative, with minimal functional and generic

• Program shape: variable

• Linguistic translation: imperative in OO

• Program shape: uniform

xAI Grok 3 (with

Think)

• Functionalist translation: imperative in OO

• Program shape: uniform

• Linguistic translation: imperative, OO

• Program shape: variable
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